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We thank Anonymous Referees for the efforts made to review our paper and for the valuable 

comments. Our responses are written below each comment separately. The referee comments 

are marked with yellow color and italic, and the author replies are marked with gray color. The 

original manuscript text is marked with pink color, and updated text with dark magenta. The 

line numbers refer to the original, submitted version of the manuscript. 
 

Replies to the comments made by the Anonymous Referee #1: 
 

This manuscript presents global model simulation results over India from ECHAM for air quality 

and radiative forcing under present and future emission scenarios (from GAINS) through 2030. 

For the region covering Delhi, the results were downscaled using random-forest corrections 

using multiple emission, met, and orography variables.  

While the radiative forcing calculations from ECHAM is a known path, the use of the same to 

bias correct and estimate air quality for a city is new. The later methods have been used, but not 

for model resolutions at 1.9 degrees. Machine Learning (ML) approach is a new and emerging 

field and the benefits of using a global model for both air quality and climate applications 

cannot be overlooked. While the methodology is well explained for correcting the model results 

with biases from ML, the statistics also improved after the corrections, the gaps between the 

measured and model-corrected numbers is still significant.  

We thank Anonymous Referee #1 for the useful comments.  

As the referee mentioned, the RF-corrected PM2.5 does not fully reproduce the station-

averaged PM2.5 for the testing phase data, especially over short time scales. This is analyzed 

and discussed in Section 3.1.   



However, if the aim is to capture the long-term trends correctly, the RF-corrected PM2.5 

performs as adequately as the PM2.5 obtained from the dispersion model System for 

Integrated modeLling of Atmospheric coMposition (SILAM). In the Table below, we show the 

comparison statistics between modelled and mean of the New Delhi ground stations for the 

testing phase period 22.8.2018-31.12.2019. 
 

The error statistics show that the RF-corrected PM2.5 correlates with the measured data at the 

same level as SILAM PM2.5 does. Furthermore, the mean absolute error (MAE) and root mean 

squared error (RMSE) are smaller for RF-corrected PM2.5 than for SILAM data. The mean 

relative error (MRE) is smaller for SILAM than for RF-corrected data, but the difference is less 

than 10 percent units. This comparison suggests that the performance of the downscaling 

approach is comparable to air quality models if the aim is to utilize data to applications where 

long-term trends in air quality are central. 

 

The scenario analysis for air quality primarily hinges on the reproductive capacity of the model 

and the only question that is not clearly answered is why extract air quality data from such a 

coarse model (when the problem is known that coarser models have hard time replicating high-

density urban areas with very distinct emission characteristics)? Especially, since FMI and IMD 

(author organizations) are known to conduct chemical transport modeling for air quality at 

much better resolutions globally and in India.  

The referee is correct that the downscaled PM2.5 does not fully correspond to outputs from 

high resolution models when comparing day-to-day variation. However, this was not the aim of 

this project, and we presume that the concept of our manuscript was misinterpreted by the 

referee. 

The main idea of our study is to expand the possibilities to utilize global model data in 

additional applications such as local air quality analysis. As we describe in the manuscript text 

(line 522 and forward), one advantage of using global-scale models for analyzing the effects of 

aerosol mitigation is that one can simulate fairly long time periods (decades to even a century), 

and that the simulations typically cover the whole globe. This is especially relevant for future 

projections of climate and air quality. With the help of downscaling, one can “zoom in” to a 



very specific location and analyze how the global or local scale emission mitigation affects. Up 

to our understanding, air quality models are computationally more expensive due to the high 

grid resolution, and therefore the simulated time periods are shorter than with GCMs, and the 

simulation times can be much longer.  

Furthermore, another advantage of using downscaling enhanced PM2.5 from a GCM is that one 

can simultaneously analyze the effects of aerosol mitigation on various other climatic 

processes. In our case, we focused on the radiative forcing, but one could, for instance, analyze 

global precipitation patterns or low-level cloud formation at very distinct regions in the globe. 

One plausible application of downscaling PM2.5 could be simply to use it as a “quick tool” to 

evaluate how a mitigation scheme affects future climate or air quality in different parts of 

globe. The intention of this study is not to present a method which can be used to replace 

chemical transport models. Instead, the main idea is to provide a relatively light-weight tool 

that can be used to assess simultaneously the climate and air quality effects of future aerosol 

emission reduction measures. 

Moreover, air quality models require simulated data from global climate models for modelling 

the future climate. Regional modelling with fine grid resolution requires input for boundary 

conditions for large scale atmospheric dynamics, and therefore a separate global model 

simulation is needed before the actual air quality model simulation can be performed. Our 

intention was to explore if we could use the global model data directly also to analyzing surface 

air quality, especially if there is no need to study the underlying physical mechanisms in a 

detailed way.  

We have updated the Introduction text by adding the following sentences to line 71: 

“The aim of this work is to explore more versatile methods to utilize global climate model data. 

The combination of ECHAM-HAMMOZ and statistical downscaling could be used as a relatively 

light-weight tool for applications where one aims to assess the effects of different aerosol 

mitigation strategies simultaneously on larger scale climate, and on local air quality.” 

On line 54 we added: 

“Air quality models, on the other hand, are not well suited to assess climate impacts of 

emission changes. Furthermore, when modelling future emission scenarios, air quality models 

require input from global climate models to set boundary and initial conditions.” 

 

Why use a city like Delhi with so many stations with 0% data available in the ML testing 

phase?Why not use a city in Europe or the US with good availability rates and good 

representation of the sources, to show that the model is capable of replication after the bias 

corrections?  

We assume this is a misunderstanding as the majority of the stations used in this study have a 

coverage of 80 to 90% for the testing phase (see Table S1).  
 



To emphasize this point, we have modified the text at lines 141-142 from 

“the final RF bias correction leans more on the year 2018 (and 2019) data since there is a higher 

number of measurement points for those years.” to 

“the final RF bias correction leans more on the year 2018 data since there is a higher number of 

measurement points for that year.” 

 

and added a sentence after line 147: 

“All in all, we had good temporal coverage for the measurement station data for both training 

and testing phases.” 

 

The one drawback of the manuscript is the selection of the case study city (Delhi) -- which has 

strong seasonal trend, strong diurnal trend, and distinct sources (for SO2, BC, and OC) over the 

months. A city(s) or region(s) with consistent emission loads would cut down some uncertainty 

in the model and corrections methods and then apply to regions like India and China. 

We chose New Delhi as a case study city because of its diurnal and seasonal trends, as it is ideal 

for this kind of study. The PM2.5 concentrations are at a high level for most of the year in New 

Delhi. Furthermore, Delhi National Capital Territory (NCT) is densely populated and relatively 

large in surface area. In addition, the ground measurement station network in New Delhi is very 

extensive and there was a sufficient amount of data available for our study.  

Furthermore, we respectfully disagree with the referee that the unique characteristics 

backgrounding New Delhi pollution profile would make Delhi unsuitable for this kind of 

analysis. On the contrary, as we mention right in the first sentence of the abstract, we aimed to 

study the potential of the downscaling procedure. As the referee described, the New Delhi 

PM2.5 is not constant all year around but has a lot of seasonal variation and strong dependence 

on anthropogenic sources. This makes New Delhi a good target region to explore how well 

downscaling can capture local tendencies, such as short- and long-term trends in PM2.5. 

 

Anthropogenic aerosol emissions are relatively large in India (~15% of the global BC emissions), 

and they are not projected to decrease at the same rate as global emissions (see manuscript 

Table 1). That is why we considered that India and New Delhi are interesting areas to study, as 

the aerosol mitigation is expected to bring clear benefits to the local air quality, but the net 

radiative forcing due to simultaneous mitigation of three species (BC, OC and SO2) was unclear.  

We have updated the Introduction text to give readers a clear impression of why New Delhi was 

chosen as a study of interest by adding at line 80: 

“In addition, New Delhi PM2.5 shows strong seasonal variation and high dependence on 

anthropogenic emissions (Bawase et al., 2021). This makes New Delhi an ideal target region to 

study how well downscaling can capture short- and long-term trends in PM2.5.” 

We have also added after line 127: 

“The ground measurement station network in New Delhi is extensive and there was a good 



amount of measurement data available, which made New Delhi ideal location for this kind of 

study.” 

Unfortunately, it seems that we have not reported clearly enough in our manuscript that our 

bias correction model is meant to be built separately for each city. Though technically possible, 

it would require a very large global training dataset representing a wide variety of conditions to 

construct an ML-based model that would be able to generalize from one region to another. In 

practice, this type of global dataset does not exist. The characteristics of PM2.5 concentrations 

trends and how they depend on prevailing atmospheric conditions and the assumed local 

emissions are unique for each city/region.  We used the same city for training and testing the 

RF Model to ensure representative training data for the model.  
 

We have emphasized this in Section 2.7 by adding after line 247: 

“One should keep in mind that in this bias correction approach, the models are assumed to be 

city specific. In other words, RF models trained with New Delhi data are not meant for 

correcting biases in ECHAM-HAMMOZ PM2.5 for other cities.” 

 

Line 237-242 and 290: It is not clear if the emissions and other variables extracted and used are 

still at the ECHAM resolution or further downscaled to support a region of 30km x 30km over 

Delhi? (L290) is an important observation - When making the bias corrections, besides the 

model grid variables, are there any variables that are seggregating the Delhi area signatures for 

a better fit?  

We thank the referee for making us aware that this aspect was not clear enough in the 

manuscript text. The input feature values used in the RF bias correction are all from one specific 

ECHAM-HAMMOZ simulation, and the data were not further downscaled to represent higher 

resolution grid data. Downscaling from T63 to L290 would require a large amount of external 

fine resolution data and would not serve the purpose of lowering the computational costs.  

Instead, we post processed the input feature data by extracting values from the original 

ECHAM-HAMMOZ data of T63 horizontal resolution. We produced input feature data either by 

extracting data from one single grid box (‘point’), or by summing (‘fldsum’) or averaging 

(‘fldmean’) over an area surrounding New Delhi (72 – 82 ‘W, 24 - 34 ‘N). This means that some 

of the input features represent more the regional changes in the simulated atmosphere, 

whereas the point features show more the local changes.  

In our modeling set up, it is assumed that the measurement data from ground stations 

incorporate information about the very detailed characteristics affecting New Delhi pollution 

levels, such as urban infrastructure or very specific emission sources. Including detailed external 

data as an input feature (e.g., info about public traffic routes) would have reduced the 

feasibility of our modeling approach since external data is easily subject to change and would 

need to be kept updated constantly or be based on additional scenarios or assumptions. Then 

again, the absence of detailed, local information is most likely the reason why our modelling 



approach is not capturing short-term variations very well. Developing such a downscaling bias 

correction method that also includes external data could be an opportunity for future studies. 

We have modified the sentence at line 235 from: 

“The input features used in the random forest fitting are presented in Table 3.”  to 

“The input features used in the random forest fitting are purely ECHAM-HAMMOZ data, and we 

did not use any external data as input predictors. The input features are presented in Table 3.” 

 

We also added a description of how the input features were selected. We added after line 237: 

“We selected the input features mainly based on the average feature importance values. At 

first, we formed a larger set of input features and ran the RF modelling with this larger set of 

input features. After that, we pruned out those variables that had an average feature 

importance value close to zero, i.e., they were assumed to have a very minor influence on the 

RF correction. Finally, we identified pairs of strongly correlated input features (with correlation 

coefficients larger than 0.9) and removed one of the two features.” 

In addition, we added after line 521: 

“Furthermore, the method we proposed could be further advanced by including very detailed 

information about local infrastructure and traffic statistics, for instance. This could potentially 

improve the correction of short-term trends in New Delhi PM2.5.“ 

 

The results and conclusions of the study in terms of AQ and climate benefits of reducing 

emissions are as expected. However, since Delhi is the most polluted area/city in the world with 

not only a complex mix of emission sources, but also a complex mix of political and 

instititutional setup to manage these emissions. While the manuscript presented % changes 

(benefits for air quality and RF), the discussion doesn't include any explanation on how these % 

emission reductions will be acheived in the Delhi area. It is understood that the emissions work 

comes from a different model (GAINS). Since the manuscript very specifically mentions and 

analyzes data for one city only, it would be appropriate to also discuss this space. 

We would like to highlight here that it is not explicitly evident that future aerosol mitigation 

would bring a net negative forcing over India. As many studies have shown (for instance, Allen 

et al.,2020), simultaneous reductions in both scattering and absorbing aerosols are expected to 

reduce the net cooling effect of aerosols on a global scale, thereby inducing a warming 

contribution.  

 

The aerosol mitigation scenarios used in this study were part of the ECLIPSE V6b emission 

scenarios, which were designed with the GAINS model. The underlying assumptions in ECLIPSE 

are idealized in the sense that emission reductions are based on assumed perfect achievement 

of currently valid legislation (CLE) or full implementation of all currently available technologies 

to reduce emissions (MFR). In this sense these scenarios could be seen as maximum possible 

emission reductions from the 2020 viewpoint. Analyzing the underlying political actions needed 



to achieve the proposed emission reductions is beyond the scope of this study. A more detailed 

description of the ECLIPSE scenarios can be found from e.g. Stohl et al. (2015), Belis et al. (2022) 

and Klimont et al. (2017). 

However, we have added after line 162: 

"Both globally and in the New Delhi surroundings, the sectors contributing most to reductions 

in BC emissions were the domestic and traffic sectors, while for OC, the domestic and waste 

sectors had the most significant reductions. For SO2, the largest reductions were projected in 

the MFR scenario for the energy and industry sectors.“ 

In addition, we have extended the discussion at Section 3.2 by adding after line 329: 

“As described in Section 2.2, the largest reductions for anthropogenic aerosol emissions under 

future mitigation scenario were assumed to come from domestic (BC & OC), waste (OC), traffic 

(BC), industry (SO2) and energy (SO2) sectors.The emissions from different sectors contribute 

differently to the atmospheric aerosol concentrations, because the assumed size distributions, 

mixing states and injection height at emission time are different. Each sector therefore also 

contributes differently to the modelled PM2.5 values.” 

 

While there is merit to a new methodology to be able to model AQ data along with the climate 

data, the manuscript lacks punch and I am afraid that these correction results will be hard to 

replicate in another setting. 

While we appreciate the referee’s feedback, we respectfully disagree that the proposed 

method would not be applicable for analyzing the effects in another city or region if trained and 

applied with suitable data. We do, however, recognize that the performance of the bias 

correction may be different for each target city.  

As mentioned above, there might be a misunderstanding in that we would propose to apply the 

model trained with New Delhi data to correct air quality levels for a different city. In case this 

referee’s comment is based on that kind of assumption, we have elucidated this in the 

manuscript text as mentioned above in one of the answers. 

In addition to the already mentioned improvements, we have gone through the whole 

manuscript text and highlighted the core concepts to sharpen the key messages of our study. 

 

*************************************************************************** 

 

Replies to the comments made by the #Anonymous referee 2: 
 

Review of “Assessing the climate and air quality effects of future aerosol mitigation in India 

using a global climate model combined with statistical downscaling”  



The manuscript explores the possibilities of using a global climate model to investigate the 

effects of aerosol mitigation in India. A machine learning (ML) approach using Random For est 

regression is used to downscale PM2.5 concentrations over a polluted city, New Delhi with the 

help of measured PM2.5 concentrations. Different PM loading future scenarios are projected 

and compared with the uncorrected and ML-corrected model outputs. The effects of aerosol 

mitigation are investigated in terms of radiative effects and effective radiative forcing under the 

PM future scenarios. The authors claim the improvement of global-scale model output in 

simulating the PM2.5 concentration over a small domain and their effectiveness in estimating 

the radiative impacts. The study demonstrates the potential of the emerging technique of ML in 

improving the large-scale model output in the process of statistical downscaling. The study is 

relevant and unique as mentioned above, and has a significant contribution to the relevant 

scientific domain. However, some concerns remain significant and need to be considered before 

publishing. 

General Comments 

The manuscript focuses on two aspects. (1) Demonstration of an ML technique in improving a 

global-scale model to simulate the PM2.5 concentrations over a small region via statistical 

downscaling under different emission scenarios. (2) Estimating the radiative effects of future 

aerosol scenarios using the RF-corrected model simulations. The manuscript structure is difficult 

to follow until reaching the present ‘Conclusions’ section which is not a conclusion, but a nice 

overview/summary of the entire work.  

We thank the referee for the insightful suggestions to improve the manuscript structure and 

content. We have re-organized some of the subsections in Section 2 and renamed Section 4 as 

suggested. 

 

If the authors want to highlight their simulation results regarding the impact of future aerosol 

mitigation, more discussion is needed with proper references to the existing findings, else it 

remains as a technical paper demonstrating the potential of ML in statistical downscaling. 

Currently, the physical mechanisms for some of the simulation outcomes are not given/found, 

but some tentative reasons are proposed. Many studies are documented the current aerosol -

impact scenario using multiple scientific techniques (in situ, remote sensing, etc.) and future 

projections also for the Indian region.  

We have added to Section 3.2. after line 351 the following: 

“Moreover, we compared the average regional convective precipitation values for the New 

Delhi surroundings (see Section 2.6). The average convective precipitation for June and July was 

(4.4 ± 4.1) × 10−5 mm s−1 and (4.2 ± 4.1) × 10−5 mm s−1 for PRES and CLE_2030, respectively. 

For MITIG_2030, the average summertime convective precipitation was (3.1 ± 3.8) × 10−5 mm 

s−1. Based on the Mann-Whitney U-test, there was a statistically significant difference between 

MITIG_2030 and PRES summertime precipitation in the New Delhi surroundings. Decreased 



summertime convective precipitation indicates less washout, allowing for higher surface PM2.5 

concentrations in the MITIG_2030 simulation." 

We have added to line 426: 

“The areas for which we observed the largest changes in atmospheric SW absorption are almost 

the same regions as obtained by Prakash et al. (2020), even though their analysis handled only 

the BC emissions due to road transport.” 

 

Furthermore, we have added to Section 3.3., after line 410: 

“Das et al. (2020) reported an increase in dust burden over central India, due to decreases in 

summertime precipitation. Our results also showed a decrease in convective precipitation when 

comparing MITIG_2030 values to PRES (see Section 3.2), which may have contributed to the 

increased in dust loadings in MITIG_2030. However, the modelled natural variation in 

precipitation patterns is large, and therefore there is significant uncertainty related to this 

mechanism.” 

 

To ascertain the second aspect of the current manuscript, the first part needs to be flawless and 

should be explained confidently. Many parts of the manuscript are confusing which calls for 

further explanations for the smooth reading.  

We thank the referee for bringing up that some parts of the manuscript may be confusing to 

the reader. We have gone through the entire manuscript and done our best to improve the 

general readability of the text. 

 

One of the highlights of the findings is that the improvement of air quality is mostly due to the 

reduction of OC loading. However, the negative radiative forcing is attributed to the reduction of 

BC emission. This is an example of confusion arising while going through the manuscript.  

This was an excellent comment and helped us to understand which parts of our manuscript are 

confusing. The reason why OC influences air quality more than BC, though BC has stronger 

effects on the radiative balance, is related to the optical properties of these aerosol species. 

The atmospheric mass load of BC is relatively small compared to the mass load of OC. The 

radiative forcing per mass load of BC, on the other hand, is much bigger  than for OC, as the 

optical properties differ. That is why in this study the emission reductions of OC influence 

PM2.5 concentrations more, while BC-reductions have a larger impact on radiative forcing. Due 

to the strong absorptive nature of BC, the negative effect comes from reduction in absorption 

of shortwave radiation which outweighs the radiative effect of OC which would lead to a 

positive radiative effect. Permadi et al., (2018), who studied the co-benefits of BC emission 

reductions on air quality and radiative forcing over South East Asia also found a similar decrease 

in BC radiative forcing when studying emission reductions in Indonesia and Thailand. They also 

concluded that this negative radiative effect is due to decrease in absorption of shortwave 

radiation by BC. This is now discussed in the revised manuscript  



We have updated Section 3.2. by adding to line 329: 

“Table 1 shows that the total OC emission mass is more than double the mass of emitted BC, 

both on a global and regional scale. Furthermore, the contribution of sulfate to the long-term 

PM2.5 in New Delhi is known to be lower than the contribution of OC (Lalchandani et al., 2022), 

though sulfate might have a more significant role during winter haze periods.”  

Furthermore, we clarified Section 3.3 discussion by adding to line 398: 

“While OC contributes strongest to the surface PM2.5 loadings (see Section 3.2) , BC makes the 

strongest per unit mass contribution to the radiative forcing and hence can outweigh the 

cooling effects of OC and SO4, especially over bright backgrounds.” 

We also added after line 431: 

“Permadi et al., (2018) conducted a similar study for BC emissions reductions in Indonesia and 

Thailand. Their outcome was that along improved air quality, emissions reductions led to a 

decrease in absorption of SW radiation by BC, and therefore the resulting radiative forcing was 

negative.” 

 

The map of India shown in Fig. 3 is not matching with the maps published by the institutions 

that provided the insitu data nor with one of the authors’ affiliated institution. Please correct 

the map as per the source or remove the political boundaries as per the journal’s 

recommendations.  

We thank the referee for pointing out this issue. We have removed the political boundaries 

from Figures 3 and S3.  

 

Language also needs improvement. The main concerns are listed below. 

Methodology: 

• Why does section 2.2 stand apart from sections 2.6 and 2.7? 

We have moved Sections 2.2 and 2.3 below Section 2.5 and updated the numbering of the 

subsections.  

 

• The hyper parameters were adjusted using different combinations based on the best error 

statistics. Can you please show the performance of the validation test data? 

This statement in the manuscript was somewhat inaccurate as the hyper parameter selection 

seemed not to affect the model performance substantially. The error statistics for testing 

different RF parameter combinations are presented in the Figure below. 



  

  

As the statistics show, our RF model setup is not overly sensitive to the selection of hyper 

parameters. Hastie et al. (2009, p. 590) reported a similar tendency. Based on their 

experiences, random forests require very little tuning. 

Furthermore, our modeling approach had 31 RF models (one per measurement station), and we 

used the same RF hyperparameters in each of them, as we did not tune each station-specific RF 

model separately. We therefore decided to use the default, recommended values in the RF 

models.   

We have modified the statement at lines 111-112 from 

“The hyper parameters were adjusted by testing different combinations and chosen based on 

the best error statistics:” to 

“Based on testing different combinations, our RF model setup was not very sensitive to the 

choice of hyper parameters. Furthermore, we aimed to have the same hyper parameters in all 

of the individual RF models (see Section 2.6). Therefore, we used the recommended default 

values for the hyper parameters.” 

 



• What do you mean by setting the depth of each tree to infinity? How can you make sure of 

avoiding over-fit while keeping the depth of the tree as infinity? What are the criteria for fixing 

the number of trees? It is said that a default value of 100 is taken as the number of trees in the 

present study. Why 100? 

By setting the depth to infinity we indicated that we did not set a limit to the tree depth. This 

was a slightly misleading way to report that the “max_depth” parameter in the Scikit Learn 

Python module was left as default value, “None”. When there is no maximum depth assigned, 

the algorithm will expand the regression tree nodes until the so-called leaves meet the purity 

criteria (mean squared error).  

We rewrote the sentence at lines 112-113, originally: 

“The maximum depth for each tree was set to infinity and the number of trees was the default 

value, 100.”, and after update: 

“There was no maximum depth for each tree set and the depth of each tree was determined 

automatically based on the splitting criterion. The number of trees was the default value, 100.” 

We tested how the maximum depth of the trees affects the model performance by altering the 

max_depth parameter and applying the trained model to year 2020 data (I.e., outside of 

training and testing phase data). The results are presented in the Figure below.  

  

As Figure above shows, our RF modelling approach is not very sensitive to the max_depth 

parameter. Therefore, we chose not to fix the maximum depth of a tree in our modelling 

approach. Note that the root mean squared error and mean absolute error values are slightly 

larger for the year 2020 as the COVID19 pandemic caused an unusual, long-term drop in the 



surface PM2.5, which was not accounted for in the ECLIPSE emission inventories.  

 

The number of trees was set to 100 based on a trial-and-error approach. There was no 

significant improvement if we increased the number of trees (See Table above). Due to these 

reasons, the hyper parameters were not adjusted based on tight cross-validation routines, but 

were selected near the recommended, default values. 

 

• Why the feature importance values are normalized, by doing so what is the chance of 

smoothing the non-linearity of the dependence of the input variables? Isn’t there any criteria to 

fix the number of input variables? As the authors have pointed out the input variables are 

mutually correlated which is obvious in the atmosphere, including all of them may lead to over -

fitting. What is the authors’ claim on this point? 

The feature importance values are normalized to make them more comparable to each other. 

They represent the contribution of each variable to the reduction of the error criteria, and the 

normalization scales these to a scale from zero to one. Without normalization, the importance 

values would be more difficult to interpret as they would always depend on the computed total 

error of the particular RF training setup. Furthermore, the normalizing routine is a default 

setting in the applied SciKit Python library. 

 

It is true that, since there are correlated input variables, there is a small risk of overfitting.  

We did preselection for the input variables based on feature importance values. We excluded 

variables that had an average feature importance value close to zero. Furthermore, for each 

regression tree, the maximum number of input features to be used when looking for the 

optimal split was fixed to 7 (See Section 2.2), so that there is a randomized set of features for 

splits. However, we did not carry out a stringent optimization routine to prune the number of 

input variables to as low as possible. This was because we had 31 stations and thereby 31 RF 

models. Each of the stations has distinct characteristics, and therefore the optimal set of input 

variables is slightly different for each station. We estimated that using the same set of input 

variables for all RF models could result in a more harmonized outcome.  

In order to minimize the risk of overfitting, we have re-evaluated the set of input features and 

analyzed the impact of highly correlated input features on the RF predictions. Based on these, 

we have removed variables that had a correlation over 0.9 with another input feature. The 

excluded input variables were boundary layer height (pbl_h), OC burden (burden_OC) and 

PM2.5 due to OC (PM25_OC). We have repeated the RF corrections with the pruned set of 

input variables and updated manuscript Table 3, and also Sections 3.1 and 3.2 with the new 

results. Note that the differences to the original values are fairly small. 

As mentioned in the responses above, we have added the following text at line 237: 

“We selected the input features mainly based on the average feature importance values. At 

first, we formed a larger set of input features and ran the RF modelling with this larger set of 



input features. After that, we pruned out those variables that had an average feature 

importance value close to zero, i.e., they were assumed to have a very minor influence on the 

RF correction. Finally, we identified pairs of strongly correlated input features (with correlation 

coefficients larger than 0.9) and removed the one of the two features that had a smaller 

average feature importance value.” 

Furthermore, we modified the sentence at lines 302-303 from 

“As some of the input feature variables are correlated with each other, this might affect the 

calculated values, especially considering the random component of RF.” to 

“Some of the input feature variables are correlated with each other . Even though we removed 

input features which were correlated most strongly to other, included input features (see 

Section 2.6), the remaining correlated input features might affect the calculated values, 

especially considering the random component of RF.” 

 

In addition, we noticed that there were some inconsistent descriptions of the modelling setup, 

and we updated those to correspond to our modeling parameters. We noticed that the 

description of the algorithm implementation slightly differed from the actual modelling setup. 

We updated the statement at lines 114-115 from 

“The maximum number of input features to be used in one decision tree (max_features) was 

set to 7” to 

“The maximum number of input features to be used in one decision tree node (max_features) 

was set to 7,” 

In addition, the bootstrap bagging method was not applied, and therefore we removed the 

sentence indicating that. We further tested the model performance with different 

bootstrapping parameters, and there was no detectable improvement whether the 

bootstrapping was applied or not.  

We have removed from lines 116-118 the statement 

“In addition, we used the default bootstrap aggregation method for dividing the training data 

into separate sample sets in order to provide an individual sample of training data for each tree, 

which has been shown to increase the smoothness of the fit (Altman and Krzywinski, 2017).”  

 

• For the global-scale modelling, ECLIPSE V6b emission scenarios are used. How appropriate is 

this emission inventory for simulating PM over the Indian region or what are the criteria for 

selecting this inventory for this study? What is the contribution of this inventory to the high 

under-estimation of PM loading by the model over Delhi as shown in the manuscript? 

A detailed description of previous versions of the ECLIPSE inventories is presented in Klimont et 

al. (2017) and Stohl et al. (2015). 



The ECLIPSE V6b emissions are described in detail in the forthcoming Arctic Monitoring and 

Assessment Program (AMAP) report. They were especially developed to study emission 

reductions of short-lived climate forcers (SLCF) on the global and Arctic climate. Unfortunately, 

the publication of the report has been put on hold due to the current political situation for an 

indefinite amount of time. However, Belis et al. (2022), von Salzen et al. (2022) and Whaley et 

al. (2022) provide brief descriptions of the ECLIPSE V6b scenarios. 

Furthermore, as we mention in the manuscript text lines 449-451, Whaley et al. (2022) state 

that in ECLIPSE V6b, the recent declines in Asian SO2 and BC emissions are considered. This 

suggests that ECLIPSE V6b is a better choice for modeling South Asian aerosols, since some 

emission inventories, such as CEDS emissions from CMIP6 simulations, might lack this decline 

(Wang et al. 2021).  

We have updated the manuscript text in lines 149-162 to include additional citations for 

ECLIPSE scenarios. 

 

• How the exclusion of the mineral dust component solves the issue related to the PM2.5 

peaking? How authors can make sure that this exclusion won’t affect the other simulation 

results? 

Here we want to clarify the RF-correction procedure. Instead of using RF to directly predict 

surface PM2.5 values, we predict a correction term to the PM2.5 values modelled by ECHAM-

HAMMOZ, which has been shown earlier to give better results (e.g., Lipponen et al., 2013). For 

the computation of the correction term, we use all the ECHAM-HAMMOZ parameters listed in 

Table 3, which does also include the PM2.5 due to mineral dust component and mineral dust 

emissions from ECHAM-HAMMOZ. However, because during the RF training phase the mineral 

dust component shows very large peaks which do not correspond to the measurements, we 

exclude mineral dust from the PM2.5 value to which the correction term is added. Therefore, 

the correction term includes an inferred amount of mineral dust as the random forest models 

get information about mineral dust episodes as an input. In this sense, the mineral dust 

component is not (entirely) excluded from the RF-correction procedure.  

The difference between PM2.5 with and without mineral dust can be seen in Figure S2. Most of 

the very high peaking values in ECHAM-HAMMOZ data are during summertime, and due to 

mineral dust. The daily average of the measurement stations, on the other hand, does not show 

summertime peaking values that would exceed the winter month maxima. Including dust 

component in the ECHAM-HAMMOZ PM2.5 might have produced the highest values during the 

summer months, as our bias correction is additive. We agree with the referee that excluding 

mineral dust from ECHAM-HAMMOZ PM2.5 when calculating of the error term between station 

PM2.5 and ECHAM-HAMMOZ might affect results to some level as the very short-term peaks 

might be suppressed. However, our aim was to model the long-term effects of aerosol 



mitigation, and that is why we chose to prefer improved seasonal trends over short-term 

minimum and maximum values. 

We have clarified these aspects in the manuscript text by adding after line 223: 

“Furthermore, due to dust episodes, the maximum PM2.5 for ECHAM-HAMMOZ was during the 

summer months, whereas measurement stations showed maxima for the winter season. 

However, mineral dust was included in the input training set (see Table 3), i.e., dust can affect 

the RF bias correction. PM2.5 values from ECHAM-HAMMOZ which exclude the mineral dust 

component are hereafter referred to as non-dust PM2.5.” 

 

• Coming to the radiative forcing calculations (section 2.8), how is the definition given to the 

radiative forcing related to the conventional definitions found in the published literature? If 

there is any difference please highlight and justify those, else give supporting citations. 

Thanks for the suggestion, we have inserted some additional references in Section 2.8.  

 

For the calculation of RFARI, we have described in the manuscript text the small differences 

between our definition and the conventional definition published in the 5th IPCC assessment 

report. The ERF calculations are according to the sixth IPCC assessment report (see answer 

below). 

 

• How the effective radiative forcing is estimated? 

The ERF values were calculated as described in Section 2.8, and follow the definition proposed 

in, for instance, the sixth IPCC Assessment report (Forster et al., 2021). The ERF is the difference 

between the top of atmosphere (TOA) net radiative flux of a perturbed (MITIG_2030, 

CLE_2030) and reference (PRES) simulation. All the simulations have fixed sea surface 

temperatures (SST) and sea ice cover (SIC), and the meteorology is allowed to evolve freely, i.e., 

no nudging was applied.  
 

We have added a reference to the latest IPCC AR, and updated Section 2.8 to mention fixed SST 

and SIC, by changing at lines 264-266 from  

“Here we computed the ERFARI+ACI as the difference in the net radiative flux at the top of the 

atmosphere (TOA) between a perturbed scenario and the reference simulation.” to 

“Here we computed the ERFARI+ACI as the difference in the net radiative flux at the top of the 

atmosphere (TOA) between a perturbed scenario and the reference simulation (Forster et al., 

2021), using simulations with fixed SST and SIC.” 

 

Other comments 



L1: This opening sentence is misleading. The study demonstrates the potential of the ML 

technique in downscaling a global-scale mode output.. 

We have updated the opening sentence from  

“We studied the potential of using a global-scale climate model for analyzing simultaneously 

both city-level air quality and regional and global scale radiative forcing values for 

anthropogenic aerosols.“ to 

“We studied the potential of using machine learning to downscale global-scale climate model 

output towards ground station data. The aim was to analyze simultaneously both city-level air 

quality and regional and global scale radiative forcing values for anthropogenic aerosols.”  

 

L6: You mean the model output is better than the measured PM2.5 values? 

Thanks for pointing this out, the sentence was slightly vague.  

We changed the sentence at line 6 from  

“The downscaling procedure clearly improved the seasonal variation when compared to 

measured PM2.5 values.” to 

“The downscaling procedure clearly improved the seasonal variation of the model data. The 

seasonal trends were much better captured in the corrected PM2.5 than in original ECHAM-

HAMMOZ PM2.5 when compared to the reference PM2.5 from the ground stations” 

 

L11: This is a highly impactful statement. Better to give caution to the reader by mentioning the 

associated large uncertainty as seen in Fig. 3(e). 

Thank you for the suggestion.  

We have extended the sentence at lines 12-13 from 

“This indicates that aerosol mitigation could bring a double benefit in India: better air quality 

and decreased warming of the climate.” to 

“For the two future emission scenarios modelled, the radiative forcing due to aerosol-radiation  

interactions over India was (−0.09 ± 0.26) W m−2 and (−0.53 ± 0.31) W m−2, respectively, while 

the effective radiative forcing values were (−2.1 ± 4.6) W m−2 and (0.06 ± 3.39) W m−2, 

respectively. Although accompanied with relatively large uncertainties, the obtained results 

indicate that aerosol mitigation could bring a double benefit in India: better air quality and 

decreased warming of the local climate” 

 

L38-40: As per the sentence, the role of ACI in aerosol indirect effects is undermined, hence 

please modify the sentence. Also, please explain the ‘local meteorological dynamics’ with 

references. 



As suggested, we have modified the text at lines 38-40 from 

“In addition to these so-called aerosol-radiation interactions (ARI), aerosols can affect Earth’s 

radiative balance indirectly, for instance, by altering the properties of clouds (aerosol-cloud 

interaction; ACI) or by changing local meteorological dynamics”  to 

“These are termed aerosol-radiation interactions (ARI). Furthermore, aerosol particles can act 

as seeds for cloud droplets and, hence, changes in aerosol composition and concentration can 

alter cloud properties, affecting Earth’s radiative balance indirectly (aerosol-cloud interactions; 

ACI).  Aerosols can also affect local meteorological dynamics. For instance, absorbing aerosol 

particles can alter atmospheric stability in the troposphere due to local heating (Johnson et al, 

2019).” 

 

L72-73: Cannot find in any of the given references that ‘emissions from New Delhi’ significantly 

contribute to the ATAL. Please clarify. 

This statement was slightly misleading, as Fairlie et al. (2020) referred to Indian subcontinent 

and Northern India as significant emission sources contributing to the ATAL.  

Updated the sentence at lines 72-73 from 

“emissions originating from New Delhi contribute significantly to the Asian Tropopause Aerosol 

layer (ATAL)” to 

“emissions originating from Indian subcontinent contribute significantly to the Asian 

Tropopause Aerosol layer (ATAL)” 

 

L94: HAM ‘threats’ the chemical combounds..? 

Many thanks for pointing out this typing error.  

We have updated the sentence at line 94 from 

“HAM threats the chemical compounds” to 

“HAM treats the chemical compounds” 

 

L158: Why do OC emissions increase by 2030 in CLE scenario while all others show a reduction? 

The principal reason for the different trends in different aerosol compound emissions are 

differences in the relative contribution of the total emissions from each emission sector.  These 

relative contributions may also change differently based on the burnt fuels and technologies 

used. In the CLE scenario for the year 2030, the global OC emissions from waste sector increase 

approximately by 900 kt (+44 %) when compared to 2015 levels. Furthermore, emissions due to 

agricultural waste burning increase by ~200 kt (+10%) compared to year 2015 emissions, and 

the emissions from industry and shipping are also projected to increase by a small portion. 

These changes are almost as large as emission reductions in the domestic (~ -960 kt) and traffic 



(~ -230 kt) sectors. The net change in global anthropogenic OC emissions is a small decrease (~ -

0.07 %) in the year 2030 compared to the year 2015. 

 For the area surrounding New Delhi, the increasing OC emissions from the waste (~ +90 kt, 

+62%) and industry (+11kt, +83%) sectors counterbalance some of the emission reductions cuts 

from the domestic (-38kt) and traffic (-18kt) sectors. Therefore, there is an increase in the net 

OC emissions in the area surrounding New Delhi. For BC and SO2, the reductions in other 

sectors (domestic and traffic for BC and energy sector for SO2) are large enough to outweigh 

the increasing emissions from the waste sector. That is why the 2030 CLE emissions for BC and 

SO2 are less than in 2015. 

 We have altered the sentence at line 155 from 

 "while the global OC emissions are projected to stay almost constant (∼−0.07 %)" to 

"The change in net global OC emissions is almost negligible (~ -0.07 %) due to increasing 

emissions in the waste and agricultural waste burning sectors, which compensate emission 

reductions projected in the domestic and traffic sectors." 

And also modified the sentence at line 157 from 

"The OC emissions are an exception as they increase by 7 % in 2030 compared to 2015." to 

"The OC emissions are projected to increase for the New Delhi surrounding by 7 % in the year 

2030 compared to the year 2015. This is due to increasing emissions from the waste and 

industry sectors, despite emission cuts projected for the domestic and traffic sectors." 

 

L267: What is ‘2D yearly mean value’? 

By 2D, we meant that the yearly mean values were calculated separately for each grid box.  

We changed the sentence at line 267 from 

“For both RFARI and ERF, we first calculated 2D yearly mean values using REARI and the net TOA 

radiative flux, respectively.” to 

“In order to compute RFARI and ERF, we first computed 2D yearly mean fields of REARI and the 

net TOA radiative flux, respectively, which were calculated as yearly mean values for each 

separate grid box.” 

 

L356: If that is the case, what is the significance of feature importance values? 

The feature importance values describe which input features reduced the modeling error the 

most in the training phase. Therefore, the importance values reveal information about the RF 

algorithm priorities during the training. However, the feature importances do not necessarily 

describe the RF model output sensitivities to input features. 

To describe this better, we have added a sentence after line 357: 

“The feature importance values indicate the contribution of a feature to the total reduction in 

the error criterion. However, importance values do not reveal the sensitivity of the RF model to 



specific input features.” 

 

L385: This __ somewhat? 

We have modified this sentence to clarify the main point, I.e., that the strong negative RFARI 

values were not expected when all three aerosol species are reduced simultaneously.  

Changed the statement at line 385 from 

“This somewhat surprising result is due to ...” to 

“This result is somewhat surprising as both of the scenarios, CLE_2030 and MITIG_2030, 

included reductions in both absorbing and scattering aerosols. The net negative RFARI for India 

results from ...” 

 

L395-398: Confusing. The aerosol loading in MITIG_2030 is supposed to be lower than the 

CLE_2030, then how RF in MITIG_2030 is more negative than CLE_2030 at the Himalayan 

foothills. Bright background due to strong haze is expected to be more in CLE_2030.  

The RFARI describes the change in the aerosol radiative effect between perturbed and reference 

scenarios. MITIG_2030 RFARI is more negative than CLE_2030 RFARI since there is less absorbing 

aerosol (BC) in MITIG_2030 than in CLE_2030. It is true that the pollution haze is expected to be 

stronger in CLE_2030 than in MITIG_2030. However, as we see from Figures S3a and b, the 

atmospheric absorption is significantly less in MITIG_2030 than in CLE_2030.  This indicates that 

the absorption due to BC is the dominating effect in this area, and therefore the RFARI is more 

negative in MITIG_2030 than in CLE_2030.  

We have added the following sentences after line 398: 

“The RFARI is more negative for the MITIG_2030 simulation, even though the haze layer due to 

anthropogenic aerosols is stronger in CLE_2030. This is because BC is reduced more heavily in 

MITIG_2030, which leads to stronger contributions to RFARI than the changes in the background 

aerosol layer.” 

 

L434-436: cannot understand. Do you mean that the CDNC burden was more in CLE_2030 

scenario? 

Exactly.  

To make this point clear, we rewrote the sentence at lines 434-346, from 

“When comparing CLE_2030 and PRES, the changes in aerosol concentrations translate 

surprisingly into a very small increase in the CDNC burden over most of the India (not shown), 

which would indicate that there is more cloud droplets to scatter SW radiation.” to 

“When comparing CLE_2030 and PRES, the changes in aerosol concentrations translate 

surprisingly into a very small increase in the cloud droplet number concentration (CDNC) 



burden over most of India (not shown), i.e. the mean CDNC burden values are higher in 

CLE_2030 than in PRES for large areas over India. This would indicate that there are more cloud 

droplets to scatter SW radiation.” 

 

L435: Expand CDNC in the manuscript. 

Thanks for pointing out this deficiency.  

We have clarified the abbreviation by modifying line 435 from  

“in the CDNC burden” to “in the cloud droplet number concentration (CDNC) burden”  

In addition, we described the term “burden” in Section 2.6 by adding in the Table 3 caption 

following: 

“Burden indicates vertically integrated concentration values.”  

 

Conclusions: This section can be renamed as summary and conclusions by adding the significant 

findings of the study as bullet points. 

Many thanks for the suggestion, we have renamed Section 4 and have added a very short 

summarizing statement to the end of this section. We, however, felt that a bullet-pointed list 

would not fit the style of the journal and instead opted for giving the summary in plain text 

style. 

We have added after line 532 the following: 

“To summarize, we obtained greatly improved seasonal trends for surface PM2.5 when 

applying machine learning downscaling to ECHAM-HAMMOZ data for New Delhi. Stringent, 

global aerosol mitigation resulted in improved air quality in New Delhi and negative radiative 

forcing for most of India. Organic carbon emissions had a stronger influence on local air quality, 

whereas black carbon emissions contributed more to the radiative effects.” 
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