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Abstract. We apply atmospheric methane column retrievals from two different satellite instruments (GOSAT and TROPOMI) 

to a regional inversion framework to quantify East Asian methane emissions for 2019 at 0.5° × 0.625° horizontal resolution. 25 

The goal is to assess if GOSAT (relatively mature but sparse) and TROPOMI (new and dense) observations inform consistent 

methane emissions from East Asia with identically configured inversions. Comparison of the results from the two inversions 

show similar correction patterns to the prior inventory in Central North China, Central South China, Northeast China, and 

Bangladesh, with less than 2.7 Tg a−1 differences in regional posterior emissions. The two inversions, however, disagree over 

some important regions particularly in northern India and East China. The inferred methane emissions by GOSAT observations 30 

are 7.7 Tg a−1 higher than those by TROPOMI observations over northern India but 7.0 Tg a−1 lower over East China. We find 

that the lower methane emissions from East China inferred by the GOSAT inversion are more consistent with independent 

ground-based in situ and total column (TCCON) observations, indicating that the TROPOMI retrievals may have high XCH4 

biases in this region. We also evaluate inversion results against tropospheric aircraft observations over India during 2012-2014 

by using a consistent GOSAT inversion of earlier years as an inter-comparison platform. This indirect evaluation favors lower 35 
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methane emissions from northern India inferred by the TROPOMI inversion. We find that in this case the discrepancy in 

emission inference is contributed by differences in data coverage (highly uneven observations by GOSAT vs. good spatial 

coverage by TROPOMI) over northern India. 

1 Introduction 

Methane (CH4) is a powerful greenhouse gas, with a global warming potential ~80 times that of carbon dioxide (CO2) on a 20-40 

year timescale and ~30 times on a 100-year timescale (Forster et al., 2021). In 2020, the atmospheric methane concentration 

has increased to 1889±2 ppbv, 262% of pre-industrial levels in 1750, driven primarily by increasing anthropogenic emissions 

(WMO, 2021). The last decade has seen a rapid growth of atmospheric methane (~ 8.6 ppbv a-1), after a brief period of 

stabilization in the early 2000s (Dlugokencky et al., 2011; Fletcher and Schaefer, 2019; Rigby et al., 2008; Yin et al., 2021; 

Zhang et al., 2021). Rising methane concentrations, if continued at current rates in coming decades, may negate benefits of 45 

CO2 emission reduction and therefore curbing methane emissions in the 2020s is vital for the success of the Paris Agreement 

(Ganesan et al., 2019; Nisbet et al., 2019). 

 

Information on methane emissions is required at global, national, and regional levels to guide climate actions on methane. 

Current bottom-up inventories are often inadequate for this purpose because of their large uncertainties in emission factors and 50 

lack of information on emission activities (Saunois et al., 2020). Independent measurements of atmospheric methane, including 

those from satellite remote sensing, are thus used to evaluate and improve these bottom-up inventories (Jacob et al., 2016). 

This is generally done through an inversion of atmospheric observations with a chemical transport model to characterize the 

relationship between emissions and concentrations. Atmospheric methane is measured by two classes of satellite instruments, 

point source imagers and area flux mappers. While point sources imagers (e.g., Sentinel-2, Landsat, GHGSat) specialize in 55 

detecting large emissions from point sources, area flux mappers provide high-precision measurements that can be used to 

constrain methane fluxes on regional and global scales (Jacob et al., 2022). Area flux mappers that are currently in operation 

include the TANSO-FTS instrument onboard the Greenhouse gases Observing SATellite (GOSAT) launched in 2009 (Kuze 

et al., 2016) and the more recent TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel 5 Precursor (S5P) 

satellite launched in 2017 (Hu et al., 2016; Lorente et al., 2021; Veefkind et al., 2012). Satellite observations made by these 60 

area flux mappers are especially valuable in constraining methane emissions over regions with no or only sparse ground 

networks, including Africa, South America, and East and South Asia (Lu et al., 2021). 

 

Both GOSAT and TROPOMI operate in sun-synchronous orbits and retrieve column-averaged dry-air methane mole fractions 

(XCH4) from backscattered solar shortwave infrared radiation. TROPOMI continuously images the land surface at a pixel 65 

resolution of 7 km × 7 km (5.5 km × 7 km after August 2019) with daily global coverage (Hu et al., 2018; Lorente et al., 2021; 

Sha et al., 2021), while GOSAT in its standard-viewing mode measures with a 3 day return time in 10 km diameter circular 
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footprints that are typically spaced ~250 km apart (Butz et al., 2011; Kuze et al., 2009; Kuze et al., 2016; Yokota et al., 2009). 

As a result of differing sampling strategies, TROPOMI generates much higher observation density than GOSAT, which in 

principle should benefit fine-resolution inversions. The two instruments also measure at different wavelengths, GOSAT at the 70 

1.65 μm band and TROPOMI at the 2.3 μm band. This affects the algorithm that can be applied to retrieve XCH4. Operational 

TROPOMI retrievals use the RemoTeC full-physics method (Hu et al., 2018). The method is prone to spatially and temporally 

variable biases owing to scattering artefacts (Hu et al., 2018; Lorente et al., 2021; Sha et al., 2021). These biases in general are 

not reducible with more observations and, if not corrected, can translate into biases in emission estimates in an inversion. 

Because of spectrally adjacent CO2 and CH4 absorption in the 1.65 μm band, GOSAT retrievals can alternatively use the CO2 75 

proxy method, in which XCH4 is derived from directly retrieved CH4 to CO2 column ratios and independently specified 

(simulated or assimilated) CO2 columns (Alexe et al., 2015; Frankenberg et al., 2005; Frankenberg et al., 2006; Parker et al., 

2015; Parker et al., 2020). The proxy method usually results in reduced variable biases, as scattering artefacts largely cancel 

out in retrieving CH4 to CO2 column ratios. It is, however, subject to any errors in specified CO2 columns. The proxy method 

also leads to a better retrieval success rate over regions with high aerosol loadings or thin clouds, as the method is less sensitive 80 

to these interferences compared to the full-physics approach.  

 

A number of studies have applied GOSAT data in inversions on a range of scales (Cressot et al., 2014; Feng et al., 2022; Lu 

et al., 2021; Maasakkers et al., 2019; Monteil et al., 2013; Pandey et al., 2016; Turner et al., 2015; Zhang et al., 2021). 

TROPOMI data have also been applied in several regional inversion studies (Chen et al., 2022; McNorton et al., 2022; Shen 85 

et al., 2021; Shen et al., 2022; Zhang et al., 2020) often with the focus on resolving fine-scale emission hotspots. Qu et al. 

(2021) performed global inversions of GOSAT and TROPOMI observations at 2° × 2.5° resolution in a comparative analysis, 

and they showed that methane emissions inferred from the two inversions are generally consistent on the global scale but with 

significant regional discrepancies including over China. 

 90 

Here we present high-resolution (0.5° × 0.625°) inversions of GOSAT and TROPOMI observations over East Asia. The main 

objective is to assess the consistency of methane fluxes inferred from the two sets of satellite data that differ in their data 

coverage and regional accuracy, adding information to the uncertainty characterization of satellite-based methane emission 

accounting. We perform the analyses with identically configured inversions to isolate the effects of observation data, and we 

further use independent ground-based observations to evaluate the discrepancies between the two inversions and discuss the 95 

cause of differences. This study focuses on East Asia (including China and northern India), which is one of the world’s major 

methane emitting regions and accounts for more than 20% of global emissions (UNFCCC, 2020). The region has been an 

important contributor to global increases in methane emissions, but the magnitude of the trend and its sectoral attributions are 

debated (Ganesan et al., 2017; Gao et al., 2021; Liu et al., 2021; Miller et al., 2019; Sheng et al., 2021; Zhang et al., 2021).  
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2 Observation Data 100 

2.1 Satellite observations 

We used XCH4 observations from GOSAT and TROPOMI for 2019 in regional inversions over East Asia. For GOSAT, we 

use the University of Leicester Proxy XCH4 v9.0 retrievals (Parker and Boesch, 2020). This product is based on the CO2 proxy 

method, which, as described above, limits variable biases associated with scattering artefacts but is subject to any biases in 

specified CO2 columns (Parker et al., 2015). We use in our inversion only high-quality GOSAT retrievals flagged as 105 

“xch4_quality_flag=0” over both land and ocean (glint mode). 

 

For TROPOMI, we use the SRON RemoTeC-S5P XCH4 scientific product, from Lorente et al. (2021). The improved algorithm 

by Lorente et al. (2021) was later implemented in the official operational product (v2.02.00) in July 2021 (Lorente et al., 2022). 

They derived an empirical correction formula to improve surface reflectance dependent biases identified in TROPOMI full-110 

physics retrievals. The correction significantly improves data quality over scenes with low (e.g. snow cover) and high surface 

albedo (e.g. deserts) which are challenging for a full-physics algorithm. Large corrections are made in East China, Xinjiang 

China, Southeast Asia, and Siberia (Figure S1). Bias-corrected TROPOMI retrievals flagged with “qa_value = 1” are used for 

inversion. This version of the TROPOMI product does not provide ocean glint-mode retrievals. 

 115 

Figure 1 shows the spatial distributions of annual average XCH4 on the 0.625° × 0.5° grid for GOSAT and TROPOMI. Both 

datasets show high XCH4 in eastern China and northern India and low XCH4 over Mongolian and Tibetan plateaus, although 

TROPOMI provides much better spatial coverage than GOSAT over most regions. There are in total 45,018 observations for 

GOSAT and 8,860,722 for TROPOMI. We take averages of multiple measurements fall in a 0.625° × 0.5° grid cell on any 

individual day (this procedure affects primarily dense TROPOMI data), and the resulting gridded daily observations are used 120 

in the inversion. The spatial distribution of gridded daily observation numbers is shown in Figure S2. 

 

We refer to the XCH4 retrieval products used in this study as GOSAT or TROPOMI observations and corresponding inversions 

as GOSAT or TROPOMI inversions for simplicity. There are other operational and scientific retrieval products available from 

both GOSAT and TROPOMI measurements (e.g., the operational GOSAT XCH4 retrieval (Yoshida et al., 2013), the scientific 125 

TROPOMI/WFMD XCH4 retrieval (Schneising et al., 2019)). Our analyses and conclusions are specific to the two retrieval 

products used here, though we expect that some of them can also apply to other retrievals. 
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Figure 1: 2019 annual average methane column mole fractions over the East Asia domain for GOSAT (UoL proxy v9.0 retrieval) 

and TROPOMI (Lorente et al. (2021) full-physics retrieval), presented on the 0.5° × 0.625° GEOS-Chem grid. 130 

2.2 Independent evaluation data 

We use a suite of independent high-quality methane observations to evaluate the posterior emissions inferred from satellite 

observations, including surface in situ observations, ground-based remote sensing observations, and tropospheric in situ 

measurements from commercial airlines. Table S1 provides a descriptive list of these surface sites and Figure 2 shows the 

locations of surface sites and a representative flight path. These suborbital observations are of good accuracy and precision 135 

compared to satellite observations. 

 

Surface in situ observations are available through World Data Centre for Greenhouse Gases (WDCGG) or the CH4 

GLOBALVIEWplus v4.0 ObsPack (Schuldt et al., 2021). The five sites are Anmyeon-do, South Korea (AMY), Pha Din, 

Vietnam (PDI), Lulin, Taiwan China (LLN), Ulaan Uul, Mongolia (UUM), Waliguan, China (WLG) (Dlugokencky et al., 140 

1994; Dlugokencky et al., 2021; Lee et al., 2019; Nguyen Nhat Anh and Steinbacher, 2021). Observations are done with either 

continuous (hourly) online instruments or weekly collected flask (Table S1). Most of these sites are continental or 

subcontinental background sites (PDI, LLN, UUM, and WLG), and their observations are insensitive to local methane 

emissions. An exception is AMY which is affected by local Korean emissions as well as upwind East China emissions. 

 145 

Total methane column observations by ground-based Fourier Transform Spectrometers are available at two TCCON sites 

located in East China, Hefei, China (HF) and Xianghe, China (XH) (Liu et al., 2022; Yang et al., 2020), and their observations 

are sensitive to methane emissions from East China. We note that a previous evaluation of GOSAT and TROPOMI against 

TCCON did not include data from these two sites, as their data were not available then (Qu et al., 2021). We use only 

measurements with solar zenith angles < 60° to ensure high data quality. 150 

 



6 

 

All the above surface sites are located distant from northern India, which is a major methane emitting region in the study 

domain. The only relevant dataset available to us in this area comes from the Civil Aircraft for the Regular Investigation of 

the atmosphere Based on an Instrument Container (CARIBIC) project (available via the CH4 GLOBALVIEWplus v4.0 

ObsPack (Schuldt et al., 2021)), which includes regular flights in the troposphere over northern India. However, these data are 155 

collected in earlier years between 2012 and 2014 before the time of TROPOMI. In the absence of better observation data, we 

compare these 2012-2014 aircraft observations to a simulation driven by a similarly configured GOSAT inversion for an earlier 

period (2010-2017) (Zhang et al., 2022). By doing so, we assume that any systematic bias derived from this comparison should 

still be representative of the 2019 GOSAT inversion. 

 160 

Figure 2: Spatial distribution of prior emissions. Locations of independent data for evaluation (seven surface sites and aircraft route) 

are shown. Circles represent background sites and triangles source-region sites. Total column measurements are coded in red and 

in situ measurements in blue. Purple solid line shows a CARIBIC aircraft route that measured tropospheric methane over India on 

November 22, 2012. 

3 Inverse analysis 165 

3.1 Forward model and prior emissions 

We use GEOS-Chem v12.9.3 as the forward model for the inversion. The simulation is conducted for 2019 over East Asia 

(15°N-55°N, 60°E-140°E) on a 0.5° ×  0.625° horizontal grid with 47 vertical layers and is driven by MERRA-2 

meteorological fields from the NASA Global Modeling and Assimilation Office (GMAO) (Gelaro et al., 2017). The initial 

concentration fields on January, 1, 2019 and 3-hourly boundary conditions for the nested domain are taken from a global 170 

inversion of TROPOMI data for 2019 (Qu et al., 2021). We find that the boundary conditions from this global inversion still 

have biases over East Asia (more discussion in Section 4.3.3), which may partly be due to the fact that Qu et al. (2021) used 

an early version of TROPOMI retrievals. In our inversion, we optimize for systematic biases at four lateral boundaries together 

with methane emissions. 

 175 

Prior emissions (Figure 2) used in GEOS-Chem simulations are compiled from bottom-up sectoral inventories (Table S2). In 

brief, we use EDGAR v4.3.2 (Janssen-Maenhout et al., 2019) for anthropogenic methane emissions, with those from fossil 
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fuel exploitation replaced by Scarpelli et al. (2020) (oil and gas; coal outside of China) and Sheng et al. (2019) (coal in China). 

A comparison with a more recent inventory EDGAR v6 shows no large revisions of anthropogenic methane emissions over 

the study region that we expect to have a great impact on the inversion results (Figure S3). For natural emissions, we use the 180 

WetCHARTs version 1.0 inventory for wetlands (Bloom et al., 2017), the Quick Fire Emissions Dataset (QFED) v2.4r8 for 

biomass burning, Fung et al. (1991) for termite emissions, and Maasakkers et al. (2019) for geological sources. 

 

While methane sinks are not optimized in our regional inversion, they are explicitly simulated in GEOS-Chem simulations. 

We use monthly OH fields from a full-chemistry GEOS-Chem simulation (Wecht et al., 2014) and soil absorption from 185 

Murguia-Flores et al. (2018). 

3.2 Inversion procedure 

We perform analytical Bayesian inversions to optimize a state vector 𝒙 containing annual methane emissions from 600 clusters 

and average methane column biases at four model boundaries. We optimize emissions on 600 spatial clusters instead of the 

native 0.5° × 0.625° grid, which are generated based on a Gaussian Mixed Model (GMM) algorithm proposed by Turner and 190 

Jacob (2015). This strategy significantly reduces the computation of an analytical inversion while accounting for major patterns 

in the distribution of methane emissions. We also optimize for biases in boundary conditions on four sides of our domain (east, 

south, west, north). Examination of our prior simulation finds domain-wide biases against either GOSAT or TROPOMI 

observations that can only be attributed to biased boundary condition. 

 195 

Assuming a Gaussian distribution of error, the optimal estimate of 𝒙 is obtained by minimizing the cost function (Brasseur and 

Jacob, 2017; Rodgers, 2000): 

𝐽(𝒙) = (𝒙 − 𝒙𝐀)
𝑇𝐒𝐀

−1(𝒙 − 𝒙𝑨) + 𝛾(𝒚 − 𝐅(𝒙))𝐒𝐎
−1(𝒚 − 𝐅(𝒙)) (1) 

where 𝒙𝐀 is prior estimates for 𝒙 and 𝒚 is the observation vector containing either TROPOMI or GOSAT observations, and 𝐹 

is a function of 𝒙 representing the forward model. 𝐒A and 𝐒O are respectively prior and observation error covariance matrices. 200 

We take 𝐒A as a diagonal matrix and assume a 50% standard deviation for prior emissions and a 1% standard deviation for 

boundary conditions. 𝐒O is also taken as diagonal and is populated following the residual error method (Heald et al., 2004), 

which finds that observation error standard deviations average 16 ppbv for TROPOMI and 18 ppbv for GOSAT. 𝛾  is a 

regularization parameter to balance prior and observation information (Hansen, 1998; Rodgers, 2000) and is introduced to 

prevent overfitting from omitting error correlations in 𝐒O. The degree of spatial error correlations varies substantially from 205 

GOSAT to TROPOMI observations because of their differences in data densities; therefore, we expect different 𝛾 values to be 

taken for the two datasets. We determine 𝛾 following Lu et al. (2021) and Qu et al. (2021), and find 𝛾 = 0.09 for TROPOMI 

and 𝛾 = 0.6 for GOSAT (Figure S4). A smaller 𝛾 for TROPOMI reflects a higher degree of spatial correlation among denser 

TROPOMI observations.  
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 210 

The forward model (GEOS-Chem) can be described by a linear equation: 

𝐹(𝒙) = 𝐊𝒙, (2) 

where 𝐊 = ∇𝒙𝐹 is the Jacobian matrix, which describes the sensitivity of observations to the state vector. The cost function is 

minimized at ∇𝑥𝐽(𝒙) = 0, which yields the optimal estimate (𝒙) 

𝒙 = 𝒙𝑨 + (𝛾𝐊T𝐒𝐎
−1𝐊 + 𝐒𝐀

−1)−1𝛾𝐊T𝐒𝐎
−1(𝒚 − 𝐊𝒙𝐴), (3) 215 

with the posterior error covariance matrix �̂� 

�̂� = (𝛾𝐊𝐓𝐒𝐎
−1𝐊 + 𝐒𝐀

−1)−1 (4) 

and the averaging kernel matrix 𝐀 that describes the sensitivity of the optimal solution to the true value: 

𝐀 =
𝜕𝒙

𝜕𝒙
= 𝐈𝐧 − �̂�𝐒𝐀

−1. (5) 

The trace of 𝐀 is referred to as the degree of freedom for signals (DOFS), which represents the number of independent pieces 220 

of information constrained by an observing system. 

4 Results and discussion 

4.1 Comparison of methane emissions from TROPOMI and GOSAT inversions 

Figure 3 shows the correction patterns of methane emissions (posterior - prior emissions) inferred respectively from TROPOMI 

and GOSAT inversions. Both inversions find that the prior inventory underestimates methane emissions from Northeast China 225 

(NEC) and Bangladesh (BAN) and overestimate emissions from Central South China (CSC). The two inversions also find 

similar correction patterns in Central North China (CNC) with upward adjustments over central Shanxi and downward 

adjustments over neighboring Henan province. These agreements reflect some consistencies between TROPOMI and GOSAT 

inversions at the regional level. 

 230 

TROPOMI and GOSAT inversions show large differences over important source regions, including East China (EC) and 

northern India (IND) (Figure 3). While the GOSAT inversion suggests that methane emissions over IND should be increased 

and those from EC decreased relative to prior estimates, the TROPOMI inversion finds the opposite. As a result, regional total 

methane emissions inferred by the two inversions differ by 7.7 Tg a−1 or 27% over IND (TROPOMI: 24.7±0.6 Tg a−1, GOSAT: 

32.4±0.7 Tg a−1) (errors reported for regional estimates are 1𝜎 standard deviations derived from posterior error covariance 235 

matrices) and by 7.0 Tg a−1 or 32% over EC (TROPOMI: 28.3±0.9 Tg a−1, GOSAT: 21.3±0.9 Tg a−1) (Figure 3c). In addition, 

the two inversions also disagree over the northwestern part of the domain (NWD including parts of Kazakhstan and northern 

Xinjiang, China and SXJC including mainly southern Xinjiang, China), where TROPOMI indicates large upward adjustments 

while GOSAT finds agreement with the prior inventory. 
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 240 

Figure 3: Spatial distributions of methane emission corrections (posterior - prior) inferred by (a) GOSAT and (b) TROPOMI 

inversions. (c) shows emissions aggregated by region as defined in blue rectangles in (a) and (b). Error bars represent the standard 

deviation of regional estimates derived from posterior error covariance matrices. These errors do not include systematic 

uncertainties due to inversion setups and are thus optimistic, but they are relevant for comparing results from two identically 

configured inversions. 245 

 

We perform sensitivity inversions to examine the impact of inversion configurations (i.e., optimizing emissions seasonally 

instead of annually, increasing prior error of methane emissions to 100%) on the above comparison of TROPOMI and GOSAT 

inversions. We find that the major findings of the comparison (agreement in NEC, BAN, and CSC; disagreement in EC, IND, 

NWD, SXJC) (Figure 3) are robust against these perturbations (Figure S5 and Figure S6), as the effects of inversion 250 

configurations are mainly systematic and therefore similar for both inversions. 

 

Table S2 summarizes methane emission estimates from TROPOMI and GOSAT inversions over the entire East Asia domain 

and over China. The two inversions find similar posterior methane emissions from East Asia (TROPOMI: 143.5±1.4 Tg a−1; 

GOSAT: 146.2±1.2 Tg a−1), with differences in China (TROPOMI: 74.9±1.0 Tg a−1; GOSAT: 68.1±1.0 Tg a−1) largely 255 

canceled out by differences in northern India. For China, we attribute 69.1 Tg a−1 for the TROPOMI inversion and 63 Tg a−1 

for the GOSAT inversion to anthropogenic emissions, based on prior sectoral fractions in each spatial cluster. These values 
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are at the high end of previous inversion-based estimates of 43-62 Tg a−1 (Deng et al., 2022; Lu et al., 2021; Miller et al., 2019; 

Qu et al., 2021; Saunois et al., 2020; Sheng et al., 2021; Stavert et al., 2022; Wang et al., 2021; Zhang et al., 2021; Zhang et 

al., 2022) and are higher than China’s latest submission to the UNFCCC (55 Tg a−1) for 2014 (UNFCCC, 2020). These previous 260 

inversions mainly used GOSAT observations but differ greatly in their inversion setups (e.g., time, domain coverage, spatial 

resolution, transport model), thus resulting in a considerable range of estimates. In contrast, the differences in inversions 

presented in this work are fully due to satellite observations. Our TROPOMI inversion results are consistent with a recent 

TROPOMI inversion study by Chen et al. (2022) who reported estimate of China’s total, anthropogenic, and natural methane 

emissions of 70.0 (61.6-79.9), 65.0 (57.7-68.4), and 5.0 (3.9-11.6) Tg a−1.  265 

 

4.2 Evaluation of inversion results with independent observations 

Both TROPOMI and GOSAT posterior simulations can reduce errors against their respective “training” data relative to the 

prior simulation (Figure 4), which is expected for successful inversions. However, concentration fields from the two 

simulations show varied degrees of agreement across the domain (Figure 5a). In this section, we use independent high-quality 270 

observations to evaluate whether GOSAT and TROPOMI inversion results are consistent, and in the case that they are not, 

which one is in better agreement with independent data. 

 

Table 1 summarizes performance metrics against these independent observations. GOSAT and TROPOMI inversions perform 

similarly at background sites such as PDI, UUM, WLG, and LLN. Both posterior simulations considerably reduce biases 275 

against in situ observations at WLG and PDI and achieve relatively good agreement at PDI, UUM, and WLG (absolute biases 

< 7 ppbv and 𝑅2 between 0.39-0.72). An exception is LLN (a high-mountain background site in the southeast of the domain) 

where biases grow larger in both posterior simulations (11.0 ppbv for GOSAT and 16.7 ppbv for TROPOMI). This is mainly 

caused by large seasonal biases in the eastern boundary (Figure 5c) (see Section 4.3.3 for more discussion). In fact, mean 

biases at LLN decrease from prior to posterior simulations during January to May of the year (Prior: -10.8 ppbv; GOSAT: 1.2 280 

ppbv; TROPOMI: 3.7 ppbv) but increase for June to December (Prior: 7.5 ppbv; GOSAT: 17 ppbv; TROPOMI: 24.7 ppbv). 

 

On the other hand, methane concentrations from the TROPOMI and GOSAT posterior simulations differ by ~10-20 ppbv at 

sites in methane source regions (i.e., XH and HF within EC and AMY in Korea downwind EC) (Figure 5a). Their differences 

in concentrations are due mainly to higher methane emissions inferred by the TROPOMI inversion than GOSAT over EC (by 285 

7.0 Tg a−1) and Korea (Figure 3). Our evaluation against in situ measurements at AMY and total column measurements at XH 

and HF shows consistently high biases of ~15-25 ppbv by the TROPOMI posterior simulation and a comparatively better 

agreement (bias ~8 ppbv) with the GOSAT posterior simulation (Table 1). Smaller mean biases are achieved by the prior 

simulation at XH and HF (Table 1), but this is largely because of the low background concentration caused by biases in prior 

boundary conditions (as indicated by the large negative prior bias at the upwind background site WLG; Table 1). Overall, our 290 
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results at AMY, XH, and HF supports the lower methane emissions from EC inferred by the GOSAT inversion over the 

TROPOMI inferences and indicates that TROPOMI XCH4 retrievals may have regional high biases over EC (more discussion 

in 4.3.1). 

 

Methane concentrations from the TROPOMI and GOSAT posterior simulations differ by 5.2 ppbv on average along the 295 

CARIBIC flight tracks over the Ganges Plain (Figure 5a). This difference is mainly due to different IND methane emissions 

between the two inversions (Figure 5b) with minor contributions from boundary condition bias inferences (Figure 5c). In the 

absence of concurrent independent observations over IND, we use CARIBIC aircraft observations that are only available from 

2012 to 2014 to evaluate the inversions. Since these observations predate TROPOMI, we can only indirectly evaluate by using 

a simulation driven by methane emissions from a GOSAT inversion for earlier years as an inter-comparison platform. We take 300 

inversion results from a previous study (Zhang et al., 2022), which performed an East Asia inversion also using GOSAT proxy 

XCH4 retrievals. Their inversion is almost identically configured as this study except that it was for 2010-2017. Consistent 

with our GOSAT results, the GOSAT inversion from Zhang et al. (2022) also found that IND methane emissions should be 

adjusted upward. 

 305 

Figure 4: Differences in XCH4 between simulations and satellite observations from GOSAT (a and c) and TROPOMI (b and d). (a) 

and (b) show results for the prior simulation, (c) for the posterior simulation driven by the GOSAT inversion, and (d) for the 

posterior simulation driven by the TROPOM inversion. Root-mean-square errors (RMSE, in ppbv) and mean biases (MB, in ppbv, 

simulation - observation) are inset. 
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 310 
Table 1: Evaluation of simulated methane concentrations against independent observationsa. 

Site Mean Bias±Standard Error (ppbv) 𝑹𝟐 b 

Prior GOSAT TROPOMI Prior GOSAT TROPOMI 

AMY -5.9±2.5 7.5±2.4 25.5±2.4 0.46 0.5 0.46 

PDI -20±2.3 -3.7±2.2 -1.3±2.3 0.67 0.7 0.69 

LLN 0.5±4.1 11.0±4.3 16.7±4.3 0.39 0.4 0.37 

UUM -9.0±2.1 5.8±2.1 6.6±2.2 0.71 0.71 0.72 

WLG -16.6±2.7 -4.3±2.9 -2.7±2.7 0.4 0.39 0.41 

XHc -3.4±1.0 7.9±0.9 15.2±1.0 0.72 0.74 0.73 

HFc,d 1.0±3.0 8.0±3.0 20.8±3.0 0.5 0.51 0.55 

CARIBICe - 14.9±0.8 9.7±0.8 - - - 

a Five sites report surface in situ measurements with PDI, LLN, UUM, and WLG being continental-scale background sites and AMY a 

regional site. Two sites (XH and HF) located in East China report ground-based total column measurements. The aircraft measurements 

(CARIBIC) are taken over northern India. 

b Inversions are unable to improve performance for temporal variability. This is limited by the fact that optimization of methane emissions 315 

is done only annually. Other factors include model transport errors and observation representativeness. 

c Small prior biases at XH and HF should not be interpreted as evidence for unbiased prior emissions from EC, because the prior simulation 

has substantial low biases in background concentrations as shown by data at WLG (upwind of EC). 

d Large biases between simulations and observations occur in five days (Jul. 22rd, Sept. 30th, Nov. 3rd, Nov. 23rd and Dec. 3rd) at site HF. 

Relatively low 𝑅2 in this line are largely affected by these data. Excluding this subset of observations results in correlation coefficients of 320 

~0.8 for all simulations and mean biases of -2.9±1.4, 4.4±1.3, and 17.6±1.7 ppbv for prior, GOSAT, and TROPOMI simulations, 

respectively. 

e Indirect evaluation is performed for CARIBIC data. The value in the ‘GOSAT’ column represents the mean bias between the posterior 

simulation of the 2010-2017 GOSAT inversion and 2012-2014 CARIBIC aircraft observations. We assume that GOSAT inversions are 

consistent between years so that the 2012-2014 bias is representative for the 2019 condition. The value in the ‘TROPOMI’ column is 325 

computed by subtracting the mean difference along aircraft paths between 2019 GOSAT and TROPOMI posterior simulations (~5.2 ppbv) 

(Figure 5a) from the 2012-2014 GOSAT bias. 𝑅2 is not reported for this indirect comparison. 

 

Comparison with these aircraft observations indicates that the 2012-2014 simulation driven by GOSAT-optimized emissions 

from Zhang et al. (2022) overestimates the aircraft observations by ~14.9 ppbv (Table 1). On the other hand, the 2019 posterior 330 

simulation from the GOSAT inversion is about 5.2 ppbv higher than that from the TROPOMI inversion along flight tracks 

(Figure 5a). Assuming that our 2019 GOSAT inversion is consistent with the 2010-2017 GOSAT inversion by Zhang et al. 

(2022) (mean bias 14.9 ppbv), it thus suggests that the TROPOMI inversion likely agrees better with the CARIBIC 
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observations (mean bias 9.7 ppbv) than the GOSAT inversion. Unlike the EC case, we find over IND relatively small 

systematic differences in TROPOMI and GOSAT XCH4 retrievals (Figure 6). Our analysis suggests that good data coverage 335 

of TROPOMI over IND is likely responsible for its better performance in constraining methane emissions (see section 4.3.2 

for more discussion). 

 

Figure 5: Differences in tropospheric methane concentrations (TROPOMI - GOSAT) between GOSAT and TROPOMI posterior 

simulations. (a) shows the total differences while (b) and (c) decompose the differences to methane emissions and boundary condition 340 
bias corrections. The corrections of boundary conditions (in ppbv) by the two inversions are shown. 

4.3 Attribution of TROPOMI and GOSAT inversion differences 

4.3.1 Regional retrieval bias 

To understand the cause of differences in the inferred methane emissions, we first compare coincident TROPOMI and GOSAT 

XCH4 retrievals. The comparison is done following Zhang et al. (2010) where a CTM simulation is used as an intercomparison 345 

platform to account for differences in prior profiles and vertical sensitivity between TROPOMI and GOSAT retrievals. 

TROPOMI XCH4 are on average higher than GOSAT XCH4 over EC by ~6 ppbv, SXJC by ~10 ppbv, and NWD by ~10 ppbv 

(Figure 6b), which lead to higher methane emissions inferred by the TROPOMI inversion over these regions (Figure 3). These 

differences persist throughout the year in EC and SXJC but appear to be highly seasonal in NWD. The largest TROPOMI-

GOSAT differences in NWD (~30-40 ppbv) occur between December and March. In other regions of interest, the annual 350 
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averaged TROPOMI-GOSAT XCH4 differences are in general less than 5 ppbv including IND where the two inversions find 

large discrepancies in posterior methane emissions. 

 

Independent ground-based observations are more consistent with the GOSAT inversion and thus do not support high emissions 

from EC inferred by the TROPOMI inversion, which indicates that TROPOMI retrievals have systematic regional high biases 355 

over EC. In addition, even with enhanced methane emissions in EC, SXJC, and NWD from the TROPOMI inversion, the 

posterior simulation cannot fully capture these high XCH4 concentrations (Figure 4d). This is also a hint of retrieval biases, as 

it indicates that the inversion finds it difficult to reconcile these high XCH4 patterns with known methane sources and wind 

information, given our specification of error parameters (𝐒𝐀, 𝐒𝐎, and 𝛾). 

 360 

Figure 6: Differences in XCH4 between GOSAT and TROPOMI (defined as TROPOMI-GOSAT) shown on the 0.5°×0.625° grid (a) 

and by region (b). (a) shows annual averages for each grid cell and (b) shows time series of regional averages. Regions are defined 

in blue rectangles of Figure 3a. 

In addition to EC, large XCH4 differences between GOSAT and TROPOMI are also found in the northwestern part of the 

domain (SXJC and NWD). Although we do not have independent observations over these regions, we speculate that 365 

TROPOMI retrievals have positive biases. SXJC is featured with high surface albedo (desert), while in NWD large TROPOMI 

and GOSAT differences occur during Dec and Mar when surface albedo is low (snow and/or ice cover) (Figure S7). High and 

low surface albedo scenes are known to be challenging for the full-physics retrieval. We suggest to apply the “blended albedo” 

filter to TROPOMI observations over these regions before inversion (Chen et al., 2022; Wunch et al., 2011). 

 370 

In our study, we use the TROPOMI science product from Lorente et al. (2021), who applied a posterior correction for surface 

albedo dependent biases identified in originally retrieved TROPOMI data. We find that this bias correction scheme does overall 

improve the agreement between TROPOMI and GOSAT in both their methane column concentrations (Figure S8) and 

posterior methane emissions (Figure S9). However, the agreement is not improved in EC, SXJC, and NWD. 

 375 
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Previous studies have reported decreased accuracy of GOSAT CO2 proxy retrievals in India owing to errors in the specified 

CO2 field (Parker et al., 2015; Schepers et al., 2012). Our result shows that TROPOMI XCH4 is lower than GOSAT XCH4 in 

the western Ganges Plain and higher in a few locations outside the Ganges Plain (Figure 6a), but the regional difference 

between the two retrievals is overall small (< 5 ppbv) in IND compared to those in EC, SXJC, and NWD (Figure 6b). 

Exceptions are November and December when the differences are up to 20 ppbv in IND.  380 

4.3.2 Spatial coverage of observations 

Although methane emissions from IND (along the Ganges Plain) inferred by the GOSAT inversion are considerably larger 

than those inferred by the TROPOMI inversion, we find relatively small differences in coincident XCH4 retrievals there  

(Figure 6), indicating that retrieval biases are unlikely the only cause of discrepancies. We have shown above that indirect 

comparison with CARIBIC tropospheric aircraft measurements favors lower emissions from IND estimated by the TROPOMI 385 

inversion (Table 1). In this section, we explore whether differences in data coverage between TROPOMI and GOSAT may 

contribute to the discrepancies in inferred emissions. 
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Figure 7: Averaging kernel sensitivities for GOSAT (a) and TROPOMI (b) inversions. Values represent the ability of observations 390 
to constrain methane emissions (0 = not at all, 1 = perfectly). The east Ganges Plain is marked by blue rectangles. Panel (c) compares 

the DOFS of regional emissions constrained by TROPOMI and GOSAT inversions. 

Figure 7 compares the ability of TROPOMI and GOSAT inversions to constrain the distribution of methane emissions, 

measured by averaging kernel sensitivities (diagonal elements of the averaging kernel matrix). This measure accounts for 

spatial and temporal data coverage, measurement and model errors (through 𝐒𝐎), and error correlations between closely located 395 

observations (through 𝛾 ). The sum of averaging kernel sensitivities over a region represents the number of pieces of 

independent information (also known as degree of freedom for signals, DOFS) constrained by an observation system. Figure 

7c shows that the TROPOMI inversion has a larger DOFS value (23) than does the GOSAT inversion (19) in IND indicating 

that methane emissions from IND are better resolved by TROPOMI observations. More importantly, the GOSAT inversion 

results in highly uneven spatial patterns in averaging kernel sensitivities with much lower values found in the east Ganges 400 

Plain (corresponding DOFS is 4.5 for GOSAT and 7.4 for TROPOMI; blue rectangles in Figure 7a and 7b) because of a small 

number of GOSAT observations there (Figure S2) which indicates that the large upward adjustment by the GOSAT inversion 
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over IND (Figure 3a) is associated with large uncertainties. In contrast, more uniform patterns in averaging kernel sensitivities 

are achieved by the TROPOMI inversion (Figure 7b). 

 405 

The above analysis demonstrates that the TROPOMI inversion benefits from better data coverage for estimating methane 

emissions from IND. However, over the entire East Asia domain, TROPOMI and GOSAT achieves almost the same (70) 

DOFS, with similar spatial patterns of averaging kernel sensitivities (Figure 7). Although the number of TROPOMI 

observations is much larger, strong error correlations in densely distributed data reduce the efficacy of individual observations, 

as shown by the difference in the regularization parameter determined for TROPOMI (𝛾 = 0.09) and GOSAT (𝛾 = 0.6) 410 

observations. Qu et al. (2021) found in coarse-resolution (2° × 2.5°) global inversions that GOSAT achieves ~50% more 

DOFS than TROPOMI. In our high-resolution regional inversion, TROPOMI achieves relatively higher DOFS which reflects 

a lower level of error correlation on the 0.5° × 0.625° resolution than 2° × 2.5°. It can also be conjectured that TROPOMI 

observations can provide more information than GOSAT observations in an inversion at a spatial resolution better than 0.5° × 

0.625°. 415 

4.3.3 Regional boundary conditions 

Our evaluation against surface observations shows improved agreement at background sites (i.e., PDI, UUM, and WLG) by 

both inversions (Table 1). This is achieved through simultaneous optimization for biases in boundary conditions together with 

emissions. As WLG, UUM, and PDI are respectively sensitive to the west, north, and south boundaries, this result suggests 

that satellite observations can correct biases along these boundaries, supporting our inversion configuration. Furthermore, we 420 

find that a sensitivity inversion not optimizing for boundary condition biases (S0) cannot reduce large prior biases at WLG 

and PDI and leads to unrealistically high methane emissions over East Asia (222 Tg a−1) including China (102 Tg a−1). 

 

An exception in Table 1 is LLN (a high-mountain background site in the southeast of the domain) where biases are increased 

by both inversions. Although the site AMY is also close to the east boundary, it has little influence from the southeast monsoon 425 

(Figure 5c). The biases show strong seasonality, with the largest occurring in summer consistent with ocean-to-land (southeast 

to northwest) transport by summer monsoon. Our analysis suggests that this increase in biases is caused by large adjustments 

at the east boundary (GOSAT: 3.7 ppbv; TROPOMI: 24.9 ppbv) rather than changes in methane emissions (Figure 5). This 

result indicates that satellite observations that are mainly over land are insufficient to constrain the east boundary which 

consists mainly of ocean. 430 

 

We then assess the impact of biases along the east boundary on inferred methane emissions. We perform sensitivity inversions 

using varied levels of fixed (not optimized by the inversion) east boundary conditions, and find relatively small effects on 

quantifying annual emissions as expected from prevailing westerlies in midlatitudes. A positive bias of 10 ppbv would result 

in a reduction of annual methane emissions by 2.9 Tg a−1 (~2%) over the East Asia domain, 1.6 Tg a−1 (~2%) over China, and 435 
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0.7 Tg a−1 (~3%) over EC (the most affected region) (Figure 8). Although the inversion has a weak constraint on the east 

boundary conditions, it does not have a great influence on the posterior emissions. However, if the inversion is performed on 

the monthly or seasonal basis (as opposed to annually in this study), summer results will be more severely affected, leading to 

seasonal biases in inferred methane emissions. 

 440 

Figure 8: Impact of biases in the east boundary on quantification of annual methane emissions. Inversions are performed by using 

fixed east boundary conditions. Sensitivity results are computed from perturbing these fixed east boundary conditions by 10 (S10), 

20 (S20), and 30 (S30) ppbv. 

5 Conclusions 

We estimate methane emissions from East Asia for 2019 by applying atmospheric methane column retrievals from two 445 

different satellite instruments (GOSAT and TROPOMI) to a high-resolution regional inversion framework, in which methane 

emissions are optimized on 600 spatial clusters with up to about half degree horizontal resolution. Our objective is to assess if 

consistent methane emissions from East Asia are inferred from inversion of GOSAT and TROPOMI observations. This 

information adds to the uncertainty characterization of satellite-data-based methane emission quantification. 

 450 

The two inversions estimate a similar magnitude of methane emissions from East Asia (TROPOMI: 143.5 Tg a−1; GOSAT: 

146.2 Tg a−1) as compared to prior estimate (130 Tg a−1) but differ by ~10% in China (TROPOMI: 74.9 Tg a−1; GOSAT: 68.1 

Tg a−1). Comparisons at the regional scale show that the GOSAT and TROPOMI inversions find consistent results over Central 

North China, Central South China, Northeast China, and Bangladesh, where the inferred emissions differ by less than 2.7 Tg 

a−1. However, the two inversions show large differences over some of the important regions including northern India and East 455 

China. The inferred methane emissions by GOSAT observations are 7.7 Tg a−1 higher than those by TROPOMI over northern 

India but 7.0 Tg a−1 lower over East China. Large differences in inferred emissions are also found in northwestern China and 

Kazakhstan (SXJC and NWD). 

 



19 

 

We evaluate the inversion results by comparing GOSAT and TROPOMI posterior simulations with independent observations. 460 

We find that independent ground-based in situ observations at AMY and total column observations at XH and HF are more 

compatible with lower methane emissions from East China inferred by the GOSAT inversion than those by the TROPOMI 

inversion. We also indirectly evaluate against tropospheric aircraft observations over India during 2012-2014 by using a 

consistent GOSAT inversion of earlier years as an inter-comparison platform, which favors lower methane emissions from 

northern India inferred by the TROPOMI inversion over those by the GOSAT inversion. 465 

 

The fact that high East China emissions inferred from TROPOMI are inconsistent with independent observations suggests high 

regional biases in TROPOMI retrievals over East China. Large retrieval differences between GOSAT and TROPOMI are also 

found in the northwestern China and Kazakhstan, which also leads to substantially higher methane emissions inferred by the 

TROPOMI inversion. Unfortunately, we do not have independent observations to evaluate the results in these two regions. 470 

However, we note that large TROPOMI XCH4 variations in Kazakhstan and northern Xinjiang are coincident with seasonal 

changes in surface albedo, suggesting possibly over-correction of surface albedo dependent biases in TROPOMI retrievals at 

the regional level. 

 

The two inversions show large discrepancies in emissions over northern India along the Ganges Plain, although GOSAT and 475 

TROPOMI XCH4 values agree reasonably well. We find that the discrepancy in emissions from norther India is due mainly to 

differences in data coverage. Analyses of the averaging kernel matrices show that the TROPOMI inversion can better constrain 

emissions from northern India (especially the eastern part of the Ganges Plain), owing to its good spatial coverage in the region 

as compared to highly uneven coverage by GOSAT. Over the entire East Asia domain, however, the two inversions show 

similar ability in constraining the distribution of methane emissions, despite a much larger number of TROPOMI observations. 480 

This is due mainly to strong error correlations in dense TROPOMI data at the 0.5° × 0.625° resolution. 

 

Both inversions show improved agreement at background sites supporting our optimization of boundary condition biases. An 

exception is LLN where both inversions show large positive concentration biases against in situ measurements, which results 

from over-corrections at the eastern boundary by inversions. However, our simulations demonstrate that methane concentration 485 

biases at the eastern boundary have relatively small impacts on annual emission inferences. The newer version of the 

TROPOMI methane product includes glint-mode ocean observations, which may benefit the optimization of eastern boundary 

conditions. 

Data availability 

The TROPOMI methane observations are from https://ftp.sron.nl/open-access-data-490 

2/TROPOMI/tropomi/ch4/14_14_Lorente_et_al_2020_AMTD (last access: 29 December 2021). The GOSAT methane 

https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/14_14_Lorente_et_al_2020_AMTD
https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/14_14_Lorente_et_al_2020_AMTD
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observations are the University of Leicester GOSAT Proxy XCH4 v9.0 (ceda.ac.uk), accessible through 

https://data.ceda.ac.uk/neodc/gosat/data/ch4/nceov1.0/CH4_GOS_OCPR/, or the Copernicus Climate Data Store 

(https://cds.climate.copernicus.eu/). Surface observations at PDI are downloaded from https://gaw.kishou.go.jp/. Surface 

observations at AMY, LLN, UUM, and WLG and aircraft observations from the CARIBIC project are available via the NOAA 495 

ObsPack CH4 product (https://gml.noaa.gov/ccgg/obspack/index.html). The Xianghe FTIR CH4 data are accessible through 

https://doi.org/10.18758/71021049. The Hefei FTIR CH4 from TCCON network can be accessed by contacting Prof. Cheng 

Liu at University of Science and Technology of China. 
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