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We thank Anonymous Referee #1 and Anonymous Referee #2 for the efforts made to review 
our paper and for the valuable comments. Our responses are written below each comment 
separately. The referee comments are marked with yellow color and italic, and the author 
replies are marked with gray color.

Replies to the comments made by the Anonymous Referee #1:

This manuscript presents global model simulation results over India from ECHAM for air quality 
and radiative forcing under present and future emission scenarios (from GAINS) through 2030. 
For the region covering Delhi, the results were downscaled using random-forest corrections 
using multiple emission, met, and orography variables. 

While the radiative forcing calculations from ECHAM is a known path, the use of the same to 
bias correct and estimate air quality for a city is new. The later methods have been used, but 
not for model resolutions at 1.9 degrees. Machine Learning (ML) approach is a new and 
emerging field and the benefits of using a global model for both air quality and climate 
applications cannot be overlooked. While the methodology is well explained for correcting the 
model results with biases from ML, the statistics also improved after the corrections, the gaps 
between the measured and model-corrected numbers is still significant. 

We thank Anonymous Referee #1 for the useful comments. 

As the referee mentioned, the RF-corrected PM2.5 does not fully reproduce the station-
averaged PM2.5 for the testing phase data, especially over short time scales. This is analyzed 
and discussed in Section 3.1.  

However, if the aim is to capture the long-term trends correctly, the RF-corrected PM2.5 
performs as adequately as the PM2.5 obtained from the dispersion model System for 



Integrated modeLling of Atmospheric coMposition (SILAM). In the Table below, we show the 
comparison statistics between modelled and mean of the New Delhi ground stations for the 
testing phase period 22.8.2018-31.12.2019.

The error statistics show that the RF-corrected PM2.5 correlates with the measured data at the 
same level as SILAM PM2.5 does. Furthermore, the mean absolute error (MAE) and root mean 
squared error (RMSE) are smaller for RF-corrected PM2.5 than for SILAM data. The mean 
relative error (MRE) is smaller for SILAM than for RF-corrected data, but the difference is less 
than 10 percent units. This comparison suggests that the performance of the downscaling 
approach is comparable to air quality models if the aim is to utilize data to applications where 
long-term trends in air quality are central.

The scenario analysis for air quality primarily hinges on the reproductive capacity of the model 
and the only question that is not clearly answered is why extract air quality data from such a 
coarse model (when the problem is known that coarser models have hard time replicating high-
density urban areas with very distinct emission characteristics)? Especially, since FMI and IMD 
(author organizations) are known to conduct chemical transport modeling for air quality at 
much better resolutions globally and in India. 
The referee is correct that the downscaled PM2.5 does not fully correspond outputs from high 
resolution models when comparing day-to-day variation. However, this was not the aim of this 
project, and we presume that the concept of our manuscript was misinterpreted by the referee.

The main idea of our study is to expand the possibilities to utilize global model data in 
additional applications such as local air quality analysis. As we describe in the manuscript text 
(line 522 and forward), one advantage of using global-scale models for analyzing the effects of 
aerosol mitigation is that one can simulate fairly long time periods (decades to even a century), 
and that the simulations typically cover the whole globe. With the help of downscaling, one can
“zoom in” to a very specific location and analyze how the global or local scale emission 
mitigation affects. Up to our understanding, air quality models are computationally more 
expensive due to the high grid resolution, and therefore the simulated time periods are shorter 
than with GCMs, and the simulation times can be much longer. 



Furthermore, another advantage of using downscaling enhanced PM2.5 from a GCM is that one
can simultaneously analyze the effects of aerosol mitigation on various other climatic 
processes. In our case, we focused on the radiative forcing, but one could, for instance, analyze 
global precipitation patterns or low-level cloud formation at very distinct regions in the globe.

One plausible application of downscaling PM2.5 could be simply to use it as a “quick tool” to 
evaluate how a mitigation scheme affects climate or air quality in different parts of globe. The 
intention of this study is not to present a method which can be used to replace chemical 
transport models. Instead, the main idea is to provide a relatively light-weight tool that can be 
used to assess simultaneously the climate and air quality effects of future aerosol emission 
reduction measures.

Furthermore, many air quality models require simulated data from global climate models for 
modelling the future climate. Regional modelling with fine grid resolution requires input for 
boundary conditions for large scale atmospheric dynamics, and therefore a separate global 
model simulation is needed before the actual air quality model simulation can be performed. 
Our intention was to explore if we could use the global model data directly also to analyzing 
surface air quality, especially if there is no need to study the underlying physical mechanisms in 
a detailed way. 

We will update the Introduction text to communicate better our motivation and the core 
concept of the study.

Why use a city like Delhi with so many stations with 0% data available in the ML testing phase?
Why not use a city in Europe or the US with good availability rates and good representation of 
the sources, to show that the model is capable of replication after the bias corrections? 
We assume this is a misunderstanding as the majority of the stations used in this study have a 
coverage of 80 to 90% for testing phase (see Table S1). To emphasize this point, we will add a 
couple of statements about data availability in Section 2.3.

The one drawback of the manuscript is the selection of the case study city (Delhi) -- which has 
strong seasonal trend, strong diurnal trend, and distinct sources (for SO2, BC, and OC) over the 
months. A city(s) or region(s) with consistent emission loads would cut down some uncertainty 
in the model and corrections methods and then apply to regions like India and China.

We chose New Delhi as a case study city as it is ideal for this kind of study. The PM2.5 
concentrations are at a high level for most of the year in New Delhi. Furthermore, Delhi 
National Capital Territory (NCT) is densely populated and relatively large in surface area. In 
addition, the ground measurement station network in New Delhi is very extensive and there 
was a sufficient amount of data available for our study. 



Furthermore, we respectfully disagree with the referee that the unique characteristics 
backgrounding New Delhi pollution profile would make Delhi unsuitable for this kind of 
analysis. On the contrary, as we mention right in the first sentence of the abstract text, we 
aimed to study the potential of the downscaling procedure. As the referee described, the New 
Delhi PM2.5 is not constant all year around but has a lot of seasonal variation and strong 
dependence on anthropogenic sources. This makes New Delhi a good target region to explore 
how well downscaling can capture local tendencies, such as short- and long-term trends in 
PM2.5.

Anthropogenic aerosol emissions are relatively large in India (~15% of the global BC emissions), 
and they are not projected to decrease at a same rate as global emissions (see manuscript 
Table 1). That is why we considered that India and New Delhi are interesting areas to study, as 
the aerosol mitigation is expected to bring clear benefits to the local air quality, but the net 
radiative forcing due to simultaneous mitigation of three species (BC, OC and SO2) was unclear. 
We will update both the Introduction text and the text in Section 2.3 to give readers a clear 
impression of why New Delhi was chosen as a study of interest.

Unfortunately, it seems that we have not reported clearly enough in our manuscript that our 
bias correction model is meant to be built separately for each city. Though technically possible, 
it would require a very large global training dataset representing a wide variety of conditions to 
construct  an ML-based model that would be able to generalize from one region to another. In 
practice, this type of global dataset does not exist. The characteristics of PM2.5 concentrations 
trends and how they depend on prevailing atmospheric conditions and the assumed local 
emissions are unique for each city/region.  We used the same city for training and testing the 
RF Model to ensure representative training data for the model. We will emphasize this better in
Section 2.7 and add a description of why there needs to be a separate model for each city. 

Line 237-242 and 290: It is not clear if the emissions and other variables extracted and used are 
still at the ECHAM resolution or further downscaled to support a region of 30km x 30km over 
Delhi? (L290) is an important observation - When making the bias corrections, besides the 
model grid variables, are there any variables that are seggregating the Delhi area signatures for
a better fit? 
We thank the referee for making us aware that this aspect was not clear enough in the 
manuscript text. The input feature values used in the RF bias correction are all from one specific
ECHAM-HAMMOZ simulation, and the data were not further downscaled to represent higher 
resolution grid data. Downscaling from T63 to L290 would require a large amount of external 
fine resolution data and would not serve the purpose of lowering the computational costs. 

Instead, we post processed the input feature data by extracting values from the original 
ECHAM-HAMMOZ data of T63 horizontal resolution. We produced input feature data either by 
extracting data from one single grid box (‘point’), or by summing (‘fldsum’) or averaging 



(‘fldmean’) over an area surrounding New Delhi (72 – 83 ‘W, 24 - 34 ‘N). This means that some 
of the input features represent more the regional changes in the simulated atmosphere, 
whereas the point features show more the local changes. 

In our modeling set up, it is assumed that the measurement data from ground stations 
incorporate information about the very detailed characteristics affecting New Delhi pollution 
levels, such as urban infrastructure or very specific emission sources. Including detailed external
data as an input feature (e.g., info about public traffic routes) would have reduced the 
feasibility of our modeling approach since external data is easily subject to change and would 
need to be kept updated constantly, or be based on additional scenarios or assumptions. Then 
again, the absence of detailed, local information is most likely the reason why our modelling 
approach is not capturing short-term variations very well. Developing such downscaling bias 
correction method that could also include external data could be an opportunity for future 
studies.

We will clarify these topics in the manuscript text in Section 2.6 and describe better the 
selection of input feature variables. We will also add discussion about potential future studies 
including very detailed information about local factors affecting air pollution levels.

The results and conclusions of the study in terms of AQ and climate benefits of reducing 
emissions are as expected. However, since Delhi is the most polluted area/city in the world with 
not only a complex mix of emission sources, but also a complex mix of political and 
instititutional setup to manage these emissions. While the manuscript presented % changes 
(benefits for air quality and RF), the discussion doesn't include any explanation on how these % 
emission reductions will be acheived in the Delhi area. It is understood that the emissions work 
comes from a different model (GAINS). Since the manuscript very specifically mentions and 
analyzes data for one city only, it would be appropriate to also discuss this space.

We would like to highlight here that it is not explicitly evident that future aerosol mitigation 
would bring a net negative forcing over India. As many studies have shown (for instance, Allen 
et al.,2020), simultaneous reductions in both scattering and absorbing aerosols are expected to 
reduce the net cooling effect of aerosols on a global scale. 

The aerosol mitigation scenarios used in this study were part of the ECLIPSE V6b emission 
scenarios, which were designed with the GAINS model. The underlying assumptions in ECLIPSE 
are idealized in the sense that emission reductions are based on assumed perfect achievement 
of currently valid legislation (CLE) or full implementation of all currently available technologies 
to reduce emissions (MFR). In this sense these scenarios could be seen as maximum possible 
emission reductions from the 2020 viewpoint. Analyzing the underlying political actions needed
to achieve the proposed emission reductions is beyond the scope of this study. A more detailed 
description of the ECLIPSE scenarios can be found from e.g. Stohl et al. (2015), Belis et al. (2022)
and Klimont et al. (2017).



However, we will add a brief summary in Section 2.4 about the most significant source sectors 
reduced in the ECLIPSE MFR scenario. In addition, we will extend the discussion part in Section 
3.2. to briefly mention possible source sectors that might have been contributing to air quality 
improvements the most. 

While there is merit to a new methodology to be able to model AQ data along with the climate 
data, the manuscript lacks punch and I am afraid that these correction results will be hard to 
replicate in another setting.

While we appreciate the referee’s feedback, we respectfully disagree that the proposed 
method would not be applicable for analyzing the effects in another city or region if trained and
applied with suitable data. We do, however, recognize that the performance of the bias 
correction may be different for each target city. 

As mentioned above, there might be a misunderstanding that we would propose to apply the 
model trained with New Delhi data to correct air quality levels for a different city. In case this 
referee’s comment is based on that kind of assumption, we will elucidate in the updated text 
that the designed RF models are city specific.

In addition to the already mentioned improvements, we will go through the whole manuscript 
text and highlight the core concepts to sharpen the key messages of our study.

***************************************************************************

Replies to the comments made by the #Anonymous referee 2:

Review of “Assessing the climate and air quality effects of future aerosol mitigation in India 
using a global climate model combined with statistical downscaling”

The manuscript explores the possibilities of using a global climate model to investigate the 
effects of aerosol mitigation in India. A machine learning (ML) approach using Random Forest 
regression is used to downscale PM2.5 concentrations over a polluted city, New Delhi with the 
help of measured PM2.5 concentrations. Different PM loading future scenarios are projected 
and compared with the uncorrected and ML-corrected model outputs. The effects of aerosol 
mitigation are investigated in terms of radiative effects and effective radiative forcing under the
PM future scenarios. The authors claim the improvement of global-scale model output in 
simulating the PM2.5 concentration over a small domain and their effectiveness in estimating 
the radiative impacts. The study demonstrates the potential of the emerging technique of ML in 
improving the large-scale model output in the process of statistical downscaling. The study is 
relevant and unique as mentioned above, and has a significant contribution to the relevant 



scientific domain. However, some concerns remain significant and need to be considered before 
publishing.

General Comments

The manuscript focuses on two aspects. (1) Demonstration of an ML technique in improving a 
global-scale model to simulate the PM2.5 concentrations over a small region via statistical 
downscaling under different emission scenarios. (2) Estimating the radiative effects of future 
aerosol scenarios using the RF-corrected model simulations. The manuscript structure is difficult 
to follow until reaching the present ‘Conclusions’ section which is not a conclusion, but a nice 
overview/summary of the entire work. 
We thank the referee for the insightful suggestions to improve the manuscript structure and 
content. We will re-organize some of the subsections in Section 2 and rename Section 4 as 
suggested.

If the authors want to highlight their simulation results regarding the impact of future aerosol 
mitigation, more discussion is needed with proper references to the existing findings, else it 
remains as a technical paper demonstrating the potential of ML in statistical downscaling.
Currently, the physical mechanisms for some of the simulation outcomes are not given/found, 
but some tentative reasons are proposed. Many studies are documented the current aerosol-
impact scenario using multiple scientific techniques (in situ, remote sensing, etc.) and future 
projections also for the Indian region. 
We will add more discussion and clarification about the potential physical mechanisms 
underlying the effects of mitigation and will also insert citations to relevant studies in 
Subsections 3.2 and 3.3. Further information is also included below in our answers to the 
detailed comments.

To ascertain the second aspect of the current manuscript, the first part needs to be flawless and 
should be explained confidently. Many parts of the manuscript are confusing which calls for 
further explanations for the smooth reading. 
We thank the referee for bringing up that some parts of the manuscript may be confusing to 
the reader. We will go through the entire manuscript and improve the general readability of the
text.

One of the highlights of the findings is that the improvement of air quality is mostly due to the 
reduction of OC loading. However, the negative radiative forcing is attributed to the reduction 
of BC emission. This is an example of confusion arising while going through the manuscript. 
This was an excellent comment and helped us to understand which parts of our manuscript are 
confusing. The reason why OC influences air quality more than BC, though BC has stronger 
effects on the radiative balance, is related to the optical properties of these aerosol species. 



The atmospheric mass load of BC is relatively small compared to the mass load of OC. The 
radiative forcing per mass load of BC, on the other hand, is much bigger than for OC, as the 
optical properties differ. That is why in this study the emission reductions of OC influence 
PM2.5 concentrations more, while BC-reductions have a larger impact on radiative forcing. We 
will update the text in Sections 3.2. and 3.3 and clarify how different aerosol species might have
very different effects on radiative balance and air quality. 

The map of India shown in Fig. 3 is not matching with the maps published by the institutions 
that provided the insitu data nor with one of the authors’ affiliated institution. Please correct 
the map as per the source or remove the political boundaries as per the journal’s 
recommendations. 
We thank the referee for pointing out this issue. We will remove the political boundaries from 
Figures 3 and S3. 

Language also needs improvement. The main concerns are listed below.

Methodology:

• Why does section 2.2 stand apart from sections 2.6 and 2.7?

We will move Section 2.2 below Section 2.5 and update the numbering of the subsections. 

• The hyper parameters were adjusted using different combinations based on the best error 
statistics. Can you please show the performance of the validation test data?

This statement in the manuscript was somewhat inaccurate as the hyper parameter selection 
seemed not to affect the model performance substantially. The error statistics for testing 



different RF parameter combinations are presented in the Figure below. 

 

As the statistics show, our RF model setup is not overly sensitive to the selection of hyper 
parameters. Hastie et al. (2009, p. 590) reported a similar tendency. Based on their 
experiences, random forests require very little tuning.
Furthermore, our modeling approach had 31 RF models (one per measurement station), and we
used the same RF hyperparameters in each of them, as we did not tune each station-specific RF 
model separately. We therefore decided to use the default, recommended values in the RF 
models.  We will update the manuscript text to describe the selection of hyper parameters in a 
more transparent manner.

• What do you mean by setting the depth of each tree to infinity? How can you make sure of 
avoiding over-fit while keeping the depth of the tree as infinity? What are the criteria for fixing 
the number of trees? It is said that a default value of 100 is taken as the number of trees in the 
present study. Why 100?



By setting the depth to infinity we indicated that we did not set a limit to the tree depth. This 
was a slightly misleading way to report that the “max_depth” parameter in the Scikit Learn 
Python module was left as default value, “None”. When there is no maximum depth assigned, 
the algorithm will expand the regression tree nodes until the so-called leaves meet the purity 
criteria (mean squared error). We will rewrite some parts in Section 2.2 to clarify this point. 

We tested how the maximum depth of the trees affects the model performance by altering the 
max_depth parameter and applying the trained model to year 2020 data (I.e., outside of 
training and testing phase data). The results are presented in the Figure below. 

 

As Figure above shows, our RF modelling approach is not very sensitive to the max_depth 
parameter. Therefore, we chose not to fix the maximum depth of a tree in our modelling 
approach. Note that the root mean squared error and mean absolute error values are slightly 
larger for the year 2020 as the COVID19 pandemic caused an unusual, long-term drop in the 
surface PM2.5, which was not accounted for in the ECLIPSE emission inventories. 

The number of trees was set to 100 based on a trial-and-error approach. There was no 
significant improvement if we increased the number of trees (See Table above). Due to these 
reasons, the hyper parameters were not adjusted based on tight cross-validation routines, but 
were selected near the recommended, default values.

• Why the feature importance values are normalized, by doing so what is the chance of 
smoothing the non-linearity of the dependence of the input variables? Isn’t there any criteria to 
fix the number of input variables? As the authors have pointed out the input variables are 



mutually correlated which is obvious in the atmosphere, including all of them may lead to over-
fitting. What is the authors’ claim on this point?

The feature importance values are normalized to make them more comparable to each other. 
They represent the contribution of each variable on the reduction of the error criteria, and the 
normalization scales these to a scale from zero to one. Without normalization, the importance 
values would be more difficult to interpret as they would always depend on the computed total
error of the particular RF training setup. Furthermore, the normalizing routine is a default 
setting in the applied SciKit Python library.

It is true that, since there are correlated input variables, there is a small risk of overfitting. 
We did preselection for the input variables based on feature importance values. We excluded 
variables that had an average feature importance value close to zero. Furthermore, for each 
regression tree, the maximum number of input features to be used when looking for the 
optimal split was fixed to 7 (See Section 2.2), so that there is a randomized set of features for 
splits. However, we did not carry out a stringent optimization routine to prune the number of 
input variables to as low as possible. This was because we had 31 stations and thereby 31 RF 
models. Each of the stations has distinct characteristics, and therefore the optimal set of input 
variables is slightly different for each station. We estimated that using the same set of input 
variables for all RF models could result in a more harmonized outcome. In order to minimize the
risk of overfitting, we will re-evaluate the set of input features and analyze the impact of highly 
correlated input features on the RF predictions.

Furthermore, we will update the Section to describe more explicitly how the input features 
were selected. In addition, we noticed that there were some inconsistent descriptions of the 
modelling setup, and we will update those to correspond to our modeling parameters.

We further noticed that the description of the algorithm implementation slightly differed from 
the actual modelling setup. We will therefore update the sentence describing the 
“max_features” property. In addition, the bootstrap bagging method was not applied, and 
therefore we will remove the sentence indicating that. We further tested the model 
performance with different bootstrapping parameters, and there was no detectable 
improvement whether the bootstrapping was applied or not. 

• For the global-scale modelling, ECLIPSE V6b emission scenarios are used. How appropriate is 
this emission inventory for simulating PM over the Indian region or what are the criteria for 
selecting this inventory for this study? What is the contribution of this inventory to the high 
under-estimation of PM loading by the model over Delhi as shown in the manuscript?

A detailed description of previous versions of the ECLIPSE inventories is presented in Klimont et 
al. (2017) and Stohl et al. (2015).



The ECLIPSE V6b emissions are described in detail in the forthcoming Arctic Monitoring and 
Assessment Program (AMAP) report. They were especially developed to study emission 
reductions of short-lived climate forcers (SLCF) on the global and Arctic climate. Unfortunately, 
the publication of the report has been put on hold due to the current political situation for an 
indefinite amount of time. However, Belis et al. (2022), von Salzen et al. (2022) and Whaley et 
al. (2022) provide brief descriptions of the ECLIPSE V6b scenarios.

Furthermore, as we mention in the manuscript text lines 449-451, Whaley et al. (2022) state 
that in ECLIPSE V6b, the recent declines in Asian SO2 and BC emissions are considered. This 
suggests that ECLIPSE V6b is a better choice for modeling South Asian aerosols, since some 
emission inventories, such as CEDS emissions from CMIP6 simulations, might lack this decline 
(Wang et al. 2021).

We will update the manuscript text to include additional citations for both ECLIPSE inventory 
and the GAINS model.

• How the exclusion of the mineral dust component solves the issue related to the PM2.5 
peaking? How authors can make sure that this exclusion won’t affect the other simulation 
results?

Here we want to clarify the RF-correction procedure. Instead of using RF to directly predict 
surface PM2.5 values, we predict a correction term to the PM2.5 values modelled by ECHAM-
HAMMOZ, which has been shown earlier to give better results (e.g., Lipponen et al., 2013). For 
the computation of the correction term, we use all the ECHAM-HAMMOZ parameters listed in 
Table 3, which does also include the PM2.5 due to mineral dust component and mineral dust 
emissions from ECHAM-HAMMOZ. However, because during the RF training phase the mineral 
dust component shows very large peaks which do not correspond to the measurements, we 
exclude mineral dust from the PM2.5 value to which the correction term is added. Therefore, 
the correction term includes an inferred amount of mineral dust as the random forest models 
get information about mineral dust episodes as an input. In this sense, the mineral dust 
component is not (entirely) excluded from the RF-correction procedure. We will clarify this in 
the manuscript.

The difference between PM2.5 with and without mineral dust can be seen in Figure S2. Most of 
the very high peaking values in ECHAM-HAMMOZ data are during summertime, and due to 
mineral dust. The daily average of the measurement stations, on the other hand, does not show
summertime peaking values that would exceed the winter month maxima. Including dust 
component in the ECHAM-HAMMOZ PM2.5 might have produced the highest values for the 
summer months, as our bias correction is additive. We agree with the referee that excluding 
mineral dust from ECHAM-HAMMOZ PM2.5 when calculating of the error term between station
PM2.5 and ECHAM-HAMMOZ might affect results to some level as the very short-term peaks 
might be suppressed. However, our aim was to model the long-term effects of aerosol 



mitigation, and that is why we chose to prefer improved seasonal trends over short-term 
minima and maxima values.

We will add text in Section 2.2 to describe why avoiding dust peaks was necessary.

• Coming to the radiative forcing calculations (section 2.8), how is the definition given to the 
radiative forcing is related to the conventional definitions found in the published literature? If 
there is any difference please highlight and justify those, else give supporting citations.

Thanks for the suggestion, we will insert additional citations in Section 2.8. For the calculation 
of RFARI, we have described in the manuscript text the small differences between our definition 
and the conventional definition published in the 5th IPCC assessment report. The ERF 
calculations are according to the latest IPCC assessment report (see answer below).

• How the effective radiative forcing is estimated?

The ERF values were calculated as described in Section 2.8, and follow the definition proposed 
in, for instance, the latest IPCC Assessment report (Forster et al., 2021). The ERF is the 
difference between the top of atmosphere (TOA) net radiative fluxs of a perturbed 
(MITIG_2030, CLE_2030) and reference (PRES) simulation. All the simulations have fixed sea 
surface temperatures (SST) and sea ice cover (SIC), and the meteorology is allowed to evolve 
freely, i.e., no nudging was applied. 

As we mentioned above, we will add more references in Section 2.8. Furthermore, we will 
clarify the explanations in Section 2.8 to explicitly mention the fixed SST and SIC. 

Other comments

L1: This opening sentence is misleading. The study demonstrates the potential of the ML 
technique in downscaling a global-scale mode output..

We will update the opening sentence to be more precise.

L6: You mean the model output is better than the measured PM2.5 values?

Thanks for pointing this out, the sentence was slightly vague. We’ll rewrite this sentence.



L11: This is a highly impactful statement. Better to give caution to the reader by mentioning the 
associated large uncertainty as seen in Fig. 3(e).

Thank you for the suggestion. We will extend this sentence to also mention the uncertainty 
related to the ERF values estimated.

L38-40: As per the sentence, the role of ACI in aerosol indirect effects is undermined, hence 
please modify the sentence. Also, please explain the ‘local meteorological dynamics’ with 
references.
We will modify this sentence to as suggested. 

L72-73: Cannot find in any of the given references that ‘emissions from New Delhi’ significantly 
contribute to the ATAL. Please clarify.

This statement was slightly misleading, as Fairlie et al. (2020) referred to Indian subcontinent 
and Northern India as significant emission sources contributing to the ATAL. We will correct the 
sentence to refer to the whole Indian subcontinent.

L94: HAM ‘threats’ the chemical compounds..?
Many thanks for pointing out this typing error. We will fix this in the manuscript text.

L158: Why do OC emissions increase by 2030 in CLE scenario while all others show a reduction?

In CLE scenario for the year 2030, the global OC emissions from waste sector increase 
approximately by 900 kt (+44 %) when compared to 2015 levels. Furthermore, emissions due to
agricultural waste burning increase by ~200 kt (+10%) compared to year 2015 emissions, and 
the emissions from industry and shipping are also projected to increase by a small portion. 
These changes are almost as large as emission reductions in the domestic (~ -960 kt) and traffic 
(~ -230 kt) sectors. The net change in global anthropogenic OC emissions is a small decrease (~ -
0.07 %) in the year 2030 compared to the year 2015.

 For the area surrounding New Delhi, the increasing OC emissions from the waste (~ +90 kt, 
+62%) and industry (+11kt, +83%) sectors counterbalance some of the emission reductions cuts 
from the domestic (-38kt) and traffic (-18kt) sectors. Therefore, there is an increase in the net 
OC emissions in the area surrounding New Delhi. For BC and SO2, the reductions in other 
sectors (domestic and traffic for BC and energy sector for SO2) are large enough to balance out 
the increasing emissions from waste sector. That is why the 2030 CLE emissions for BC and SO2 
are less than in 2015.

We will add a few sentences to the manuscript text to explain briefly the trends in emissions for



different sectors.

L267: What is ‘2D yearly mean value’?

By 2D, we meant that the yearly mean values were calculated separately for each grid box. We 
will rewrite this in a more transparent manner.

L356: If that is the case, what is the significance of feature importance values?

The feature importance values describe which input features reduced the modeling error the 
most in the training phase. Therefore, the importance values reveal information about the RF 
algorithm priorities during the training. However, the feature importances do not necessarily 
describe the RF model output sensitivities to input features. We will append this sentence to 
the manuscript to describe this difference better.

L385: This __ somewhat?
We will modify this sentence to clarify the main point, I.e., that the strong negative RFARI values 
were not expected when all three aerosol species are reduced simultaneously. 

L395-398: Confusing. The aerosol loading in MITIG_2030 is supposed to be lower than the 
CLE_2030, then how RF in MITIG_2030 is more negative than CLE_2030 at the Himalayan 
foothills. Bright background due to strong haze is expected to be more in CLE_2030.
The RFARI describes the change in the aerosol radiative effect between perturbed and reference 
scenarios. MITIG_2030 RFARI is more negative than CLE_2030 RFARI since there is less absorbing 
aerosol (BC) in MITIG_2030 than in CLE_2030. It is true that the pollution haze is expected to be
stronger in CLE_2030 than in MITIG_2030. However, as we see from Figures S3b and d, the 
change in atmospheric absorption is significantly less in MITIG_2030 than in CLE_2030. This 
indicates that the absorption due to BC is dominating effect in this area, and therefore the RFARI 
is more negative in MITIG_2030 than in CLE_2030. We will modify the sentence slightly to 
describe this mechanism better.

L434-436: cannot understand. Do you mean that the CDNC burden was more in CLE_2030 
scenario?

Exactly. We will rewrite the sentence to make this point clear.

L435: Expand CDNC in the manuscript.
Thanks for pointing out this deficiency. We will add a clarification of the abbreviation and will 
also describe the term “burden” in Section 2.6.



Conclusions: This section can be renamed as summary and conclusions by adding the significant 
findings of the study as bullet points.

Many thanks for the suggestion, we have renamed Section 4 and will modify the text to fit the 
new naming. 
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