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Abstract. We apply atmospheric methane column retrievals from two different satellite instruments (GOSAT and 

TROPOMI) to a regional inversion framework to quantify East Asian methane emissions for 2019 at 0.5° ×  0.625° 

horizontal resolution. The goal is to assess if GOSAT (relatively mature but sparse) and TROPOMI (new and dense) 

observations inform consistent methane emissions from East Asia. Comparison of the results from the two inversions show 

similar correction patterns to the prior inventory in Central North China, Central South China, Northeast China, and 25 

Bangladesh, with less than 2.7 Tg a−1 differences in regional posterior emissions. The two inversions, however, disagree over 

some important regions particularly in northern India and East China. The inferred methane emissions by GOSAT 

observations are 7.7 Tg a−1 higher than those by TROPOMI observations over northern India but 7.0 Tg a−1 lower over East 

China. We find that the lower methane emissions from East China inferred by the GOSAT inversion are more consistent 

with independent ground-based in situ and total column (TCCON) observations, indicating that the TROPOMI retrievals 30 

may have high XCH4 biases in this region. We also evaluate inversion results against tropospheric aircraft observations over 

India during 2012-2014 by using a consistent GOSAT inversion of earlier years as an inter-comparison platform. This 

indirect evaluation favors lower methane emissions from northern India inferred by the TROPOMI inversion. We find that in 
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this case the discrepancy in emission inference is contributed by differences in data coverage (highly uneven observations by 

GOSAT vs. good spatial coverage by TROPOMI) over northern India. 35 

1 Introduction 

Methane (CH4) is a powerful greenhouse gas, with a global warming potential ~80 times that of carbon dioxide (CO2) on a 

20-year timescale and ~30 times on a 100-year timescale (Forster et al., 2021). In 2020, the atmospheric methane 

concentration has increased to 1889±2 ppbv, 262% of pre-industrial levels in 1750, driven primarily by increasing 

anthropogenic emissions (WMO, 2021). This increase continues in the last decade with a sign of acceleration after a brief 40 

period of stabilization in the early 2000s (Dlugokencky et al., 2011; Fletcher and Schaefer, 2019; Rigby et al., 2008; Yin et 

al., 2021; Zhang et al., 2021). Rising methane concentrations, if continued at current rates in coming decades, may negate 

benefits of CO2 emission reduction and therefore curbing methane emissions in the 2020s is vital for the success of the Paris 

Agreement (Ganesan et al., 2019; Nisbet et al., 2019). 

 45 

Information on methane emissions is required at global, national, and regional levels to guide climate actions on methane. 

Current bottom-up inventories are often inadequate for this purpose because of their large uncertainties in emission factors 

and lack of information on emission activities (Saunois et al., 2020). Independent measurements of atmospheric methane, 

including those from satellite remote sensing, are thus used to evaluate and improve these bottom-up inventories (Jacob et al., 

2016). This is generally done through an inversion of atmospheric observations with a chemical transport model to 50 

characterize the relationship between emissions and concentrations. Satellite observations of atmospheric methane are 

currently provided by the TANSO-FTS instrument onboard the Greenhouse gases Observing SATellite (GOSAT) launched 

in 2009 (Kuze et al., 2016) and the more recent TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel 5 

Precursor (S5P) satellite launched in 2017 (Hu et al., 2016; Lorente et al., 2021; Veefkind et al., 2012). Satellite observations 

are especially valuable in constraining methane emissions over regions with no or only sparse ground networks, including 55 

Africa, South America, and East and South Asia (Lu et al., 2021). 

 

Both GOSAT and TROPOMI operate in sun-synchronous orbits and retrieve column-averaged dry-air methane mole 

fractions (XCH4) from backscattered solar shortwave infrared radiation. TROPOMI continuously images the land surface at 

a pixel resolution of 7 km × 7 km (5.5 km × 7 km after August 2019) with daily global coverage (Hu et al., 2018; Lorente et 60 

al., 2021; Sha et al., 2021), while GOSAT in its standard-viewing mode measures with a 3 day return time in 10 km diameter 

circular footprints that are typically spaced ~250 km apart (Butz et al., 2011; Kuze et al., 2009; Kuze et al., 2016; Yokota et 

al., 2009). As a result of differing sampling strategies, TROPOMI generates much higher observation density than GOSAT, 

which in principle should benefit fine-resolution inversions. The two instruments also measure at different wavelengths, 

GOSAT at the 1.65 μm band and TROPOMI at the 2.3 μm band. This affects the algorithm that can be applied to retrieve 65 
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XCH4. TROPOMI retrievals use the RemoTeC full-physics method (Hu et al., 2018). The method is prone to spatially and 

temporally variable biases owing to scattering artefacts (Hu et al., 2018; Lorente et al., 2021; Sha et al., 2021). These biases 

in general are not reducible with more observations and, if not corrected, can translate into biases in emission estimates in an 

inversion. Because of spectrally adjacent CO2 and CH4 absorption in the 1.65 μm band, GOSAT retrievals can alternatively 

use the CO2 proxy method, in which XCH4 is derived from directly retrieved CH4 to CO2 column ratios and independently 70 

specified (simulated or assimilated) CO2 columns (Alexe et al., 2015; Frankenberg et al., 2005; Frankenberg et al., 2006; 

Parker et al., 2015; Parker et al., 2020). The proxy method usually results in reduced variable biases, as scattering artefacts 

largely cancel out in retrieving CH4 to CO2 column ratios. It also leads to better data coverage over regions with high aerosol 

loadings or thin clouds, as the method is less sensitive to these interferences compared to the full-physics approach. 

 75 

A number of studies have applied GOSAT data in inversions on a range of scales (Cressot et al., 2014; Feng et al., 2022; Lu 

et al., 2021; Maasakkers et al., 2019; Monteil et al., 2013; Pandey et al., 2016; Turner et al., 2015; Zhang et al., 2021). 

TROPOMI data have also been applied in several regional inversion studies (Chen et al., 2022; McNorton et al., 2022; Shen 

et al., 2021; Shen et al., 2022; Zhang et al., 2020) often with the focus on resolving fine-scale emission hotspots. Qu et al. 

(2021) performed global inversions of GOSAT and TROPOMI observations at 2° ×  2.5° resolution in a comparative 80 

analysis, and they showed that methane emissions inferred from the two inversions are generally consistent on the global 

scale but with significant regional discrepancies including over China. 

 

In this study, we will perform high-resolution (0.5° ×  0.625°) regional inversions separately for 2019 GOSAT and 

TROPOMI observations. We focus on East Asia (including China and northern India), which is one of the world’s major 85 

methane emitting regions and accounts for more than 20% of global emissions (UNFCCC, 2020). The region has been an 

important contributor to global increases in methane emissions, but the magnitude of the trend and its sectoral attributions 

are debated (Ganesan et al., 2017; Gao et al., 2021; Liu et al., 2021; Miller et al., 2019; Sheng et al., 2021; Zhang et al., 

2021). Here, we will compare East Asian methane emissions inferred from GOSAT and TROPOMI inversions. In the case 

of discrepancy, we will evaluate against independent observations and discuss the cause of differences. 90 

2 Observation Data 

2.1 Satellite observations 

We used XCH4 observations from GOSAT and TROPOMI for 2019 in regional inversions over East Asia. For GOSAT, we 

use the University of Leicester Proxy XCH4 v9.0 retrievals (Parker and Boesch, 2020). This product is based on the CO2 

proxy method, which, as described above, limits variable biases associated with scattering artefacts but is subject to any 95 

biases in specified CO2 columns (Parker et al., 2015). We use in our inversion only high-quality GOSAT retrievals flagged 

as “xch4_quality_flag=0” over both land and ocean (glint mode). 
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For TROPOMI, we use the science product from Lorente et al. (2021). They derived an empirical correction formula to 

improve surface reflectance dependent biases identified in TROPOMI full-physics retrievals. The correction significantly 100 

improves data quality over scenes with low (e.g. snow cover) and high surface albedo (e.g. deserts) which are challenging 

for a full-physics algorithm. Large corrections are made in East China, Xinjiang China, Southeast Asia, and Siberia (Figure 

S1). Bias-corrected TROPOMI retrievals flagged with “qa_value = 1” are used for inversion. This version of the TROPOMI 

product does not provide ocean glint-mode retrievals. 

 105 

Figure 1 shows the spatial distributions of annual average XCH4 on the 0.625° × 0.5° grid for GOSAT and TROPOMI. Both 

datasets show high XCH4 in eastern China and northern India and low XCH4 over Mongolian and Tibetan plateaus, although 

TROPOMI provides much better spatial coverage than GOSAT over most regions. There are in total 45,018 observations for 

GOSAT and 8,860,722 for TROPOMI. We take averages of multiple measurements fall in a 0.625° × 0.5° grid cell on any 

individual day (this procedure affects primarily dense TROPOMI data), and the resulting gridded daily observations are used 110 

in the inversion. The spatial distribution of gridded daily observation numbers is shown in Figure S2. 

 

Figure 1: 2019 annual average methane column mole fractions over the East Asia domain for GOSAT and TROPOMI, presented 

on the 0.5° × 0.625° GEOS-Chem grid. 

2.2 Independent evaluation data 115 

We use a suite of independent high-quality methane observations to evaluate the posterior emissions inferred from satellite 

observations, including surface in situ observations, ground-based remote sensing observations, and tropospheric in situ 

measurements from commercial airlines. Table S1 provides a descriptive list of these surface sites and Figure 2 shows the 

locations of surface sites and a representative flight path. These suborbital observations are of good accuracy and precision 

compared to satellite observations. 120 
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Surface in situ observations are available through World Data Centre for Greenhouse Gases (WDCGG) or the CH4 

GLOBALVIEWplus v4.0 ObsPack (Schuldt et al., 2021). The five sites are Anmyeon-do, South Korea (AMY), Pha Din, 

Vietnam (PDI), Lulin, Taiwan China (LLN), Ulaan Uul, Mongolia (UUM), Waliguan, China (WLG) (Dlugokencky et al., 

1994; Dlugokencky et al., 2021; Lee et al., 2019; Nguyen Nhat Anh and Steinbacher, 2021). Observations are done with 125 

either continuous (hourly) online instruments or weekly collected flask (Table S1). Most of these sites are continental or 

subcontinental background sites (PDI, LLN, UUM, and WLG), and their observations are insensitive to local methane 

emissions. An exception is AMY which is affected by local Korean emissions as well as upwind East China emissions. 

 

Total methane column observations by ground-based Fourier Transform Spectrometers are available at two TCCON sites 130 

located in East China, Hefei, China (HF) and Xianghe, China (XH) (Liu et al., 2022; Yang et al., 2020), and their 

observations are sensitive to methane emissions from East China. We note that a previous evaluation of GOSAT and 

TROPOMI against TCCON did not include data from these two sites, as their data were not available then (Qu et al., 2021). 

We use only measurements with solar zenith angles < 60° to ensure high data quality. 

 135 

All the above surface sites are located distant from northern India, which is a major methane emitting region in the study 

domain. The only relevant dataset available to us in this area comes from the Civil Aircraft for the Regular Investigation of 

the atmosphere Based on an Instrument Container (CARIBIC) project (available via the CH4 GLOBALVIEWplus v4.0 

ObsPack (Schuldt et al., 2021)), which includes regular flights in the troposphere over northern India. However, these data 

are collected in earlier years between 2012 and 2014 before the time of TROPOMI. In the absence of better observation data, 140 

we compare these 2012-2014 aircraft observations to a simulation driven by a similarly configured GOSAT inversion for an 

earlier period (2010-2017) (Zhang et al., 2022). By doing so, we assume that any systematic bias derived from this 

comparison should still be representative of the 2019 GOSAT inversion. 

 

Figure 2: Spatial distribution of prior emissions. Locations of independent data for evaluation (seven surface sites and aircraft 145 
route) are shown. Circles represent background sites and triangles source-region sites. Total column measurements are coded in 

black and in situ measurements in blue. Green solid line shows a CARIBIC aircraft route that measured tropospheric methane 

over India on November 22, 2012. 
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3 Inverse analysis 

3.1 Forward model and prior emissions 150 

We use GEOS-Chem v12.9.3 as the forward model for the inversion. The simulation is conducted for 2019 over East Asia 

(15°N-55°N, 60°E-140°E) on a 0.5° ×  0.625° horizontal grid with 47 vertical layers and is driven by MERRA-2 

meteorological fields from the NASA Global Modeling and Assimilation Office (GMAO) (Gelaro et al., 2017). The initial 

concentration fields on January, 1, 2019 and 3-hourly boundary conditions for the nested domain are taken from a global 

inversion of TROPOMI data for 2019 (Qu et al., 2021). We find that the boundary conditions from this global inversion still 155 

have biases over East Asia (more discussion in Section 4.3.3), which may be due to the fact that Qu et al. (2021) used an 

early version of TROPOMI retrievals. In our inversion, we optimize for systematic biases at four lateral boundaries together 

with methane emissions. 

 

Prior emissions (Figure 2) used in GEOS-Chem simulations are compiled from bottom-up sectoral inventories (Table S2). In 160 

brief, we use EDGAR v4.3.2 (Janssen-Maenhout et al., 2019) for anthropogenic methane emissions, with those from fossil 

fuel exploitation replaced by Scarpelli et al. (2020) (oil and gas; coal outside of China) and Sheng et al. (2019) (coal in 

China). For natural emissions, we use the WetCHARTs version 1.0 inventory for wetlands (Bloom et al., 2017), the Quick 

Fire Emissions Dataset (QFED) v2.4r8 for biomass burning, Fung et al. (1991) for termite emissions, and Maasakkers et al. 

(2019) for geological sources. 165 

 

While methane sinks are not optimized in our regional inversion, they are explicitly simulated in GEOS-Chem simulations. 

We use monthly OH fields from a full-chemistry GEOS-Chem simulation (Wecht et al., 2014) and soil absorption from 

Murguia-Flores et al. (2018). 

3.2 Inversion procedure 170 

We perform analytical Bayesian inversions to optimize a state vector 𝒙 containing annual methane emissions from 600 

clusters and average methane column biases at four model boundaries. We optimize emissions on 600 spatial clusters instead 

of the native 0.5° × 0.625° grid, which are generated based on a Gaussian Mixed Model (GMM) algorithm proposed by 

Turner and Jacob (2015). This strategy significantly reduces the computation of an analytical inversion while accounting for 

major patterns in the distribution of methane emissions. We also optimize for biases in boundary conditions on four sides of 175 

our domain (east, south, west, north). Examination of our prior simulation finds domain-wide biases against either GOSAT 

or TROPOMI observations that can only be attributed to biased boundary condition. 

 

Assuming a Gaussian distribution of error, the optimal estimate of 𝒙 is obtained by minimizing the cost function (Brasseur 

and Jacob, 2017; Rodgers, 2000): 180 
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𝐽(𝒙) = (𝒙 − 𝒙𝑨)
𝑇𝐒𝐀

−1(𝒙 − 𝒙𝑨) + 𝛾(𝒚 − 𝐅(𝒙))𝐒𝐎
−1(𝒚 − 𝐅(𝒙)) (1) 

where 𝒙𝑨 is prior estimates for 𝒙 and 𝒚 is the observation vector containing either TROPOMI or GOSAT observations, and 

𝐹  is a function of 𝒙 representing the forward model. 𝐒A  and 𝐒O  are respectively prior and observation error covariance 

matrices. We take 𝐒A as a diagonal matrix and assume a 50% standard deviation for prior emissions and a 1% standard 

deviation for boundary conditions. 𝐒O is also taken as diagonal and is populated following the residual error method (Heald 185 

et al., 2004), which finds that observation error standard deviations average 16 ppbv for TROPOMI and 18 ppbv for GOSAT. 

𝛾  is a regularization parameter to balance prior and observation information (Hansen, 1998; Rodgers, 2000) and is 

introduced to prevent overfitting from omitting error correlations in 𝐒O. We determine 𝛾 following Lu et al. (2021) and Qu et 

al. (2021), and find 𝛾 = 0.09 for TROPOMI and 𝛾 = 0.6 for GOSAT (Figure S3). A smaller 𝛾 for TROPOMI reflects a 

higher degree of spatial correlation among denser TROPOMI observations. 190 

 

The forward model (GEOS-Chem) can be described by a linear equation: 

𝐹(𝒙) = 𝐊𝒙, (2) 

where 𝐊 = ∇𝒙𝐹 is the Jacobian matrix, which describes the sensitivity of observations to the state vector. The cost function 

is minimized at ∇𝑥𝐽(𝒙) = 0, which yields the optimal estimate (𝒙) 195 

𝒙 = 𝒙𝑨 + (𝛾𝐊T𝐒𝐎
−1𝐊 + 𝐒𝐀

−1)−1𝛾𝐊T𝐒𝐎
−1(𝒚 − 𝐊𝒙𝐴), (3) 

with the posterior error covariance matrix 𝐒̂ 

𝐒̂ = (𝛾𝐊𝐓𝐒𝐎
−1𝐊 + 𝐒𝐀

−1)−1 (4) 

and the averaging kernel matrix 𝐀 that describes the sensitivity of the optimal solution to the true value: 

𝐀 =
𝜕𝒙

𝜕𝒙
= 𝐈𝐧 − 𝐒̂𝐒𝐀

−1. (5) 200 

The trace of 𝐀 is referred to as the degree of freedom for signals (DOFS), which represents the number of independent pieces 

of information constrained by an observing system. 

4 Results and discussion 

4.1 Comparison of methane emissions from TROPOMI and GOSAT inversions 

Figure 3 shows the correction patterns of methane emissions (posterior - prior emissions) inferred respectively from 205 

TROPOMI and GOSAT inversions. Both inversions find that the prior inventory underestimates methane emissions from 

Northeast China (NEC) and Bangladesh (BAN) and overestimate emissions from Central South China (CSC). The two 

inversions also find similar correction patterns in Central North China (CNC) with upward adjustments over central Shanxi 

and downward adjustments over neighboring Henan province. These agreements reflect some consistencies between 

TROPOMI and GOSAT inversions at the regional level. 210 
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TROPOMI and GOSAT inversions show large differences over important source regions, including East China (EC) and 

northern India (IND) (Figure 3). While the GOSAT inversion suggests that methane emissions over IND should be increased 

and those from EC decreased relative to prior estimates, the TROPOMI inversion finds the opposite. As a result, regional 

total methane emissions inferred by the two inversions differ by 7.7 Tg a−1 (27%; TROPOMI: 24.7±0.6 Tg a−1, GOSAT: 215 

32.4±0.7 Tg a−1) (errors reported for regional estimates are 1𝜎 standard deviations derived from posterior error covariance 

matrices) over IND and 7.0 Tg a−1 (32%; TROPOMI: 28.3±0.9 Tg a−1, GOSAT: 21.3±0.9 Tg a−1) over EC (Figure 3c). In 

addition, the two inversions also disagree over the northwestern part of the domain (NWD including parts of Kazakhstan and 

northern Xinjiang, China and SXJC including mainly southern Xinjiang, China), where TROPOMI indicates large upward 

adjustments while GOSAT finds agreement with the prior inventory. 220 

 

Figure 3: Spatial distributions of methane emission corrections (posterior - prior) inferred by (a) GOSAT and (b) TROPOMI 

inversions. (c) shows emissions aggregated by region as defined in blue rectangles in (a) and (b). Error bars represent the standard 

deviation of regional estimates derived from posterior error covariance matrices. 

Table S2 summarizes methane emission estimates from TROPOMI and GOSAT inversions over the entire East Asia domain 225 

and over China. The two inversions find similar posterior methane emissions from East Asia (TROPOMI: 143.5±1.4 Tg a−1; 

GOSAT: 146.2±1.2 Tg a−1), with differences in China (TROPOMI: 74.9±1.0 Tg a−1; GOSAT: 68.1±1.0 Tg a−1) largely 
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canceled out by differences in northern India. For China, we attribute 69.1 Tg a−1 for the TROPOMI inversion and 63 Tg a−1 

for the GOSAT inversion to anthropogenic emissions, based on prior sectoral fractions in each spatial cluster. These values 

are at the high end of previous inversion-based estimates of 43-62 Tg a−1 (Deng et al., 2022; Lu et al., 2021; Miller et al., 230 

2019; Qu et al., 2021; Saunois et al., 2020; Sheng et al., 2021; Stavert et al., 2022; Wang et al., 2021; Zhang et al., 2021; 

Zhang et al., 2022) and are higher than China’s latest submission to the UNFCCC (55 Tg a−1) for 2014 (UNFCCC, 2020). 

These previous inversions mainly used GOSAT observations but differ greatly in their inversion setups (e.g., time, domain 

coverage, spatial resolution, transport model), thus resulting in a considerable range of estimates. In contrast, the differences 

in inversions presented in this work are fully due to satellite observations. Our TROPOMI inversion results are consistent 235 

with a recent TROPOMI inversion study by Chen et al. (2022) who reported estimate of China’s total, anthropogenic, and 

natural methane emissions of 70.0 (61.6-79.9), 65.0 (57.7-68.4), and 5.0 (3.9-11.6) Tg a−1. 

4.2 Evaluation of inversion results with independent observations 

Both TROPOMI and GOSAT posterior simulations can reduce errors against their respective “training” data relative to the 

prior simulation (Figure 4), which is expected for successful inversions. However, concentration fields from the two 240 

simulations show varied degrees of agreement across the domain (Figure 5a). In this section, we use independent high-

quality observations to evaluate whether GOSAT and TROPOMI inversion results are consistent, and in the case that they 

are not, which one is more in agreement with independent data. 

 

Table 1 summarizes performance metrics against these independent observations. GOSAT and TROPOMI inversions 245 

perform similarly at background sites such as PDI, UUM, WLG, and LLN. Both posterior simulations achieve relatively 

good agreement with in situ observations at PDI, UUM, and WLG (absolute biases < 7 ppbv and 𝑅2 between 0.39-0.72). An 

exception is LLN (a high-mountain background site in the southeast of the domain) where biases grow larger in both 

posterior simulations (11.0 ppbv for GOSAT and 16.7 ppbv for TROPOMI). This is mainly caused by large seasonal biases 

in the eastern boundary (Figure 5c) (see Section 4.3.3 for more discussion). In fact, mean biases at LLN decrease from prior 250 

to posterior simulations during January to May of the year (Prior: -10.8 ppbv; GOSAT: 1.2 ppbv; TROPOMI: 3.7 ppbv) but 

increase for June to December (Prior: 7.5 ppbv; GOSAT: 17 ppbv; TROPOMI: 24.7 ppbv). 

 

On the other hand, methane concentrations from the TROPOMI and GOSAT posterior simulations differ by ~10-20 ppbv at 

sites in methane source regions (i.e., XH and HF within EC and AMY in Korea downwind EC) (Figure 5a). Their 255 

differences in concentrations are due mainly to higher methane emissions inferred by the TROPOMI inversion than GOSAT 

over EC (by 7.0 Tg a−1) and Korea (Figure 3). Our evaluation against in situ measurements at AMY and total column 

measurements at XH and HF shows consistently high biases of ~15-25 ppbv by the TROPOMI posterior simulation and a 

comparatively better agreement (bias ~8 ppbv) with the GOSAT posterior simulation (Table 1). Smaller mean biases are 

achieved by the prior simulation at XH and HF (Table 1), but this is largely because of the low background concentration 260 
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caused by biases in prior boundary conditions. Overall, our results at AMY, XH, and HF supports the lower methane 

emissions from EC inferred by the GOSAT inversion over the TROPOMI inferences and indicates that TROPOMI XCH4 

retrievals may have regional high biases over EC (more discussion in 4.3.1). 

 

Methane concentrations from the TROPOMI and GOSAT posterior simulations differ by 5.2 ppbv on average along the 265 

CARIBIC flight tracks over the Ganges Plain (Figure 5a). This difference is mainly due to different IND methane emissions 

between the two inversions (Figure 5b) with minor contributions from boundary condition bias inferences (Figure 5c). In the 

absence of concurrent independent observations over IND, we use CARIBIC aircraft observations that are only available 

from 2012 to 2014 to evaluate the inversions. Since these observations predate TROPOMI, we can only indirectly evaluate 

by using a simulation driven by methane emissions from a GOSAT inversion for earlier years as an inter-comparison 270 

platform. We take inversion results from a previous study (Zhang et al., 2022), which performed an East Asia inversion also 

using GOSAT proxy XCH4 retrievals. Their inversion is almost identically configured as this study except that it was for 

2010-2017. Consistent with our GOSAT results, the GOSAT inversion from Zhang et al. (2022) also found that IND 

methane emissions should be adjusted upward. 

 275 

Figure 4: Differences in XCH4 between simulations and satellite observations from GOSAT (a and c) and TROPOMI (b and d). (a) 

and (b) show results for the prior simulation, (c) for the posterior simulation driven by the GOSAT inversion, and (d) for the 

posterior simulation driven by the TROPOM inversion. Root-mean-square errors (RMSE, in ppbv) and mean biases (MB, in ppbv, 

simulation - observation) are inset. 
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 280 
Table 1: Evaluation of simulated methane concentrations against independent observationsa. 

Site Mean Bias±Standard Error (ppbv) 𝑹𝟐 

Prior GOSAT TROPOMI Prior GOSAT TROPOMI 

AMY -5.9±2.5 7.5±2.4 25.5±2.4 0.46 0.5 0.46 

PDI -20±2.3 -3.7±2.2 -1.3±2.3 0.67 0.7 0.69 

LLN 0.5±4.1 11.0±4.3 16.7±4.3 0.39 0.4 0.37 

UUM -9.0±2.1 5.8±2.1 6.6±2.2 0.71 0.71 0.72 

WLG -16.6±2.7 -4.3±2.9 -2.7±2.7 0.4 0.39 0.41 

XH -3.4±1.0 7.9±0.9 15.2±1.0 0.72 0.74 0.73 

HFb 1.0±3.0 8.0±3.0 20.8±3.0 0.5 0.51 0.55 

CARIBICc - 14.9±0.8 9.7±0.8 - - - 

a Five sites report surface in situ measurements with PDI, LLN, UUM, and WLG being continental-scale background sites and AMY a 

regional site. Two sites (XH and HF) located in East China report ground-based total column measurements. The aircraft measurements 

(CARIBIC) are taken over northern India. 

b Large biases between simulations and observations occur in five days (Jul. 22rd, Sept. 30th, Nov. 3rd, Nov. 23rd and Dec. 3rd) at site HF. 285 

Relatively low 𝑅2 in this line are largely affected by these data. Excluding this subset of observations results in correlation coefficients of 

~0.8 for all simulations and mean biases of -2.9±1.4, 4.4±1.3, and 17.6±1.7 ppbv for prior, GOSAT, and TROPOMI simulations, 

respectively. 

c Indirect evaluation is performed for CARIBIC data. The value in the ‘GOSAT’ column represents the mean bias between the posterior 

simulation of the 2010-2017 GOSAT inversion and 2012-2014 CARIBIC aircraft observations. We assume that GOSAT inversions are 290 

consistent between years so that the 2012-2014 bias is representative for the 2019 condition. The value in the ‘TROPOMI’ column is 

computed by subtracting the mean difference along aircraft paths between 2019 GOSAT and TROPOMI posterior simulations (~5.2 ppbv) 

(Figure 5a) from the 2012-2014 GOSAT bias. 𝑅2 is not reported for this indirect comparison. 

 

Comparison with these aircraft observations indicates that the 2012-2014 simulation driven by GOSAT-optimized emissions 295 

from Zhang et al. (2022) overestimates the aircraft observations by ~14.9 ppbv (Table 1). On the other hand, the 2019 

posterior simulation from the GOSAT inversion is about 5.2 ppbv higher than that from the TROPOMI inversion along 

flight tracks (Figure 5a). Assuming that our 2019 GOSAT inversion is consistent with the 2010-2017 GOSAT inversion by 

Zhang et al. (2022) (mean bias 14.9 ppbv), it thus suggests that the TROPOMI inversion likely agrees better with the 

CARIBIC observations (mean bias 9.7 ppbv) than the GOSAT inversion. Unlike the EC case, we do not find over IND 300 

significant differences in TROPOMI and GOSAT XCH4 retrievals (Figure 6). Our analysis suggests that good data coverage 
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of TROPOMI over IND is likely responsible for its better performance in quantifying methane emissions (see section 4.3.2 

for more discussion). 

 

Figure 5: Differences in tropospheric methane concentrations (TROPOMI - GOSAT) between GOSAT and TROPOMI posterior 305 
simulations. (a) shows the total differences while (b) and (c) decompose the differences to methane emissions and boundary 

condition bias corrections. The corrections of boundary conditions (in ppbv) by the two inversions are shown. 

4.3 Attribution of TROPOMI and GOSAT inversion differences 

4.3.1 Regional retrieval bias 

To understand the cause of differences in the inferred methane emissions, we first compare coincident TROPOMI and 310 

GOSAT XCH4 retrievals. The comparison is done following Zhang et al. (2010) where a CTM simulation is used as an 

intercomparison platform to account for differences in prior profiles and vertical sensitivity between TROPOMI and GOSAT 

retrievals. TROPOMI XCH4 are on average higher than GOSAT XCH4 over EC by ~6 ppbv, SXJC by ~10 ppbv, and NWD 

by ~10 ppbv (Figure 6b), which lead to higher methane emissions inferred by the TROPOMI inversion over these regions 

(Figure 3). These differences persist throughout the year in EC and SXJC but appear to be highly seasonal in NWD. The 315 

largest TROPOMI-GOSAT differences in NWD (~30-40 ppbv) occur between December and March. In other regions of 

interest, the annual averaged TROPOMI-GOSAT XCH4 differences are in general less than 5 ppbv including IND where the 

two inversions find large discrepancies in posterior methane emissions. 
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Independent ground-based observations are more consistent with the GOSAT inversion and do not support high emissions 320 

from EC inferred by the TROPOMI inversion, which indicates that TROPOMI retrievals have systematic regional high 

biases over EC. In addition, even with enhanced methane emissions in EC, SXJC, and NWD from the TROPOMI inversion, 

the posterior simulation cannot fully capture these high XCH4 concentrations (Figure 4d). This is also a hint of retrieval 

biases, as it indicates that the inversion finds it difficult to reconcile these high XCH4 patterns with known methane sources 

and wind information, given our specification of error parameters (𝐒𝐀, 𝐒𝐎, and 𝛾). 325 

 

Figure 6: Differences in XCH4 between GOSAT and TROPOMI shown on the 0.5°×0.625° grid (a) and by region (b). (a) shows 

annual averages for each grid cell and (b) shows time series of regional averages. Regions are defined in blue rectangles of Figure 

3a. 

In addition to EC, large XCH4 differences between GOSAT and TROPOMI are also found in the northwestern part of the 330 

domain (SXJC and NWD). Although we do not have independent observations over these regions, we speculate that 

TROPOMI retrievals have positive biases. SXJC is featured with high surface albedo (desert), while in NWD large 

TROPOMI and GOSAT differences occur during Dec and Mar when surface albedo is low (snow and/or ice cover) (Figure 

S4). High and low surface albedo scenes are known to be challenging for the full-physics retrieval. We suggest to apply the 

“blended albedo” filter to TROPOMI observations over these regions before inversion (Chen et al., 2022; Wunch et al., 335 

2011). 

 

In our study, we use the TROPOMI science product from Lorente et al. (2021), who applied a posterior correction for 

surface albedo dependent biases identified in originally retrieved TROPOMI data. We find that this bias correction scheme 

does overall improve the agreement between TROPOMI and GOSAT in both their methane column concentrations (Figure 340 

S5) and posterior methane emissions (Figure S6), however, the agreement is not improved in EC, SXJC, and NWD. 

4.3.2 Spatial coverage of observations 

Although methane emissions from IND (along the Ganges Plain) inferred by the GOSAT inversion are considerably larger 

than those inferred by the TROPOMI inversion, we find only small differences in coincident XCH4 retrievals there (except 
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for November and December) (Figure 6), indicating that retrieval biases are unlikely the dominant cause of discrepancies. 345 

We have shown above that indirect comparison with CARIBIC tropospheric aircraft measurements favors lower emissions 

from IND estimated by the TROPOMI inversion (Table 1). In this section, we explore whether differences in data coverage 

between TROPOMI and GOSAT may contribute to the discrepancies in inferred emissions. 

 

Figure 7: Averaging kernel sensitivities for GOSAT (a) and TROPOMI (b) inversions. Values represent the ability of observations 350 
to constrain methane emissions (0 = not at all, 1 = perfectly). Panel (c) compares the DOFS of regional emissions constrained by 

TROPOMI and GOSAT inversions. 

Figure 7 compares the ability of TROPOMI and GOSAT inversions to constrain the distribution of methane emissions, 

measured by averaging kernel sensitivities (diagonal elements of the averaging kernel matrix). This measure accounts for 

spatial and temporal data coverage, measurement and model errors (through 𝐒𝐎), and error correlations between closely 355 

located observations (through 𝛾). The sum of averaging kernel sensitivities over a region represents the number of pieces of 

independent information (also known as degree of freedom for signals, DOFS) constrained by an observation system. Figure 

7c shows that the TROPOMI inversion has a larger DOFS value (23) than does the GOSAT inversion (19) in IND indicating 

that methane emissions from IND are better resolved by TROPOMI observations. More importantly, the GOSAT inversion 

results in highly uneven spatial patterns in averaging kernel sensitivities with much lower values found in the east Ganges 360 
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Plain (corresponding DOFS is 4.5 for GOSAT and 7.4 for TROPOMI) (Figure 7a) because of a small number of GOSAT 

observations there (Figure S2) which indicates that the large upward adjustment by the GOSAT inversion over IND (Figure 

3a) is associated with large uncertainties. In contrast, more uniform patterns in averaging kernel sensitivities are achieved by 

the TROPOMI inversion (Figure 7b). 

 365 

The above analysis demonstrates that the TROPOMI inversion benefits from better data coverage for estimating methane 

emissions from IND. However, over the entire East Asia domain, TROPOMI and GOSAT achieves almost the same (70) 

DOFS, with similar spatial patterns of averaging kernel sensitivities (Figure 7). Although the number of TROPOMI 

observations is much larger, strong error correlations in densely distributed data reduce the efficacy of individual 

observations, as shown by the difference in the regularization parameter determined for TROPOMI (𝛾 = 0.09) and GOSAT 370 

(𝛾 = 0.6) observations. Qu et al. (2021) found in coarse-resolution (2° × 2.5°) global inversions that GOSAT achieves ~50% 

more DOFS than TROPOMI. In our high-resolution regional inversion, TROPOMI achieves relatively higher DOFS which 

reflects a lower level of error correlation on the 0.5° × 0.625° resolution than 2° × 2.5°. It can also be conjectured that 

TROPOMI observations can provide more information than GOSAT observations in an inversion at a spatial resolution 

better than 0.5° × 0.625°. 375 

4.3.3 Regional boundary conditions 

Our evaluation against surface observations shows improved agreement at background sites (i.e., PDI, UUM, and WLG) by 

both inversions (Table 1). This is achieved through simultaneous optimization for biases in boundary conditions together 

with emissions. As WLG, UUM, and PDI are respectively sensitive to the west, north, and south boundaries, this result 

suggests that satellite observations can correct biases along these boundaries, supporting our inversion configuration. 380 

Furthermore, we find that a sensitivity inversion not optimizing for boundary condition biases (S0) cannot reduce large prior 

biases at WLG and PDI and leads to unrealistically high methane emissions over East Asia (222 Tg a−1) including China 

(102 Tg a−1). 

 

An exception in Table 1 is LLN (a high-mountain background site in the southeast of the domain) where biases are increased 385 

by both inversions. Although the site AMY is also close to the east boundary, it has little influence from the southeast 

monsoon (Figure 5c). The biases show strong seasonality, with the largest occurring in summer consistent with ocean-to-

land (southeast to northwest) transport by summer monsoon. Our analysis suggests that this increase in biases is caused by 

large adjustments at the east boundary (GOSAT: 3.7 ppbv; TROPOMI: 24.9 ppbv) rather than changes in methane emissions 

(Figure 5). This result indicates that satellite observations that are mainly over land are insufficient to constrain the east 390 

boundary which consists mainly of ocean. 
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We then assess the impact of biases along the east boundary on inferred methane emissions. We perform sensitivity 

inversions using varied levels of fixed (not optimized by the inversion) east boundary conditions, and find relatively small 

effects on quantifying annual emissions as expected from prevailing westerlies in midlatitudes. A positive bias of 10 ppbv 395 

would result in a reduction of annual methane emissions by 2.9 Tg a−1 (~2%) over the East Asia domain, 1.6 Tg a−1 (~2%) 

over China, and 0.7 Tg a−1 (~3%) over EC (the most affected region) (Figure 8). Although the inversion has a weak 

constraint on the east boundary conditions, it does not have a great influence on the posterior emissions. However, if the 

inversion is performed on the monthly or seasonal basis (as opposed to annually in this study), summer results will be more 

severely affected, leading to seasonal biases in inferred methane emissions. 400 

 

Figure 8: Impact of biases in the east boundary on quantification of annual methane emissions. Inversions are performed by using 

fixed east boundary conditions. Sensitivity results are computed from perturbing these fixed east boundary conditions by 10 (S10), 

20 (S20), and 30 (S30) ppbv. 

5 Conclusions 405 

We estimate methane emissions from East Asia for 2019 by applying atmospheric methane column retrievals from two 

different satellite instruments (GOSAT and TROPOMI) to a high-resolution regional inversion framework, in which 

methane emissions are optimized on 600 spatial clusters with up to about half degree horizontal resolution. 

 

The two inversions estimate a similar magnitude of methane emissions from East Asia (TROPOMI: 143.5 Tg a−1; GOSAT: 410 

146.2 Tg a−1) as compared to prior estimate (130 Tg a−1) but differ by ~10% in China (TROPOMI: 74.9 Tg a−1; GOSAT: 

68.1 Tg a−1). Comparisons at the regional scale show that the GOSAT and TROPOMI inversions find consistent results over 

Central North China, Central South China, Northeast China, and Bangladesh, where the inferred emissions differ by less 

than 2.7 Tg a−1. However, the two inversions show large differences over some of the important regions including northern 

India and East China. The inferred methane emissions by GOSAT observations are 7.7 Tg a−1 higher than those by 415 

TROPOMI over northern India but 7.0 Tg a−1 lower over East China. Large differences in inferred emissions are found in 

northwestern China and Kazakhstan (SXJC and NWD). 
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We evaluate the inversion results by comparing GOSAT and TROPOMI posterior simulations with independent 

observations. We find that independent ground-based in situ observations at AMY and total column observations at XH and 420 

HF are more compatible with lower methane emissions from East China inferred by the GOSAT inversion than those by the 

TROPOMI inversion. We also indirectly evaluate against tropospheric aircraft observations over India during 2012-2014 by 

using a consistent GOSAT inversion of earlier years as an inter-comparison platform, which favors lower methane emissions 

from northern India inferred by the TROPOMI inversion over those by the GOSAT inversion. 

 425 

The fact that high East China emissions inferred from TROPOMI are inconsistent with independent observations suggests 

high regional biases in TROPOMI retrievals over East China. Large retrieval differences between GOSAT and TROPOMI 

are also found in the northwestern China and Kazakhstan, which also leads to substantially higher methane emissions 

inferred by the TROPOMI inversion. Unfortunately, we do not have independent observations to evaluate the results in these 

two regions. However, we note that large TROPOMI XCH4 variations in Kazakhstan and northern Xinjiang are coincident 430 

with seasonal changes in surface albedo, suggesting possibly over-correction of surface albedo dependent biases in 

TROPOMI retrievals at the regional level. 

 

The two inversions show large discrepancies in emissions over northern India along the Ganges Plain, although GOSAT and 

TROPOMI XCH4 values agree reasonably well. We find that the discrepancy in emissions from norther India is due mainly 435 

to differences in data coverage. Analyses of the averaging kernel matrices show that the TROPOMI inversion can better 

constrain emissions from northern India (especially the eastern part of the Ganges Plain), owing to its good spatial coverage 

in the region as compared to highly uneven coverage by GOSAT. Over the entire East Asia domain, however, the two 

inversions show similar ability in constraining the distribution of methane emissions, despite a much larger number of 

TROPOMI observations. This is due mainly to strong error correlations in dense TROPOMI data at the 0.5° × 0.625° 440 

resolution. 

 

Both inversions show improved agreement at background sites supporting our optimization of boundary condition biases. An 

exception is LLN where both inversions show large positive concentration biases against in situ measurements, which results 

from over-corrections at the eastern boundary by inversions. However, our simulations demonstrate that methane 445 

concentration biases at the eastern boundary have relatively small impacts on annual emission inferences. The newer version 

of the TROPOMI methane product includes glint-mode ocean observations, which may benefit the optimization of eastern 

boundary conditions. 
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Data availability 

The TROPOMI methane observations are from https://ftp.sron.nl/open-access-data-450 

2/TROPOMI/tropomi/ch4/14_14_Lorente_et_al_2020_AMTD (last access: 29 December 2021). The GOSAT methane 

observations are the University of Leicester GOSAT Proxy XCH4 v9.0 (ceda.ac.uk), accessible through 

https://data.ceda.ac.uk/neodc/gosat/data/ch4/nceov1.0/CH4_GOS_OCPR/, or the Copernicus Climate Data Store 

(https://cds.climate.copernicus.eu/). Surface observations at PDI are downloaded from https://gaw.kishou.go.jp/. Surface 

observations at AMY, LLN, UUM, and WLG and aircraft observations from the CARIBIC project are available via the 455 

NOAA ObsPack CH4 product (https://gml.noaa.gov/ccgg/obspack/index.html). The Xianghe FTIR CH4 data are accessible 

through https://doi.org/10.18758/71021049. The Hefei FTIR CH4 from TCCON network can be accessed by contacting Prof. 

Cheng Liu at University of Science and Technology of China. 
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