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Abstract. The global carbon cycle is experiencing continued perturbations via increases in atmospheric carbon concentrations. 

Greenhouse gas satellites that are designed to retrieve atmospheric carbon concentrations can help observe seasonal to 

interannual variations and sources of carbon dioxide. Recent work has shown that these satellites are further applicable beyond 

their design specifications for directly identifying and quantifying surface emissions at various spatiotemporal scales. For 15 

example, simple mass balance approaches have been used to rapidly estimate surface methane fluxes from satellite atmospheric 

column methane retrievals. However, less attention has been placed on using satellite column CO2 retrievals to evaluate surface 

CO2 fluxes from the terrestrial biosphere at shorter timescales without inversion models. Such applications could be useful to 

monitor, in near-real time, biosphere carbon fluxes during climatic anomalies like drought, heatwaves, and floods, before more 

complex terrestrial biosphere model outputs become available. Here, we explore the ability of Orbiting Carbon Observatory-20 

2 (OCO-2) column-averaged dry air CO2 (XCO2) retrievals to directly detect and estimate terrestrial biosphere CO2 flux 

anomalies using a simple mass balance approach. Using CarbonTracker model reanalysis as a testbed, we first demonstrate 

that a previously developed, mass balance approach can estimate monthly surface CO2 flux anomalies from XCO2 

enhancements in the Western United States. The method is optimal when the chosen target region is spatially extensive enough 

to account for atmospheric mixing and has favorable advection conditions with contributions primarily from one background 25 

region. While errors in individual soundings partially reduce the ability of OCO-2 XCO2 to estimate more frequent, smaller 

surface CO2 flux anomalies, we find that OCO-2 XCO2 can often detect and estimate larger surface flux anomalies. OCO-2 is 

thus useful for near real time monitoring of the monthly timing and magnitude of regional terrestrial biosphere carbon 

anomalies. Any noise reduction in forthcoming greenhouse gas satellites and/or the existence of large surface carbon anomalies 

will likely enhance the ability to rapidly estimate surface fluxes at smaller spatiotemporal scales.  30 
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1 Introduction 

With ongoing anthropogenic emissions, atmospheric carbon concentrations continue to rise and alter the global climate system 

(Friedlingstein et al., 2022). Given many diverse carbon sources and sinks as well as transport of atmospheric carbon, it is a 

challenge to monitor these atmospheric carbon concentrations and carbon fluxes across the globe. Carbon measurement 35 

networks are available, but are spatially biased toward mid-latitude locations with little coverage in the tropics (Schimel et al., 

2015a). Therefore, atmospheric transport model assimilation efforts and land surface models are often used to quantify and 

monitor global carbon sources and sinks (Ott et al., 2015; Peters et al., 2007). However, these datasets typically have a longer 

latency and complex sources of error due to modeling assumptions about uncertain surface carbon flux drivers. 

 40 

Greenhouse gas satellites provide an ability to retrieve atmospheric column carbon concentrations and constrain global carbon 

cycle processes. Over the past two decades, satellite instruments such as SCanning Imaging Absorption spectroMeter for 

Atmospheric CartograpHY (SCIAMACHY), Greenhouse Gases Observing Satellite (GOSAT), and Orbiting Carbon 

Observatory-2 (OCO-2) have provided measurements of dry-air column carbon dioxide (XCO2) and in many cases also 

methane (XCH4) (Bovensmann et al., 1999; Eldering et al., 2017b; Kuze et al., 2014; Reuter et al., 2011). These satellites have 45 

indeed provided observational constraints on carbon-cycle seasonal and interannual variability with global coverage as desired 

beyond irregular spatial coverage of in-situ networks (Chen et al., 2021; Lindqvist et al., 2015). Additionally, since these 

column retrievals are partly a function of surface carbon fluxes (Keppel-Aleks et al., 2012), previous studies have assimilated 

these XCO2 and XCH4 retrievals into atmospheric inversion model frameworks to improve surface carbon flux estimates (Basu 

et al., 2013; Chevallier et al., 2014; Fraser et al., 2014; Halder et al., 2021; Houweling et al., 2015; Liu et al., 2017; Ott et al., 50 

2015; Zabel et al., 2014).  

 

It has not been widely investigated whether satellites like OCO-2 can directly monitor the timing and magnitude of shorter 

monthly timescale climate-carbon feedback events, such as those that evolve in the terrestrial biosphere and generate regional 

and short-lived XCO2 enhancements. OCO-2 was designed to observe regional-scale carbon sources and sinks to provide a 55 

constraint on carbon cycle seasonal and interannual variability (Crisp et al., 2004; Eldering et al., 2017b). Despite initial 

concern that the noise level of individual soundings would prevent direct monitoring of surface CO2 flux evolution at finer 

scales (Chevallier et al., 2007; Eldering et al., 2017a; Miller et al., 2007), there is growing evidence that satellite XCO2 

retrievals can directly detect and monitor surface carbon sources on smaller spatiotemporal scales. For example, many studies 

have demonstrated that OCO-2 and other satellites can detect anthropogenic emission plumes from urban areas using spatially 60 

adjacent satellite soundings (Hakkarainen et al., 2016; Irakulis-Loitxate et al., 2021; Kort et al., 2014; Nassar et al., 2017; 

Reuter et al., 2019; Schwandner et al., 2017; Zheng et al., 2020). For natural emission sources, these satellites are typically 

used to evaluate effects of an event averaged over seasons or multiple years, such as El Niño Southern Oscillation events and 

related biomass burning (Byrne et al., 2021; Chatterjee et al., 2017; Eldering et al., 2017b; Hakkarainen et al., 2019; Heymann 
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et al., 2016; Liu et al., 2018; Patra et al., 2017). However, recent studies interpret monthly XCO2 anomalies (from OCO-2) 65 

without inversion models to understand evolution of a flood event (Yin et al., 2020) and ocean and terrestrial biosphere carbon 

cycle co-evolution during the 2015-2016 El Niño (Chatterjee et al., 2017). As such, satellite XCO2 shows promise for directly 

monitoring the monthly timing and evolution of regional carbon-climate feedbacks from the biosphere at smaller 

spatiotemporal scales without model assimilation frameworks. Directly observing surface fluxes with satellite XCO2 would 

allow rapid detection, monitoring, and/or estimation of surface CO2 fluxes, which are only sparsely observed with ground 70 

networks and become available at longer latency from modeling efforts (Schimel et al., 2015a)  

 

A main consideration of evaluating XCO2 over smaller spatiotemporal scales is whether the surface carbon perturbation to 

XCO2 is above the XCO2 retrieval noise level. Surface carbon sources and sink anomalies ultimately need to be detected within 

a high background XCO2 variability, driven by atmospheric transport as well as surface fluxes (Basu et al., 2018; Hakkarainen 75 

et al., 2016). The observed XCO2 anomalies are typically under 2 ppm (Hakkarainen et al., 2019). Furthermore, XCO2 

anomalies attributed to the most extreme surface perturbations may be below 1 ppm (Chatterjee et al., 2017; Crisp et al., 2017; 

Miller et al., 2007; Weir et al., 2021). However, GOSAT and SCIAMACHY XCO2 retrievals have estimated uncertainty over 

1 ppm (Buchwitz et al., 2017a; Butz et al., 2011), which limits their ability to interpret even the strongest monthly XCO2 

anomalies due to surface fluxes. By contrast, OCO-2 XCO2 uncertainty is between 0.5 and 1 ppm for a given sounding 80 

(Eldering et al., 2017b; Wunch et al., 2017). With its greater number of daily soundings and higher resolution, aggregated 

regional-scale XCO2 uncertainty can decrease below 0.5 ppm (Chatterjee et al., 2017). This precision has allowed detection of 

regional declines in fossil fuel emissions on the order of 0.25-0.5 ppm during the COVID-19 pandemic (Weir et al., 2021), 

with caveats of limited anomaly detection on the lower end of this range (Buchwitz et al., 2021; Chevallier et al., 2020). As 

such, OCO-2 may provide an ability to monitor the evolution of smaller regional surface sources and sinks of CO2 more 85 

precisely at monthly timescales than previous spaceborne greenhouse gas instruments. 

 

Recently, XCH4 retrievals have been used to rapidly estimate surface methane fluxes using simple mass balance approaches 

(Buchwitz et al., 2017b; Pandey et al., 2021). These methods do not require transport models and perform reasonably well. 

However, it is unclear whether such an approach can be used for surface fluxes – CO2 fluxes tend to have more spatially 90 

homogenous surface sources and sinks compared to more spatially heterogeneous CH4 fluxes. Nearly all efforts to estimate 

surface CO2 fluxes from OCO-2 XCO2 retrievals have involved transport models and inversions (Byrne et al., 2021; Liu et al., 

2017; Palmer et al., 2019; Patra et al., 2017). The few studies estimating surface emissions directly from the XCO2 anomalies 

alone are empirical (rather than physically-based mass balance methods) in using model-based relationships between XCO2 

and surface CO2 fluxes (Heymann et al., 2016) or are specific to point source plumes at under kilometer scales rather than 95 

hundreds of kilometer scale areal sources (Zheng et al., 2020).  
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An equivalent approach using XCO2 in a mass balance would provide an ability to rapidly estimate regional total carbon flux 

anomalies from the terrestrial biosphere, which are difficult to estimate given their many contributions and require 

sophisticated models. Specifically, such a method could allow near real time monitoring of the duration, magnitude, and spatial 100 

extent of CO2 flux anomalies during extreme climatic events (Frank et al., 2015; Reichstein et al., 2013). Such applications 

are especially important for regional climate change hotspots like in the southwestern North America where droughts and 

heatwaves are becoming more frequent and intense (Cook et al., 2015; Schwalm et al., 2012; Williams et al., 2022). 

Analogously, a simple approach for estimating ecosystem water fluxes (i.e., triangle method; Carlson, 2007) has a legacy of 

continued use given its relatively sufficient accuracy for many applications compared to more complex land surface model 105 

approaches. Given the ongoing challenges of estimating surface fluxes at large spatial scales, we anticipate that it will be 

similarly useful to develop simple total surface carbon flux estimation approaches that are rapid, rely on observations alone 

(from remote sensing), do not require many modeling assumptions and ancillary data, and provide an independent estimate to 

evaluate model outputs. 

 110 

Here, we ask: can satellite retrieved XCO2 be used with mass-balance approaches to directly detect and estimate terrestrial 

surface CO2 flux anomalies, especially from the biosphere? Can surface CO2 flux anomalies be monitored with XCO2 at sub-

seasonal (i.e., monthly) scales? Which wind and spatial domain conditions are most suitable for coupling between XCO2 and 

surface CO2 fluxes such that XCO2 can be used to estimate surface CO2 fluxes? OCO-2 is chosen due mainly to its high 

precision and greater sensitivity to the lower atmosphere, which makes it more sensitive to surface fluxes than other greenhouse 115 

gas satellites (Eldering et al., 2017a). Recent algorithmic updates have also been shown to increase OCO-2 XCO2 retrievals’ 

representation of biospheric fluxes at subcontinental scales (Miller and Michalak, 2020). 

 

Addressing these questions here can help assess whether greenhouse-gas satellites can be used to monitor biosphere carbon 

responses to climatic anomalies at sub-seasonal timescales and in near real time (within 1–2-month latency). For example, 120 

greenhouse gas satellite XCO2 anomalies could be used as an initial assessment of an ongoing extreme event and guide more 

holistic monitoring and attribution of the event with other observational and model tools. This would provide a rapid carbon 

cycle monitoring capability not available with global models and sparse networks that have a lack of spatial coverage and/or 

longer latency (Ciais et al., 2014). These questions will also assess our ability to rapidly estimate regional biosphere fluxes in 

climate change hotspots as well as in the tropics (Byrne et al., 2017) which sequester the most fossil fuels but lack measurement 125 

networks (Liu et al., 2017; Schimel et al., 2015b). 

2 Methodology 
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2.1 Region Selection 

We evaluate the Western US (latitude of 33 N to 49 N and longitude of 124 W to 104 W) given its extent of natural 130 

ecosystems that serve as a carbon sink as well as the fact that it has become a hotspot for droughts, including an ongoing 

decadal-scale megadrought (Cook et al., 2015; Schwalm et al., 2012; Williams et al., 2022). In this region, we expect that 

terrestrial biosphere fluxes (i.e., photosynthesis, respiration, wildfire) will dominate CO2 surface flux anomalies rather than 

anthropogenic fluxes. We later show that this region additionally has favorable advection conditions for using XCO2 to assess 

surface fluxes (see Sect. 3.1). 135 

2.2 Datasets 

The study includes three components to assess the potential for using XCO2 to directly evaluate monthly surface flux 

anomalies. We first evaluated advection conditions where we use the modern-era retrospective analysis for research and 

applications, version 2 (MERRA2) wind vectors between the surface and 700 mb, which approximately captures the boundary 

layer (Gelaro et al., 2017; GMAO, 2015). In this study, we refer to advection as the horizontal transport of air, especially that 140 

in the boundary layer. This lower troposphere layer directly interacts with the surface fluxes that influence XCO2 (Buchwitz 

et al., 2017b; Pandey et al., 2021).  

 

Second, we tested the ability of XCO2 to estimate surface CO2 fluxes using CarbonTracker model reanalysis (CT2019B) as a 

testbed, which assimilates tower eddy flux and satellite atmospheric radiance observations into an atmospheric transport model 145 

and outputs hourly XCO2 and total surface CO2 fluxes from 2000 to 2018 (Peters et al., 2007). Tests performed using this 

model reanalysis dataset are meant to represent simulated “true” relationships between surface fluxes and XCO2 dynamics. 

However, we acknowledge model errors in this framework. A purely simulated environment with error free conditions is not 

possible here because coupling between surface CO2 fluxes and XCO2 require modeling and assumptions about atmospheric 

transport and emission physics. Therefore, we recognize that error in estimating surface CO2 fluxes from XCO2 will be partially 150 

a function of errors in modeling assumptions beyond that of errors in the simple mass balance approach.  

 

Third, we assessed the ability of observed XCO2 between September 2014 and July 2021 from the Orbiting Carbon 

Observatory 2 (OCO-2) to detect and estimate surface fluxes using mass balance (Eldering et al., 2017b). OCO-2 has an 

approximate 3 km2 resolution per sounding and 16-day revisit cycle with soundings at around 1:30 pm local time. We use 155 

OCO-2 level 2, bias-corrected, retrospective reprocessing version 10 of XCO2 (OCO-2-Science-Team et al., 2020). Quality 

flags were used to remove soundings with poor retrievals. Observations of total surface CO2 fluxes are only sparsely located 

in space. We, therefore, independently estimated surface fluxes from a biosphere model, fire reanalysis, and anthropogenic 

emission repositories. The Lund-Potsdam-Jena (LPJ) dynamic global vegetation model was driven with MERRA2 reanalysis 

forcing to output CO2 flux from net biome production (NBP) between January 1980 and July 2021 (Gelaro et al., 2017; Sitch 160 
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et al., 2003; Zhang et al., 2018). NBP models carbon fluxes from photosynthesis, respiration, land use change, and fire. Since 

LPJ only evaluates fire dynamics at the annual scale and wildfire can rapidly evolve over widespread areas in the Western US, 

fire carbon fluxes were obtained from Quick Fire Emissions Dataset (QFED) biomass burning emissions between 2000 and 

2021 to account for monthly fire dynamics in the total carbon fluxes (Koster et al., 2015). LPJ NBP annual fire emissions were 

removed from the total NBP and monthly QFED biomass burning emissions were added. Anthropogenic CO2 fluxes were 165 

obtained from CarbonMonitor for the Western US region between 2019 and 2021 (Liu et al., 2020). MODIS-based FluxSat 

gross primary production (GPP), though only evaluating photosynthesis and no respiration or disturbance components, 

provides another independent observation-based surface flux estimate to determine coupling between XCO2 and biospheric 

fluxes (Joiner and Yoshida, 2021, 2020). 

2.3 Wind Vector Analysis 170 

We assessed monthly averaged MERRA2 wind vectors between the surface and 700 mb across the Western US. We 

specifically used the eastward and northward wind fields from the MERRA2 assimilated meteorological fields 

(M2T3NVASM) (Gelaro et al., 2017). We first visually evaluated wind quiver plots. Next, the spatially averaged wind 

direction and speed were determined within the region and at each of its four borders. The average (or, here, “total”) wind 

velocity is determined within the region by averaging the velocity from all pixels in the region. The speed of winds entering 175 

the region at each border were computed by determining only the average velocity component of the wind entering the region. 

For example, at the western border, the eastward wind velocity component of the pixels along the western border of the domain 

were averaged. Finally, the percentage of the background region’s boundary layer air entering the domain for each of its four 

borders was estimated as the ratio of the wind vector component entering the region to the total wind vector. For example, at 

the western border of the domain, this percentage is computed as the speed of the eastward component of the wind velocity 180 

divided by the total velocity at the border. Negative values are set to zero to indicate that air from that background region does 

not enter the target domain on average. 

2.4 XCO2-Based Surface Flux Estimation 

First, XCO2 and CO2 surface fluxes in all cases were averaged to monthly and spatially averaged within the Western US target 

region. Monthly XCO2 and CO2 surface fluxes were deseasonalized by averaging all months in the available time series into 185 

an average 12-month climatology (i.e., all January values were averaged, all February values were averaged, and so on). This 

average climatology was subtracted from the raw time series to create an anomaly time series. Given that XCO2 includes a 

strong annual increasing trend, each of the twelve months were individually, linearly detrended first before deseasonalizing as 

in Chatterjee et al. (2017). 

 190 
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Total surface CO2 flux anomalies were estimated from XCO2 anomalies in the Western US using a simple mass balance 

approach previously applied to methane fluxes (Buchwitz et al., 2017b; Jacob et al., 2016; Varon et al., 2018). It was similarly 

used here to estimate surface CO2 fluxes (Q; in units of TgC/mo) using: 

𝑄 =  (∆𝑋𝐶𝑂2)(𝑉)(𝐿)(𝐶)(𝑀𝑒𝑥𝑝)(𝑀)          (1) 

XCO2 (ppm) is the difference in XCO2 between the target domain (here, the Western US) and the background region where 195 

the majority of the incoming winds originate. V is the ventilation wind velocity (in m/s units, but converted to km/month), 

which has been motivated previously to be best represented by boundary layer winds (Buchwitz et al., 2017b; Pandey et al., 

2021). Thus, while the full column CO2 concentrations were evaluated, the wind speeds in the lower atmosphere are considered 

in the mass balance model given their greater degree of interaction with the CO2 fluxes at the surface. Here, V is represented 

as the monthly averaged boundary layer wind speed within the target region. For the observation-based analysis, MERRA2 200 

wind fields are used while for the reanalysis framework study, CarbonTracker wind velocity outputs are used. L is the effective 

region length (km) meant to estimate the horizontal pathlength of the ventilation wind passing through the region and 

interacting with the surface flux. L can be estimated by the square root of the target region area. The model parameter, C, 

represents a model mass balance assumption that CO2 fluxes are spatially homogenous, and the ventilation wind is uniform 

and consistent across the region. This means there is a consistent, linear increase of XCO2 spatially (from east to west in the 205 

Western US region) as the horizontal winds move over a surface CO2 efflux. C is equal to 2 (unitless) under this assumption 

where the difference between XCO2 at the entrance and exit of the region (from the perspective of the horizontal wind) is twice 

that of the spatially averaged XCO2. Mexp (unitless) is an adjustment of the surface pressure, or the ratio of the target region’s 

surface pressure to standard atmospheric pressure. For the observation-based analysis, MERRA2 surface pressure is used while 

in the analysis using the reanalysis testbed, CarbonTracker surface pressure outputs are used. M converts the atmospheric 210 

carbon dioxide mixing ratio (or its concentration) to a total column mass considering the volume of the atmospheric column 

overlying the target region’s land surface. It additionally includes a conversion from CO2 to its carbon equivalent. M is 

therefore 4.2x10-6 TgC/(km2 ppmCO2).  

 

Previous demonstrations of Eq. 1 on methane fluxes evaluated the raw, rather than anomaly, XCH4 enhancements (Buchwitz 215 

et al., 2017b; Pandey et al., 2021). In the main analysis, we have removed XCO2 seasonality here due to many sources of 

seasonal atmospheric CO2 variability (atmospheric and surface-based) that contribute to XCO2, which hinders causal 

attribution of XCO2 changes to surface anomalies. Monthly anomalies of XCO2 can thus be more directly attributed to surface 

carbon flux anomalies than their raw variations can. However, we also evaluate raw XCO2 enhancements for comparison. 

 220 

The XCO2 estimated surface fluxes from Eq. 1 were compared with independently determined surface fluxes using the mean 

bias, root mean square difference (RMSD), and Pearson’s correlation coefficient. Two comparisons were performed: one in a 

reanalysis framework and another testing OCO-2 observations. In the CarbonTracker reanalysis tests, the surface fluxes were 
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estimated from CarbonTracker-output XCO2, wind velocity, and surface pressure using Eq. 1 and were compared against 

CarbonTracker-output surface CO2 fluxes, which represent the total surface CO2 flux from both natural and anthropogenic 225 

sources. In the observational assessment, OCO-2 XCO2 is used to estimate surface CO2 fluxes along with MERRA2 boundary 

layer wind velocity and surface pressure in Eq. 1. These XCO2-based surface CO2 flux estimates are compared to total surface 

CO2 fluxes, which were estimated using the sum of LPJ NBP model anomalies, QFED biomass burning anomalies, and 

CarbonMonitor fossil fuel estimates. Though CarbonMonitor is only available over a short record, we used the record to 

determine that the proportion of anthropogenic flux anomalies in the Western US contribute less than 5% to the surface 230 

anomalies (see Fig. S1). Therefore, we define total flux estimates of CO2 in the observation-based assessment to be the sum 

of LPJ NBP and QFED biomass burning anomalies, acknowledging that there may be additional smaller deviations due to 

fossil fuel emissions. By varying the target domain region size, these statistics were used to determine the optimal target region 

size in the Western US, which is sensitive to errors due to atmospheric mixing. This test ultimately determines whether 

atmospheric mixing over monthly timescales confounds the use of Eq. 1. These statistics were additionally used to assess the 235 

optimal wind speed and direction conditions for use of Eq. 1. Namely, these statistics were computed conditioning on 

ventilation wind speed and direction. Such wind conditions are highly important to assess in such pixel source mass balance 

methods (Varon et al., 2018). 

 

XCO2 anomalies and anomaly enhancements were additionally correlated directly with the surface fluxes to determine the 240 

degree of surface and atmospheric CO2 coupling. Specifically, OCO-2 XCO2 are correlated with the biosphere-only LPJ NBP 

and FluxSat GPP anomalies to determine how coupled XCO2 anomalies are to biospheric fluxes at monthly timescales.  

 

OCO-2-retrieved XCO2’s ability to detect the largest surface CO2 fluxes in the Western US is evaluated using: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑥,𝑦  =  
𝑁∆𝑋𝐶𝑂2>𝑦𝑡ℎ & 𝑄>𝑥𝑡ℎ+𝑁∆𝑋𝐶𝑂2<(1−𝑦𝑡ℎ) & 𝑄<(1−𝑥𝑡ℎ) 

𝑁∆𝑋𝐶𝑂2>𝑦𝑡ℎ +𝑁∆𝑋𝐶𝑂2<(1−𝑦𝑡ℎ) 
∗ 100     (2) 245 

The detection rate is the percentage of months XCO2 anomaly enhancements (XCO2) of a specified magnitude detect surface 

CO2 fluxes (Q) of a given magnitude. x is the percentile referring to monthly surface CO2 flux anomalies and y is the percentile 

referring to corresponding monthly XCO2 anomaly enhancements. N is a count of number of Western US domain-averaged 

pairs that satisfy the conditions in Eq. 2. For example, if x is 75 and y is 95, then the detection rate determines the number of 

XCO2 anomaly enhancements above the 95th percentile that are coincident with a surface CO2 flux anomaly of 75th percentile 250 

or above. Eq. 2 also considers the carbon uptake cases of negative XCO2 anomaly enhancements below the 5th percentile that 

coincide with a negative surface CO2 flux anomaly of 25th percentile or less. We use a convention of positive surface CO2 

fluxes being away from the ground. As a property of the detection rate metric, when conditioning on only data pairs when 

XCO2 anomaly enhancements are above the 95th percentile (y=95), the detection rate will decrease as the x percentiles are 

increased. This metric ultimately provides a measure of information that a given XCO2 anomaly enhancement holds about a 255 

corresponding surface CO2 flux anomaly. This detection rate was compared to detection rates by chance, which are equal to 
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100-x. We also alternatively evaluated whether the largest surface CO2 efflux anomalies influence the XCO2 anomaly signal 

by estimating the percentage of largest surface efflux anomalies that XCO2 observes a positive anomaly. We evaluate this 

metric in several global regions using OCO-2 XCO2 anomalies and FluxSat GPP to determine whether XCO2 anomalies can 

rapidly detect large surface biosphere CO2 fluxes from extreme events.  260 

 

Performance of these methods using the observation-based method was compared directly to the CarbonTracker simulation 

performance, with CarbonTracker tests serving as a “potential” or upper bound on performance given expected XCO2 

observation error from OCO-2. 

2.5 XCO2 Surface Flux Error Estimation 265 

Given known limitations of potentially restrictive greenhouse gas satellite measurement and retrieval errors (Buchwitz et al., 

2021), we estimated the effect of these XCO2 errors on carbon flux estimates, especially their impact on XCO2. OCO-2 XCO2 

error standard deviation is typically 0.6 ppm for a given observation. However, subtracting two XCO2 errors and spatial 

averaging in our procedure in Eq. 1 will have competing amplification and reduction effects on the error standard deviation of 

XCO2. Therefore, we estimated the spatially averaged XCO2 error standard deviation. First, we used a bootstrapping 270 

approach to assess subtracting a pair of two XCO2 errors drawn randomly from a normal distribution with mean zero and 0.6 

ppm standard deviation. Errors are assumed to be normally distributed, which is a general property (i.e., central limit theorem) 

arising from addition of independent, identically distributed satellite instrument errors. Second, we evaluated the response of 

the error estimate to averaging approximately twenty values (the typical number of soundings in each month in the target 

Western US domain), which provides a spatially averaged XCO2 error for both the target and background regions before 275 

subtracting the two values. Third, we investigated the role of positive spatial autocorrelation of errors on the overall XCO2 

error standard deviation, where autocorrelation can cause competing effects on XCO2 anomaly enhancement errors. Namely, 

if the errors are positively spatially autocorrelated within a given area, noise reduction from spatial averaging will be partially 

prevented. However, a spatially autocorrelated relationship between XCO2 errors of the adjacent target and background regions 

will reduce XCO2 errors because the XCO2 errors in the two regions would be positively related. 280 

3 Results and Discussion 

3.1 Advection Condition Assessment 

Given that we wish to use XCO2 anomalies in the Western US with only a simple source pixel mass balance method and not 

an atmospheric transport model and/or assimilation framework to monitor surface CO2 fluxes, an understanding of the existing 

advection conditions in the selected domain is critical. Therefore, we first assessed the boundary layer advection conditions 285 

(Fig. 1). Eq. 1 was previously applied to smaller spatiotemporal scales (within a kilometer) to estimate emissions of spatially 
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heterogeneous natural or urban methane plumes (Pandey et al., 2021). However, CO2 generally has more spatially homogenous 

surface sources and sinks. Furthermore, we wish to evaluate fluxes from terrestrial ecosystems that exceed tens of kilometers 

in spatial scales. The need for larger areas and at the monthly aggregated scales thus includes consideration of more 

atmospheric mixing of widespread CO2 surface sources and sinks. 290 

 

As such, it is necessary to understand the advection conditions needed to apply Eq. 1 over large spatial scales, at monthly 

timescales, and for CO2 that has more spatially distributed surface contributions than CH4. Under these considerations, the 

most ideal conditions for Eq. 1 appear to be winds that, on average over a month, consistently originate from a single 

background region and flow steadily and consistently (without greatly changing directions) through the region throughout the 295 

year. These conditions typically hold in the Western US where winds originate from the Pacific Ocean and flow west to east 

consistently through the domain (Fig. 1). By contrast, the advection conditions may be more complex in a region like the 

Southeast US which experiences changes in background source of incoming advection from the Midwestern US in the fall and 

winter to the Gulf of Mexico in the spring and summer. These variable background conditions and inconsistent wind directions 

may create large errors when applying Eq. 1.  300 

 

A more comprehensive evaluation of the boundary layer wind vectors reveals that the Pacific Ocean at the region’s west border 

comprises the main source of advection entering the target region throughout the year (Fig. 2a). Winds along its northern, 

southern, and eastern borders have little contribution to the region. This suggests that Eq. 1 can be applied more confidently 

in assuming only one background region contributes advection to the Western US. More detailed evaluation of the incoming 305 

advection from the Pacific Ocean reveals that incoming winds at the western border and throughout the region are continuously 

of non-negligible magnitude and consistently to the east (Figs. 2b and 2c). The exception is spring and summer months when 

winds in the Pacific Ocean shift to the south and the speed of eastward winds into and within the region are lower.  

 

Nevertheless, these conditions initially indicate that the Western US region is a candidate region to detect and estimate surface 310 

fluxes using satellite XCO2 retrievals. We test the ability to estimate surface CO2 fluxes from XCO2 under these advection 

conditions using CarbonTracker reanalysis hereafter. 
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Figure 1. Mean monthly boundary layer (surface up to approximately 700 mb) conditions from MERRA2 in each season. The Western US 

target domain is identified with borders. 315 

 

 

Figure 2. Mean monthly advection conditions in the Western US target domain in Fig. 1. (a) Proportion of wind vector entering region from 

each bordering region. Values do not add to 100% because each border’s wind vector is evaluated individually for its contribution to the 
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Western US domain. (b) Mean wind velocity and (c) mean wind direction within the target region and eastward into the target domain from 320 

the Pacific Ocean on its western border.  

3.2 Reanalysis Evaluation 

Here, using CarbonTracker (CT2019B) model reanalysis as a testbed, we evaluate by how much the advection conditions 

present limitations for detecting and estimating surface CO2 fluxes using XCO2 anomalies in the Western US. We tested the 

effect of domain area size, wind angle, and wind speed on the mass balance surface flux estimation. 325 

 

Using CarbonTracker, we find that a smaller target region has a large decline in ability to estimate surface fluxes with Eq. 1 

(Fig. 3). This reduction in performance of the simple mass balance model is expected because a smaller area will increase 

importance of turbulent mixing compared to effects of mean horizontal ventilation wind, as was suggested previously (Varon 

et al., 2018). It will also include XCO2 contributions from surface sources outside of the selected target region due to mixing. 330 

For example, with turbulent mixing on smaller spatial scales, large CO2 surface effluxes from surfaces adjacent to the region 

may mix with atmospheric CO2 within the region, causing a larger positive XCO2 anomaly than what can be expected from 

the surface contributions from within the small target domain itself. In fact, the increasing positive mean bias with smaller 

selected target areas suggests this may be the case where XCO2 within the target region includes contributions from more 

surface area than the mass balance model can predict (Fig. 3c). The decorrelation of the XCO2 surface flux estimates with the 335 

modeled surface fluxes with smaller surface areas further supports this claim where external XCO2 anomaly variations may 

be effectively contributing to the XCO2 anomalies within the domain (Fig. 3a). Ultimately, this target region size analysis 

motivates choosing larger target areas for application of Eq. 1 on CO2 flux estimation, especially over monthly timescales.  

 

In the context of this application for studying the terrestrial biosphere, we speculate that choosing larger regional domains 340 

creates greater requirements on the need for consistent advection conditions over a larger spatial scale, limiting the number of 

areas of the globe where such a method can be applied. If boundary layer winds tend to change directions within the domain 

or originate from multiple background regions, a smaller domain may simplify the conditions for use of Eq. 1. However, the 

choice of a smaller area will have competing effects of an increased error due to mixing and turbulence as suggested by Fig. 3 

and previous work (Varon et al., 2018). As such, in cases of more complex advection conditions, regions the size of that in 345 

Fig. 3e may be optimal.  

 

While variations in the monthly averaged wind speed through the Western US (typically ranging from 1 m/s to 10 m/s) does 

not consistently impact XCO2 surface flux estimation, large deviations in wind angle from the eastward direction incoming 

from the Pacific Ocean can negatively impact flux estimation (Fig. 4). Namely, there is a general reduction in the mass balance 350 

equation’s (Eq. 1) ability to estimate surface fluxes with increasing wind angle (Fig. 4a). While absolute errors only weakly 

linearly increase with wind angle (r = 0.12; p-value=0.07) (RMSD’s correlation with wind angle is r = 0.53, p-value = 0.16 
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with only eight bin samples), a more frequent occurrence of higher errors occurs above absolute angles of 60 degrees from the 

eastward plane (Fig. 4a). As such, the switch to northerly winds in the Pacific Ocean during the summer months (Fig. 2c) may 

the cause of seasonally increased surface CO2 flux estimation errors (Fig. 4c). This is expected because the advection of air 355 

from the Pacific Ocean into the Western US would be reduced, creating a disconnect between the atmospheric carbon 

concentrations of the Western US target region and Pacific Ocean in these months (Fig. 1). The effect of variations in monthly 

averaged wind speed appears to have less of an influence on errors than wind angle (Fig. 4b). Specifically, there is a correlation 

of 0.02 (p-value=0.7) between wind speed and absolute errors. However, we expect errors would increase if wind speeds 

approach zero. Wind speed may also become a larger error source when investigating shorter time steps or more spatially 360 

heterogeneous anthropogenic plumes (Jacob et al., 2016; Varon et al., 2018). 

 

Overall, the simple mass balance estimation of surface fluxes with XCO2 (Eq. 1) appears robust to the range of advection 

conditions in the Western US, except potentially for summer months when Pacific Ocean winds can shift from westerlies to 

northerlies (Fig. 5). XCO2 anomaly enhancements are positively correlated with surface flux anomalies in the Western US, 365 

especially in cases when the wind angle has a non-negligible eastward component (Fig. 5a). This correlation is maintained 

when applying Eq. 1 to estimate surface fluxes (Fig. 5b). The comparison improves when consideration of winds that have a 

wind angle from the eastward reference of less than 60 degrees, or between -60 and 60 degrees when 0 degrees is to the east 

(Fig. 5). However, we caution that an RMSD of ~20 TgC per month suggests that the approach should be used only as a rapid, 

first estimation of surface CO2 flux anomalies.  370 

 

We additionally show that the method can estimate the surface CO2 fluxes using the raw XCO2 enhancements (i.e., not 

anomalies), especially when winds have a substantial eastward component (Fig. 5c). However, using the XCO2 anomalies 

removes seasonal XCO2 enhancement variability that may not be attributed to surface fluxes, which collapses the data pairs 

more along the 1:1 line (compare Figs. 5b and 5c). 375 

 

Therefore, our tests with CarbonTracker model reanalysis reveal that XCO2 can indeed be used to viably estimate monthly 

surface CO2 fluxes with simple mass balance approaches, especially over spatial extents of natural ecosystems. However, the 

method requires favorable conditions mainly related to advection. Namely, the region size must be large enough to account 

for atmospheric mixing that could dominate transport in smaller domains over monthly timescales. Additionally, based on 380 

Figures 4 and 5 and assumptions of the mass balance model, winds must flow consistently through the region with a similar 

direction. Given the need for XCO2 enhancements, the transport should originate from the same background source region 

within a given month rather than from multiple background regions. We speculate that the method may additionally work well 

in the Western US given the upwind Pacific Ocean region tends to have low anthropogenic sources and relatively lower CO2 

surface emissions and anomalies altogether. Thus, the XCO2 enhancement variability will likely not be dominated by the 385 

background region’s XCO2 variability.  
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While the simple mass balance approach appears suitable for use based on a model reanalysis framework, repeating the 

procedure with observations such as with OCO-2 presents additional challenges, such as with observation error and 

spatiotemporal coverage. As such, CarbonTracker performance here effectively serves as an upper bound on predicting XCO2’s 390 

ability to be coupled to surface CO2 fluxes, acknowledging modeling sources of error. We address these issues in the following 

section.  

 

 

Figure 3. Performance of the XCO2-based CO2 flux estimation varying the target domain area. (a) Correlation, (b) root mean square error, 395 

and (c) bias between the CarbonTracker monthly surface flux anomaly outputs (considered here as the reference) and the CO2 flux anomaly 

estimation with Eq. 1 based on XCO2 from CarbonTracker. (d, e, f) Target domain sizes and locations where their domain border colors 

match the dot symbol colors in panels A-C. 
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 400 

Figure 4. Effect of monthly averaged horizontal ventilation wind conditions on carbon flux anomaly estimation using CarbonTracker 

outputs. Carbon flux anomaly estimation error with respect to boundary layer (a) wind angle and (b) wind speed. (c) Carbon flux anomaly 

estimation error averaged over each month of year. Absolute error is the absolute value of the difference between each pair of CarbonTracker 

XCO2 flux estimates using Eq. 1 and CarbonTracker surface CO2 flux outputs. 
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 405 

Figure 5. CarbonTracker XCO2 flux estimation overall performance in the Western US considering a spatially expansive target domain 

(latitude = 33 N - 49 N, longitude = 124 W - 104 W as shown in Fig. 3f). Only CarbonTracker data was used here where its XCO2, wind 

velocity, and pressure outputs were used to estimate surface CO2 fluxes with Eq. 1, which are compared to CarbonTracker total surface CO2 

flux outputs. (a) Relationship between CarbonTracker-output surface CO2 flux anomalies and CarbonTracker XCO2 anomaly enhancements. 

(b) Relationship between CarbonTracker surface CO2 flux anomaly outputs and mass balance-based surface CO2 flux estimates based on 410 

CarbonTracker XCO2 anomaly enhancements. (c) Same as (b) but estimating raw total surface fluxes with total XCO2 enhancements instead 

of anomalies. Legends show correlations and root mean square differences between the CarbonTracker XCO2-based flux estimates (Eq. 1) 

and CarbonTracker surface CO2 flux outputs. “Eastward Wind Only” includes only data pairs when the incoming wind direction from the 

Pacific Ocean is between -60o and 60o angles from eastward reference direction. 

3.3 Observations Evaluation 415 

3.3.1 OCO-2 XCO2 Anomaly Coupling to Surface CO2 Fluxes 

OCO-2 XCO2 anomalies are coupled to biospheric flux anomalies in the Western US region as expected from the 

CarbonTracker analysis in Sect. 3.2 (Fig. 6). XCO2 anomalies negatively correlate with land surface model simulated net 

biome production and satellite-derived gross primary production anomalies, especially in the Western US domain (Fig. 6). For 
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example, monthly carbon uptake from increases in NBP and GPP are coincident with decreases in XCO2 and vice versa. Their 420 

coupling is less consistent and reduced in the East US, presumably due to less ideal advection conditions where transport 

anomalies confound direct surface-atmosphere CO2 coupling. Nevertheless, the Western US surface-atmosphere CO2 coupling 

appears weaker than that shown in Fig. 5, which may be due to several additional sources of error that we investigate in Sect. 

3.3.2. 

 425 

The fact that spatially averaged XCO2 anomalies are coupled to surface fluxes (Fig. 7) suggests that observed XCO2 shows 

promise for directly detecting and estimating large-scale biospheric surface fluxes without the use of land surface and 

atmospheric transport assimilation models. The XCO2 coupling to land surface carbon fluxes tends to increase when Pacific 

Ocean background XCO2 are subtracted from Western US XCO2 (Fig. 7a) (i.e., when XCO2 anomaly enhancements are used). 

The coupling further increases when only months with eastward flowing winds into the region are considered, at least for the 430 

total flux estimates (Fig. 7a). Such increased coupling accounting for advection in this way is expected from the CarbonTracker 

model reanalysis tests (Fig. 5a). This is because XCO2 anomalies coupling with surface CO2 fluxes are confounded by XCO2 

change due to transport conditions. For example, many Western US XCO2 anomalies appear correlated to Pacific Ocean 

background XCO2 anomalies in 2015 to 2016 suggesting that Western US XCO2 variations were dominated by atmospheric 

transport rather than surface fluxes in this time period (Fig. 7c). Therefore, XCO2 anomaly enhancements can increase this 435 

coupling to the surface CO2 fluxes by removing the confounding variations of background Pacific Ocean CO2 concentrations 

transported into the region (Fig. 7d). However, some large anomaly enhancements may occur in months that advection was 

not consistently flowing through the region, thus requiring conditioning on wind angles. This removes cases of large XCO2 

differences between the two regions that may not necessarily be enhancements because atmospheric transport between these 

two regions was reduced in these months (examples can be seen in late 2017 in Figs. 7c and 7d).  440 

 

Even after isolating the effects of background Pacific Ocean XCO2 and abnormal advection conditions, the magnitude of these 

observation-based correlations of 0.32 (Fig. 7a) are lower than that of CarbonTracker reanalysis tests at a correlation of 0.54 

(Fig. 5a). Indeed, the total fluxes are estimated by LPJ NBP and QFED burning biomass which include model estimations and 

assumptions with their own sets of errors. However, the surface-atmosphere carbon coupling is similar considering only 445 

photosynthesis fluxes from independently estimated GPP (Fig. 7a), which suggests a large role of the biosphere on the carbon 

fluxes and that LPJ model error may not be the main contribution to the correlation reduction. We ultimately expect that a 

main source of reduction in coupling originates from OCO-2 measurement and retrieval error. 
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 450 

Figure 6. Observed OCO-2 XCO2 anomalies are correlated with independent biospheric surface fluxes in Western US (with no time lag). 

(a) Correlation between OCO-2 XCO2 anomalies and LPJ modeled net biome production anomalies. (b) Correlation between OCO-2 XCO2 

anomalies and observation-based FluxSat gross primary production anomalies. Negative correlations indicate that XCO2 anomalies are 

coupled with the biospheric surface anomalies (i.e., increases in biosphere carbon uptake result in decreases in XCO2). Pixels with stippling 

indicate p values less than 0.1. 455 
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Figure 7. (a) Pearson correlation coefficients between the XCO2 anomalies and total surface CO2 flux estimates (LPJ model and QFED 

biomass burning) as well as with observation-based FluxSat (** p-value<0.05; * p-value<0.1). (b) Map of Western US and background 

Pacific Ocean background domain definitions. (c) Spatially averaged OCO-2 XCO2 anomalies in the Western US and background Pacific 460 

Ocean. (d) Western US XCO2 anomaly enhancements from the background Pacific Ocean OCO-2 XCO2 anomalies. Red symbols are months 

when the incoming wind direction from the Pacific Ocean was between -60o and 60o angles from eastward reference direction. 

3.3.2 Error Estimation of XCO2 Anomaly Enhancements 

While subtracting a pair of XCO2 anomalies to obtain anomaly enhancements increases errors above that of individual OCO-

2 XCO2 retrievals, spatial averaging of XCO2 across a large domain reduces these errors (Fig. 8). OCO-2 XCO2 error standard 465 

deviations for individual sounding retrievals are estimated to be 0.6 ppm in the Western US and 0.55 ppm in the Pacific Ocean. 

This results in an error standard deviation of approximately 0.82 ppm for XCO2 anomaly enhancements (or difference between 

a pair of XCO2 retrievals between the Western US and Pacific Ocean) (Fig. 8a). However, assuming normally distributed and 

independent errors, spatial averaging of approximately 20 observations within the Western US target region and 10 
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observations in the Pacific Ocean background region (typical OCO-2 observation counts in the study region in Fig. 7B) reduces 470 

this error standard deviation of Western US XCO2 anomaly enhancements to around 0.2 ppm (Fig. 8b). This error magnitude 

is similar to that found in Chatterjee et al. (2017) when averaging over monthly timescales over a region. We find that spatial 

autocorrelation of errors (relaxing assumption of independent errors) may not greatly change this error standard deviation due 

to competing effects (Fig. 8c). Specifically, spatial autocorrelation of errors removes some noise reduction benefits when 

averaging within a region due to a spatial relationship between the errors, rather than random errors. However, this spatial 475 

relationship in errors also results in a partial canceling of errors when subtracting the spatially averaged Western US XCO2 

anomaly error from the spatially averaged Pacific Ocean XCO2 anomaly error to obtain XCO2 anomaly enhancements. 

Ultimately, a given month’s XCO2 anomaly enhancement in our Western US target region is about 0.2 ppm, or a third of that 

of a single XCO2 retrieval’s error. Therefore, aggregating XCO2 anomalies and enhancements spatially and temporally may 

allow detection of smaller XCO2 anomalies given that the emission source anomalies themselves are on the order of the spatial 480 

and temporal aggregation. 

 

Figure 8. XCO2 enhancement error based on subtracting two noisy, spatially averaged XCO2 retrievals using simulated additions of random 

XCO2 error. For a given sounding, OCO-2 XCO2 retrieval error is on average 0.6 ppm in the West U.S. and 0.55 ppm in the Pacific Ocean. 

(a) XCO2 enhancement error considering subtracting two independent, noisy measurements. (b) XCO2 enhancement error considering the 485 

spatial averaging of XCO2 retrievals in the target and background regions, with all errors assumed to be independent. (c) XCO2 enhancement 

error considering the spatial averaging of XCO2 retrievals in the target and background regions, but assuming errors are spatially 

autocorrelated within each region and spatially autocorrelated between the background and target region.  

3.3.3 OCO-2 XCO2 Estimation of Monthly Surface CO2 Fluxes 

Carbon flux anomaly estimates from OCO-2 XCO2 using Eq. 1 weakly co-vary with modeled and observation-based surface 490 

CO2 flux anomalies (Fig. 9). In general, the simple mass balance method increases its ability to estimate surface CO2 fluxes 

when conditioning on the “best” atmospheric transport conditions as shown across correlation, mean bias, and RMSD statistics 
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(Fig. 9). However, the performance of the flux estimation method is reduced overall when using OCO-2 observations compared 

to CarbonTracker model reanalysis tests (shown for comparison in Fig. 9).  

 495 

Even though spatial averaging reduces observation error of XCO2 anomaly enhancements, we show that reduced simple mass 

balance flux estimation performance can largely be attributed to OCO-2 XCO2 retrieval errors (from OCO-2 instrument 

measurement error and algorithmic retrieval error). Specifically, adding this approximate 0.2 ppm error randomly to 

CarbonTracker XCO2 outputs results in comparison statistics that approach that based on observed OCO-2 (see Figs. 9b to 9d 

especially for correlation and RMSD). Other error sources likely also explain the reduced comparison between OCO-2-based 500 

estimates and surface modeled estimates including MERRA2 wind vector error, reference surface flux error (from LPJ 

biosphere model and QFED fire estimate error), inconsistent XCO2 spatiotemporal coverage within each region, and Eq. 1 

mass balance model errors. However, our test reveals that greenhouse gas satellite retrieval error is a dominant component of 

the overall error in estimating surface fluxes. Ultimately, the retrieval error in OCO-2 XCO2 hinders reliable estimation of 

nominal monthly surface flux anomalies using rapid mass balance approaches, as expected from simulations (Chevallier et al., 505 

2007). Indeed, more accurate greenhouse-gas satellite missions would be needed to approach the potential surface flux 

estimation performance with mass balance models as suggested by CarbonTracker reanalysis. 

 

Figure 9. (a) Spatially averaged OCO-2 XCO2 flux anomaly estimates compared to total flux estimate anomalies (LPJ model and QFED 

biomass burning) and FluxSat gross primary production anomalies. Positive anomalies are fluxes away from the surface. Comparison 510 
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statistics between OCO-2 flux anomaly estimates and LPJ NBP anomalies with (b) correlation (** p-value<0.05; * p-value<0.1), (c) mean 

bias, and (d) root mean square difference (RMSD). CarbonTracker comparisons are shown for reference repeated from Fig. 5. 

CarbonTracker+XCO2 Error includes simulated error added to CarbonTracker modeled XCO2 on the order of that shown in Fig. 8. The 

statistics are computed for all data pairs as well as only those considering months when the incoming wind direction from the Pacific Ocean 

was between -60o and 60o angles from eastward reference direction.  515 

3.3.4 OCO-2 XCO2 Detection and Estimation of Extreme Surface CO2 Fluxes 

Although OCO-2 measurement noise limits estimation of smaller monthly surface flux anomalies using XCO2, OCO-2 XCO2 

retrievals show promise in directly detecting and estimating the largest surface CO2 flux anomalies. Despite OCO-2 noise 

levels (of 0.2 ppm to 0.6 ppm depending on averaging of individual soundings), large XCO2 anomalies above the noise are 

likely indicative of a large surface flux anomaly in the Western US. This is expected from previous studies that XCO2 0.5 ppm 520 

changes or greater may be detecting a physically-driven atmospheric carbon concentration anomaly (Chatterjee et al., 2017). 

 

To highlight the ability of XCO2 anomaly enhancements to directly detect extreme carbon cycle events in the Western US, we 

evaluate the XCO2 detection rate (Eq. 2) of surface CO2 anomalies across a range of nominal to extreme conditions (Fig. 10). 

Figs. 10a to 10C show that when XCO2 anomaly enhancements are large (>90th percentile), they are frequently detecting above 525 

average surface CO2 flux anomalies for both observation and model assessments. As expected from Figs. 8 and 9, the detection 

rates are higher in the CarbonTracker reanalysis testbed across all conditions than for observations, likely due to OCO-2 XCO2 

retrieval error considerations. Additionally, as expected from positive correlations between surface CO2 flux anomalies and 

XCO2 anomaly enhancements, larger XCO2 anomaly enhancements are better able to detect surface CO2 flux anomalies than 

smaller XCO2 anomaly enhancements. Figs. 10d to 10f specifically show the degree to which an XCO2 anomaly enhancement 530 

can detect a given magnitude of surface CO2 flux anomalies greater than by chance. CarbonTracker XCO2 anomaly 

enhancements can detect surface carbon flux anomalies of at least the same percentile well above that by chance in nearly all 

cases (Fig. 10f). However, OCO-2 XCO2 anomaly enhancements can only detect surface CO2 flux anomalies when XCO2 

anomaly enhancements are the largest (>90th percentile), demonstrating how OCO-2 retrieval error largely removes the surface 

flux information content of a smaller magnitude XCO2 anomaly (Figs. 10d and 10e). Nevertheless, the largest OCO-2 XCO2 535 

anomalies enhancements within the Western US are frequently associated with a surface CO2 flux anomaly.  

 

In the context of terrestrial biosphere extremes (i.e., droughts and heatwaves), we additionally evaluate whether extreme 

surface CO2 efflux anomalies create a positive XCO2 anomaly (Fig. 11). Using OCO-2 XCO2 anomalies alone (without 

enhancements), the XCO2 detection rate of the largest biospheric surface efflux anomalies (>95th percentile) exceeds 50% (Fig. 540 

11). Thus, OCO-2 will detect the surface CO2 flux signal as a positive XCO2 anomaly under extreme biosphere conditions, 

beyond only by chance. OCO-2 XCO2 anomalies detect 60% of the largest total surface efflux anomalies in the Western US 

study domain (Fig. 11a). With reduced satellite instrument noise, the detection could increase to 80%, a detection rate potential 
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estimated from CarbonTracker. When considering photosynthesis anomalies available globally with the MODIS-based 

FluxSAT GPP dataset, XCO2 positive anomalies have detected between 60% and 100% of the most extreme negative 545 

photosynthesis anomalies across several regions of the world (Fig. 11). These other regions, including the Sahel, Central 

Europe, and West Australia, were selected given that they have had extreme biospheric anomalies over the past two decades 

(Fig. 11). In assessing only the XCO2 anomalies, we are not considering transport conditions, where regions like West Australia 

have transport conditions less conducive for surface flux estimation with Eq. 1 than the Western US. Nevertheless, when a 

climatic event is ongoing and model outputs of surface carbon fluxes are not yet available, OCO-2 XCO2 anomalies can be 550 

rapidly consulted. If a large XCO2 anomalies is detected, it can be used as the motivation to initiate a more detailed 

investigation and/or monitoring campaign of the climatic event. 

 

We also show that the simple mass balance method (Eq. 1) approximately estimates these extreme fluxes that it detects in the 

Western US (Fig. 12). The 2021 fluxes in March and June were part of an extreme Western US drought and heatwave event 555 

(Philip et al., 2021; Williams et al., 2022). The LPJ model and QFED wildfire estimates indicated that these total efflux 

anomalies increased to a peak in Spring 2021 (Fig. 9a). In June, the OCO-2-based flux estimate finds a 122 TgC/mo anomaly, 

while the independent total flux estimate from LPJ and QFED is 140 TgC/mo (Fig. 12). Therefore, the simple mass balance 

method provides a viable method to rapidly estimate the extreme fluxes from a satellite observation source compared to more 

complex modeling and reanalysis. In the months when XCO2-based flux anomalies did not compare with that estimated in 560 

2020, the total flux estimates (from LPJ and QFED) potentially were positively biased when FluxSat GPP did not indicate 

large biosphere flux anomalies (Fig. 9a). Therefore, the extreme flux estimates from other sources may have had model related 

errors that resulted in the reduced comparison. 

 

While such a simple mass balance approach does not supplant a rigorous flux assimilation, it serves as a rapid estimation 565 

approach that can be used within one to two months latency. This is significant given the typical one-month latency of 

greenhouse gas satellites like OCO-2, while total surface flux estimates that require biosphere model ensemble 

implementations are often multi-month or multi-year efforts. As such, greenhouse gas satellites can be consulted for rapid 

monitoring and attribution to determine whether an ongoing extreme climatic anomaly (i.e, the Western US 2020-2021 

drought) is creating substantial carbon cycle anomalies.  570 
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Figure 10. OCO-2-retrieved XCO2 anomaly enhancements that are more extreme (>90th percentile) can detect surface CO2 anomalies. By 

contrast, less extreme retrieved XCO2 anomaly enhancements (50th-80th percentile) have little ability to detect surface CO2 anomalies. (a, b, 

c) Western US observed XCO2 anomaly enhancements detection rate of surface CO2 fluxes for (a) OCO-2 XCO2 detection of LPJ NBP 575 

surface fluxes and (b) OCO-2 XCO2 detection of FluxSat GPP surface fluxes. This is compared to detection rates from the reanalysis testbed 

in the absence of satellite retrieval error for (c) CarbonTracker XCO2 detection of CarbonTracker CO2 surface fluxes. Each detection rate 

value is estimated by binning all XCO2 anomaly enhancements above the given percentile (y-axis) and determining the number of coincident 

monthly surface CO2 flux anomalies that are above the given CO2 flux percentile (x-axis). Detection rates are computed based on Eq. 2. (d, 

e, f) Same as (a, b, c) but subtracting the rate of detection by chance. Values that are positive (blue) indicate that XCO2 anomaly 580 

enhancements are better able to detect surface fluxes than by chance. 
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Figure 11. OCO-2 XCO2 anomalies alone can detect extreme CO2 fluxes. (a) OCO-2 detection rate of extreme surface fluxes (or positive 

XCO2 anomalies when surface flux anomalies are the largest). The legend shows the datasets used to estimate the detection rate including 585 

pairs of OCO-2 XCO2 anomalies and total flux estimates from LPJ and QFED, pairs of CarbonTracker XCO2 anomalies and CarbonTracker 

total flux estimates, and pairs of OCO-2 XCO2 anomalies and photosynthesis flux estimates from FluxSat GPP. (b) Reference map of regions 

shown in (a).  

 

 590 
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Figure 12. OCO-2 can roughly estimate extreme surface CO2 fluxes. OCO-2 estimation of extreme surface fluxes in the Western US target 

domain. Total flux estimates are surface fluxes estimated from a combination of a dynamic global vegetation model (LPJ) and wildfire model 

reanalysis estimates. Error bars are determined from bootstrapping error estimates determined in Fig. 8c. Fossil fuel anomalies are negligible 

in magnitude compared to the biosphere and fire sources (see Fig. S1). 

4 Conclusions 595 

We demonstrate that OCO-2 satellite retrieved XCO2 can be used with mass balance frameworks to detect and estimate 

biospheric CO2 flux anomalies at monthly timescales, which exceeds expectations of such greenhouse gas satellites. The 

application tested here ultimately requires aggregating XCO2 over regional spatial domains with careful consideration of 

transport conditions. Namely, the surface flux estimation mass balance method using XCO2 improves when using larger spatial 

domains and when wind conditions are on average from the same background location in a given month and flow consistently 600 

through the target domain. The larger spatial domain reduces errors due to turbulent atmospheric mixing of surface CO2 sources 

that would hinder use of a source pixel mass balance method. Additionally, use of the larger area inherently requires 

aggregation of several XCO2 soundings which reduces the magnitude of XCO2 errors.  

 

Satellite XCO2 anomalies from OCO-2 are particularly useful for evaluating more extreme biosphere fluxes. We show here 605 

that the timing and magnitudes of extreme CO2 fluxes can be monitored where OCO-2 XCO2 instrument and retrieval error 

hinder evaluating smaller flux anomalies. In the absence of this error, the performance of these methods greatly improve as 

suggested by CarbonTracker reanalysis. Therefore, any reduction in XCO2 measurement and retrieval error in upcoming 

greenhouse gas missions (i.e., GeoCarb) may extend the ability to globally monitor the timing and magnitude of biosphere 

anomalies at shorter timescales (beyond that of their design specifications to evaluate aggregated carbon cycle responses at 610 

longer than seasonal timescales). Furthermore, even if advection conditions prevent use of the simple pixel source mass balance 

method, extreme fluxes at least can be detected using only the observed monthly XCO2 anomaly within the target domain. In 

addition to the Western US study domain here, this anomaly-only approach is demonstrated in other domains like the Sahel, 

Europe, and Western Australia that may have more complex advection conditions.  

 615 

The value of such a means to monitor and estimate total surface carbon fluxes is manifold: it is simple in not requiring many 

assumptions and ancillary datasets; it is rapid and therefore can be used as a first estimate in monitoring extreme events; it uses 

XCO2 which integrates all surface CO2 flux sources, the components of which otherwise need to be estimated separately in 

bottom-up approaches; since it is based mainly on observations independent of land surface models, it can be used as 

independent estimate to evaluate global model surface carbon flux outputs.  620 
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We recommend that future work determine all global terrestrial ecosystems with favorable wind conditions as defined in the 

study where the surface carbon flux estimation method can be applied. A particular focus should be placed on tropical locations 

where measurement networks are sparse with consequently uncertain model outputs as well as where the biosphere takes up 

the largest proportion of anthropogenic emissions. These methods should also be developed for near real time monitoring in 625 

known climate change hotspot regions, as is done here for the Western US hotspot, where more frequent and intense climate 

anomalies are expected in the future. 

5 Code/Data Availability 

All datasets used here are freely availability. CarbonTracker reanalysis data (CT2019B) are available at 

https://gml.noaa.gov/ccgg/carbontracker/. MERRA2 reanalysis wind and pressure fields are available at 630 

https://disc.gsfc.nasa.gov/datasets/M2T3NVASM_5.12.4/summary. OCO-2 XCO2 retrievals and QFED outputs are available 

at https://disc.gsfc.nasa.gov. The LPJ model code is publicly available at https://github.com/benpoulter/LPJ-wsl_v2.0.  
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