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Abstract. We studied the potential of using a global-scale climate model for analyzing simultaneously both city-level air

quality and regional and global scale radiative forcing values for anthropogenic aerosols. As the city-level air pollution val-

ues are typically underestimated in global-scale models, we used a machine learning approach to downscale fine particu-

late (PM2.5) concentrations towards measured values. We first simulated the global climate with the aerosol-climate model

ECHAM-HAMMOZ, and corrected the PM2.5 values for the Indian mega-city New Delhi.5

The downscaling procedure clearly improved the seasonal variation when compared to measured PM2.5 values. However,

short-term variations showed less extreme values with the downscaling approach. We applied the downscaling model also to

simulations where the aerosol emissions were following different future projections. The corrected PM2.5 concentrations for

the year 2030 showed that mitigating anthropogenic aerosols improves local air quality in New Delhi, with organic carbon

reductions contributing most to these improvements.10

In addition, aerosol emission mitigation also resulted in negative radiative forcing over most of India. This was mainly due

to reductions in absorbing black carbon emissions. This indicates that aerosol mitigation could bring a double benefit in India:

better air quality and decreased warming of the climate.

Our results demonstrate that downscaling and bias correction allow more versatile utilization of global-scale climate models.

With the help of downscaling, global climate models can be used in applications where one aims to analyze both global and15

regional effects of policies related to mitigating anthropogenic emissions.

1 Introduction

The climate crisis and air quality issues are strongly interlinked. Air pollutants have diverse characteristics and hence each

pollutant has a different impact on air quality and on atmospheric processes. Furthermore, many pollutants are interlinked, and

decreasing emissions of one pollutant might reduce also the emissions of co-emitted pollutants which affects the net impact of20
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the total emission reduction. Therefore, improving air quality can bring either co-benefits or trade-offs when aiming to slowing

down global warming. Analyzing the effects of emission mitigation on air quality and on global climate are usually done using

separate tools from different model families (Trail et al., 2013; Stohl et al., 2015; Gao et al., 2018): Air quality models usually

operate on small domains and in the lower part of the atmosphere, but have relatively high horizontal and vertical resolution,

while climate models operate on large to global scales, but use much coarser horizontal and vertical resolutions.25

Fine particulate matter (PM2.5) air pollution is associated with millions of premature deaths globally each year (Burnett

et al., 2018; Vohra et al., 2021), being one of the most significant causes of global disease burden (GBD 2015 Risk Factors

Collaborators, 2016). During the past decades, the global trends for PM2.5 have been slightly increasing (Hammer et al., 2020).

Half of the global population are exposed to increasing levels of air pollution (Shaddick et al., 2020), despite the decreasing

trends in Europe and North America (Hammer et al., 2020). PM2.5 refers to particulate matter (PM) which is composed30

of either solid or liquid atmospheric particles with diameters of less than 2.5 µm. Particulate matter is a mixture of various

chemical species such as sulfate, organic carbon (OC) and black carbon (BC), and is formed due to both human activities and

natural processes. For instance, residential biomass burning, road transport, agricultural activities and industrial operations are

common sources of atmospheric PM2.5.

Besides health effects, PM aerosols affect atmospheric processes and Earth’s energy balance via various mechanisms. Some35

of the substances contained in aerosol particles, for instance OC and sulfate, generate a negative radiative forcing due to

scattering of shortwave (SW) radiation. On the other hand, BC-containing aerosol particles can absorb SW radiation, resulting

in a positive forcing. In addition to these so-called aerosol-radiation interactions (ARI), aerosols can affect Earth’s radiative

balance indirectly, for instance, by altering the properties of clouds (aerosol-cloud interaction; ACI) or by changing local

meteorological dynamics. The combined radiative effect of aerosols is still highly uncertain, but is estimated to lead to a net40

cooling effect (Bellouin et al., 2020). Mitigation of short-lived climate forcer (SLCF) emissions, especially BC, has been

considered as one potential pathway to slow down global warming, as the lifetime of these pollutants is short compared to

the main greenhouse gas (GHG) carbon dioxide (CO2). However, some studies also found that, due to ACI and reductions of

associated climate-cooling co-emitted pollutants, mitigation of BC emissions may end up warming the climate, or, at least the

overall effect includes significant uncertainty (Cherian et al., 2017; Kühn et al., 2020; Harmsen et al., 2020).45

Atmospheric general circulation models (GCMs) and Earth system models (ESMs) are designed to study large-scale or

global climate effects and hence operate on relatively coarse horizontal (0.5◦–2.0◦) and vertical resolutions. They are therefore

not optimal tools to model accurate surface PM2.5 concentrations that correspond to exact point measurements (e.g. in cities).

Hence, the regional characteristics affecting local air pollution levels are many times not captured (Li et al., 2016; Cooney,

2012; Turnock et al., 2020). Moreover, the input data describing both anthropogenic and natural aerosol emissions might50

lack information of some local sources (Kukkonen et al., 2018) or overestimate emissions compared to real-life conditions

(Wang et al., 2021), which directly affects the model estimates for PM2.5. Turnock et al. (2020) concluded that the Coupled

Intercomparison Model Project 6 (CMIP6) models underestimated the surface PM2.5 up to 10 µg/m3, and that models tend to

produce different regional patterns due to differences in chemistry and aerosol processes.

2

https://doi.org/10.5194/acp-2022-513
Preprint. Discussion started: 1 August 2022
c© Author(s) 2022. CC BY 4.0 License.



The advantage of using a GCM or ESM is that air quality and climate impacts can be studied at the same time. Furthermore,55

air quality effects can be analyzed on the entire model domain, which may help lowering the computational cost of the assess-

ment, especially when assessing the effects of future emission changes. In order to remedy the resolution-related bias problems

described above, statistical downscaling can be a viable alternative to higher resolution physical modelling in these scenarios.

There exist many statistical downscaling methods for correcting GCM-derived data (Ivatt and Evans, 2020; Geng et al.,

2020; Nolte et al., 2018; Lu and Wang, 2005; Lipponen et al., 2013). In contrast to dynamical downscaling (Nolte et al., 2018),60

a benefit of statistical downscaling is that data from a coarse resolution model can be corrected after a simulation (offline)

using measured data or high resolution model data. The advantage of such an approach is that the bias can be corrected

without having to, e.g., derive, new parameterizations or implementing new in-model methods for grid refinement. In addition,

statistical downscaling is computationally inexpensive and often faster than dynamical downscaling methods (Tran Anh and

Taniguchi, 2018). Various machine learning approaches have been suggested for downscaling or predicting air pollution levels65

(Ivatt and Evans, 2020; Geng et al., 2020; Zamani Joharestani et al., 2019; Silibello et al., 2015; Watson et al., 2019; Yang

et al., 2020).

In this study, we investigated the potential of using machine learning to improve PM2.5 concentrations derived with a GCM.

We simulated the PM2.5 fields with the aerosol-climate model ECHAM-HAMMOZ, and corrected the data afterwards with a

downscaling approach, limiting the correction to PM2.5 concentrations modelled for the Indian mega city of New Delhi.70

Here our focus is India and specifically the New Delhi region. India, overall, is one of the countries with the highest BC

emissions globally (Xu et al., 2021) and emissions originating from New Delhi contribute significantly to the Asian Tropopause

Aerosol layer (ATAL); (Fairlie et al., 2020; Lau et al., 2018) which has been suggested to affect the regional surface temper-

atures and radiative forcing over Asia during the past decade (Vernier et al., 2015). Despite the various programs tackling air

pollution and, partly, due to the polycentric nature of environmental regulation in India (Honkonen, 2020), many Indian cities75

still struggle with high PM2.5 concentrations at alarming levels. The premature mortality due to PM in India is estimated to

be over a million cases annually (Vohra et al., 2021; Guo et al., 2018; Sahu et al., 2020). The aerosol emissions from South

Asia also affect Arctic black carbon concentrations, which directly links to Arctic warming (Backman et al., 2021; Zhao et al.,

2021). Thus New Delhi and surroundings is a very interesting region to test if there are co-benefits or trade-offs with regard to

climate and air quality when reducing BC emissions along with the co-emitted pollutants.80

In this article, we employed random forest regression for downscaling global model-derived surface PM2.5 concentrations

such that the regression algorithm corrected the biases between measured and modeled PM2.5 values at individual stations.

In addition, we applied the trained random forest function to three separate climate model simulations which were conducted

with present-day and future aerosol emission projections for the years 2015 and 2030, respectively. We used the ECLIPSE

V6b emission scenarios, which project global emission changes for the current legislation (CLE) (Stohl et al., 2015) and for85

maximum feasible global mitigation of SLCFs (Im et al., 2021). Our aim was to simultaneously study the effects of global

SLCF mitigation on Earth’s energy balance and on air quality. The air quality assessment was limited to the city of New Delhi,

but could easily be extended with additional observational data.
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2 Methods

2.1 Aerosol-climate model ECHAM-HAMMOZ90

We performed all the simulations with the aerosol-climate model ECHAM6.3-HAM2.3 (ECHAM-HAMMOZ) (Schultz et al.,

2018). ECHAM-HAMMOZ consist of the general circulation model ECHAM (Stevens et al., 2013), the aerosol module HAM

(Kokkola et al., 2018; Tegen et al., 2019; Neubauer et al., 2019), and, in our setup, the aerosol microphysics module SALSA2.0

(Kokkola et al., 2018). HAM threats the chemical compounds black carbon (BC), organic aerosol (OA), sulfate (SU), mineral

dust (DU) and sea salt (SS). SALSA discretizes the aerosol size distribution into 10 size classes and separately treats a soluble95

and an insoluble sub-population. A detailed description of SALSA is presented in Kokkola et al. (2018). SALSA has been

further developed to include an improved wet-scavenging scheme, where fixed scavenging coefficients were replaced by an

algorithm that takes into account the fraction of activated particles (Holopainen et al., 2020). In this study, we used T63L47

grid resolution, which corresponds to an approximately 1.9 °×1.9◦ horizontal resolution, and has 47 vertical hybrid layers up

to 0.01 hPa (appr. 80 km) altitude.100

2.2 Random forest regression

Random forest (RF) (Ho, 1995; Breiman, 2001) is a supervised ensemble learning method which aggregates multiple decision

trees (Blockeel and De Raedt, 1998). The output of the algorithm is the mean value of the predictions of all the trees. This helps

to avoid overfitting, which is a typical problem for predictions with a single regression tree (Bramer, 2013). Therefore, RF is

suitable for modelling complex and non-linear relationships (Auret and Aldrich, 2012). Decision trees are used in statistical105

modeling for both classification and regression. A decision tree uses the classification and regression trees (CART) algorithm

(Breiman et al., 1984), where the input data space is partitioned down into subspaces. In the case of regression, the mean square

error of the data is typically used as a measure of homogeneity of each subspace (Breiman, 2001). RF was shown to be highly

effective in a variety of applications (Fawagreh et al., 2014), and has also been widely utilized in the field of climate modelling

(Crawford et al., 2019; Lipponen et al., 2013; Pang et al., 2017).110

In this study, we used the RF regression method from the Scikit Learn Python module (Pedregosa et al., 2011). The hyper

parameters were adjusted by testing different combinations and chosen based on the best error statistics: The maximum depth

for each tree was set to infinity and the number of trees was the default value, 100. The splitting criteria was also set according

to the default settings, i.e. the mean squared error. The maximum number of input features to be used in one decision tree

(max_features) was set to 7, which corresponds to the recommended one third of the total number of input features (Trevor115

et al., 2009). In addition, we used the default bootstrap aggregation method for dividing the training data into separate sample

sets in order to provide an individual sample of training data for each tree, which has been shown to increase the smoothness

of the fit (Altman and Krzywinski, 2017). We evaluated the importance of each input feature by using a built-in function

from the Scikit-Learn Random Forest regressor module (Pedregosa et al., 2011). The importance for each input variable is

calculated as the total decline in the splitting criterion due that specific input variable. The final feature importance values are120

then normalized to an interval between 0 and 1.
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2.3 Measurement station data

RF was applied to correct the modeled ECHAM-HAMMOZ PM2.5 data to correspond to those measured in 31 ground stations

located in the New Delhi capital region. We used data from each station to train and validate RF models, which were then

applied to three climate model simulations. A list of the stations and their spatial coordinates are presented in Table S1 and in125

a map in Figure S1. The stations are administrated by three different operators. The operator for each station is also marked in

Table S1.

Delhi Pollution Control Committee (DPCC) (Delhi Pollution Control Committee, 2022) operates 18 out of the 31 stations

from which data was retrieved for this study. We also harnessed PM2.5 data from seven "SAFAR" stations that are adminis-

tered by the India Meteorological Department (IMD) (System of Air Quality and Weather Forecasting And Research, 2022).130

In addition, we used measurement data from six stations operated by the Central Pollution Control Board (CPCB). PM2.5

mass concentration is measured at all the stations using Beta Attenuation Monitors (BAMs) employing the β-ray attenuation

technique. It is a United States Environmental Protection Agency (US EPA) recommended method and adopted at all the con-

tinuous ambient air quality monitoring stations in Delhi (CPCB, 2020; Saraswati et al., 2019; Hama et al., 2020; Sharma et al.,

2022). The lower detection limit of monitors is 0.1 µgm−3. Operating bodies frequently standardize the monitors as per the135

CPCB guidelines for verifying the quality of the data.

The stations are spread to a square area of approximately 30 km × 30 km, and data were provided for a time period of

1.1.2016–31.12.2019. There are some differences in temporal data coverage between the stations. The data coverage percentage

for each year and station is reported in Table S1. For the year 2016, there are only five stations that have over 50 % time

coverage. The same applies for the year 2017. However, there is over 80 % coverage for the years 2018 and 2019 for almost140

all of the stations. These differences in temporal coverage affect the RF downscaling results: the final RF bias correction leans

more on the year 2018 (and 2019) data since there is a higher number of measurement points for those years.

The original data for the stations had a time resolution of 30 min. We calculated the daily average PM2.5 concentration

values for all of the stations, and used those in the RF model training. Initially there were data available for almost 40 ground

measurement stations. However, some of the station data series did not include sufficient amount of data for the random forest145

training phase. Therefore, we excluded the stations that had less than 180 days of PM2.5 concentration data for the training

phase from our analysis, which left us with the 31 stations discussed above.

2.4 Anthropogenic aerosol emissions

For the anthropogenic aerosol emissions in ECHAM-HAMMOZ, we used the ECLIPSE V6b emission inventory (Stohl et al.,

2015; Klimont et al., 2017; IIASA, 2021; Im et al., 2021) which was compiled with the integrated assessment model GAINS150

(Amann et al., 2011). For this study, we used only the emissions of BC, OC and sulfur dioxide (SO2), and re-gridded the

emission fields to correspond to the spatial grid resolution T63 used in ECHAM-HAMMOZ (∼2 °×2◦). The global emissions

and the regional emissions near New Delhi from the ECLIPSE V6b inventory are presented in Table 1.
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Table 1. ECLIPSE V6b emissions, global yearly sums for current legislation (CLE) scenario emissions for the years 2015, 2020 and 2030

and for maximum feasible reductions (MFR) scenario for the year 2030. The second column shows the global summed emitted mass, and

the third column represents the summed emitted mass for New Delhi surroundings (24–34◦ N, 72–82◦ W).

Global sum New Delhi surroundings

emission scenario BC (kt yr-1) OC (kt yr-1) SO2 (kt yr-1) BC (kt yr-1) OC (kt yr-1) SO2 (kt yr-1)

CLE, year 2015 6351.5 13763.2 73335.1 295.2 665.3 1995.0

CLE, year 2020 5909.1 13595.4 55059.6 254.9 671.6 2012.7

CLE, year 2030 5378.9 13752.9 47503.9 231.3 711.4 1413.8

MFR, year 2030 1985.2 3492.2 21673.9 78.4 133.8 548.4

The current legislation (CLE) scenario projects a 15 % decrease in global BC emissions between 2015 and 2030 and a 35 %

decrease in SO2 emissions, while the global OC emissions are projected to stay almost constant (∼−0.07 %). In the area155

surrounding New Delhi, the decrease in BC and SO2 is approximately at the same level as for the global sum: BC emissions

decrease by 22 % between 2015 and 2030 for the CLE scenario, and SO2 emissions are 29 % smaller for 2030. The OC

emissions are an exception as they increase by 7 % in 2030 compared to 2015.

The maximum feasible reductions (MFR) scenario is built on assumptions where the most advanced SLCF emission reduc-

tion technologies that are included in the GAINS model are implemented fully globally (Im et al., 2021). In MFR 2030 the160

global BC, OC and SO2 emissions decrease by 69 %, 75 % and 70 %, respectively, compared to CLE 2015. The corresponding

decreases for the New Delhi surroundings are 73 %, 80 % and by 73 %, respectively.

2.5 Model simulation setup

We conducted altogether four simulations with ECHAM-HAMMOZ: for teaching the random forest algorithm, and further

applying the correction to simulations with present-day and future aerosol emission scenarios. The simulations are listed in165

Table 2.

Simulation Meteorology Aerosol Emissions time

RF_TRAIN nudged, ERA5 ECLIPSE V6b CLE yearly interpolated emissions 2015–2019

PRES freely evolving ECLIPSE V6b CLE 2015 repeated 10 simulation years

CLE_2030 freely evolving ECLIPSE V6b CLE 2030 repeated 10 simulation years

MITIG_2030 freely evolving ECLIPSE V6b MITIG 2030 repeated 10 simulation years

Table 2. Experiment design

The first simulation, (RF_TRAIN) was used for training and validating the random forest regression model in present day

conditions. For the RF_TRAIN, we used the Newtonian relaxation scheme (nudging) for large scale meteorological fields.

Following the recommendation by Zhang et al. (2014), we nudged the wind patterns and surface pressure towards ERA5
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reanalysis data (Hersbach et al., 2020; Copernicus Climate Change Service (C3S), 2017), and allowed temperature and free170

static energy to evolve freely. For the anthropogenic aerosol emissions, we used the ECLIPSE V6b current legislation (CLE)

scenario and calculated the yearly emissions by linearly interpolating the values for each grid box and emission specie from

year 2015 to year 2020. The monthly values were then computed based on the yearly values and the monthly pattern from the

ECLIPSE inventory. RF_TRAIN was integrated between the years 2016 and 2019 with an output time resolution of 3 hours.

The rest of the simulations (i.e. PRES, CLE_2030 and MITIG_2030) were used to simultaneously analyze radiative forc-175

ings and local air quality in New Delhi under two different future emission scenarios, CLE and MFR, with freely evolving

wind and pressure fields, i.e. no nudging was applied. For each of these simulations, the PM2.5 values were bias-corrected

using the RF model which was trained with RF_TRAIN. In addition to the PM2.5 fields, we computed the corresponding

global radiative forcing values to see how the changes in air pollutants affect the net radiation at the top of the atmosphere.

The additional simulation PRES, which was used as a reference simulation to describe the present day air pollution conditions,180

was necessary, because the radiation fields from the nudged simulation RF_TRAIN would not be compatible with the radiation

fields from CLE_2030 and MITIG_2030.

In Simulation PRES, for anthropogenic aerosol emissions we used the ECLIPSE V6b CLE emissions for the year 2015, re-

peating the monthly emissions for 10 simulation years. Similarly, the simulation CLE_2030 used ECLIPSE V6b CLE scenario

and had 10 simulation years, but the anthropogenic aerosol emissions were for the year 2030. Simulation MITIG_2030 was185

identical to CLE 2030, but instead of CLE scenario, we used the global MFR projection with emissions for the year 2030.

Sea surface temperature (SST) and sea ice cover (SIC) were fixed to prescribed fields from the Program for Climate Model

Diagnosis & Intercomparison’s (PCDMI’s) Atmospheric Model Inter-comparison Project (AMIP) data (Taylor et al., 2012).

For Simulation RF_TRAIN, we used the monthly mean values for each year, except for year 2019, where we used 2018 values

since the data were not available by the time when simulations were done. For the rest of the simulations, we used the mean190

climatological values for each month, calculated from the monthly mean data between the years 2000 and 2015.

In all of the simulations, sea salt and dust emissions were calculated online, and were dependent on the 10 meter wind speed

(Tegen et al., 2019). The calculation routine for dust emissions used the parameterization of Tegen et al. (2002) that has been

further improved by Cheng et al. (2008) and Heinold et al. (2016). The aerosol emissions for aviation were kept fixed for all

of the simulations, repeating the monthly mean emissions for the year 2015 with the Representative Concentration Pathway195

(RCP) scenario 4.5 (Thomson et al., 2011; van Vuuren et al., 2011) from the Emissions for Atmospheric Chemistry and Climate

Model Intercomparison Project (ACCMIP) database (Lamarque et al., 2010). In addition, the hydroxyl radical (OH) mixing

ratios were taken from reanalysis data as described in Inness et al. (2013). For ozone mixing ratios, we used Chemistry-Climate

Model Initiative (CCMI) data that were prepared for the CMIP6 simulations (Hegglin et al., 2016). In the simulations PRES,

CLE_2030 and MITIG_2030, we used historical monthly varying climatologies that were calculated based on monthly mean200

values between years 2000 and 2014. With the simulation RF_TRAIN, we used monthly mean values for each simulation year,

following the Shared Sosioeconomic Pathway (SSP) scenario 2 (Fricko et al., 2017).

Forest fire emissions were taken from the CAMS Global Fire Assimilation System (GFAS) emission inventory (Kaiser

et al., 2012). For the simulation RF_TRAIN, we used the daily mean emissions for each simulation year. For the rest of the

7

https://doi.org/10.5194/acp-2022-513
Preprint. Discussion started: 1 August 2022
c© Author(s) 2022. CC BY 4.0 License.



simulations, we computed the monthly varying climatological values that were calculated based on the GFAS data between the205

years 2000 and 2016.

2.6 Developing the RF model for bias correction

Instead of implementing the RF model to predict the PM2.5 concentrations directly, we used the model data to compute the

bias ϵ between the measured and modelled PM2.5 values and thereby predict the bias between modelled and actual PM2.5

concentrations. This approach has the advantage of better incorporating the modelled physical information into the training210

and prediction phases leading to overall more accurate results (Lipponen et al., 2013). Predicting the bias instead of the absolute

value also helps minimizing problems with predictions outside of the training data.

We divided the RF_TRAIN and ground measurement station data into training phase data (train) and testing phase data

(test). We used the first two-thirds of the RF_TRAIN simulation data for training the RF model, which corresponds to the time

interval between 1.1.2016 and 21.8.2018. The rest of the data (corresponding to 22.8.2018–31.12.2019) was used for testing215

the RF model. We intentionally used separate time spans for the training and testing in order to obtain more realistic estimates

for the accuracy or our method. If we would have randomly divided all the data into training and testing, the likelihood to have

very similar samples in both data sets would have been much larger than in our approach, leading to overoptimistic results.

We conducted the random forest correction in the following way: At first, we calculated the absolute bias ϵtrain between

each measurement station and ECHAM-HAMMOZ-derived PM2.5 without the mineral dust component (PM25_no_DU). The220

mineral dust component was excluded due to the temporal differences in dust episodes: the PM2.5 concentrations peaks in

ECHAM-HAMMOZ did not appear exactly for the same dates as in the measurements, and this could induce artificially large

bias values when training the RF. Then, we trained a RF model with the input feature data set xtrain (see Table 3), and set the

bias ϵtrain as a target for training.

f = RANDOM_FOREST(xtrain, ϵtrain) (1)225

For easier statistical analysis, this was done separately for each station. Note that many stations did not provide complete

data for the whole training phase period. In case of missing data, we removed those samples from the input feature data xtrain

that were not present in the measurement station data.

After that, we calculated a RF prediction for the bias using the test phase input feature data (xtest), using the RF model

trained for one individual station. Then we computed the corresponding PM2.5 value by correcting the ECHAM-HAMMOZ230

PM2.5 with

PM2.5RF prediction = PM2.5ECHAM-HAMMOZ,no dust,test + f(xtest) (2)

The final prediction for RF-corrected New Delhi PM2.5 concentration was then formed as the average of the individual

RF predictions that were computed for each, station-specific RF model. The error statistics were calculated between the daily
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Table 3. Input features used in the random forest fitting. Feature data is retrieved only for one grid box (point), or over a larger area (24–34◦

N, 72–82◦ W). For the larger area, we either calculated the area-weighted mean value (fldmean) or the sum over the whole area (fldsum).

variable point, fldmean or fldsum variable point, fldmean or fldsum

PM2.5 point 10m wind speed fldmean

PM2.5 without mineral dust point sin(10m wind direction) fldmean

PM2.5 due to BC point cos(10m wind direction) fldmean

PM2.5 due to OC point mineral dust burden fldmean

PM2.5 due to sulfate point BC burden fldmean

PM2.5 due to sea salt point OC burden fldmean

PM2.5 due to mineral dust point SO4 burden fldmean

PBL height point mineral dust total emission fldsum

PBL pressure point BC total emission fldsum

temperature at 2m point OC total emission fldsum

large scale precipitation fldmean SO2 total emission fldsum

convective precipitation fldmean

average prediction and the daily average of all measurement stations. The input features used in the random forest fitting are235

presented in Table 3.

All of the variables presented in Table 3 are post-processed output from ECHAM-HAMMOZ simulations. For some input

features, we used values representing one grid box surrounding the New Delhi region (point). For the rest of the features, we

first defined a square of 5x5 grid boxes surrounding New Delhi (24–34◦ N, 72–82◦ W). For the variables describing emissions,

we computed the daily total emitted mass (’fldsum’ in Table 3) over the whole square. For all other non-point variables, we240

calculated an area-weighted mean value (’fldmean’ in Table 3) for each time step and feature. In the end, we calculated the

daily average values for all input features.

2.7 Employing the RF model to free-running simulations

We implemented the RF model further to simulations PRES, CLE_2030 and MITIG_2030. Simulations PRES and RF_TRAIN

were also used to evaluate, how much nudging affects the RF correction results. This was done in order to estimate simultane-245

ously local PM2.5 concentrations in New Delhi as well as regional and global radiative effects of two different future aerosol

emission scenarios.

Again, we constructed an individual RF model for each measurement station, and then calculated the final prediction as an

average of multiple models. For training each model, this time we employed the whole RF_TRAIN input data set, i.e. all data

from the period of 1.1.2016–31.12.2019, and chose only the time steps that were available for each of the measurement stations.250

Then we applied the trained RF model to the simulations PRES, CLE_2030 and MITIG_2030 to get the bias prediction for

PM2.5, and computed the corrected PM2.5 concentrations. Finally, we calculated the multi-year average daily values.
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2.8 Calculating radiative forcings

For analyzing the impacts of aerosol emission mitigation on global warming, we computed the global radiative forcing values

for CLE_2030 and MITIG_2030 simulations. The radiative effect due to aerosol-radiation interactions (REARI) is computed255

in ECHAM-HAMMOZ according to Collins et al. (2006). The REARI is the difference in radiative flux with and without

aerosol, and is calculated with a double-call to the radiation routine (Collins et al., 2006). The radiative forcing due to aerosol-

radiation interactions (RFARI) is then calculated as the difference in REARI between a perturbed simulation (here CLE_2030

or MITIG_2030) and the reference simulation (PRES). It should be noted that the cloud properties between the perturbed and

reference simulations are not identical, and therefore, the RFARI calculated here does not fully correspond the RFARI defined260

in Myhre et al. (2013). However, these changes in cloud conditions are estimated to have a relatively small effect on RFARI

(Neubauer et al., 2019).

We furthermore calculated the total effective radiative forcing (ERFARI+ACI), which includes RFARI as well as radia-

tive forcings due to aerosol-cloud interactions (RFACI) and rapid adjustments (Boucher et al., 2013). Here we computed the

ERFARI+ACI as the difference in the net radiative flux at the top of the atmosphere (TOA) between a perturbed scenario and265

the reference simulation. For simplicity, we denote the ERFARI+ACI here as ERF.

For both RFARI and ERF, we first calculated 2D yearly mean values using REARI and the net TOA radiative flux, re-

spectively. In addition, we also computed area-weighted average values over India and over the entire globe. After that, we

calculated the 10 year average for each simulation, and similarly, the standard deviation of the yearly mean values. Finally, the

RFARI and ERF values were computed as the difference between CLE_2030 and PRES, and similarly between MITIG_2030270

and PRES, as described above. The combined standard deviation was estimated as σ =
√

σ2
pert + σ2

reference.

3 Results

3.1 Downscaling PM2.5 concentrations with random forest regression

We first trained the RF model using RF_TRAIN and measurement station data for 1.1.2016–21.8.2018 as discussed in Sec-

tion 2.6. Then, we tested the model by applying the trained RF model to the latter part of the RF_TRAIN data, 22.8.2018–275

31.12.2019. The results of the RF correction to the testing phase, and the data used in the training phase, are presented in Fig.

1.
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Figure 1. The results for random forest regression fitting for the RF_TRAIN simulation. (a) The solid green line represents ECHAM-

HAMMOZ derived PM2.5 which includes mineral dust. The thinner grey lines represent individual measurement station data which were

used for training. The pink line represents the daily average of all the stations. The thin dark blue lines show the individual RF-corrected

PM2.5 values for each station, and the thicker turquoise line is the average of all the RF-corrected PM2.5. (b) The distribution of daily PM2.5

values for the testing phase (22.8-2018–31.12.2019). The green bars filled with white circles show the distribution of ECHAM-HAMMOZ

daily PM2.5 concentrations. The pink bars with slashes indicate the daily average PM2.5 values for the average of the measurement stations.

The turquoise bars show the daily average RF-corrected PM2.5 values. (c) The average normalized feature importance values for the input

features are represented with yellow bars. The black whiskers show the standard deviation of individual RF model importance values.

As Fig. 1a shows, the random forest prediction captures long-term trends in the average measured PM2.5 concentrations very

well. The yearly cycle and seasonal variation are clearly improved when compared to the original ECHAM-HAMMOZ surface
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PM2.5 concentration. The PM2.5 predicted by ECHAM-HAMMOZ was (50.5± 41.6) µgm−3 for the testing period, where280

50.5 indicates the mean and 41.6 the standard deviation. This was significantly lower than what was measured at the stations

((118.1± 88.3) µgm−3) for the same period. After the RF correction, the result (119.6± 52.3) µgm−3 matched statistically

very well with the measurements.

The biggest enhancement for the RF-corrected PM2.5 concentrations is for the late autumn and winter months, which

are distinctly higher than the summer values. These elevated wintertime PM2.5 values were much less pronounced in the285

uncorrected ECHAM-HAMMOZ PM2.5 concentrations.

However, day-to-day variations do not correlate well with observations and extreme values in the RF-corrected data are much

smaller in magnitude compared to measured extremes. This can be also seen by comparing the histograms presented in Fig.

1b. While the distribution for the average measured concentrations is relatively wide, the distribution for average RF-corrected

model values is more narrow and centered around 100 µgm−3. This indicates that the RF-corrected PM2.5 is not ideal when290

the aim is to analyze very short-term air pollution episodes, but that the RF correction is more feasible for studying air pollution

trends during longer time frames. Including more information about local conditions, like local orography and information of

emission with higher spatial and temporal resolution might help to remedy these problems. Furthermore, Fig. 1a shows that

there is a fairly large variation between individual RF corrections, which are conducted separately for each station. There are

large differences in measured PM2.5 concentrations between individual ground stations due to e.g. differences in local emission295

sources and micro climate. This heterogeneity in measured PM2.5 values translates directly into the RF corrections.

We computed the feature importance values separately for each RF model used for individual ground measurement stations,

and then computed the average value and standard deviation of the individual importance values. The average of feature

importance values for the RF models used in Fig. 1 are presented in Fig. 1c. The figure shows that the station-averaged feature

importance values are relatively close to each other. The highest value is for sulfate burden (0.087± 0.041), but when the300

standard deviation is considered, the difference to some other features (e.g. 2 meter temperature or PM2.5 due to black carbon)

is not distinct. As some of the input feature variables are correlated with each other, this might affect the calculated values,

especially considering the random component of RF. We decided to use all the input variables despite the correlation since this

combination of input variables provided the best outcome of the RF fit. Furthermore, it might also depend on the station which

input variables are more important for RF predictors. Sulfate burden, for instance, results in highest or second highest feature305

importance value for many of the stations, while for some stations the value is less than 0.04. This may also suggest that there

may be differences in local meteorology and local emission sources between individual stations. Hence, forming an unique RF

model for each station helps to maintain these local characteristics when conducting the downscaling procedure. Altogether,

the importance values should be considered more as indicative variables.

The error statistics for comparing the original ECHAM-HAMMOZ PM2.5 concentration to the average measured PM2.5310

values, and for comparing the RF-corrected PM2.5 to average station PM2.5 values are presented in Table 4. The error mea-

sures presented in Table 4 clearly show that the RF correction improves the PM2.5 representation for New Delhi. The Pearson

correlation is almost 0.8 between RF-corrected PM2.5 concentrations and the average station PM2.5, whereas the same corre-

lation for uncorrected ECHAM-HAMMOZ PM2.5 was 0.19. The root mean squared error (RMSE) for RF correction is almost
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Table 4. The error statistics for the original ECHAM-HAMMOZ PM2.5 and the RF-corrected PM2.5. Root mean squared error (RMSE),

mean relative error (MRE), mean absolute error (MAE), R-squared (R2) and Pearson correlation (R).

error measure ECHAM-HAMMOZ PM2.5 RF-corrected PM2.5

RMSE (µgm-3) 112.75 56.48

MRE (%) −36.43 32.56

MAE (µgm-3) 78.22 38.68

R2 −0.63 0.59

R 0.19 0.79

half of the error for ECHAM-HAMMOZ, indicating that the occurrence of really high bias is smaller in the RF-corrected315

version. On the other hand, the mean relative error (MRE) for RF-corrected PM2.5 values is about the same magnitude as

for original ECHAM-HAMMOZ PM2.5. This is mostly due to overestimation of the low summertime concentrations. As the

yearly variation of PM2.5 concentrations in New Delhi is weak in ECHAM-HAMMOZ, the RF-corrected PM2.5 values also

have a slightly dampened yearly cycle.

3.2 Applying RF to free-running simulations320

The original PM2.5 values for simulations PRES, CLE_2030 and MITIG_2030 are presented in Fig. S2. The multi-year daily

average values for the non-dust, uncorrected PM2.5 concentrations in ECHAM-HAMMOZ are shown in Fig. 2a. The RF bias

correction was then applied, and the results for RF-corrected PM2.5 values are presented in Fig. 2b. The corresponding feature

importance values for the RF models applied are presented in Fig. 2c.

The non-dust PM2.5 for CLE_2030 is slightly smaller than the PRES non-dust PM2.5. This is most likely due to reductions325

in sulfur emissions at the New Delhi surroundings (see Table 1), although they are partly compensated by a small increase in

the anthropogenic OC emissions. In the MITIG_2030 simulation, the OC emissions are much less than in the PRES, which

translates into a smaller local PM2.5 concentration. This shows that the OC particle mass contributes substantially to the total

PM2.5 in ECHAM-HAMMOZ for the New Delhi region, and the large changes in OC influence the New Delhi PM2.5.

Figure 2b presents the multi-year daily mean values of the RF-corrected PM2.5 concentrations for all of the simulations.330

For simulation CLE_2030 the values are slightly smaller than for PRES ((118± 78) gm−3 vs. (134± 73) gm−3). Moreover,

the relative difference between the average RF-corrected concentrations for CLE_2030 and PRES is about the same magni-

tude as for the original ECHAM-HAMMOZ concentrations in Fig. 2a. The average PM2.5 of the RF-corrected CLE_2030

is 12 % smaller than the average PM2.5 of the RF-corrected PRES. For the uncorrected ECHAM-HAMMOZ concentrations,

CLE_2030 PM2.5 was ∼8 % smaller than the average value of the PRES PM2.5.335

Figure 2b shows that stringent aerosol mitigation affects particularly wintertime surface PM2.5 concentrations, which is

why the RF-corrected PM2.5 values for simulation MITIG_2030 are much lower than for PRES or CLE_2030. The overall

average PM2.5 concentration for RF-corrected MITIG_2030 is (58±16) gm−3, and the wintertime PM2.5 concentrations for

MITIG_2030 are less than half of the corresponding values for CLE_2030 and PRES. As seen in Fig. 1, with the given training
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Figure 2. (a) The uncorrected ECHAM-HAMMOZ PM2.5 concentrations (excluding dust) for PRES, CLE_2030 and MITIG_2030 simula-

tions as multi-year daily average values for each scenario. Individual years are marked with dashed curves, and the multi-year daily average

values are shown with solid, colored lines. (b) The RF-corrected concentrations for PRES, CLE_2030 and MITIG_2030 simulations as a

multi-year daily average PM2.5 values for each scenario. The dashed lines represent the prediction for each individual year, and the thick

solid lines are the multi-year daily averages. (c) The average normalized feature importance values for the input features are represented with

pink bars. The black whiskers show the standard deviation of individual RF model importance values.
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data, the RF correction is not optimal for predicting day to day variations, resulting in smaller short-term variability than what340

the measurements show. This most likely also translates into the RF correction of the free-running simulations discussed in

this section. Especially the RF-corrected MITIG_2030 multi-year average has little short-term variation throughout the year.

This may be partly explained by the lower temporal resolution of the wildfire emissions in the free-running simulations, which

were monthly average climatological values.

The RF-corrected MITIG_2030 PM2.5 for June and July partly exceed the CLE_2030 PM2.5 values, while the RF-corrected345

values obtained for the winter months in CLE_2030 and PRES clearly exceed MITIG_2030. The elevated summertime

MITIG_2030 PM2.5 is partly due to the additive bias correction approach, where the RF model adds a negative or posi-

tive bias term to the non-dust PM2.5 concentration. We can see from Fig. 2a that there is a small increase in the uncorrected

non-dust MITIG_2030 PM2.5 for July. This was related to a minor increase in the summertime sea salt concentrations in

MITIG_2030, which was a result of increased wind speed levels south–west from New Delhi (see Section 3.3). We assume350

that the RF model slightly magnifies this increase. Furthermore, the RF-corrected CLE_2030 summertime PM2.5 is distinctly

lower than the corresponding PRES PM2.5. To investigate this difference, we further tested the effects of input variables on

the RF correction by excluding individual input features from the training phase (not shown). The results showed that when

the BC emissions were excluded from the RF model, the RF-corrected PM2.5 summertime values were at the same level for

CLE_2030 and PRES, and the MITIG_2030 concentration was larger than with the default correction. This indicates that the355

BC emissions may have an effect in the RF model, although the BC emissions’ feature importance values presented in 1c and

2c are not the largest values. All in all, the RF model prediction is not a strong function of any of the individual features, but

a complex and a non-linear output of multiple regression trees. That is why the trends in RF-corrected PM2.5 value partially

differ from the uncorrected non-dust PM2.5 values.

In order to analyze how the seasonal trends are captured in the RF-corrected PM2.5 values, we calculated ratios between360

winter (December & January) and summer (June & July) averages. For the RF-corrected PRES concentrations, the ratio was

3.2, which is very close to the ratio for measurement stations (∼ 3.2). The same ratio for the uncorrected PRES PM2.5 concen-

trations was only 1.7, which indicates that the RF correction clearly improved the difference between the seasonal values. The

ratio for RF-corrected CLE_2030 was 4.6, due to the lower summertime concentrations compared to PRES. For RF-corrected

MITIG_2030, the ratio was 1.3, which is less than half of the ratio of the measurements.365

The feature importance values presented in Fig. 2c show that local temperature and the BC component of PM2.5 are im-

portant factors for the applied RF model. In contrast to the normalized importance values presented in Section 3.1, the sulfate

burden is not as strong a predictor feature for this training set combination. This indicates that the choice of time period for input

data can affect the RF correction up to some extent. Moreover, none of the input features had an average importance value over

0.13, which suggests that the algorithm is able to utilize information from most of the variables. Additionally, as mentioned in370

Section 3.1, the correlation between individual input features might have an effect on importance value calculations.
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3.3 Radiative effects

We calculated the 2D RFARI and ERF values in order to visualize how changes in anthropogenic aerosol emissions affect the

regional radiative balance at the top of the atmosphere. The radiative forcing values are only due to changes in anthropogenic

aerosol emissions, as all other anthropogenic climate forcers (e.g. emissions, GHG concentrations) were kept constant. The375

RFARI and ERF for CLE_2030 and MITIG_2030 simulations were calculated as presented in Section 2.8, using the uncorrected

ECHAM-HAMMOZ outputs for radiative fluxes. Both regional 2D values and the area-weighted mean values for India and for

the whole globe are presented in Fig. 3.
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Figure 3. The spatial RFARI and ERF for the CLE_2030 (a,c) and MITIG_2030 (b,d) simulations. The Indian (e) and global averages (f)

for RFARI and ERF are shown with green, blue, dark grey and pink markers, respectively. The whiskers represent the combined standard

deviation. The Indian territory is outlined with a bold grey line.

The Indian RFARI values for CLE_2030 in Fig. 3a are fairly small, but show a clear regional distribution with mostly

negative values in the northern part of India and mostly positive values in the central and southern parts of India. The RFARI380

values over the ocean regions surrounding India are close to zero or slightly positive. In MITIG_2030, on the other hand,
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the RFARI values over India are mostly negative with values close to the Himalaya exceeding −2 Wm−2. This is in sharp

contrast to the ocean regions surrounding India, where the RFARI values are positive with extremes exceeding +2 Wm−2.

Altogether, the area-weighted average RFARI values in Fig. 3e show that the RFARI for India is negative for both CLE_2030

((−0.09± 0.26) Wm−2) and MITIG_2030 ((−0.53± 0.31) Wm−2). This somewhat surprising result is due to the complex385

interplay of the differing optical properties of the different aerosol compounds as well as well as the surface below. On the

one hand, anthropogenic BC emissions in MITIG_2030 are much lower than in CLE_2030, making a cooling contribution

to RFARI (less absorption of SW radiation). On the other hand sulfur and OC emissions are reduced as well, which makes a

warming contribution to RFARI (less scattering of SW radiation). In addition, at the top of the atmosphere (TOA), the cooling

effect of BC reduction is enhanced over brighter backgrounds (e.g. clouds and snow), while the warming effect of OC and sulfur390

reductions is enhanced over darker backgrounds (e.g. ocean and forests). This explains the sharp contrast in Fig. 3b — over the

dark ocean, the warming contribution of OC and sulfate reductions dominates, leading to positive RFARI values. This effect

may be enhanced due to sulfur reductions in the shipping sector. Over the Indian land areas, surface albedos are on average

much brighter, which makes the cooling effect of BC reductions dominate. Over northern India, at the foot of the Himalayas,

RFARI in MITIG_2030 is especially negative. This might be explained with the overall very high aerosol concentrations in395

this region (Murari et al., 2015; Jethva et al., 2019; Bera et al., 2021), which frequently leads to thick haze episodes (Saikawa

et al., 2019). Strong haze acts like a bright background (e.g., a low cloud), thereby enhancing the cooling effect of BC emission

reductions.

Furthermore, due to interaction with radiation, anthropogenic aerosols can modify regional weather patterns. As Wei et al.

(2022) pointed out, the decreasing BC-containing aerosols from northern India result in easterly wind anomalies, which further400

diminish dust transportation from Thar desert, for instance. In our ECHAM-HAMMOZ simulations, we found an opposite

effect when comparing MITIG_2030 and PRES (not shown), which can be due to simultaneous reduction of both scattering and

absorbing aerosol. The 10 meter wind speeds were on average slightly stronger south–west from New Delhi for MITIG_2030

simulation, and the direction was shifted more towards east. Since the surface wind speeds are main predictors for the online

dust model in ECHAM-HAMMOZ, the dust emissions were elevated for MITIG_2030 compared to PRES simulation. This405

causes that the dust burden over North–West India to be moderately larger in MITIG_2030 than in PRES simulation. The dust

aerosol in ECHAM-HAMMOZ are mostly scattering SW radiation, and the absorption effect has a minor role. Therefore, the

increased DU burden in MITIG_2030 could potentially explain a small part of the negative RFARI. However, this result is

highly uncertain to natural variability of dust emissions and wind patterns, and analysing this phenomena further would require

a much longer climate model simulation.410

The ERF values in Figs. 3b,d,f include also RFACI and rapid adjustments. That is why the uncertainty ranges in Figs. 3e

and f are much wider for the area-weighted average ERF values, and the magnitude of the ERF forcings is larger than the

corresponding RFARI values. Over India, the ERF values in Figs. 3c and d are mainly negative, contrary to what typically is

expected as a net effect for aerosol reductions. The strong negative RFARI for MITIG_2030 simulation can be seen also in

the ERF values, emphasizing how mitigating BC-rich sources is an efficient way to reduce TOA forcing over India. However,415

the ERF signal is not spatially homogeneous over India, but there are differences between e.g. North–East and North–West.
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Furthermore, due to year-to-year variation, the area-weighted ERF values from Fig. 3e have large uncertainty ranges. The

average ERF for India is (−2.1±4.6) Wm−2 for CLE_2030 and (0.06±3.39) Wm−2 for MITIG_2030, and is more negative

for CLE_2030 than for MITIG_2030. This difference is a sum of complex mechanisms: on the one hand, compared to PRES,

the OC emissions are distinctly lower in MITIG_2030 whereas in CLE_2030 they remain almost the same. This means there420

is less OC particles in MITIG_2030 to scatter SW radiation. On the other hand, there is less absorbing BC, and scattering

sulfate in MITIG_2030. There is also variability in dust emissions, which affects the ERF values. In addition, RFACI and rapid

adjustments contribute to the total ERF.

We analyzed the changes in SW absorption between different simulations, and the results are presented in Fig. S3. Figure

S3a shows that there is a small decrease in atmospheric absorption of SW radiation when comparing CLE_2030 and PRES.425

For MITIG_2030, there is clear signal of decrease in absorption as Fig. S3b shows. The aerosol emission reductions lead to

larger surface forcing values, shown in Figs. S3c and d, as more SW radiation reaches the surface. The net TOA SW forcing in

Figs. S3e and f describes the total amount of SW radiation that is absorbed either by the atmosphere or the surface layer. Over

India, most of the SW ERF is negative, which indicates that the net absorbed radiation is less in CLE_2030 and MITIG_2030

simulations compared to reference simulation PRES.430

The changes in aerosol emissions affect local cloud cover, which in turn has an impact on the radiative balance. One result

of aerosol mitigation is a reduced Twomey effect (Twomey, 1977), i.e. when there are less aerosol particles to act as cloud

condensation nuclei, at a theoretically constant liquid water path, clouds have less cloud droplets and therefore scatter less of the

incoming SW radiation. When comparing CLE_2030 and PRES, the changes in aerosol concentrations translate surprisingly

into a very small increase in the CDNC burden over most of the India (not shown), which would indicate that there is more435

cloud droplets to scatter SW radiation. This can potentially explain a small part of the negative ERF for CLE_2030. For the

MITIG_2030 simulation, the CDNC burden over India decreases when compared to PRES simulation, which could partly

explain why in some areas in India the ERF values are positive. A more detailed analysis of the ACI-contribution to the ERF

is out of the scope of this article.

O’Connor et al. (2021) simulated the present-day aerosol forcing with the UKESM climate model. They obtained that the440

aerosol ERF was positive over India, dominated by the strong positive forcing caused by present-day BC absorption. Similarly,

Ramachandran et al. (2022) analyzed from a subset of CMIP6 model simulations that multi-model ERFATM (ERF within the

atmosphere, i.e. the part of ERF that excludes surface absorption) is positive over India for the year 2014. Our results underline

these findings, as we obtained that future reductions in the BC emissions would lead to a negative radiative forcing for most

of India when compared to present-day emissions. However, as Ramachandran et al. (2022) concluded, there is a discrepancy445

between climate models and measurements when it comes to magnitudes and trends in aerosol optical depth (AOD) and single

scattering albedo over Asia. Wang et al. (2021) also suggest that the representation of Asian aerosol trends in CMIP6 models is

incorrect between 2006 and 2014, This indicates that CMIP6 climate models overestimate the Asian aerosol concentrations for

the present-day conditions. However, as mentioned in Whaley et al. (2022), the recent decline in emissions from Asia is taken

into account in ECLIPSE V6b emissions, which suggests the overestimation of present-day aerosol concentrations should not450

be a major concern in our simulations.
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On a global scale, Fig. 3f shows that the global RFARI forcing for both CLE_2030 and MITIG_2030 is positive. However, the

standard deviation for CLE_2030 RFARI is larger than the actual signal. The global average RFARI is larger for MITIG_2030

((0.09± 0.04) Wm−2) than for CLE_2030 ((0.02± 0.03) Wm−2). The slightly positive global RFARI values are most likely

due to the strong reductions in sulfur emissions (see Table 1). However, the simultaneous changes in BC emissions counterbal-455

ance some of the sulfate and OC reductions, which is why the RFARI values are smaller than they would be if there would be

only sulfur reduced. The same applies to the global ERF values. The overall global ERF for CLE_2030 is (0.21±0.44) Wm−2,

whereas for MITIG_2030 simulation, the global ERF is (0.87± 0.41) Wm−2.

Even though our future aerosol emission scenarios included simultaneous mitigation of BC, OC and SO2, the GHG con-

centrations were assumed to remain at present-day levels. Therefore, the ERF and RFARI values calculated for CLE_2030 and460

MITIG_2030 do not consider expected changes in GHGs, which would have potentially shifted the radiative forcing values

towards less-positive values. For instance, Smith and Mizrahi (2013) estimated the maximum methane reductions would lead

to a global forcing of approximately −0.08 Wm−2 by 2030. Similarly, Smith et al. (2020) concluded that maximal feasible

reductions in methane emissions could bring a −0.23 Wm−2 global forcing in 2040 compared to a reference scenario without

additional climate policies.465

Furthermore, our climate modelling cases had only ten years of simulated data, which is a relatively short period for comput-

ing the ERF values for simulations with freely evolving wind fields. Hence, the modelled climate variability between distinct

simulation years translates into wide uncertainty ranges for both global and regional ERF. All in all, the RFARI and ERF values

in Fig. 3 highlight that reducing anthropogenic aerosol emissions can lead to spatially heterogeneous forcing signals, depend-

ing on the region and the local conditions. The global ERF for MITIG_2030 was positive, whereas for the Indian territory the470

ERF and RFARI values were mostly negative or close to zero.

4 Conclusions

In this study, we used a machine learning method to downscale fine particle (PM2.5) concentrations from the global scale

aerosol-climate model ECHAM-HAMMOZ for surface PM2.5 values in the Indian mega-city New Delhi. We applied random

forest (RF) regression for downscaling, and used measured PM2.5 values from various ground stations located at New Delhi475

for training the RF model.

Like many other global-scale climate models, ECHAM-HAMMOZ underestimates surface PM2.5 concentrations for several

urban regions. There are various factors in global-scale modelling that lead to this, coarse horizontal and vertical resolution

being one of the dominant reasons. Global climate models are by design intended to represent average concentrations over

larger areas than what urban cities typically occupy. This is why their output values often deviate from measured point concen-480

trations from urban measurement stations. However, global climate models are good at modelling long-term climate effects of

air pollutants, which are important to consider when evaluating the changes in pollutant levels and improvements in air quality.

With the help of statistical downscaling, we were able to employ ECHAM-HAMMOZ for analyzing the effects of aerosol
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emission mitigation on local air quality, and also estimate the corresponding regional and global radiative forcing values that

affect future global warming progression.485

The RF downscaling clearly improved the comparison between measured and modelled surface PM2.5. Especially the

yearly cycle and seasonal differences are much better captured in the RF-corrected PM2.5 concentrations when comparing

to the uncorrected ECHAM-HAMMOZ PM2.5 values. In addition, the overall correlation between RF-corrected and measured

PM2.5 concentrations was considerably higher than between the uncorrected PM2.5 from ECHAM-HAMMOZ and measured

values. However, the RF-corrected concentration values contained less extreme short-term variation (e.g. daily low and high490

values) compared to the ground station data. The very high values (i.e. pollution episodes) are important when analysing the

health effects due to air pollution, since in addition to long-term exposure, high concentration short-term exposure is also known

to bring negative health effects (Wei et al., 2019). This indicates that, with the training data used here, our RF downscaling

correction is very well suited for applications which aim to analyze long-term trends in air pollution.

We further applied the RF model to free-running climate model simulations that had different scenarios for anthropogenic495

aerosol emissions, namely black carbon (BC), organic carbon (OC) and sulfur dioxide (SO2). The aim was to analyze simul-

taneously both local air quality in New Delhi and regional radiative forcing under two future projections, business-as-usual

2030 (CLE_2030) and stringent mitigation in 2030 (MITIG_2030) scenarios, and compare those to the present-day simulation

(PRES). The PM2.5 concentrations for New Delhi were of the same order of magnitude for CLE_2030 and PRES, both before

and after the RF correction. Although the sulfur and BC emissions were smaller in CLE_2030, the OC emissions remained500

almost constant between CLE_2030 and PRES. A large part of PM2.5 mass is due to OC, which is why the difference between

CLE_2030 and PRES was small. The PM2.5 concentrations for MITIG_2030 were remarkably lower than for PRES, which

was to be expected, as all the anthropogenic aerosol emissions were mitigated strongly. The results indicated that the RF down-

scaling is a solid method for fixing resolution biases in local surface concentrations from global-scale modelling data. However,

the downscaled results showed reduced short-term variation, which causes slight overestimation for some of the summertime505

concentrations and underestimation of some of the highest wintertime values for New Delhi region.

In addition, we computed the corresponding regional and global radiative forcing values for the two future aerosol emission

simulations. Over India, the forcing due to aerosol-radiation interactions (RFARI) was negative over northern India for both

CLE_2030 and MITIG_2030. This was due to the dominating cooling contribution of the large reductions in BC emissions,

even though the scattering aerosol compounds, OC and sulfate, were decreased as well. In addition, the effective radiative510

forcing (ERF) values were mostly negative over India for both CLE_2030 and MITIG_2030.

Globally, the average forcing values were positive for both the CLE_2030 and MITIG_2030 simulations. However, the net

radiative forcing values were spatially heterogeneous due to differences in emission levels and local environmental conditions,

as the obtained results for India show. Our results emphasize that, opposite to the effects of reducing well-mixed GHGs,

the impacts of aerosol mitigation can differ substantially between regions. For India, reducing aerosol emissions resulted in515

negative forcing values, which suggests a net cooling effect due to aerosol mitigation. This suggests that, along with air quality

improvements, aerosol mitigation could potentially bring co-benefits to slowing down regional climate warming over India.
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The downscaling method applied in this paper employed only one type of machine learning algorithm. Further work with

the downscaling model could combine multiple machine learning and regression algorithms as an ensemble model (Di et al.,

2019). Moreover, our RF model could be developed towards a cascade-based RF (Yang et al., 2020), which might reveal some520

higher order correlations from the input training data.

Correcting local air pollution levels from a global-scale model has two main advantages. First of all, one can conduct a

simulation with global coverage and for long time period, which may lower the total computational costs compared to modeling

with high resolution regional scale models. With the help of downscaling, the global model data can be then rectified with the

help of local ground station data. Secondly, this type of approach enables analyzing the effects of aerosol emission mitigation on525

both local air quality and Earth’s energy budget simultaneously. Ideally, this improves the applicability of global climate models

on research questions concerned with multiple effects of local aerosol emission reductions. As there is an increasing number of

countries that have included BC in the Paris Agreement National Determined Contributions, the relevance of addressing both

local and global effects of country-level mitigation of BC and co-emitted aerosols is even greater. Furthermore, downscaling

global model products instead of using finer resolution models might require less computational capacity, and thereby decrease530

the energy consumption of modelling. This in turn could help to reduce carbon footprint of climate modeling, which is critical

aspect in the era of decarbonizing anthropogenic activities (Lannelongue et al., 2021; Stevens et al., 2020).

Code and data availability. The ECHAM6-HAMMOZ model is made available to the scientific community under the HAMMOZ Software

License Agreement, which defines the conditions under which the model can be used. The license can be retrieved from

https://redmine.hammoz.ethz.ch/attachments/291/License_ECHAM-HAMMOZ_June2012.pdf. The model data can be reproduced using535

ECHAM-HAMMOZ model revision 6588 from the repository https://redmine.hammoz.ethz.ch/projects/hammoz (HAMMOZ consortium,
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