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Abstract. We present an analysis of atmospheric transport impact on estimating CO: fluxes using two atmospheric inversion

systems (CarboScope Regional (CSR) and LUMIA) over Europe jn 2018. The main focus of this study is to quantify the

dominant drivers of spread amid CO: estimates derived from atmospheric tracer inversions. The Lagrangian transport
models STILT and FLEXPART were used to assess the impact of mesoscale transport. The impact of lateral boundary

conditions for CO2 was assessed by using two different estimates, from the global inversion systems CarboScope (TM3) and

TM5-4DVAR. LO: estimates calculated with an ensemble of eight inversions differing in the regional and global transport

models, as well as the inversion systems show a relatively large spread for the annual fluxes, ranging between -0.72 and 0.20
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with a mean estimate of -0.29 PgC

differences in the mesoscale transport model,(0.51 PgC yr'!), in comparison with 0.23 and 0.10 (PgC yr") that resulted from _' i

the far-field contributions and the inversion systems, respectively. Additionally, varying the mesoscale transport caused large I

discrepancies in spatial and temporal patterns, while changing the lateral boundary conditions lead to more homogeneous
spatial and temporal impact. We further investigated the origin of the discrepancies between transport models. The
meteorological forcing parameters (forecasts versus reanalysis obtained from ECMWF data products) used to drive the
transport models are responsible for a small part of the differences in CO2 estimates, but the largest impact seems to come

from the fransport model schemes. Although a good convergence in the differences between the inversion systems was
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achieved by applying a strict protocol of using identical priors, and atmospheric datasets, there was a non-negligible impact
arising from applying a different inversion system. Specifically, the choice of prior error structure accounted for a large part

of system-to-system differences.
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1  Introduction

Inverse modeling has been increasingly used to infer surface-atmosphere fluxes of carbon dioxide (CO2), from observations
of dry mole fractions made at spatiotemporal points across an observational network (Enting and Newsam, 1990; Bousquet

et al., 1999). Reducing uncertainty in the flux estimates is, therefore, essential to reliably quantify the carbon budget

(Friedlingstein et al., 2022; Le Quéré et al., 2018) as well as to improve our understanding about the variability and trends of

the carbon cycle over times at finer regional scales, in particular in response to the climate perturbation caused by the

increase of anthropogenic emissions (Shi et al., 2021). The estimates obtained from atmospheric tracer inversions still

demonstrate large deviations due to manifold sources of uncertainty such as using different data, inversion schemes, and

atmospheric transport models (Baker et al., 2006; Gurney et al., 2016), either at global scales or, to a larger extent, at

regional scales. Although the global inversions can provide convergent estimations of the global carbon budgets, they are

limited by the coarse resolution of atmospheric transport that may not allow for a realistic representation of the observations

at complex mesoscale terrains. In turn, performing regional inversions with mesoscale transport models has offered a better

opportunity to represent and make use of the dense measurements available at all the sites across regional domains (Broquet

et al., 2013; Kountouris et al., 2018a; Lauvaux et al., 2016), specifically after the expanding coverage of data over large areas

in the recent years as has been established, for example, over Europe by the Integrated Carbon Observation System (ICOS).

Although CO, fluxes constrained by atmospheric data in the Bayesian inversion framework inherit a dominant spatial and .-

temporal pattern from the atmospheric signal, the a-posteriori fluxes still suffer, from a large spread when using different

CMoved (insertion) [10]

- CDeleted:

S

global and mesoscale transport models (Rivier et al., 2010).,

- CMoved (insertion) [9]

As a first intercomparison between six regional inversions covering a wide range of system characteristics —e.g., prior fluxes, ( Deleted: A further study suggests that uncertainties in both
transport and CO: fluxes contribute equally to the uncertainties in
inversion approaches, and transport models, the EUROCOM experiment (Monteil et al., 2020) suggested large spreads in CO2 dry mole fraction simulations, displaying similar temporal and

spatial patterns (Chen et al., 2019).¢

NI

70

75

posterior estimates over Europe, particularly over regions that are poorly constrained by atmospheric data. This, on the one

hand, partly indicates the sensitivity of the a-posteriori estimates to the observations and to the a-priori models as explained

in Munassar et al. (2022). On the other hand, inaccuracies in atmospheric transport (Schuh et al., 2019), far-field

contributions, and the configurations of inversions are responsible for part of that spread. A further study suggests that

uncertainties in both transport and CO» fluxes contribute equally to the uncertainties in CO> dry mole fraction simulations,

displaying similar temporal and spatial patterns (Chen et al., 2019).

Jhe atmospheric transport yelates the measured tracer concentration to its possible sources and sinks, which are adjusted in :

order to fit the ynodelled concentrations to observed data. However, inaccuracies in yepresenting, the real atmospheric

dynamics by fransport models lead to uncertainties in CO» flux estimates. Thjs kind of errors can emerge from both .~
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operational weather forecast models or jyeanalysis data optimised against observations and dynamical model forecasts.

However, such meteorological fields have uncertainties owing to errors and gaps in the observations and errors in the

models are, typically driven by jgneteorological data available from
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weather forecast models (Deng et al., 2017; Liu et al., 2011; Tolk et al., 2008).,

As the lateral boundaries are provided from a global model run at lower resolution than the regional model (Davies, 2014),

this leads to biases in CO, lateral concentrations and thus affects the inversion estimates (Chen et al., 2019). The information

of providing boundary conditions to regional inversions is necessary to isolate the influence of far-field contributions before

performing the regional inversion. In Bayesian inversion setups, a proper information on prior error structures is also

essential to determine the spatial pattern of the flux corrections based on the assumed error, especially at high spatial

resolution inversions (Chevallier et al., 2012; Kountouris et al., 2015; Lauvaux et al., 2016). Therefore, the spatial pattern of

flux corrections is dependent on the way the error covariance matrices are constructed, which can lead to large spatial

discrepancies between the estimates from different inversion systems.

This study is dedicated to quantify the relative contributions of the differences in optimised fluxes resulting from varying: 1)

atmospheric transport models, 2) lateral boundary conditions, and 3) inversion configurations on flux estimates, as the error

contributions from each component to the inversions spread remain unclear in regional inversions, specifically at finer

spatial scales over a continental domain such as Europe (Monteil et al., 2020; Petrescu et al., 2021; Thompson et al., 2020).

We analysed results of posterior NEE estimated from the two inversion systems CarboScope-Regional, CSR, (Kountouris et .

al., 2018b; Munassar et al., 2022) and LUMIA (Monteil and Scholze, 2021). Both inversions employ pre-computed
sensitivities of atmospheric mole fractions to surface fluxes, so-called source-weight functions or “footprints”, via two
Lagrangian transport models at regional scales, and make use of the two-step inversion approach established by Roedenbeck

et al. (2009) to provide the lateral boundary conditions. The regional atmospheric transport models were used at a horizontal

resolution of 0.25-degree. ,The impacts of both global and regional models ywere compared through analysing the differences

in space and time.

Section 2 presents detailed descriptions of the inversion setups, the transport models, and the prior fluxes used, The

observational stations that provide CO> dry mole fraction are described within the methods as well. We introduce the results

obtained from eight inversions in Section 3. The results are discussed and interpreted through a spatial and temporal analysis
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the impacts of regional transport, boundary conditions and inversion setups on CO: estimates in the inverse modeling,

2 Methods

An atmospheric tracer inversion framework is mainly made up of transport model, data source for boundary conditions (in

case of regional inversions), datasets of atmospheric mole fractions, and surface flux fields. In this study, several inversion

runs differing in atmospheric transport models are conducted using two tracer inversion systems, CSR and LUMIA (see
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Table 2). The default CSR inversion system utilizes pre-calculated footprints from the Stochastic Time-Inverted Lagrangian
Transport model STILT (Lin et al., 2003) at the regional domain, and the TM3 model at the global scale, applying the two-
step scheme inversion approach (Rodenbeck et al., 2009), to provide the far-field contributions to the regional domain. In the

default setup of the jnversion system LUMIA, the footprints are pre-calculated using the Lagrangian particle dispersion

model FLEXPART (Pisso et al., 2019), and the far-field contributions are calculated using the global transport model TMS
in a separate global inversion run, applying the two-step scheme inversion as well. These default configurations in both

systems constitute the base cases. We strive to restrict the differences in the inversion runs to the targeted components, i.e.,

regional transport, boundary conditions, and the inversion systems, so as to outline the impact of each suite. That is, input
data such as measurements of CO2 dry mole fraction and the a-priori fluxes, used as constraints based on Bayes inference,
are identical for all runs. We exchangeably make use of the four combinations of transport model components, the regional
and global models, in the two inversion systems. The impacts were evaluated using forward model runs to quantify the
differences in CO2 concentrations (simulated with prior fluxes) and inversion runs to quantify the magnitude of differences

in the flux space. The inversion setups and implementation are explained in the protocol of comparison (Section 2.6).

2.1  Inversion Framework

In the following description we remind the reader about the basic principles of the inversion schemes. For detailed
information about the mathematical schemes, the reader is referred to (Rédenbeck, 2005) for CSR and to Monteil and
Scholze (2021) for LUMIA. Both systems rely on the Bayesian inference that accounts for observations and prior knowledge
to regularise the solution of the ill-posed inverse problem where a unique solution does not exist due to the spatial scarcity of
observations. Therefore, the optimal state vector (x) is searched for in the Bayesian formalism by minimizing the cost

function J(x) that is typically composed of the observational constraint term J (x) and the prior flux constraint term Js(x)

Jxy =Jex) +p(xy @D
where
1
Jyxy =5 (x=x)" B! (x — xp) @
1
Jexy=5 HE®) =y Q" (H(x) - y) ©)

The prior flux uncertainty defined in the covariance matrix B limits the departure of the control vector (x) to the prior flux
vector (x3). Similarly, the observational constraint is weighted by the observational covariance matrix Q that contains the so-
called model-data mismatch error, including uncertainty of measurement, representativeness, and transport. This uncertainty
is assigned to the diagonal of the matrix Q for the respective sites based on the ability of the transport model to represent the

atmospheric circulation at such locations. H(x) represents the atmospheric transport operator (i.c.. calculated by STILT and

FLEXPART in our inversions) that determines the relation between fluxes and the modeled tracer concentration, which

corresponds spatially and temporally to a given vector of measurements y. Following the gradient descent method, a
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variational algorithm is applied iteratively to reach the best convergence (global minimum) of the cost function that satisfies
the optimal solution of the control vector. The default configurations for constructing the covariance matrices of prior
uncertainty are slightly different in CSR and LUMIA. Prior flux uncertainty is assumed to be around 0.47 PgC yr! over the
full domain of Europe derived from the global uncertainty (2.80 PgC) assumed in the CarboScope global inversion for the
annual biogenic fluxes (Rodenbeck et al., 2003). In CSR, this uncertainty is uniformly distributed spatially and temporally in
a way that the annual uncertainty aggregated over the entire domain should arrive at the same value. The uncertainty
structure is fit to a hyperbolic decay function in space (Eq. (4)) and to an exponential function (Eq. (5)) for the temporal

decay as explained in Kountouris et al. (2015).

1
= @

r(sy =
®) 1+

T(t) = e% (5)

The correlation length scales ds and dt applied to flux uncertainties are chosen to be 66.4 km spatially and 30 days
temporally, respectively, following Kountouris et al. (2018a) and Munassar et al. (2022). The spatial length in the zonal
direction is set to be longer than that in the meridional direction by a factor of 2 (anisotropic), owing to larger spatial climate
variability in meridional as compared to zonal direction.

The spatio-temporal shape of the prior uncertainty in LUMIA is computed in a way that each control vector comprises
weekly uncertainty calculated as the standard deviation of NEE based on weekly flux variance; however, LUMIA agrees on
the overall annually aggregated flux uncertainty over the entire domain with CSR. A Gaussian function of the spatial
correlation decay (Eq. (6)) is applied to the prior uncertainty structure with a spatial length scale of 500 km

— o @?
r(sy=e ds 6)

whereas the effective temporal decay was set to 30 days (same as in CSR). Given the difference in the spatial correlation
decay of the prior uncertainty, LUMIA is set to draw larger flux corrections in a broader radial area where stations exist
following the gaussian decay with a longer length scale compared to the hyperbolic decay in CSR. In turn, the hyperbolic
function has a larger impact in the further radial distances than the Gaussian function does, regardless of the longer spatial

scale assumed with the Gaussian decay in a factor of around 7.5 in comparison with the hyperbolic decaying function.

2.2 Atmospheric transport models

Surface sensitivities are calculated using the STILT (Lin et al., 2003) and FLEXPART (Pisso et al., 2019) models at a
horizontal resolution of 0.25-degree and hourly temporal resolution. Both models simulate the transport of air mass via
releasing an ensemble of virtual particles at the locations of stations. The virtual particles are transported backward in time

and driven by meteorological fields obtained from the European Centye for Medium-Range Weather Forecasts (ECMWF).

STILT particles are transported 10 days backward in time and forced by forecasting data obtained from the high-resolution
implementation of the Integrated Forecasting System (IFS HRES). For the FLEXPART model in standard operation,
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particles are followed for 15 days backward in time driven by ERA-5 reanalysis data. To keep the consistency with STILT
footprints, the backward time of FLEXPART footprints was limited to 10 days in the inversions. After this backward time
integration, the particles are assumed to leave the domain, even though a large number of particles are expected to escape
after a few days. To better represent air sampling in the mixed layer, day-time observations are considered, except for
mountain stations where night-time observations are used instead (Geels et al., 2007). To ensure best mixing conditions,
temporal windows were considered for simulating CO2 dry model fractions over stations as explained in Section 2.4 (Table
1). In addition, release heights of particles are taken as the highest sampling level above ground at each measurement site.
For high altitude receptors, such as mountains, a correction height is used in STILT in a way that the actual elevation of the
station can be represented in the corresponding vertical model level (Munassar et al., 2022). In FLEXPART, the elevation

above sea level is taken as the model sampling height.

2.3 A priori and prescribed fluxes

Three components of prior and prescribed surface-to-atmosphere fluxes of CO: are obtained from 1) biogenic terrestrial
fluxes, 2) ocean fluxes, and 3) anthropogenic emissions and kept identical in both systems. Prior net terrestrial CO2 exchange
fluxes, Net Ecosystem Exchange (NEE), are calculated using the diagnostic biogenic model Vegetation Photosynthesis and
Respiration Model (VPRM) (Mahadevan et al., 2008). VPRM calculates NEE at hourly temporal and 0.25-degree spatial
resolution, and provides a partitioning of the net flux into gross ecosystem exchange (GEE) and ecosystem respiration. Data
obtained from remote sensing provided through the MODIS instrument and meteorological parameters from ECMWF drive
both quantities of the light-dependent GEE and the light-independent ecosystem respiration. The model parameters were also
optimised against eddy covariance data selected within the global FLUXNET site network across Europe in 2007
(Kountouris et al., 2015). For more details on the VPRM model, the reader is referred to Mahadevan et al. (2008).

Ocean fluxes are taken from Fletcher et al. (2007), which provide climatological fluxes at a spatial resolution of 5° x 4°,
remapped to 0.25-degree to be compatible with the biosphere model fluxes. In addition, anthropogenic emissions are taken
from the EDGAR_v4.3 inventory, and are updated to recent years according to British Petroleum (BP) statistics of fossil fuel
consumption, and distributed spatially and temporally based on fuel type, category, and country specific emissions, using the
COFFEE approach (Steinbach et al., 2011). The emissions are remapped to a 0.25° spatial grid and to an hourly temporal
resolution.

Biogenic terrestrial fluxes are optimized in the inversions, while the ocean fluxes and anthropogenic emissions are
prescribed, given the better knowledge about their spatial and temporal distribution in comparison with the heterogeneity,
variability, and uncertainty of the biogenic fluxes. Moreover, in the absence of observational constraints that help
discriminate the contributions from the three categories, we chose to prescribe the ocean fluxes and anthropogenic CO2
emissions. This is also justified by the fact that the observation sites are located in areas where the biospheric flux influence
is expected to dominate the variability of CO2 concentration, but it means that errors in the fossil or ocean fluxes might be

compensated by the inversions, and resulting in changes in the posterior NEE.
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2.4  Observations

Measurements of CO2 dry model fractions are collected through ICOS, NOAA, and pre-ICOS stations across the domain of
Europe provided by Drought 2018 Team and ICOS Atmosphere Thematic Centre (doi:10.18160/ERE9-9D85, 2020). In total,
datasets from 44 stations are used covering the domain of Europe in 2018, in which a maximum number of stations is present
compared to the other years. Regarding model-mismatch errors, in LUMIA a weekly value of 1.5 ppm is assumed to all sites
except for the Heidelberg site where 4 ppm was assumed due to the anthropogenic influence from the neighbourhood. Table
1 denotes the weekly values of uncertainty used in CSR for the corresponding sites. The uncertainty for the surface sites is
inflated to 2.5 ppm as a slight difference to LUMIA. The inflation of uncertainty from weekly to hourly values is basically
calculated by multiplying weekly errors by \/m (n refers to the number of hours in the daily measurements used in the
inversion). The observations are mostly assimilated as hourly continuous measurements, and are taken from the highest
level, avoiding large vertical gradients near the surface that are hard to represent in the transport models. Model error in
representing observations in the PBL is expected to be largest when the PBL is shallow. Therefore, for most sites, we
considered data only when the PBL was expected to be well developed, i.e., during the afternoon, local time (LT). The
exception is at high altitude sites, which tend to sample the free troposphere during night (Kountouris et al., 2018b). The

assimilated windows are reported in Table 1.

2.5 Boundary conditions

Far-field contributions of CO2 concentrations (originating from sources outside of the regional domain) are taken from
global inversions. As default setups of the global runs, the Eulerian transport model TM3 is used in the CarboScope global
inversion at 5° (lon) x 4° (lat), while TM5-4DVAR (Transport Model 5 — Four Dimensional Variational model), is used to

provide boundary conditions to LUMIA using the global transport model TM5 at 6° (lon) x 4° (lat) (Babenhauserheide et al.,

2015; Monteil and Scholze, 2021), Both inversion systems apply the two-step scheme inversion, explained in Roedenbeck et

al. (2009), in which a global inversion is first used to estimate CO: fluxes globally (based on observations inside and outside
Europe). In a second step, the global transport model is used to estimate the influence of European CO: fluxes on European
CO: observations. That regional influence is then subtracted from the total concentration, to obtain a time-series of the far-
field influence directly at the locations of the observation sites. This prevents introducing biases by passing concentration
fields from one model to another. For detailed information about the approach methodology, the reader is referred to

Roedenbeck et al. (2009).

2.6  Comparison protocol

The results of the study are based on eight variants of inversions differing in global and regional transport models, as well as
in inversion systems as explained in Table 2. This implies, the two inversion systems (CSR and LUMIA) make use of two

regional transport models (STILT and FLEXPART) and two global transport models (TM3 and TMS5), which represent the
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boundary conditions (background) calculated from two global inversions. Hereafter, the identifier codes (see corresponding
column in Table 2) will be used to refer to the individual runs within the inversion ensemble. For instance, to highlight the
impact of regional transport models, we compare the inversions that only differ in regional transport models, regardless of
the inversion system or boundary conditions used, such as CS3 and CF3 or LSS and LF5. Similarly, we use the same
specifications of transport models (indicated through the identifier codes) for the forward runs to outline the differences in
CO: concentrations simulated using prior fluxes with different transport models. In this case using a different system should
not result in discrepancies as long as prior fluxes remain identical. In terms of system-to-system comparison, the impact of
flux uncertainty should be taken into account as the prior error structure is specific for each inversion system. With that said,
this has been investigated by conducting additional tests in CSR and LUMIA using identical uncertainties with flat shape and

Gaussian correlation decay.

3 Results

LEstimates of the regional biosphere-atmosphere fluxes over the domain of Europe are calculated using CSR and LUMIA for
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2018 from an ensemble of eight inversions as listed in Table 2. Generally, all the inversions showed that the estimates of
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NEE are constrained by the atmospheric data as can be seen from the positive flux corrections made by the inversions in

comparison with the prior fluxes calculated from jhe biosphere flux model VPRM, which obviously overestimates CO2

uptake, specifically during the growing season (Fig. 1, left). This is also obvious in the gnsemble-averaged annual estimates

of posterior fluxes 70.29 PgC versus 1.49 PgC in the prior fluxes (Fig. 1, right). However, the spread among posterior

estimates is still relatively large yanging, between -0.72 and 0.20 PgC yr'! for the annual estimates, larger than the prior

/

uncertainty of 0.47 PgC vyri'. Likewise, the mean standard deviations of fthe monthly estimates over the ensemble of

inversions js 0.72 (PgC yr"). The largest deviations pccur petween inversions that differ by the regional transport models

e.g.,.LS3 wersus CF3, or LSS versus LFS), In addition, the seasonal amplitude was found to be different between the STILT,

and FLEXPART, inversions. The STILT-based inversions lead to a larger amplitude of posterior NEE than the FLEXPART-

based inversions,

/

In terms of spatial distributions,ghe base cases of CSR and LUMIA inversions, i.e., CS3 and LF5 (default configurations of
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The magnitude, of flux corrections guggest more additional sources inferred from the atmospheric signal, as shown in the

innovations of fluxes (Fig. 2, second row). Major corrections are obtained over western and southern Europe where fhe
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inversions point to an overestimation of the COp uptake by the prior biogenic fluxes. The weak,annual puptake of CO2 in 2018

was exceptional and caused by the drought episode in Europe (Bastos et al., 2020; Rodenbeck et al., 2020; Thompson et al.,

2020), which gven turned some areas in central, northern, and western Europe_into a net source of COp. The discrepancies
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In the following we will focus pn separating and quantifying the contributions of such differences caused by each driver,
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Inversions that differ in the regional transport models (STILT and FLEXPART)_demonstrate the largest differences in«

posterior fluxes resulting in a relative contribution of about 61% of the total differences compared to the boundary conditions

and inversion systems. The differences in monthly estimates of NEE calculated with CS3 and CF3 inversion setups that vary

in regional transport models are shown in Fig. 3 (top panel, “transport™). Additionally, the discrepancies caused by transport
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respectively.

Furthermore, we assessed the impact of atmospheric transport in the simulations of CO» concentrations because this directly

translates into differences in the optimised fluxes. These simulations were calculated using the total components of prior
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In this section, we look at the impact of changing individual
components of the inversion system on the inversion results, and we
put them in relation to differences in prior model-data mismatches.
Differences in the optimized monthly fluxes caused by the different
regional transport models, different inversion systems, and different
boundary conditions are shown in Fig. 3 (top). Inversions differing in
the regional transport models STILT and FLEXPART exhibit the
largest differences in posterior fluxes (transport). The discrepancies
caused by transport indicate an obvious seasonal pattern, while
boundary conditions (background) and inversion systems (system)
appear to result in smaller differences that are systematic across all
months for the background and more random for the differences
related to inversion systems. The magnitude of flux differences is
found to be larger in the background compared to inversion systems.
Figure 3, bottom, illustrates the magnitude of differences in forward
imulations of CO2 concentrations at hourly time-steps, computed

fluxes (biosphere, ocean, and fossil fuel emissions) with STILT and FLEXPART in forward model runs to sample the

using prior fluxes, averaged over the observational sites distril " T9])
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true concentration or not. Figure 3 (bottom panel, "transport”) illustrates the monthly differences in the forward simulations

between STILT and FLEXPART averaged over all observational stations. Similarly to the discrepancies in the optimised

fluxes, the differences in the forward simulations demonstrate a dominant impact of ¢he regional transport model preserving
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the same temporal pattern as seen in the flux differences but with opposite signs. The absolute difference ranges from 0.39 to

4.37 (ppm) computed for the monthly means throughout all the sites. Geels et al. (2007) found even a larger spread up to 10

(ppm) calculated with five transport models over ten stations distributed across Europe. The notably large difference

reported in that study is likely attributed to the large discrepancies in the model configurations, especially regarding the

horizontal resolution and vertical levels used. The harmonised configurations used_in STILT and FLEXPART lead to a

reasonably consistent representation of the atmospheric variability at synoptic and diurnal timescales. The largest differences

are observed during November and May with -4.37 and 3.60 (ppm), respectively. On the other hand, the smallest differences

were found to be -0.39, -0.42, and 0.56 (ppm) during September, April, and August, respectively. These results suggest a

maximum impact of the mesoscale transport during the growing season and winter, while the impact converges to the
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Further diagnostics of model-data mismatches are provided in the supplementary materials indicating the performances of

STILT and FLEXPART with respect to the observations using prior and posterior fluxes across the site network at hourly.

weekly and yearly time steps (see Fig. 1S and Table 1S),

Deleted: In this section, we use the inversion results obtained from

CS3 and CF3 to analyse the differences in flux estimates resulting
from varying regional transport models. ...

In terms of the spatial discrepancies in annual flux estimates, using STILT generally leads to predicting a larger sources of

COz in the regional inversions, in particular over central Europe and the UK compared to using FLEXPART (Fig. 4, "diff:
transport”). In turn, inversions using FLEXPART suggest less uptake over northern Italy, Switzerland, and south-eastern
France. However, this impact refers to a spatial pattern of transport differences that might be caused either by meteorological

data or by problematic sites that are hard to represent by transport models. Some areas such as north-western Italy exhibit,a

persistent impact over Jime as shown jn Fig. 4 (“sd: transport”), which shows the standard deviation of monthly differences
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galculated for the CS3 and CF3 inversions. In ferms of temporal variations, the inversions performed with different regional

transport models indicate larger monthly flux variations in comparison with those differing in global models and inversion |

systems (see Fig. 4, ““sd: background” and “sd: system”).

Figure 5 shows the spatial flux differences together with differences in prior concentrations simulated using STILT and

FLEXPART during June and December, Noteworthy, the differences in NEE, to a large extent, agree in their spatial patterns
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with the differences in prior concentrations calculated over the station network. In addition, there are notably particular areas

that exhibit opposite signs of the spatial impact in the differences in posterior fluxes and prior concentrations such as western

Europe during June and northern Europe during December. One important difference between STILT and FLEXPART is

that the STILT model has higher sensitivities during summer than FLEXPART, while the opposite holds true during winter.

However, there are exceptions at individual sites such as Weybourne (WAO) in the UK and Ispra (IPR) in Italy indicating

either difficult terrains that cannot be well represented by the models or real synoptic features that are resolved by one model

but not by the other. The differences in forward simulations are inversely manifested in the posterior flux differences as large

surface sensitivities result in smaller posterior flux corrections, and vice versa. In this case, STILT computes higher surface

sensitivities than FLEXPART in June; therefore, the CS3 inversion needs to adjust less the prior fluxes to fit the

observations. On the contrary, a weaker uptake is suggested by STILT inversion during December over Europe, except for

the abovementioned areas around northern Italy and south-eastern France. The differences appeared to be larger during the

months of growing season and winter following the seasonal amplitude of CO».

3.2 Impact of lateral boundary conditions

The differences in lateral boundary conditions were found to account for about 27% of the total differences resulting from

the regional transport, lateral boundaries, and systems. This is a non-negligible contribution, albeit smaller than the regional
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CarboScope and TMS5-4DVAR, respectively, Figure, 3, (“background”) shows consistent differences over time between these

inversion _estimates, aggregated over the entire domain of Europe. Larger flux corrections are suggested by CS5 than by, CS3,
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This is because the global TM3-based inversion predicts higher influence at the lateral boundaries than the global TM5-
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based inversion does. Discrepancies in the monthly posterior fluxes between CS3 and CS5 inversions amount to a range of

mean differences in COp concentrations
throughout all sites simulated using TM3 and TMS boundary conditions were found to range from 0.17 to 0.93 (ppm) with a

mean of 0.55 (ppm).

JThe distributions of spatial differences of posterior fluxes jndicate a4 homogeneous impact across the full domain of Europe</
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(Fig. 4, “diff: background”). Likewise, fhe standard deviations of the monthly posterior fluxes obtained from CS3-CS5 (’sd:

background”) denote, flat temporal variations throughout all the grid-cells. These findings confirm the results obtained in Fig.

3 “background”. [This impact is_consistent in space and time, with coherent deviation over all months, and is therefore i

expected to not affect the seasonal and interannual variability.

3.3  JImpact of inversion systems

CS3 and LFS5 differ by more than their regional transport and boundary conditions. In particular, the uncertainties are, by

default, setup differently in CSR and LUMIA. The two systems optimise different set of variables (weekly NEE offsets in

LUMIA and 3-horly NEE in CSR). Here we compare CS5 and LSS, which differ by their inversion systems but not by their

transport model and boundary conditions. The differences in flux estimates petween CS5 and LS5 inversions amount to 12%

relative to the total differences, including that caused by the mesoscale transport and lateral boundaries. This impact is.

however, dependent upon system configurations, in particular the way how the prior flux uncertainty is prescribed. Jhe

absolute monthly differences_ between CS5 and LS5 range between 0.06 and 0.56 (PgC yr') with a mean of 0.15 (PgC yr'')

(Fig. 3.;'system”). This demonstrates the smallest differences amid inversions in comparison with the transport and lateral

boundary differences, gvhich yielded absolute monthly means of 1.27 and 0.40 (PgC yr''), respectively. The differences

peaked during May, June, and November, while the differences remained rather small during the rest of the year. LS5 infers
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-6.42 and 2.39 (PgC yr'") during June and December, respectively, which is higher than CS5 estimates by 0.33 and 0.07

(PgC yr"). Generally, LS5 predicts slightly larger CO> releases compared to CS5, which is partially due to differences in

how uncertainties are assumed in both systems.

identical uncertainties for model-data-mismatch<"

as well as for prior fluxes in both CSR and LUMIA. The spatial flux corrections (innovation of fluxes) shown in Fig. 8

denote quite good agreement between CSR and LUMIA estimates. In this experiment, the differences in June and December
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negligible differences in CO: flux estimates, albeit smaller than that
resulting from transport and lateral boundaries. This impact is
however dependent upon system configurations, in particular the way
how the flux uncertainty is prescribed. For example, LS3 predicts -
6.416 and 2.387 (PgC yr") during June and December, respectively,
which is higher than CS3 estimates by 0.325 and 0.067 (PgC yr™").
Generally, LUMIA predicts slightly larger CO: releases compared to
CSR, which is partially attributed to differences in uncertainties
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PgC yr! in June and December, respectively, leading to approximately 30% and 50% of the overall system-to-system

differences. The rest of the differences may be attributed to differences in the convergence of the cost function to reach the

minimum values,
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CFormatted

these tend to compensate when aggregating the flux estimates over the full domain). It should be noted that the inversion
systems mainly differ in the definition of the shape and structure of the prior uncertainty. Therefore, applying different
structure and magnitude of prior flux uncertainty in the inversions may inflate the error in CO: flux estimates over the

underlying regions in the domain, in particular if the spatial differences do not cancel out. In addition, the corresponding

standard deviations of monthly estimates (“sd: system”) show large temporal variations, specifically over areas that have

large spatial differences. The spatial results jndicate that the impact of inversion systems should not be neglected, especially .~
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4  Discussion

Jhe regional inversions computed over Europe showed that posterior NEE is largely derived from the atmospheric signal, :

Jhe seasonality of posterior NEE, inferred from the atmospheric signal, is strongly impacted by differences in the

representation of atmospheric transport. Given the identical priors and observational datasets used in the inversions, using

different mesoscale transport models Jeads to 61% of the differences in posterior fluxes in comparison with 27% and 12% of .~ '

impact of inversion systems
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the differences caused by the use of different boundary conditions and different inversion systems, respectively. In

agreement with these results, Schuh et al. (2019) also found a large impact of mesoscale transport on estimating CO» fluxes.

Hence, any error in the atmospheric transport is translated into posterior fluxes as flux corrections. For instance, CS3 an

LS3 suggest annual CO; flux budgets of -0.20 and -0.72 PgC, respectively, indicating a difference of 0.51 PgC in the annual
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flux budget. This difference is even larger than the prior flux uncertainty (0.47 PgC). The transport also showed a large

impact on flux seasonality leading to a difference of 49% relative to the mean seasonal cycle. However, Schuh et al. (2019)

found smaller differences amounting to about 10-15% of the mean seasonal cycle. Unlike the regional transport model error, .

the impact of boundary conditions does not show any striking seasonality and thus can be thought of as a bias in dry mole

fractions. The consistency of the lateral boundary impact over time and space is in agreement with results of lateral boundary

uncertainties assessed by_Chen et al. (2019) using four different global transport models, albeit over a different domain.

Therefore, such an impact may be dealt with as a constant correction in mixing ratios before performing the regional

inversions, potentially site-specific corrections. But there should be a reference for these corrections, for example, taking the

most robust model that has been validated against observations or simply a factor of the relative mean of the relevant

models/approaches. Although the inversion systems showed the smallest differences in CO: flux estimates, the specification
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Fig. 3). This finding is in agreement with Schuh et al. (2019)
indicating the large impact of mesoscale transport on estimating CO2
fluxes. The transport also showed a large impact on flux seasonality
leading to a difference of 49% relative to the mean seasonal cycle.
However, Schuh et al. (2019) found smaller differences amounting to
about 10-15% of the mean seasonal cycle. In a relevant study, Deng
et al. (2017) estimated CO: emissions using four different setups of
meteorological data assimilations in the transport model and found a
difference of about 15% in the local corrections although the error
reduction of wind direction and wind speed was about 50% due to
data assimilation, while the difference over the entire domain was
confined to less than 5%. These results finding refer to the limited
impact of meteorological data.Unlike the regional transport model
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of the control vector (regarding the construction of covariance matrices) that devises the flux correction can result in larger
differences, specifically in the spatial flux patterns.

The large number of stations within central and western Europe lead to a strong observational constraint that is reflected in
the spatial optimized fluxes over that area. Therefore, large spatial differences between the inversions are pronounced around

areas where stations exist, precisely for grid cells that have non-zero footprints. ,The large temporal variations indicate a

systematic error that possibly arises from the transport models themselves as well as from meteorological forcing data,

Additionally, systematic differences between transport models occur due to discrepancies in representing vertical mixing and

horizontal and vertical resolution of the models (Peylin et al., 2002). Gerbig et al. (2008) found large discrepancies in

derived mixing heights between meteorological analysis from ECMWEF and radiosonde data, which reached about 40% for

the daytime and about 100% for the nocturnal boundary layer. The vertical mixing in tracer dispersion models was found to

result in a significant variability in methane emission estimations (up to a factor of 3) given the same meteorology as

investigated by Karion et al. (2019).

Drivers of STILT-FLEXPART differences

Although STILT and FLEXPART are run at the same spatio-temporal resolution employing similar schemes to parametrize

the atmospheric motion unresolved by meteorological forcing data such as turbulence, and similar diagnostics to determine

mixing heights, they still exhibit large spatial and temporal differences. A first assumption was that the differences between

STILT and FLEXPART could be caused by differences in the calculation of mixing height. However, we did not find a

correlation between the differences in mixing heights, calculated with the two models, and the differences in prior

concentrations (Fig. 6).,This finding concludes that the discrepancies in representing mixed layer heights do not explain the

[ Deleted: Forward runs conducted with STILT and FLEXPART to

major differences in simulated CO2 concentrations nor the differences in footprints.

The second assumption was that differences in the forcing data of meteorological, products might lead to the discrepancies in

both models, given that STILT uses meteorological parameters from IFS HRES, while FLEXPART uses ERA-5 reanalysis.
Results in Fig. 7, “meteo”, indicate that using different meteorological data results in pronounced differences when the
FLEXPART model was forced by operational forecast data instead of ERA-5 reanalysis. These differences notably occur
during the time of net CO: release corresponding to quite small differences during the time of growing season. This,
however, only explains a small part of the overall differences (shown in Fig. 7, “base”) that dominate all the months except
August and September. In a previous study, Liu et al. (2011) concluded that uncertainties in meteorological fields lead to a
significant contribution to the total transport error, as well as to an underestimation of the vertical turbulent mixing even
when the same circulation model and mixing parameterizations were used to reconstruct vertical mixing from a single

meteorological analysis. Tolk et al. (2008) also found meteorology to be a key driver of representation error, which varies

spatially and temporally. They indicated that a large contribution to representation error is caused by unresolved model
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stratification are expected to decrease accordingly. Thus, a logical
assumption is that large values of STILT footprints during the
growing season, as supported by the simulations of forward model
runs, would probably be caused by a shallower mixing height in
comparison with FLEXPART footprints, while FLEXPART
footprints demonstrate larger values during winter for the same
reason. However, the relationship between the differences of prior
concentrations and the differences of mixed layer heights computed
with the two models do not show a striking correlation, as can be
seen from the scatter plots of the differences in Fig. 6. This finding

(Deleted: the )
(Deleted: simulations )
(Deleted: y )




045

050

1055

060

065

070

topography at coarse spatial resolution during night, while convective structures, mesoscale circulations, and the variability

of CO» fluxes dominate during day-time. Deng et al. (2017) found that assimilating meteorological observations such as

wind speed and wind direction in transport models significantly improved the model performances achieving an uncertainty

reduction of about 50% in wind speed and direction, especially when measurements in the mixed layer were assimilated.

Nonetheless, they concluded that the differences in CO» emissions reached up to 15% at local scale corrections after

inversion and were limited to 5% for the total emissions integrated across the regional domain of interest. These results refer

Deleted: In our analysis, one should take into consideration that
both operational forecasts and ERA-5 are ECMWF products and thus
are expected not to significantly diverge. ...
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to the limited impact of meteorological data. Note however that the main aim of this experiment was to test whether

differences in driving meteorological data could explain the differences between STILT and FLEXPART, but that we are not

assessing the overall impact of meteorological uncertainties. Doing so would in particular require testing non-ECMWF

meteorological products,

Furthermore, we tested the possible impact of surface layer heights (the height up to which particles are sensitive to the

fluxes) that may affect the particle dispersion, provided that STILT relies on the assumption of defining the surface layer as a
half of the mixed layer height, while in FLEXPART it is defined as a fixed height of 100 m (these are default configurations
of the models). In this experiment, STILT was run with a surface layer height of 100 m, so that the impact of the surface
layer on CO2 simulations is outlined by the comparison with another run using the default configurations of STILT. Lhe

differences_in simulated CO» concentrations due to differences in the surface layer were found to be quite small (Fig. 7

“s_layer”) and, therefore, can be negligible in both magnitude and temporal pattern compared to the overall differences.
However, varying the models STILT and FLEXPART with identical meteorological data and identical surface layer Jead to

the largest differences, in particular during the growing season months and winter months (Fig. 7, ;‘model”). As a result,

model-to-model differences largely affect the simulations of CO» concentrations and are likely originating from the transport

model schemes, It is clearly noticeable that the overall differences combine the underlying differences of “model”, “meteo”, |

and “s_layer”, and are yielded as the arithmetic summation of this partitioning,,

JHow do our results explain the range of uncertainties reported in scientific literature?

Jo shed more light on the drivers of differences in optimised COp fluxes, we analyse the spread in our inversions in line with

the spreads jn other inversion estimates that were reported in two previous studies over the same domain of Europe. Figure 9

shows the spreads amid the three studies; 1) eight inversions conducted in our results denoted as “Ensemble”, 2) six

inversions of the EUROCOM experiment “EUROCOM?” done by Monteil et al. (2020), and 3) five inversions of the drought

study of Thompson et al. (2020) focusing on analysing the 2018 drought impact on NEE, denoted as “Drought”. Note that in

EUROCOM and Drought, the tracer inversions differed in the atmospheric regional transport models, the definition of
boundary conditions, the definition of control vector, the selection of atmospheric datasets, and the a-priori fluxes. These

differences are expected to span a large range of uncertainty sources in the posterior NEE. The climatological monthly
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considerably be dealt with as a model-model error. A further study
would be needed to investigate the main drivers of these
discrepancies in both STILT and FLEXPART for further model
developments.

Impact of lateral boundaries and systems¢

In terms of far field contribution impact, smaller differences of CO>
estimates are observed when varying the global transport models
compared to the mesoscale transport. The differences in posterior
fluxes arising from boundary conditions amount to 0.40 (PgC yr™")
during June and 0.11 (PgC yr''") during December. This impact was
found to be consistent in space and time, with coherent deviation over
months, and is not therefore expected to affect the seasonal and
interannual variability. Unlike the regional transport model error, this
kind of error can be thought of as a bias in dry mole fractions, which
may be dealt with in the inversions as a constant correction,
potentially site-specific correction. The differences between far field
contributions suggest that using TM3 leads to smaller regional signal
of mole fractions used to constrain fluxes in comparison with TM5.
The consistency of the lateral boundary impact over time and space is
in agreement with results of lateral boundary uncertainties assessed in
Chen et al. (2019) using four different global transport models, albeit
over a different domain.{
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estimates of NEE were averaged over “EUROCOM” inversion members for the respective years 2006-2015, except for one
inversion (NAME), which was limited to 2011-2015. “Ensemble” and “Drought” were confined to the analysis year of 2018.
The monthly NEE estimates were calculated for all ensembles as the average over their respective inversion members. The
annual mean of NEE estimated with “EUROCOM”, “Ensemble”, and “Drought” amounts to -0.19 and -0.29, and -0.05
(PgC) with standard deviations of 0.34 and 0.29, and 0.46 (PgC), respectively.

The spreads amid each ensemble of inversions are illustrated by the min and max values bounded around the mean on the
error bars (Fig. 9). The monthly mean of NEE estimates shows a good consistency in all the ensembles. The spreads are also
relatively comparable, albeit variable over months. For instance, “EUROCOM” and “Drought” exhibit larger spreads during
the growing season (April-August), while “Ensemble” has a larger spread in the rest of months -i.e., during winter.
Noteworthy, all ensembles experience large spreads during June and May. Although the participating inversions to
“EUROCOM?” and “Drought” had different configurations, the spreads were not largely different from our inversion spreads.

This implies that the use of different atmospheric transport models could account for a Jarge fraction of differences in

posterior fluxes, although differences in,the definition of uncertainty covariance matrices and lateral boundary conditions

likely contribute as well, Moreover, the discrepancies in “EUROCOM” and “Drought” estimates are expected to be partially
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5 Conclusions

Estimating atmospheric tracer fluxes through inverse modeling systems has been widely used, in particular targeting the
major GHGs to improve the quantification of natural (both terrestrial and oceanic) sources and sinks. Here, an analysis of
differences in posterior fluxes of CO2 was carried out using inversion systems deploying different regional transport models,
The difference between minimum and maximum spreads for annually integrated fluxes was found to be 0.92 PgC yr! for the
ensemble range of 0.20 and -0.72 PgC yr'' with a mean estimate of -0.29 PgC yr'! calculated over the full domain of Europe

in 2018. We tested the regional transport, the boundary conditions, and the inversion systems. JThe regional transport
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in the global inversions that provide the far field contributions to the regional domain are responsible for small, but non-
negligible differences in the inversion estimates. These differences appeared to be homogeneous spatially and temporally,
which can be considered as bias-like. The differences arising from using different inversion systems integrated over the
entire domain of Europe were on the contrary rather small, once differences such as the transport model and the uncertainties
are controlled for. However, such an impact is partially a result of applying different structure and shape in the prior flux
uncertainty, while the rest may be attributed to differences in the cost function convergence to reach the minimum. This
reflects the importance of the way the uncertainty is prescribed in the tracer inversion systems.

The divergence in CO2 flux estimates resulting from swapping the regional transport model emphasisgs the need for further
evaluation of atmospheric transport models in order to improve the performance of the models. At the same time, it is
important to realistically account for the transport errors in the tracer inversions. Errors in meteorology parameters
assimilated in transport models as forcing data should also be accounted for explicitly, potentially through making use of an
ensemble of meteorology data to estimate such errors. Despite the non-negligible difference between inversion systems, this
study indicates the importance of following a common inversion protocol when reporting flux estimates from different

inversion frameworks.
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Figure 2: First row shows the spatial distributions of annual NEE estimated with the base inversions CS3 and LF5, as well as their
prior. Second row depicts the innovations of fluxes calculated for the inversions CS3, LF5. Green circles denote the locations of
1425  observational sites.
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Figure 3: Differences in optimized fluxes (top) and prior concentrations (bottom) calculated with the regional transport model
1430 STILT and FLEXPART (CS3-CF3) and background provided through TM3 and TM5 (CS3-CS5). “system” refers to the
differences between CSR and LUMIA inversion for optimized fluxes (CS5-LS5).
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Figure 4: First row indicates differences in annual posterior NEE estimated with STILT and FLEXPART models referred to as
“transport” (CS3-CF3), TM3 and TMS5 referred to as “background” (CS3-CS5), and CSR and LUMIA referred to as “system”
1435  (CF3-LF3); second row demonstrates the standard deviations of the corresponding monthly differences.
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Figure 5: Spatial differences of posterior NEE estimated from the inversions CS3 and CF3 with STILT and FLEXPART transport
models during June and December; filled circles indicate the differences in prior concentrations at the locations of sites (horizontal
legend explains the magnitude of differences).
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Figure 6: Scatter plot of differences of prior concentrations and mixing heights calculated with STILT and FLEXPART models
(i.e., STILT-FLEXPART on the x- and the y-axis). Red lines indicate the slopes.
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Figure 7: Differences in prior concentration simulated at LIN with STILT and FLEXPART using different configurations.
“s_layer”, yellow line, refers to the difference calculated with STILT using two assumptions of defining the surface layer height,
once with the default as 0.5 of the mixed layer, and once with 100 m as used in FLEXPART. “meteo”, red line, indicates the
differences calculated with FLEXPART using two different types of meteorological data, IFS (the STILT default) and ERA-S.
“model”, blue line, denotes the differences calculated with STILT and FLEXPART, given identical meteorological data (IFS) and
surface layer height (100 m). “base”, black line, refers to the base configurations of STILT and FLEXPART encompassing all
possible differences between models - i.e., 1) STILT with IFS forecasting data and a surface layer height as 0.5 of the mixed layer
height, and 2) FLEXPART with ERA-5 reanalysis and the surface layer height of 100 m.

innovation: CSR innovation: LUMIA

Figure 8: Innovation of fluxes calculated from CSR and LUMIA using identical uncertainties of prior flux and measurements. The
uncertainty flux shape was flat and the decaying spatial correlation was fit to Gaussian function with 500 km scale. FLEXPART
and TMS models were used in this experiment.
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Figure 9: Comparison of monthly NEE estimates calculated as the mean of six inversions taken from Monteil et al. (2020), denoted
1460 as “EUROCOM?”, eight inversion members conducted in our study (set-ups listed in Table 2), denoted as “Ensemble”, and five
inversions used in Thompson et al. (2020) for the 2018 drought study denoted as “Drought”. The error bars refer to the spreads

(min/max) over the respective members amid each ensemble of inversions.
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1480

Table 1. Atmospheric sites used in the inversions.

. FLEXPART Time .
Sl:ie Site name Coordinates (lat, lon)® iT.ILJ relea?e release height window Uncertainty
code eight (magl) (mag]) (UTC) (ppm)
SM3 Hyytiala 61.85,24.29 125 125 10:00-14:00 1.5
BI5 Bialystok 53.23,23.03 300 300 10:00-14:00 1.5
FKL Finokalia 35.34,25.67 15 15 10:00-14:00 1.5
PAL Pallas 67.97,24.12 12 12 10:00-14:00 25
PUI Puijo 62.91,27.65 84 84 10:00-14:00 1.5
UTO Uto Baltic Sea 59.78,21.37 57 57 10:00-14:00 1.5
BIR Birkenes Observatory 58.389, 8.25 3 3 11:00-15:00 25
BRS Beromuenster 47.19, 8.17 212 212 11:00-15:00 1.5
DEC Deltade_|Ebre 40.74, 0.79 10 10 11:00-15:00 1.5
EEC El Estrecho 36.0586, -5.664 20 20 11:00-15:00 1.5
GIC Sierra de Gredos 40.3457, -5.1755 20 20 11:00-15:00 2.5
HEI Heidelberg 49.417, 8.674 30 30 11:00-15:00 4
HP4 Hohenpeissenberg 47.8011, 11.0246 300 131 11:00-15:00 1.5
ER2 ERSA 42.9692, 9.3801 40 40 11:00-15:00 1.5
HT3 Hyltemossa 56.0969, 13.4189 150 150 11:00-15:00 1.5
HU4 Hegyhatsal Tower 46.95, 16.65 115 115 11:00-15:00 15
1P3 Ispra 45.8147, 8.636 100 100 11:00-15:00 1.5
KR3 Kresin 49.572,15.08 250 250 11:00-15:00 1.5

LMU La Muela 41.5941, -1.1003 80 79 11:00-15:00 1.5
LMP Lampedusa 35.53,12.62 10 10 11:00-15:00 1.5
LUT Lutjewad 53.4036, 6.3528 60 60 11:00-15:00 25
NO3 Norunda 60.0864, 17.4794 100 100 11:00-15:00 1.5
SV3 Svartberget 64.256, 19.775 150 150 11:00-15:00 1.5
TR4 Trainou 47.9647,2.1125 180 180 11:00-15:00 1.5
opp | Obervatoire de Haute 43.931,5712 100 100 11:00-15:00 15
Provence
SA3 Saclay 48.7227,2.142 100 100 11:00-15:00 1.5
LHW Laegern Hochwacht 47.4822, 8.3973 400 32 11:00-15:00 2.5
BS3 Bilsdale 54.359,-1.15 248 248 12:00 -16:00 1.5
RG2 Ridge Hill 51.9976, -2.54 90 90 12:00 -16:00 1.5
TA3 Tacnolestan 52.5177,1.1386 185 185 12:00 -16:00 1.5
WAO Weybourne Norfolk 52.9502, 1.1219 10 10 12:00 -16:00 1.5
OP3 OPE_ANDRA 48.5619, 5.5036 120 120 14:00-17:00 1.5
GAS Gartow 53.0657, 11.4429 341 341 14:00-18:00 1.5
LIN Lindenberg 52.1663, 14.1226 98 98 14:00-18:00 1.5
BIS Biscarrose 443781, -1.2311 47 47 14:00-18:00 2.5
CRP Carnoise Point 52.18,-6.37 14 14 14:00-18:00 1.5
MHD MaceHead 53.3261,-9.9036 24 24 14:00-18:00 1.5
MLH Marlin Head 55.355,-7.333 47 47 14:00-18:00 1.5
JEJ Jungfraujoch 46.5475,7.9851 720 3570 23:00-3:00 1.5
KAS Kasrprovy Wierch 49.2325,19.9818 480 1989 23:00-3:00 1.5
PUY Puy de Dome 45.7719, 2.9658 400 1465 23:00-3:00 1.5
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SI2 Schauinsland 47.91,7.91 450 1205 23:00-3:00 1.5
PTR Plateau Rosa Station 45.94,7.71 500 3480 23:00-3:00 1.5
PD2 Pic du Midi 42.9372,0.1411 1458 2877 23:00-3:00 1.5
CMN Monte Cimone 44.1963, 10.6999 670 2165 23:00-3:00 1.5
Table 2: List of the inversion set-ups
Inversion Transport model Global boundary Identifier code Flux Uncertainty
system condition
Shape Decay
LUMIA FLEXPART TMS LFS Variable Gaussian
LUMIA FLEXPART T™3 LF3 Variable Gaussian
LUMIA STILT TMS LSS Variable Gaussian
LUMIA STILT TM3 LS3 Variable Gaussian
CSR STILT T™3 CS3 Flat Hyperbolic
CSR STILT T™5 CSs Flat Hyperbolic
CSR FLEXPART T™3 CF3 Flat Hyperbolic
CSR FLEXPART ™5 CF5 Flat Hyperbolic
1485
1490
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