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Abstract. In this study, three methods including the random forest (RF) algorithm, boosted regression trees (BRTs) and the 

improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) were adopted for 15 

investigating emission-driven interannual variations in concentrations of air pollutants including PM2.5, PM10, O3, NO2, CO, 

SO2 and (NO2+O3) monitored in six cities in south China from May 2014 to April 2021. The first two methods were used to 

calculate the deweathered hourly concentrations, and the third one was used to calculate decomposed hourly residuals. To 

constrain the uncertainties in the calculated deweathered or decomposed hourly values, a self-developed method was applied 

to calculate the range of the deweathered percentage changes (DePCs) of air pollutant concentrations on an annual scale 20 

(each year covers May to the next April).  These four methods were combined together to generate emission-driven trends 

and percentage changes (PCs) during the seven-year period. Consistent trends between the RF-deweathered and BRTs-

deweathered concentrations and the ICEEMDAN-decomposed residuals of an air pollutant in a city were obtained in 

approximately 70% of a total of 42 cases (for seven pollutants in six cities), but consistent PCs calculated from the three 

methods, defined as standard deviation being smaller than 10% of the corresponding mean absolute value, were obtained in 25 

only approximately 30% of all the cases. The remaining cases with inconsistent trends and/or PCs indicated large 

uncertainties produced by one or more of the three methods. The calculated PCs from the deweathered concentrations and 

decomposed residuals were thus combined with the corresponding range of DePCs calculated from the self-developed 

method to gain the robust range of DePCs where applicable. Based on the robust range of DePCs, we identified significant 

decreasing trends in PM2.5 concentration from 2014 to 2020 in Guangzhou and Shenzhen, which were mainly caused by the 30 

reduced air pollutant emissions and to a much less extent by weather perturbations. A decreasing or probably decreasing 

emission-driven trend was identified in Haikou and Sanya with inconsistent PCs, and a stable or no trend was identified in 

Zhanjiang with positive PCs. For O3, a significant increasing trend from 2014 to 2020 was identified in Zhanjiang, Shenzhen, 
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Guangzhou and Haikou. An increasing trend in (NO2+O3) was also identified in Zhanjiang and Guangzhou, and an 

increasing or probably increasing trend in Haikou, suggesting the contributions from enhanced formation of O3. The 35 

calculated PCs from using different methods implied that the emission changes of O3 precursors and associated atmospheric 

chemistry likely played a dominant role than did the perturbations from varying weather conditions. Results from this study 

also demonstrated the necessity of combining multiple decoupling methods in generating emission-driven trends in 

atmospheric pollutants.  

1 Introduction  40 

With rapid economic growth in the past several decades across China, air pollution has become increasingly severe in most 

parts of the country (Chan and Yao, 2008; He et al., 2002). A turning point emerged in the most recent decade, benefited 

from stringent emission control measures implemented in China since 2013, such as “Atmospheric Pollution Prevention and 

Control Action Plan” (APPCAP) (Chen et al., 2020; Vu et al., 2019; Zhang et al., 2020). Trends in long-term monitored 

pollutants are important indicators of the effectiveness of the emission control policies (Hogrefe et al., 2000; Rao et al., 45 

1997). This is particularly true in China, where air pollutant emissions have not been updated in the annual reports of 

ecology and environment issued by local governments at the city level since 2014. The Multi-resolution Emission Inventory 

for China (MEIC) was developed in 2012 by Tsinghua University to estimate anthropological air pollutant emissions, but it 

was updated every 2-3 years and only up to 2017.  

To evaluate existing national emission control strategies in China (such as APPCAP), several studies have analyzed air 50 

pollutants concentrations measured at the national monitoring stations (Hu et al., 2021; Xu and Zhang, 2020; Zhao et al., 

2021). However, trends and interannual variations in air concentrations of the monitored pollutants were affected by not only 

emission changes but also varying meteorological conditions and/or weather systems (Dang et al., 2021; Lin et al., 2021; Vu 

et al., 2019; Zhang et al., 2019a; Zhang et al., 2019b; Zhao et al., 2020; Henneman et al., 2015; Foley et al., 2015; Astitha et 

al., 2017; Hogrefe et al., 2002). For example, Zhao et al. (2020) reported that the observed large declines in PM2.5, SO2 and 55 

CO concentrations on the national scale during the COVID-19 outbreak were primarily caused by poor dispersion 

meteorological conditions. Vu et al. (2019) argued that the PM2.5 target of 60 µg·m-3 would have not been achieved in 

Beijing in the winter of 2017 if without the favourable weather conditions for rapid dispersion and precipitation scavenging 

of air pollutants. Similarly, Lin et al. (2021) suggested that meteorological factors significantly reduced O3 concentrations 

from 2013 to 2020 in eastern and central China, as indicated by the reversed O3 trends after removing the major 60 

meteorological effects. It is thus essential to decouple the total trends in pollutants concentrations into portions caused by 

varying meteorological factors and weather conditions and by emission changes so that the mitigation effects can be 

evaluated accurately. 

In literature, the multiple linear regression (MLR) method is considered as the simplest approach to decouple the effects of 

meteorological factors from changed emissions on the trends in air pollutants concentrations (Borlaza et al., 2022; Chen et 65 
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al., 2020; Li et al., 2019a; Otero et al., 2018; Zhai et al., 2019). However, the MLR analysis sometimes suffers from the auto-

correlation inherently existing between different meteorological parameters (Yao et al., 2009). To overcome this weakness, 

“meteorological normalization” tools have been developed based on statistical modelling (Chen et al., 2020; Gong et al., 

2021; Grange and Carslaw, 2019; Li et al., 2020; Xiao et al., 2021; Xue et al., 2020; Zhai et al., 2019). For example, the 

machine learning techniques, such as the random forest (RF) algorithm and boosted regression trees (BRTs), performed 70 

better than the traditional methods like MLR (Carslaw and Taylor, 2009; Grange et al., 2018) or other air quality numerical 

models like Weather Research and Forecasting-Community Multi-scale Air Quality model (Vu et al., 2019; Foley et al., 

2015; Astitha et al., 2017) in analyzing air quality trends and meteorological impacts. These methods have been used widely 

in relevant studies across China, e.g., in Beijing (Vu et al., 2019), Beijing-Tianjin-Hebei region (Qu et al., 2020) and North 

China Plain (He et al., 2021b). In the methods mentioned above, meteorological data are a necessity. In contrast, another 75 

exiting method called the empirical mode decomposition (EMD) and its updated version the improved complete ensemble 

empirical mode decomposition with adaptive noise (ICEEMDAN) directly decompose time series of air pollutants 

concentrations and deduct the perturbation from meteorological factors on the residuals (trend) to some extent (Colominas et 

al., 2014; Fu et al., 2020). It should be pointed out that, due to the non-linearity of chemical reactions related to air pollutants, 

none of the existing methods is perfect in decoupling the effects of dominant factors in the total trends of pollutants 80 

concentrations. To evaluate the uncertainties in trend analysis, combining results from several different methods are 

recommended (Hogrefe et al., 2002; Qiu et al., 2022; Xiao et al., 2021; Xue et al., 2020).  

The updated global air quality guidelines from World Health Origination (WHO) declared in 2021 brought new challenges 

to policy makers for establishing more stringent emission control policies, even in the relatively clean regions like south 

China.  For example, air quality in Hainan province needs to be further improved to meet the new WHO standards, and the 85 

demonstration of Hainan Free Trade Port and declaration of the province as a National Ecological Civilization 

Demonstration Zone in China make this task more challenging. Even more challenges exist for the cities in Guangdong 

province because of their higher air pollutant concentrations than in Hainan (Gong et al., 2021; He et al., 2017; Li et al., 

2019b; Zhang et al., 2019b). To accommodate these challenges, the effect of APPCAP needs to be first assessed regionally 

in south China. For this purpose, we analyzed seven-year (from May 2014 to April 2021) concentration data of six criteria 90 

air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in south China, of which 

two (Haikou and Sanya) are in Hainan province and four (Guangzhou, Shenzhen, Zhuhai and Zhanjiang) are in Guangdong 

province. Three different analysis methods were used to identify emission-driven interannual variations and perturbations 

from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis 

uncertainties. 95 

2 Materials and methods 

2.1 Monitoring stations and monitored air pollutant concentrations and meteorological data 
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Six cities in south China, including Haikou and Sanya in Hainan Province and Guangzhou, Shenzhen, Zhuhai and Zhanjiang 

in Guangdong province, were selected in the present study (Fig. 1). There are two monitoring stations in Sanya, four in 

Zhuhai, five in Haikou, six in Zhanjiang and 11 stations in both Guangzhou and Shenzhen (Fig. 1 and Table S1). The hourly 100 

average air quality data for six criteria pollutants (PM2.5, PM10, O3, NO2, CO and SO2) were downloaded from the China 

National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/sssj/) for every monitoring station. The city-

specific hourly air quality data represent the average of all the stations in the same city. Data before May 2014 were 

incomplete, and thus, only the data after May 2014 were used for the analysis. One whole year data covered from May to the 

next April, e.g., the first-year annual average (referred to as 2014 annual average in the discussion below) covered from May 105 

2014 to April 2015, and the last year average (referred to as annual average in 2020 below) covered from May 2020 to April 

2021. For a pollutant in a city, 52204–58695 hourly data were available in seven years (Table S2). Note that all 

concentrations were converted to the values under the standard conditions (273.15K, 1 atm) for consistency. The sum of NO2 

and O3 was also analyzed together with the six pollutants mentioned above, and their sum was calculated by considering 

their different molecular weights, i.e., [NO2+O3] = [NO2]*48/46 + [O3]. Note that concentrations of volatile organic carbons 110 

(VOCs) were not reported by CNEMC and this group of pollutants is not considered in the present study. Thus, a total of 42 

cases (seven pollutants in six cities) were analysed for deweathered trends.  

Hourly meteorological data including wind speed (ws), wind direction (wd), air temperature (at), relative humidity (rh) and 

dew point (dp) were obtained from the meteorological observational station at a nearby airport (Fig. 1 and Table S1), which 

are accessible from the NOAA Integrated Surface Database (ISD) by using the “worldmet” R package (Carslaw, 2021). To 115 

improve the performance of machine learning models (Hou et al., 2022; Shi et al., 2021), other meteorological parameters, 

including boundary layer height (blh), total cloud cover (tcc), surface net solar radiation (ssr), surface pressure (sp), and total 

precipitation (tp), which were extracted from the European Centre for Medium Weather Forecasting’s Reanalysis-5 (ERA5) 

hourly data (https://cds.climate.copernicus.eu/), and air mass clusters based on the Hybrid Single-Particle Lagrangian 

Integrated Trajectory (HYSPLIT) 72-hour back trajectories at hourly resolution 120 

(https://www.ready.noaa.gov/HYSPLIT_traj.php) were also used including for modelling. The meteorological data of each 

city, ERA5 hourly data and the calculated back trajectories were combined with city-specific hourly air quality data as input 

for the machine learning analysis. 

2.2 Data analysis methods 

Two machine learning methods, including the RF algorithm and the BRTs, were separately used to calculate the 125 

deweathered hourly concentrations. The third method, the ICEEMDAN, was used to decompose hourly residuals of air 

pollutants. The Mann-Kendall (M-K) method was then applied to the deweathered and decomposed values to extract the 

trends and calculate the percentage changes (PCs). A self-developed method was further applied to calculate the range of the 

deweathered percentage changes (DePCs) of air pollutant concentrations in annual scale. The three PCs and DePCs were 

http://www.cnemc.cn/sssj/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://www.ready.noaa.gov/HYSPLIT_traj.php
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combined for constraining the uncertainties and generating a robust range of DePCs. Fig. 2 shows the framework of this 130 

study with the four methods to be applied.  

The RF algorithm was performed based on the “rmweather” R package (Grange et al., 2018) and the “ranger” R package 

(Wright and Ziegler, 2017), and the BRTs was performed based on the “deweather” R package (Carslaw et al., 2012; 

Carslaw and Taylor, 2009). The application of these packages has been well documented in literature, e.g., analyzing long-

term trends in concentrations of air pollutants (Grange and Carslaw, 2019; Ma et al., 2021; Mallet, 2020), assessing impact 135 

of clean air actions (Vu et al., 2019; Zhang et al., 2020), and evaluating the response of air quality during the COVID-19 

lockdown (Dai et al., 2021; Shi and Brasseur, 2020; Wang et al., 2020; Munir et al., 2021; Lovric et al., 2021). The 

independent input variables to the two machine learning methods include temporal variables (hour, day, weekday, week and 

month), meteorological parameters (ws, wd, at, rh, dp, blh, tcc, ssr, sp and tp) and monitored pollutant concentrations. The 

top three most influential meteorological variables in each modeling scenario are listed in Table S3. The inputs were 140 

randomly divided into two groups: the training dataset that account for 80% of the data and a testing dataset that contained 

the remaining 20%. The performance was evaluated by statistical metrics included the correlation coefficient (R2), root mean 

square error (RMSE), mean bias (MB), mean fractional bias (MFB) and mean fractional error (MFE). The formulas used to 

calculate RMSE, MB, MFB and MFE are as follows: 

                                                              RMSE = �∑ (𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
                                                              (Equation-1) 145 

    MB = 1
𝑁𝑁
∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑁𝑁
𝑖𝑖=1                                                              (Equation-2)  

MFB = 2
𝑁𝑁
∑ �𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖

𝑃𝑃𝑖𝑖+𝑂𝑂𝑖𝑖
�𝑁𝑁

𝑖𝑖=1 × 100%                                                     (Equation-3)  

MFE = 2
𝑁𝑁
∑ �|𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖|

𝑃𝑃𝑖𝑖+𝑂𝑂𝑖𝑖
�𝑁𝑁

𝑖𝑖=1 × 100%                                                   (Equation-4)  

in which Pi and Oi represent the ith predicted and observed values, N represents the number of data used to test. Note that 

United States Environmental Protection Agency (USEPA) proposed the criteria and goal values for MFE and MFB to 150 

evaluate the air quality modelling performance, which are MFE≤75% and MFB≤±60% for criteria and MFE≤50% and 

MFB≤±30% for goal (USEPA, 2007). No such criteria value has been set for the other parameters defined in the above 

equations. 

The indices of PM2.5 in Guangzhou are shown as an example in Fig. 3, and the summary of all air pollutants in the six cities 

can be found in Table S4. In Fig. 3, the minimum RMSE values obtained for the PM2.5 test in Guangzhou and used for the 155 

final calculation are 12.1 (RF algorithm) and 12.3 (BRTs), respectively. R2 values are 0.93 (RF algorithm) and 0.91 (BRTs), 

respectively, implying that the predicted values of PM2.5 by the two methods well reproduce the observations. The MB 

values are -0.22 (RF algorithm) and 0.01 (BRTs), respectively, implying that the BRTs better reproduced the observations 

than RF algorithm in this case. Note that MB of zero would indicate an ideal prediction. The calculated MB being deviated 

from zero implies the deweathered hourly concentrations being suffered from the errors to some extent, and the errors would 160 

automatically transfer into the deweathered trends and PCs. MFB and MFE values were less than 30% and 50%, respectively, 
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for both RF algorithm and BRTs (Fig. 3), satisfying the goal values set by USEPA. This suggests well performance in 

reproducing observations using the two methods, as listed in Table S4. Note that the two machine learning methods always 

underpredicted PM2.5 concentrations in cases with high PM2.5 levels, although such cases occurred infrequently. Such an 

underprediction has also been reported in air quality model predicted PM2.5 concentrations, which could be due to missing 165 

mechanisms enhancing formation of PM2.5 under poor dispersion conditions (Chang et al., 2020; Liu et al., 2021a; Zheng et 

al., 2015; Shen et al., 2022). In these circumstances, the training for two machine learning methods may not be sufficient to 

yield good prediction.  

In the two machine learning methods, the meteorologically normalized air pollutant concentrations at a particular time were 

calculated by averaging 1000 model predictions with meteorological variables randomly resampled from the study period 170 

(2014−2020), following the approach proposed by (Hou et al., 2022).  

𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑 = 1
1000

∑ 𝑥𝑥𝑖𝑖,𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑1000
𝑖𝑖=1                                                           (Equation-5) 

where xi,pred is the model-predicted concentration for a given meteorological condition at time i, and ydew is the corresponding 

deweathered hourly concentration at a particular time under averaged meteorological condition. In this study, the 

deweathered hourly concentrations by the BRTs contained more spikes than those by the RF method. Some of the spikes 175 

may be caused by episodic emissions such as agriculture biomass burning, wild forest fires, holiday fireworks, construction 

activities (Video S1) and accidents and associated enhanced secondary pollution (Chen et al., 2017; Dai et al., 2021; Enayati 

et al., 2021; Chen et al., 2021; Shen et al., 2022), etc. Meteorological data from the nearest airport in every city were used as 

input for the two machine learning methods, as has been the choice in most existing studies (Vu et al., 2019; Mallet, 2020; 

Wang et al., 2020; Dai et al., 2021; Ma et al., 2021). The data should reflect synoptic weather conditions and be suitable for 180 

modelling hourly pollutant concentrations averaged from multiple sites in a city.  

The ICEEMDAN method (Colominas et al., 2014), which is an improved version of the EMD method, overcomes the “end-

effect” originally existing in EMD, providing modes with less noise and avoiding the spurious modes. The original data can 

be decomposed and expressed as: 

𝑥𝑥 = ∑ 𝑑𝑑𝑖𝑖 + 𝑟𝑟𝑘𝑘
𝑖𝑖=1                                                                 (Equation 6)  185 

where x is the original data, di is the ith intrinsic mode function (IMF), k is the total number of IMFs, and r is the final 

residual. This method has been applied in various fields, such as financial prediction (Zhou and Chen, 2021) and air quality 

assessment (Luo et al., 2020). The implementation of the ICEEMDAN method is based on a Python package named PyEMD 

(Laszuk, 2017). The number of modes needs to be pre-set in this method, which was chosen based on sensitivity test results 

with the following two criteria: 1) only one oscillation cycle should be kept in the real residual; and 2) combining the real 190 

residual and the final mode would end up two or more oscillation cycles. For example, the decomposed residual plus the last 

mode was finally used as the real ICEEMDAN-decomposed residual for PM2.5 in Guangzhou, Shenzhen, Zhanjiang and 

Zhuhai (Fig. S1a-d, f) while the decomposed residual was used directly as the real ICEEMDAN-decomposed residual for 

PM2.5 in Haikou (Fig. S1e). Note that the ICEEMDAN method requires a complete time series of data. Approximately 5% 
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data were missing for each air pollutant in each city (Table S2), but the missing data did not occur at the identical hour in 195 

two consecutive days, except PM10 concentration in Zhanjiang. For the special cases of PM10 in Zhanjiang, the missing data 

were replaced by the average values of the observed data between the nearest day before and after at the identical hour. This 

approach of replacing missing data may introduce a small uncertainty on the decomposed residuals.                            

In this study, we also developed a novel method to study emission-driven interannual variations in air pollutant 

concentrations by calculating the range of DePC on an annual scale based on an earlier approach proposed by Yao and 200 

Zhang (2020) (referred to the self-developed method in the present study). Details of this method are presented in the 

Supplement, with an example of calculating the range of DePC of PM2.5 concentration between two years (May 2020 – April 

2021 relative to May 2014 – April 2015) in Guangzhou (Table S5 and Fig. S2). There are five steps in this method, including 

1) reconstructing the time series of data in any two years to the same size; 2) conducting correlation analysis using the 

reconstructed data in any two years and removing outliers after the inflection point (Fig. S2); 3) repeating step 2) to remove 205 

more outliers; 4) calculating the range of DePC; and 5) evaluating residual perturbations by varying weather conditions. The 

main advantages of this method include 1) avoiding the calculation of the deweathered hourly concentrations or decomposed 

hourly residuals of air pollutants in which their uncertainties are unpredictable; 2) confirming the accuracy of DePC when 

the range of DePC is sufficiently narrow; and 3) identifying the large perturbation from varying weather conditions on DePC 

when the range of DePC is broad.  210 

The M-K analysis is employed to resolve the trends in the time series of the annual average concentration of each pollutant. 

Qualitative trend results revolved by the M-K method include 1) an increasing/decreasing trend with a P value of <0.05; 2) a 

probably increasing/decreasing trend with a P value of 0.05–0.1; 3) a stable trend with a P value of >0.1 as well as with a 

ratio of <1.0 between the standard deviation and the mean of the dataset; and 4) a no-trend for P>0.1 with all the other 

conditions (Aziz et al., 2003; Kampata et al., 2008; Yao and Zhang, 2020). 215 

3 Results and discussion 

3.1 Trends and PCs of PM2.5 and PM10 

The seven-year (2014–2020) average mass concentrations of PM2.5 were the highest in Guangzhou at 34 μg·m-3, followed by 

27 μg·m-3 in Shenzhen, 26 μg·m-3 in Zhanjiang and Zhuhai, 20 μg·m-3 in Haikou and 15 μg·m-3 in Sanya (Table 1). The 

annual average PM2.5 concentrations in most cities and in nearly all the years (Table S6) exceeded the annual average Class-I 220 

level (15 μg·m-3) of Ambient Air Quality Standards (AAQS) in China, and exceeded the latest WHO air quality guideline 

values by several times.  

The largest decrease in the annual average PM2.5 mass concentration from the first year (2014) to the last year (2020) 

occurred in Guangzhou, i.e., by 17 μg·m-3 (or 39%) (Table 1 and Fig. 4). A significant decreasing trend was also identified 

during the seven-year period by the M-K method (p<0.05). A similar case was also found in Shenzhen with a decrease of 9 225 

μg·m-3 (or 28%) from 2014 to 2020 and a significant decreasing trend (p<0.05) during the same period. However, a probably 
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decreasing trend (0.05≤p<0.1) or a stable trend (p≥0.1) was revealed by the M-K method in the other four cities. Note that a 

20%−40% decrease in PM2.5 annual average concentrations was frequently observed across China since 2013, e.g., a 

nationwide decrease by an overall 22% from 2015 to 2018 (Zhao et al., 2021), an approximate 40% decrease in Beijing and 

20% decrease in Pearl River Delta from 2015 to 2019 (Hu et al., 2021; Xu and Zhang, 2020). 230 

To explore the emission-driven trends in PM2.5 concentration in the six cities, the RF-deweathered and BRTs-deweathered 

PM2.5 concentrations and the ICEEMDAN-decomposed residuals of PM2.5 concentrations are examined in Fig. 4a-l. In 

Guangzhou and Shenzhen, a consistent decreasing trend (p<0.05) was identified by the M-K method in the deweathered 

PM2.5 concentrations and the decomposed residuals of PM2.5 concentrations (Table 1 and Fig. 4a and b). The PCs from 2014 

to 2020 were also reasonably consistent between the different datasets mentioned above (Table 2), i.e., with the standard 235 

deviation of the three PCs being within 10% of the corresponding mean absolute value. Specifically, the PCs from 2014 to 

2020 in Shenzhen calculated from the RF-deweathered and BRTs-deweathered PM2.5 concentrations and the ICEEMDAN-

decomposed residuals were -35%, -34% and -30%, respectively, which were not much different from that using the original 

PM2.5 concentration (28% as discussed above). A combination of these four PCs values in Shenzhen allowed to infer that: 1) 

the reduced air pollutant emissions in Shenzhen and upwind regions likely decreased the PM2.5 concentrations by 33% ± 3% 240 

(mean ± standard deviation) from 2014 to 2020, and 2) the perturbation from varying weather conditions cancelled out 5% ± 

3% out of the of 33% ± 3% decrease. In Guangzhou, the PCs of PM2.5 concentrations from 2014 to 2020 estimated by the 

three methods were -33% (RF-deweathered), -35% (BRTs-deweathered) and -35% (ICEEMDAN-decomposed), while the 

PCs calculated from the original annual average PM2.5 concentrations was -39%, as mentioned above. Thus, the reduced 

emissions of air pollutants in Guangzhou and upwind regions likely decreased the concentrations of PM2.5 by 34% ± 1% 245 

during the seven-year period, while the perturbation from varying weather conditions caused an additional decrease of 5% ± 

1%. Gong et al. (2021) also reported an additional 5% decrease driven by varying meteorological conditions, on top of the 

47% decrease driven by reduced emissions, in the national annual averages of PM2.5 mass concentration from 2013 to 2019 

in China. 

A decreasing trend (p<0.05) was also identified in Zhuhai, Haikou and Sanya when using the RF-deweathered and BRTs-250 

deweathered concentrations and the ICEEMDAN-decomposed residuals (Table 1 and Fig. 4d-e, j-l), which are in contrast 

with probably decreasing trends generated from using the original PM2.5 concentration data. The perturbations from varying 

weather conditions on PM2.5 mass concentrations likely complicated the effects of reduced air pollutant emissions in the 

three cities and upwind regions during 2014−2020. It is noted that the PCs estimated from the three different methods (RF-

deweathered, BRTs-deweathered and ICEEMDAN-decomposed) varied little for Sanya (-23%, -21% and -24%) and Haikou 255 

(-19%, -20% and -20%) from 2014 to 2020, but quite large for Zhuhai (-38%, -37% and -26%), the latter case was likely due 

to the large uncertainties associated with one or more methods (Table 2).  We revealed the most influential meteorological 

factors on the RF-predicted and BRTs-predicted concentrations, which was surface pressure in 7 out of 12 cases, followed by 

relative humidity in 3 out of 12 cases, dew point in one case, and air temperature in one case (Table S3). However, the 
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influence of surface pressure on pollutants concentrations was poorly understood, and so is the case of its role on interpreting 260 

uncertainties in modelling results. 

A no-trend or stable trend was identified for Zhanjiang (Table 1, Fig. 4c and i), regardless of which method was used. The 

PCs from 2014 to 2020 were all positive, i.e., 14% (RF-deweathered), 3% (BRTs-deweathered), 5% (ICEEMDAN-

decomposed), and 8% (original data), indicating emission-driven increases in PM2.5 concentration in this city during this 

period.  265 

Similar analysis to the one discussed above was also conducted on PM10 concentrations (Tables 1 and 2 and Fig. S3a-l), 

results from which can be summarized below. 

1) The highest seven-year (2014–2020) average PM10 concentrations of 57 μg·m-3 occurred in Guangzhou, followed by 45 

μg·m-3 in Shenzhen, 43 μg·m-3 in Zhuhai, 42 μg·m-3 in Zhanjiang, 37 μg·m-3 in Haikou and 29 μg·m-3 in Sanya. The 

annual average PM10 concentrations exceeded the annual average Class-I level (40 μg·m-3) of AAQS in China in most 270 

cities and most years, and exceeded the latest WHO air quality guideline values by 2–4 times.  

2) The M-K analyses showed either a no or stable trend during 2014–2020 if using the original annual average PM10 

concentrations in the six cities (Table 1). Inconsistent trends were then obtained by using the three different methods 

(RF-deweathered, BRTs-deweathered and ICEEMDAN-decomposed) in five out of the six cities. The only exception is 

for Guangzhou in which a decreasing trend was identified from all of the three methods, although a no trend was 275 

extracted from the original annual average concentrations. For Shenzhen, a decreasing trend was obtained using the RF-

deweathered method while a probably decreasing or stable trend was obtained from the BRTs-deweathered and 

ICEEMDAN-decomposed method. For Sanya, a decreasing trend was obtained using the RF-deweathered and the 

ICEEMDAN-decomposed method, while a no-trend was obtained using the BRTs-deweathered method. The 

inconsistency between the trends extracted by the three different methods was mostly because the actual interannual 280 

changes, and thus the magnitudes of the trends, were small, which are on the same order of magnitude to the 

methodology uncertainties. Combining all the trends generated using the three different methods and the original data, 

we concluded a slightly decreasing or stable trend in emission-driven PM10 concentrations for all the cities.  

3) The PCs of PM10 concentration from 2014 to 2020 in Guangzhou were consistent between using the three different 

methods e.g., -15% (RF-deweathered), -13% (BRTs-deweathered) and -15% (ICEEMDAN-decomposed), while that 285 

from using the original PM10 concentration data, -11%. Thus, reduced emissions of air pollutants in Guangzhou and 

upwind regions likely decreased PM10 concentrations by 14% ± 1% during the seven-year period, while the perturbation 

from varying weather conditions cancelled out 3% ± 1%. The reasonably consistent PCs were also obtained for 

Shenzhen, Zhanjiang and Sanya, although with inconsistent decreasing trends. However, inconsistent PCs were obtained 

from the three different methods for the other three cities due to methodology uncertainties and the actual small trends, 290 

as explained above. 

3.2 Trends and PCs of O3, NO2 and (NO2+O3) 
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Among the four gaseous criteria pollutants, O3 concentrations in the six cities exceeded the most, on percentage basis, the 

Class-I levels of AAQS in China (Table S6). Trend analyses were conducted for both O3 and (NO2+O3) considering the 

titration reaction of O3 with NO to form NO2 in ambient air (Chan and Yao, 2008; Li et al., 2019a; Seinfeld and Pandis, 1998; 295 

Sicard et al., 2020; Wang et al., 2017).  

The seven-year (2014−2020) average concentrations of O3 were highest at 69 μg·m-3 in Zhanjiang and Zhuhai, followed by 

62 μg·m-3 in Shenzhen, 60 μg·m-3 in Haikou, 58 μg·m-3 in Sanya (Table 1), and the lowest at 51 μg·m-3 in Guangzhou. The 

titration reaction of O3 with NO likely decreased O3 concentrations to some extent in Guangzhou, as implied by the highest 

annual average NO2 concentrations in this city among the six cities (Table 1). In contrast, the highest O3 annual averages 300 

occurred in Zhanjiang and Zhuhai. The annual average NO2 concentrations in the two cities were smaller than that in 

Guangzhou, but larger than that in Sanya. Thus, both the reduced depletion of O3 via the titration reaction and the enhanced 

photochemical formation of O3 likely contributed to the highest annual average O3 concentrations in the two cities (He et al., 

2021a; Liu et al., 2021b; Shen et al., 2021). 

Using the original data of annual average O3 concentrations (Table 1 and Fig. 5a-f), the M-K analysis results showed an 305 

increasing trend in Zhanjiang, Shenzhen, Haikou and Guangzhou (p<0.05), and a no- trend in Zhuhai and Sanya. Using the 

RF-deweathered concentrations, the BRTs-deweathered concentrations and the ICEEMDAN-decomposed residuals (Fig. 5a-

l and Fig. S1g-l), M-K analysis results generated the same trend as mentioned above in every city. Thus, the emission-driven 

increasing trends in O3 concentration from 2014 to 2020 can be firmly confirmed in four cities (Zhanjiang, Shenzhen, 

Haikou and Guangzhou).  310 

The PCs of the deweathered concentrations, the decomposed residuals, and the original annual average concentrations from 

2014 to 2020 in the four cities with increasing trends of O3 concentration were further analyzed, and were presented below 

from the largest to the smallest PCs. In Haikou, the PCs from 2014 to 2020 was 65% based on the original annual average O3 

concentrations (Table 2). The corresponding PCs were 54%, 65% and 64% based on the RF-deweathered concentrations, the 

BRTs-deweathered concentrations, and the ICEEMDAN-decomposed residuals, respectively. Combining these numbers 315 

together, we concluded that the emission changes of O3 precursors and associated changes in atmospheric chemistry likely 

increased the O3 concentration by at least 54% from 2014 to 2020, and the perturbations from varying weather conditions 

seemingly yielded an additional increase of 0%−11%. Similarly, in Guangzhou, Shenzhen and Zhanjiang, the emission 

changes of O3 precursors likely increased the concentrations of O3 by 26%±1.5%, >10% and >17%, respectively, from 2014 

to 2020, and the perturbations from varying weather conditions seemingly yielded an additional increase of 14%±1.5%, 8%–320 

18% and -1%–14%, respectively. 

In the case of NO2, Guangzhou is the only city having annual average NO2 concentrations exceeding the annual average 

Class-I level of AAQS in China (40 μg·m-3) in most of the years; the only exception is in 2020 mostly due to reduced 

emissions as a result of COVID-19 pandemic (Bauwens et al., 2020; Shi and Brasseur, 2020; Wang et al., 2020; Wang et al., 

2021; Zhao et al., 2020). Annual average NO2 concentrations were below 40 μg·m-3 in all the other cities during all the years, 325 

but were far above the latest WHO air quality guideline value of 10 μg·m-3. When the seven-year (2014−2020) average NO2 
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concentrations in six cities were compared, the value of 46 μg·m-3 in Guangzhou ranked at the top, followed by 30 μg·m-3 in 

Shenzhen, 29 μg·m-3 in Zhuhai, 15 μg·m-3 in Zhanjiang and Haikou, and lowest at 12 μg·m-3 in Sanya (Table 1).  

A decreasing trend in NO2 concentration from 2014 to 2020 was obtained in Shenzhen and Zhuhai based on the deweathered 

concentrations and the decomposed residuals, while a probably decreasing trend was obtained based on the original annual 330 

average concentration data (Fig. S5a-l). In Shenzhen, the PCs in NO2 from 2014 to 2020 were mostly consistent between the 

different methods (Table 2), e.g., -18% (RF-deweathered), -20% (BRTs-deweathered), -21% (ICEEMDAN-decomposed) 

and -21% (original data). However, this was not the case in Zhuhai for which the four PCs were -17% (RF-deweathered), -16% 

(BRTs-deweathered), -8% (ICEEMDAN-decomposed) and -18% (original annual average). A stable trend in NO2 

concentration from 2014 to 2020 was obtained in Guangzhou, regardless of the method used. The impact of the reduced NOx 335 

emissions in Guangzhou and/or upwind areas could not be detected in the observed NO2 concentrations on annual scale. 

Inconsistent trends were obtained between using different methods in Zhanjiang, Haikou and Sanya, similar to the cases of 

several other pollutants discussed above and below. 

Combining NO2 and O3 together, an increasing trend (p<0.05, Table 2) was obtained from 2014 to 2020 in Haikou, while 

probably increasing, no-trend or stable trends were obtained in the other five cities based on the original annual average 340 

concentration data (Fig. S4a-l). A consistent increasing trend in (NO2+O3) was obtained in Guangzhou and Zhanjiang based 

on any of the RF-deweathered concentrations, BRTs-deweathered concentrations, and decomposed residuals of (NO2+O3). 

In Haikou, an increasing trend was obtained based on the RF-deweathered and BRTs-deweathered concentrations while a 

probably increasing trend was obtained from the decomposed residuals. The increasing trends in (NO2+O3) from 2014 to 

2020 in the above-mentioned three cities confirmed the enhanced formation of O3. However, either no or stable trends were 345 

obtained in Zhuhai, Shenzhen and Sanya based on the deweathered concentrations or the decomposed residuals of (NO2+O3) 

(Table 1). The contrasting trends between (NO2+O3) and O3 in Shenzhen, i.e., a no-trend in the former and an increasing 

trend in the latter (Table 1), was likely due to the reduced O3 depletion via the titration reaction of O3 by NO. 

The PCs in (NO2+O3) from 2014 to 2020 in Haikou, Guangzhou and Zhanjiang were presented below from the largest to the 

smallest PCs. In Haikou, the PCs were estimated to be 39%, 55%, 48% and 62% based on the RF-deweathered 350 

concentrations, the BRTs-deweathered concentrations, the ICEEMDAN-decomposed residual and the original annual 

average concentrations, respectively. Thus, the 39%−55% O3 increases from 2014 to 2020 were likely attributed to the 

emission-driven enhanced O3 formation. In addition, the first three PCs values for (NO2+O3) were smaller than those of O3 

by 10%−16%, which represented the reduced O3 depletion via the titration reaction (Li et al., 2019a; Wang et al., 2017). In 

Guangzhou, the estimated four PCs in (NO2+O3) were 11% (RF-deweathered), 7% (BRTs-deweathered), 15% 355 

(ICEEMDAN-decomposed) and 15% (original data). These numbers were smaller than those for O3 by 11%−25%, implying 

similar contributions from the reduced O3 depletion via the titration reaction and the enhanced O3 formation to the total 

increased O3 concentration. In Zhanjiang, the estimated four PCs in (NO2+O3) were 18%, 13%, 20% and 14%, which are 

mostly similar to those for O3 (18%, 17%, 32% and 18%) (Table 2), implying the dominate contribution of the enhanced O3 

formation to the increased O3 concentration.  360 
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3.3 Trends and PCs of CO and SO2  

The annual average concentrations of CO and SO2 were all below the Class-I levels of AAQS in China during 2014−2020 in 

all the cities (Table 1). A consistent decreasing trend in annual average CO concentration was obtained, regardless which 

method was used, in all the cities except Haikou (Fig. S6a-l). A consistent decreasing trend in annual average SO2 

concentration was also obtained using the four different methods in Shenzhen and Zhuhai. In Guangzhou, a decreasing trend 365 

in annual average SO2 concentration was obtained based on the deweathered concentrations and decomposed residuals, while 

a probably decreasing trend was obtained based on the original annual average data (Fig. S7a-l). In Sanya, an increasing 

trend in annual average SO2 concentration was obtained based on the deweathered concentrations and decomposed residuals, 

while a probably increasing trend was obtained based on the original annual average data. In Haikou and Zhanjiang, 

inconsistent trends were obtained between using the deweathered concentrations and decomposed residuals.  370 

The reasonably consistent PCs in annual average CO concentration from 2014 to 2020 between using different methods were 

only obtained in Shenzhen and Zhanjiang, i.e., -40% and -32% (RF-deweathered), -36% and -34% (BRTs-deweathered), -39% 

and -32% (ICEEMDAN-decomposed), and -36% and -34% (original data), respectively. The PCs in SO2 from 2014 to 2020 

were reasonably consistent between using different methods in Guangzhou and Zhuhai, e.g., the four values in Guangzhou 

were -46% (RF-deweathered), -46% (BRTs-deweathered), -47% (ICEEMDAN-decomposed) and -44% (original average). 375 

3.4 Constraining analysis uncertainties  

Of the 42 cases analyzed in this study, approximately 70% showed consistent trends from 2014 to 2020 between using the 

RF-deweathered concentrations, the BRTs-deweathered concentrations and the ICEEMDAN-decomposed residuals as input 

to the M-K analysis. The remaining 30% with inconsistent trends were apparently caused by methodology uncertainties in 

some or all of the three methods (RF, BRTs and ICEEMDAN). The PCs from 2014 to 2020 using the same three data sets, 380 

although mostly comparable, were only absolutely consistent in approximately 30% of the cases. Thus, the PCs calculated 

from the above three methods were further assessed using the range of DePCs using the self-developed method introduced in 

Section 2. Even for the consistent cases, additional examination using an independent method is still valuable to exclude 

potential coincidence. 

The PCs of PM2.5 from 2014 to 2020 varied from -35% to -33% in Guangzhou and from -35% to -30% in Shenzhen as 385 

discussed in Section 3. After applying the self-developed method, the corresponding DePCs were estimated to be in the 

range of -37% − -33% in Guangzhou and -36% − -31% in Shenzhen. The overlap portion between the range of PCs and the 

range of DePCs in each city was thereby set up as the robust range of DePCs, i.e., -35% − -33% in Guangzhou, and -35% − -

31% in Shenzhen (Table 2). The robust ranges of DePCs were almost the same as those of PCs in both cities, further 

confirming the emission-driven PCs and the perturbation from varying weather conditions presented in Section 3. These 390 

cases were referred to as Category 1-a below.  
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The PCs of PM2.5 from 2014 to 2020 were from -20% to -19% in Haikou and from -24% to -21% in Sanya. The 

corresponding DePC had no overlap with these PCs ranges in these cities, implying nonexistence of a robust range of DePC. 

These cases were referred to as Category 1-b below. Note that the self-developed method would not introduce additional 

observational variables in the calculation process as shown in Text S1 and Fig S2, and the true DePC should be within the 395 

range of DePC calculated using the self-developed method. The consistent results obtained from the deweathered 

concentrations and decomposed residual in Category 1-b were likely ascribed to a coincidence, and may be invalid. 

The PCs of PM2.5 from 2014 to 2020 were in a relatively large range in Zhuhai and Zhanjiang, implying certain extent of 

inconsistence between the three methods (RF, BRTs, and ICEEMDAN). The PCs in Zhuhai varied from -38% to -26%, and 

the corresponding DePC had no overlap with this range, implying non-existence of a robust range of DePC. This case was 400 

referred to as Category 2-a below. Similar to Category 1-b, the deweathered and decomposed methods cannot reasonably 

estimate the perturbation from varying weather conditions in Category 2-a. The PCs in Zhanjiang ranged from 3% to 14%, 

and the corresponding DePC completely overlapped this range, again confirming the emission-driven PCs and the 

perturbation from varying weather conditions presented in Section 3. This case was referred to as Category 2-b below. 

The PCs of PM10 from 2014 to 2020 were inconsistent between using the RF-deweathered concentrations, the BRTs-405 

deweathered concentrations and the ICEEMDAN-decomposed residuals of PM10 in Zhuhai. Nevertheless, a robust range of 

DePCs was obtained in Zhuhai (-20% − -14%). Comparing the robust range of DePCs with the range of PCs calculated using 

the original annual average data (-21%), the perturbation from varying weather conditions yielded an additional decrease in 

PM10 concentration by 1%–7% in Zhuhai. This case was refereed as Category 2-c below, featuring a narrower robust range 

of DePCs than that of PCs calculated from the deweathered concentrations and decomposed residuals. PM10 in Sanya, 410 

Shenzhen, Zhanjiang and Guangzhou followed into Category 1-a, confirming the emission-driven PCs and the perturbation 

from varying weather conditions. PM10 in Haikou followed into Category 2-a with no robust range of DePC.    

O3 in Haikou, Shenzhen and Zhuhai followed into Category 2-c, and that in Guangzhou, Zhanjiang and Sanya followed into 

Category 1-a, 2-a and 2-b, respectively. Results of (NO2+O3), NO2, CO and SO2 also followed into some of the five 

categories (Table 2), and the above interpretation for PM2.5, PM10 and O3 in each category on the emission-driven PCs and 415 

the perturbation from varying weather conditions are also applicable to the (NO2+O3), NO2, CO and SO2. 

4 Conclusions 

In this study, we first applied separately the RF algorithm, the BRTs algorithm, and the ICEEMDAN to obtain time series of 

the deweathered concentrations or decomposed residuals of criteria air pollutants and (NO2+O3) from May 2014 to April 

2021 in the six cities in south China. We found that the RF-deweathered and BRTs-deweathered concentrations and the 420 

ICEEMDAN-decomposed residuals yielded consistent trends in approximately 70% of the cases. We then calculated the PCs 

between the first and the last year using the above-mentioned deweathered concentrations and residuals. Only in 

approximately 30% of the cases the PCs were reasonably consistent between the three methods, indicating large 
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methodology uncertainties in one or more methods. The self-developed method was further used to calculate the range of 

DePCs, and a robust range of DePCs was identified in approximately 70% of the cases.  425 

Based on those consistent trends obtained from the different methods and the robust range of DePCs, we finally generated 

the following findings.  

1) Significant decreasing trends in PM2.5 concentration during 2014–2020 were identified in Guangzhou and Shenzhen, 

which were mainly caused by the reduced air pollutant emissions and to a much less extent by weather perturbations. A 

stable or no trend in PM2.5 was identified in Zhanjiang, implying no detectable effects of the reduced air pollutant 430 

emissions on the monitored PM2.5. A decreasing or probably decreasing emission-driven trends were obtained in the 

remaining cities. The emission-driven effects likely took the lead in the overall changes, although uncertainties 

associated with one or more methods still existed on basis of inconsistent PCs.  

2) Increasing trends in O3 concentration during 2014–2020 were identified in Zhanjiang, Shenzhen, Guangzhou and 

Haikou. The emission changes of O3 precursors played a dominant role than did the perturbations from varying weather 435 

conditions. However, increasing trends in (NO2+O3) were only identified in Zhanjiang, Guangzhou and Haikou with 

increasing and probably increasing trends obtained from different methods, which also confirmed the different 

contribution ratios of the reduced O3 depletion via the titration reaction and the enhanced formation of O3.  

This study demonstrates the necessity of combining multiple decoupling and/or trend analysis methods in order to constrain 

the uncertainties in trend analysis results inherent in any individual method. Interpretation of trend analysis results presented 440 

in this study could be strengthened if detailed discussions on atmospheric processes and chemistry mechanisms were 

provided, which unfortunately could not be accommodated here due to the lack of reliable long-term data of concerned 

chemical species, such as the major chemical components in PM2.5 and PM10, VOCs and up-to-date emission inventory of all 

the involved pollutants. A lack of knowledge of the detailed city-level mitigation measures on air pollutants also limited our 

capacity for providing a comprehensive assessment of the existing clean air policies.    445 

Acknowledgement 

This work was supported by Hainan Provincial Natural Science Foundation of China (grant no.422MS098), Natural Science 

Foundation of China (grant no. 41776086) and Hainan Provincial Postgraduate Innovative Research Project (grant no. 

Yhys2021-5).  

 450 

Code and data availability. The code of DePC calculation can be accessed via https://pypi.org/project/DePC/, the data used 

in this paper are downloadable from http://www.cnemc.cn/sssj/.  

 

http://www.cnemc.cn/sssj/


15 
 

Author contribution. XY and LZ designed the research. YL and QF carried out the measurement and analyzed the data. All 

authors provided comments and contributed to the text.  455 

 

Competing interests. The authors declare that they have no conflict of interest. 

 

References 

Astitha, M., Luo, H., Rao, S. T., Hogrefe, C., Mathur, R., and Kumar, N.: Dynamic evaluation of two decades of WRF-CMAQ ozone 460 
simulations over the contiguous United States, Atmos Environ, 164, 102-116. https://doi.org/10.1016/j.atmosenv.2017.05.020, 2017. 

Aziz, J. J., Ling, M., Rifai, H. S., Newell, C. J., and Gonzales, J. R.: MAROS: a decision support system for optimizing monitoring plans, 
Ground Water, 41, 355-367. https://doi.org/10.1111/j.1745-6584.2003.tb02605.x, 2003. 

Bauwens, M., Compernolle, S., Stavrakou, T., Muller, J. F., van Gent, J., Eskes, H., Levelt, P. F., van der, A. R., Veefkind, J. P., Vlietinck, 
J., Yu, H., and Zehner, C.: Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations, 465 
Geophys Res Lett, 47, e2020GL087978. https://doi.org/10.1029/2020GL087978, 2020. 

Borlaza, L. J., Weber, S., Marsal, A., Uzu, G., Jacob, V., Besombes, J.-L., Chatain, M., Conil, S., and Jaffrezo, J.-L.: Nine-year trends of 
PM10 sources and oxidative potential in a rural background site in France, Atmos Chem Phys, 22, 8701-8723. 
https://doi.org/10.5194/acp-22-8701-2022, 2022. 

Carslaw, D. C.: Worldmet: Import Surface Meteorological Data from NOAA Integrated Surface Database (ISD), R package version 0.9.5, 470 
https://cran.r-project.org/package=worldmet. 2021. 

Carslaw, D. C. and Taylor, P. J.: Analysis of air pollution data at a mixed source location using boosted regression trees, Atmos Environ, 
43, 3563-3570. https://doi.org/10.1016/j.atmosenv.2009.04.001, 2009. 

Carslaw, D. C., Williams, M. L., and Barratt, B.: A short-term intervention study — Impact of airport closure due to the eruption of 
Eyjafjallajökull on near-field air quality, Atmos Environ, 54, 328-336. https://doi.org/10.1016/j.atmosenv.2012.02.020, 2012. 475 

Chan, C. K. and Yao, X. H.: Air pollution in mega cities in China, Atmos Environ, 42, 1-42. 
https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008. 

Chang, Y., Huang, R. J., Ge, X., Huang, X., Hu, J., Duan, Y., Zou, Z., Liu, X., and Lehmann, M. F.: Puzzling Haze Events in China 
During the Coronavirus (COVID-19) Shutdown, Geophys Res Lett, 47, e2020GL088533. https://doi.org/10.1029/2020GL088533, 
2020. 480 

Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., 
Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., and Dumka, U. C.: A review of biomass burning: Emissions 
and impacts on air quality, health and climate in China, Sci Total Environ, 579, 1000-1034. 
https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017. 

Chen, L., Zhu, J., Liao, H., Yang, Y., and Yue, X.: Meteorological influences on PM2.5 and O3 trends and associated health burden since 485 
China's clean air actions, Sci Total Environ, 744, 140837. https://doi.org/10.1016/j.scitotenv.2020.140837, 2020. 

Chen, X. K., Jiang, Z., Shen, Y. N., Li, R., Fu, Y. F., Liu, J., Han, H., Liao, H., Cheng, X. G., Jones, D. B. A., Worden, H., and González 
Abad, G.: Chinese regulations are working ‐ why is surface ozone over industrialized areas still high? Applying lessons from 
Northeast US air quality evolution, Geophys Res Lett, 48, e2021GL092816. https://doi.org/10.1029/2021gl092816, 2021. 

Colominas, M. A., Schlotthauer, G., and Torres, M. E.: Improved complete ensemble EMD: A suitable tool for biomedical signal 490 
processing, Biomed Signal Proces, 14, 19-29. https://doi.org/10.1016/j.bspc.2014.06.009, 2014. 

Dai, Q. L., Hou, L. L., Liu, B. W., Zhang, Y. F., Song, C. B., Shi, Z. B., Hopke, P. K., and Feng, Y. C.: Spring Festival and COVID‐19 
lockdown:disentangling PM sources in major Chinese cities, Geophys Res Lett, 48, e2021GL093403. 
https://doi.org/10.1029/2021gl093403, 2021. 

Dang, R. J., Liao, H., and Fu, Y.: Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China 495 
over 2012-2017, Sci Total Environ, 754, 142394. https://doi.org/10.1016/j.scitotenv.2020.142394, 2021. 

Enayati, A. F., Pakbin, P., Hasheminassab, S., Epstein, S. A., Li, X., Polidori, A., and Low, J.: Long-term trends of PM2.5 and its carbon 
content in the South Coast Air Basin: A focus on the impact of wildfires, Atmos Environ, 255. 
https://doi.org/10.1016/j.atmosenv.2021.118431, 2021. 

https://doi.org/10.1016/j.atmosenv.2017.05.020
https://doi.org/10.1111/j.1745-6584.2003.tb02605.x
https://doi.org/10.1029/2020GL087978
https://doi.org/10.5194/acp-22-8701-2022
https://cran.r-project.org/package=worldmet
https://doi.org/10.1016/j.atmosenv.2009.04.001
https://doi.org/10.1016/j.atmosenv.2012.02.020
https://doi.org/10.1016/j.atmosenv.2007.09.003
https://doi.org/10.1029/2020GL088533
https://doi.org/10.1016/j.scitotenv.2016.11.025
https://doi.org/10.1016/j.scitotenv.2020.140837
https://doi.org/10.1029/2021gl092816
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.1029/2021gl093403
https://doi.org/10.1016/j.scitotenv.2020.142394
https://doi.org/10.1016/j.atmosenv.2021.118431


16 
 

Foley, K. M., Hogrefe, C., Pouliot, G., Possiel, N., Roselle, S. J., Simon, H., and Timin, B.: Dynamic evaluation of CMAQ part I: 500 
Separating the effects of changing emissions and changing meteorology on ozone levels between 2002 and 2005 in the eastern US, 
Atmos Environ, 103, 247-255. https://doi.org/10.1016/j.atmosenv.2014.12.038, 2015. 

Fu, H. Y., Zhang, Y. T., Liao, C., Mao, L., Wang, Z. Y., and Hong, N. N.: Investigating PM2.5 responses to other air pollutants and 
meteorological factors across multiple temporal scales, Sci Rep-Uk, 10, 15639. https://doi.org/10.1038/s41598-020-72722-z, 2020. 

Gong, S. L., Liu, H. L., Zhang, B. H., He, J. J., Zhang, H. D., Wang, Y. Q., Wang, S. X., Zhang, L., and Wang, J.: Assessment of 505 
meteorology vs. control measures in the China fine particular matter trend from 2013 to 2019 by an environmental meteorology index, 
Atmos Chem Phys, 21, 2999-3013. https://doi.org/10.5194/acp-21-2999-2021, 2021. 

Grange, S. K. and Carslaw, D. C.: Using meteorological normalisation to detect interventions in air quality time series, Sci Total Environ, 
653, 578-588. https://doi.org/10.1016/j.scitotenv.2018.10.344, 2019. 

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C.: Random forest meteorological normalisation models for Swiss 510 
PM10 trend analysis, Atmos Chem Phys, 18, 6223-6239. https://doi.org/10.5194/acp-18-6223-2018, 2018. 

He, G., Deng, T., Wu, D., Wu, C., Huang, X. F., Li, Z. N., Yin, C. Q., Zou, Y., Song, L., Ouyang, S. S., Tao, L. P., and Zhang, X.: 
Characteristics of boundary layer ozone and its effect on surface ozone concentration in Shenzhen, China: A case study, Sci Total 
Environ, 791, 148044. https://doi.org/10.1016/j.scitotenv.2021.148044, 2021a. 

He, J. J., Gong, S. L., Yu, Y., Yu, L. J., Wu, L., Mao, H. J., Song, C. B., Zhao, S. P., Liu, H. L., Li, X. Y., and Li, R. P.: Air pollution 515 
characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities, Environ Pollut, 223, 484-496. 
https://doi.org/10.1016/j.envpol.2017.01.050, 2017. 

He, K. B., Huo, H., and Zhang, Q.: Urban Air Pollution in China: Current Status, Characteristics, and Progress, Annu Rev Energy Environ, 
27, 397-431. https://doi.org/10.1146/annurev.energy.27.122001.083421, 2002. 

He, Y. X., Pan, Y. P., Gu, M. N., Sun, Q., Zhang, Q. Q., Zhang, R. J., and Wang, Y. S.: Changes of ammonia concentrations in wintertime 520 
on the North China Plain from 2018 to 2020, Atmos Res, 253, 105490. https://doi.org/10.1016/j.atmosres.2021.105490, 2021b. 

Henneman, L. R. F., Holmes, H. A., Mulholland, J. A., and Russell, A. G.: Meteorological detrending of primary and secondary pollutant 
concentrations: Method application and evaluation using long-term (2000–2012) data in Atlanta, Atmos Environ, 119, 201-210. 
https://doi.org/10.1016/j.atmosenv.2015.08.007, 2015. 

Hogrefe, C., Rao, S. T., Zurbenko, I. G., and Porter, P. S.: Interpreting the Information in Ozone Observations and Model Predictions 525 
Relevant to Regulatory Policies in the Eastern United States, B Am Meteorol Soc, 81, 2083-2106. https://doi.org/10.1175/1520-
0477(2000)081<2083:itiioo>2.3.co;2, 2000. 

Hogrefe, C., Vempaty, S., Rao, S. T., and Porter, P. S.: A comparison of four techniques for separating different time scales in atmospheric 
variables, Atmos Environ, 37, 313-325. https://doi.org/10.1016/S1352-2310(02)00897-X, 2002. 

Hou, L. L., Dai, Q. L., Song, C. B., Liu, B. W., Guo, F. Z., Dai, T. J., Li, L. X., Liu, B. S., Bi, X. H., Zhang, Y. F., and Feng, Y. C.: 530 
Revealing Drivers of Haze Pollution by Explainable Machine Learning, Environ Sci Tech Let, 9, 112-119. 
https://doi.org/10.1021/acs.estlett.1c00865, 2022. 

Hu, M. M., Wang, Y. F., Wang, S., Jiao, M. Y., Huang, G. H., and Xia, B. C.: Spatial-temporal heterogeneity of air pollution and its 
relationship with meteorological factors in the Pearl River Delta, China, Atmos Environ, 254, 118415. 
https://doi.org/10.1016/j.atmosenv.2021.118415, 2021. 535 

Kampata, J. M., Parida, B. P., and Moalafhi, D. B.: Trend analysis of rainfall in the headstreams of the Zambezi River Basin in Zambia, 
Phys Chem Earth, 33, 621-625. https://doi.org/10.1016/j.pce.2008.06.012, 2008. 

Laszuk, D.: PyEMD: Python implementation of Empirical Mode Decomposition algorithm, Python package version 1.2.0, 
https://pypi.org/project/EMD-signal/. 2017. 

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013-2017 trends in summer surface ozone 540 
in China, P Natl Acad Sci USA, 116, 422-427. https://doi.org/10.1073/pnas.1812168116, 2019a. 

Li, R., Cui, L. L., Hongbo, F., Li, J. L., Zhao, Y. L., and Chen, J. M.: Satellite-based estimation of full-coverage ozone (O3) concentration 
and health effect assessment across Hainan Island, J Clean Prod, 244, 118773. https://doi.org/10.1016/j.jclepro.2019.118773, 2020. 

Li, R., Wang, Z. Z., Cui, L. L., Fu, H. B., Zhang, L. W., Kong, L. D., Chen, W. D., and Chen, J. M.: Air pollution characteristics in China 
during 2015-2016: Spatiotemporal variations and key meteorological factors, Sci Total Environ, 648, 902-915. 545 
https://doi.org/10.1016/j.scitotenv.2018.08.181, 2019b. 

Lin, C. Q., Lau, A. K. H., Fung, J. C. H., Song, Y. S., Li, Y., Tao, M. H., Lu, X. C., Ma, J., and Lao, X. Q.: Removing the effects of 
meteorological factors on changes in nitrogen dioxide and ozone concentrations in China from 2013 to 2020, Sci Total Environ, 793, 
148575. https://doi.org/10.1016/j.scitotenv.2021.148575, 2021. 

Liu, X., Chang, M., Zhang, J., Wang, J., Gao, H., Gao, Y., and Yao, X.: Rethinking the causes of extreme heavy winter PM2.5 pollution 550 
events in northern China, Sci Total Environ, 794, 148637. https://doi.org/10.1016/j.scitotenv.2021.148637, 2021a. 

Liu, X. F., Guo, H., Zeng, L. W., Lyu, X. P., Wang, Y., Zeren, Y. Z., Yang, J., Zhang, L. Y., Zhao, S. Z., Li, J., and Zhang, G.: 
Photochemical ozone pollution in five Chinese megacities in summer 2018, Sci Total Environ, 801, 149603. 
https://doi.org/10.1016/j.scitotenv.2021.149603, 2021b. 

https://doi.org/10.1016/j.atmosenv.2014.12.038
https://doi.org/10.1038/s41598-020-72722-z
https://doi.org/10.5194/acp-21-2999-2021
https://doi.org/10.1016/j.scitotenv.2018.10.344
https://doi.org/10.5194/acp-18-6223-2018
https://doi.org/10.1016/j.scitotenv.2021.148044
https://doi.org/10.1016/j.envpol.2017.01.050
https://doi.org/10.1146/annurev.energy.27.122001.083421
https://doi.org/10.1016/j.atmosres.2021.105490
https://doi.org/10.1016/j.atmosenv.2015.08.007
https://doi.org/10.1175/1520-0477(2000)081%3c2083:itiioo%3e2.3.co;2
https://doi.org/10.1175/1520-0477(2000)081%3c2083:itiioo%3e2.3.co;2
https://doi.org/10.1016/S1352-2310(02)00897-X
https://doi.org/10.1021/acs.estlett.1c00865
https://doi.org/10.1016/j.atmosenv.2021.118415
https://doi.org/10.1016/j.pce.2008.06.012
https://pypi.org/project/EMD-signal/
https://doi.org/10.1073/pnas.1812168116
https://doi.org/10.1016/j.jclepro.2019.118773
https://doi.org/10.1016/j.scitotenv.2018.08.181
https://doi.org/10.1016/j.scitotenv.2021.148575
https://doi.org/10.1016/j.scitotenv.2021.148637
https://doi.org/10.1016/j.scitotenv.2021.149603


17 
 

Lovric, M., Pavlovic, K., Vukovic, M., Grange, S. K., Haberl, M., and Kern, R.: Understanding the true effects of the COVID-19 555 
lockdown on air pollution by means of machine learning, Environ Pollut, 274, 115900. https://doi.org/10.1016/j.envpol.2020.115900, 
2021. 

Luo, H. Y., Astitha, M., Hogrefe, C., Mathur, R., and Rao, S. T.: Evaluating trends and seasonality in modeled PM2.5 concentrations using 
empirical mode decomposition, Atmos Chem Phys, 20, 13801-13815. https://doi.org/10.5194/acp-20-13801-2020, 2020. 

Ma, R. M., Ban, J., Wang, Q., Zhang, Y. Y., Yang, Y., He, M. Z., Li, S. S., Shi, W. J., and Li, T. T.: Random forest model based fine scale 560 
spatiotemporal O3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017, Environ Pollut, 276, 116635. 
https://doi.org/10.1016/j.envpol.2021.116635, 2021. 

Mallet, M. D.: Meteorological normalisation of PM10 using machine learning reveals distinct increases of nearby source emissions in the 
Australian mining town of Moranbah, Atmos Pollut Res. https://doi.org/10.1016/j.apr.2020.08.001, 2020. 

Munir, S., Luo, Z., and Dixon, T.: Comparing different approaches for assessing the impact of COVID-19 lockdown on urban air quality 565 
in Reading, UK, Atmos Res. https://doi.org/10.1016/j.atmosres.2021.105730, 2021. 

Otero, N., Sillmann, J., Mar, K. A., Rust, H. W., Solberg, S., Andersson, C., Engardt, M., Bergstrom, R., Bessagnet, B., Colette, A., 
Couvidat, F., Cuvelier, C., Tsyro, S., Fagerli, H., Schaap, M., Manders, A., Mircea, M., Briganti, G., Cappelletti, A., Adani, M., 
D'Isidoro, M., Pay, M. T., Theobald, M., Vivanco, M. G., Wind, P., Ojha, N., Raffort, V., and Butler, T.: A multi-model comparison 
of meteorological drivers of surface ozone over Europe, Atmos Chem Phys, 18, 12269-12288. https://doi.org/10.5194/acp-18-12269-570 
2018, 2018. 

Qiu, M., Zigler, C., and Selin, N. E.: Statistical and machine learning methods for evaluating trends in air quality under changing 
meteorological conditions, Atmos Chem Phys, 22, 10551-10566. https://doi.org/10.5194/acp-22-10551-2022, 2022. 

Qu, L. L., Liu, S. J., Ma, L. L., Zhang, Z. Z., Du, J. H., Zhou, Y. H., and Meng, F.: Evaluating the meteorological normalized PM2.5 trend 
(2014-2019) in the "2+26" region of China using an ensemble learning technique, Environ Pollut, 266, 115346. 575 
https://doi.org/10.1016/j.envpol.2020.115346, 2020. 

Rao, S. T., Zurbenko, I. G., Neagu, R., Porter, P. S., Ku, J. Y., and Henry, R. F.: Space and Time Scales in Ambient Ozone Data, B Am 
Meteorol Soc, 78, 2153-2166. https://doi.org/10.1175/1520-0477(1997)078<2153:satsia>2.0.co;2, 1997. 

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley1998. 
Shen, H. Q., Liu, Y. H., Zhao, M., Li, J., Zhang, Y. N., Yang, J., Jiang, Y., Chen, T. S., Chen, M., Huang, X. B., Li, C. L., Guo, D. L., Sun, 580 

X. Y., Xue, L. K., and Wang, W. X.: Significance of carbonyl compounds to photochemical ozone formation in a coastal city 
(Shantou) in eastern China, Sci Total Environ, 764, 144031. https://doi.org/10.1016/j.scitotenv.2020.144031, 2021. 

Shen, Y., Meng, H., Yao, X., Peng, Z., Sun, Y., Zhang, J., Gao, Y., Feng, L., Liu, X., and Gao, H.: Does Ambient Secondary Conversion 
or the Prolonged Fast Conversion in Combustion Plumes Cause Severe PM2.5 Air Pollution in China?, Atmosphere, 13, 673. 
https://doi.org/10.3390/atmos13050673, 2022. 585 

Shi, X. Q. and Brasseur, G. P.: The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVID-19 
Outbreak, Geophys Res Lett, 47, e2020GL088070. https://doi.org/10.1029/2020GL088070, 2020. 

Shi, Z. B., Song, C. B., Liu, B. W., Lu, G. D., Xu, J. S., Vu, T. V., Elliott, R. J. R., Li, W. J., Bloss, W. J., and Harrison, R. M.: Abrupt but 
smaller than expected changes in surface air quality attributable to COVID-19 lockdowns, Sci Adv, 7. 
https://doi.org/10.1126/sciadv.abd6696, 2021. 590 

Sicard, P., De Marco, A., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., Rodriguez, J. J. D., and Calatayud, V.: Amplified ozone 
pollution in cities during the COVID-19 lockdown, Sci Total Environ, 735, 139542. https://doi.org/10.1016/j.scitotenv.2020.139542, 
2020. 

USEPA., 2007. Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, 
and Regional Haze. EPA-454/B-07-002. 595 

Vu, T. V., Shi, Z. B., Cheng, J., Zhang, Q., He, K. B., Wang, S. X., and Harrison, R. M.: Assessing the impact of clean air action on air 
quality trends in Beijing using a machine learning technique, Atmos Chem Phys, 19, 11303-11314. https://doi.org/10.5194/acp-19-
11303-2019, 2019. 

Wang, N., Xu, J. W., Pei, C. L., Tang, R., Zhou, D. R., Chen, Y. N., Li, M., Deng, X. J., Deng, T., Huang, X., and Ding, A. J.: Air Quality 
During COVID-19 Lockdown in the Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms to 600 
Emission Reductions in China, Environ Sci Technol, 55, 5721-5730. https://doi.org/10.1021/acs.est.0c08383, 2021. 

Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of concentrations, 
meteorological influences, chemical precursors, and effects, Sci Total Environ, 575, 1582-1596. 
https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017. 

Wang, Y. J., Wen, Y. F., Wang, Y., Zhang, S. J., Zhang, K. M., Zheng, H. T., Xing, J., Wu, Y., and Hao, J. M.: Four-Month Changes in 605 
Air Quality during and after the COVID-19 Lockdown in Six Megacities in China, Environ Sci Tech Let, 7, 802-808. 
https://doi.org/10.1021/acs.estlett.0c00605, 2020. 

Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R, J Stat Softw, 
77, 1-17. https://doi.org/10.18637/jss.v077.i01, 2017. 

https://doi.org/10.1016/j.envpol.2020.115900
https://doi.org/10.5194/acp-20-13801-2020
https://doi.org/10.1016/j.envpol.2021.116635
https://doi.org/10.1016/j.apr.2020.08.001
https://doi.org/10.1016/j.atmosres.2021.105730
https://doi.org/10.5194/acp-18-12269-2018
https://doi.org/10.5194/acp-18-12269-2018
https://doi.org/10.5194/acp-22-10551-2022
https://doi.org/10.1016/j.envpol.2020.115346
https://doi.org/10.1175/1520-0477(1997)078%3c2153:satsia%3e2.0.co;2
https://doi.org/10.1016/j.scitotenv.2020.144031
https://doi.org/10.3390/atmos13050673
https://doi.org/10.1029/2020GL088070
https://doi.org/10.1126/sciadv.abd6696
https://doi.org/10.1016/j.scitotenv.2020.139542
https://doi.org/10.5194/acp-19-11303-2019
https://doi.org/10.5194/acp-19-11303-2019
https://doi.org/10.1021/acs.est.0c08383
https://doi.org/10.1016/j.scitotenv.2016.10.081
https://doi.org/10.1021/acs.estlett.0c00605
https://doi.org/10.18637/jss.v077.i01


18 
 

Xiao, Q. Y., Zheng, Y. X., Geng, G. N., Chen, C. H., Huang, X. M., Che, H. Z., Zhang, X. Y., He, K. B., and Zhang, Q.: Separating 610 
emission and meteorological contributions to long-term PM2.5 trends over eastern China during 2000–2018, Atmos Chem Phys, 21, 
9475-9496. https://doi.org/10.5194/acp-21-9475-2021, 2021. 

Xu, X. H. and Zhang, T. C.: Spatial-temporal variability of PM2.5 air quality in Beijing, China during 2013-2018, J Environ Manage, 262, 
110263. https://doi.org/10.1016/j.jenvman.2020.110263, 2020. 

Xue, T., Zheng, Y. X., Geng, G. N., Xiao, Q. Y., Meng, X., Wang, M., Li, X., Wu, N. N., Zhang, Q., and Zhu, T.: Estimating 615 
Spatiotemporal Variation in Ambient Ozone Exposure during 2013-2017 Using a Data-Fusion Model, Environ Sci Technol, 54, 
14877-14888. https://doi.org/10.1021/acs.est.0c03098, 2020. 

Yao, X. H. and Zhang, L. M.: Decoding long-term trends in the wet deposition of sulfate, nitrate, and ammonium after reducing the 
perturbation from climate anomalies, Atmos Chem Phys, 20, 721-733. https://doi.org/10.5194/acp-20-721-2020, 2020. 

Yao, X. H., Xu, X. H., Sabaliauskas, K., and Fang, M.: Comment on "Atmospheric particulate matter pollution during the 2008 Beijing 620 
Olympics", Environ Sci Technol, 43, 7589; author reply 7590-7581. https://doi.org/10.1021/es902276p, 2009. 

Zhai, S. X., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y. Z., Gui, K., Zhao, T. L., and Liao, H.: Fine particulate matter (PM2.5) trends 
in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos Chem Phys, 19, 11031-11041. 
https://doi.org/10.5194/acp-19-11031-2019, 2019. 

Zhang, G., Gao, Y., Cai, W. J., Leung, L. R., Wang, S. X., Zhao, B., Wang, M. H., Shan, H. Y., Yao, X. H., and Gao, H. W.: Seesaw haze 625 
pollution in North China modulated by the sub-seasonal variability of atmospheric circulation, Atmos Chem Phys, 19, 565-576. 
https://doi.org/10.5194/acp-19-565-2019, 2019a. 

Zhang, X. Y., Xu, X. D., Ding, Y. H., Liu, Y. J., Zhang, H. D., Wang, Y. Q., and Zhong, J. T.: The impact of meteorological changes from 
2013 to 2017 on PM2.5 mass reduction in key regions in China, Sci China Earth Sci, 62, 1885-1902. https://doi.org/10.1007/s11430-
019-9343-3, 2019b. 630 

Zhang, Y. M., Vu, T. V., Sun, J. Y., He, J. J., Shen, X. J., Lin, W. L., Zhang, X. Y., Zhong, J. T., Gao, W. K., Wang, Y. Q., Fu, T. M., Ma, 
Y. P., Li, W. J., and Shi, Z. B.: Significant Changes in Chemistry of Fine Particles in Wintertime Beijing from 2007 to 2017: Impact 
of Clean Air Actions, Environ Sci Technol, 54, 1344-1352. https://doi.org/10.1021/acs.est.9b04678, 2020. 

Zhao, H., Chen, K. Y., Liu, Z., Zhang, Y. X., Shao, T., and Zhang, H. L.: Coordinated control of PM2.5 and O3 is urgently needed in China 
after implementation of the "Air pollution prevention and control action plan", Chemosphere, 270, 129441. 635 
https://doi.org/10.1016/j.chemosphere.2020.129441, 2021. 

Zhao, Y. B., Zhang, K., Xu, X. T., Shen, H. Z., Zhu, X., Zhang, Y. X., Hu, Y. T., and Shen, G. F.: Substantial Changes in Nitrogen 
Dioxide and Ozone after Excluding Meteorological Impacts during the COVID-19 Outbreak in Mainland China, Environ Sci Tech 
Let, 7, 402-408. https://doi.org/10.1021/acs.estlett.0c00304, 2020. 

Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a 640 
mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in 
North China, Atmos Chem Phys, 15, 2031-2049. https://doi.org/10.5194/acp-15-2031-2015, 2015. 

Zhou, J. G. and Chen, D. F.: Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by 
Sparrow Search Algorithm, Sustainability-Basel, 13, 4896. https://doi.org/10.3390/su13094896, 2021. 

https://doi.org/10.5194/acp-21-9475-2021
https://doi.org/10.1016/j.jenvman.2020.110263
https://doi.org/10.1021/acs.est.0c03098
https://doi.org/10.5194/acp-20-721-2020
https://doi.org/10.1021/es902276p
https://doi.org/10.5194/acp-19-11031-2019
https://doi.org/10.5194/acp-19-565-2019
https://doi.org/10.1007/s11430-019-9343-3
https://doi.org/10.1007/s11430-019-9343-3
https://doi.org/10.1021/acs.est.9b04678
https://doi.org/10.1016/j.chemosphere.2020.129441
https://doi.org/10.1021/acs.estlett.0c00304
https://doi.org/10.5194/acp-15-2031-2015
https://doi.org/10.3390/su13094896


19 
 

 645 
Figure 1: Maps of the study areas and locations of air quality monitoring stations (red star) and one meteorological station (blue 
triangle) in each city. 
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Figure 2: The framework of this study on the four methods to be applied.  
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Figure 3: The performance of PM2.5 predictions of the two machine learning methods in Guangzhou. (a) RF-deweathered, (b) 
BRTs-deweathered.  
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 655 

Figure 4: The RF-deweathered and BRTs-deweathered concentrations, ICEEMDAN-decomposed residuals (or mode + residuals) 
of PM2.5 and annual averages from May 2014 to April 2021. a-f: deweathered concentrations in the six cities (the order of the cities 
is same as that listed in Table 1); g-l: decomposed residual or (the last mode + residual) and annual averages plus one-third 
standard deviation in the six cities (* represents the time series of values to be used to calculate the trend and PC). 
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 660 

Figure 5: Same as Figure 4, except the pollutant to be O3. 
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Table 1: The original annual average concentrations of six criteria air pollutants and (NO2+O3) and their trends in original annual 
averages, RF-deweathered and BRTs-deweathered concentrations and ICEEMDAN-decomposed residuals in six cities detected by 
the M-K method.  665 

           original RF BRTs ICEE- 
MDAN 

Pollutant city seven-year 
average 

Annual average trend 
2014 2015 2016 2017 2018 2019 2020 

PM₂.₅ 
(μg·m-3) 

Guangzhou 34 44 37 37 36 30 28 27 ↓ * ↓ * ↓ * ↓ * 
Shenzhen 27 32 27 28 28 23 25 23 ↓ * ↓ * ↓ * ↓ * 
Zhanjiang 26 24 28 27 28 23 27 26 — N — N 

Zhuhai 26 33 27 26 27 24 22 21 ↓ ↓ * ↓ * ↓ * 
Haikou 20 23 21 21 20 16 17 18 ↓ ↓ * ↓ * ↓ * 
Sanya 15 18 15 14 15 14 13 14 ↓ ↓ * ↓ * ↓ * 

PM₁₀ 
(μg·m-3) 

Guangzhou 57 63 59 60 57 49 55 56 N ↓ * ↓ * ↓ * 
Shenzhen 45 56 44 44 46 39 44 45 — ↓ * ↓ — 

Zhuhai 43 53 48 43 43 36 37 42 N ↓ * ↓ * — 
Zhanjiang 42 50 44 43 43 35 40 42 N ↓ ↓ * — 

Haikou 37 42 39 39 37 32 34 35 N ↓ * ↓ * — 
Sanya 29 34 28 28 29 29 29 27 — ↓ * N ↓ * 

O₃ 
(μg·m-3) 

Zhuhai 69 56 66 74 72 67 81 70 N N N N 
Zhanjiang 69 62 60 66 72 71 78 73 ↑ * ↑ * ↑ * ↑ * 
Shenzhen 62 54 59 63 63 58 69 69 ↑ * ↑ * ↑ * ↑ * 
Haikou 60 43 58 61 54 58 76 71 ↑ * ↑ * ↑ * ↑ * 
Sanya 58 58 56 57 53 58 64 60 N N N N 

Guangzhou 51 45 41 47 51 47 63 63 ↑ * ↑ * ↑ * ↑ * 

NO₂+O₃ 
(μg·m-3) 

Zhuhai 100 91 100 106 103 98 103 100 N N N — 
Guangzhou 99 92 88 101 103 95 110 106 — ↑ * ↑ * ↑ * 
Shenzhen 93 89 93 96 93 86 97 97 N N N N 
Zhanjiang 85 79 77 81 88 86 94 90 ↑ ↑ * ↑ * ↑ * 

Haikou 76 58 75 75 68 71 91 94 ↑ * ↑ * ↑ * ↑ 
Sanya 70 72 68 68 66 68 74 72 N N N N 

NO₂ 
(μg·m-3) 

Guangzhou 46 46 45 52 50 46 45 40 — — — — 
Shenzhen 30 34 33 32 29 27 27 27 ↓ ↓ * ↓ * ↓ * 

Zhuhai 29 34 33 31 29 30 21 28 ↓ ↓ * ↓ * ↓ * 
Zhanjiang 15 16 16 14 15 14 15 16 — — — N 

Haikou 15 15 16 14 13 13 14 18 N N — ↑ * 
Sanya 12 14 12 11 12 10 10 12 — — — ↓ * 

CO 
(mg·m-3) 

Guangzhou 0.90 0.99 0.95 0.93 0.85 0.86 0.84 0.85 ↓ * ↓ * ↓ * ↓ * 
Zhanjiang 0.77 1.01 0.87 0.79 0.72 0.68 0.66 0.67 ↓ * ↓ * ↓ * ↓ * 
Shenzhen 0.76 1.04 0.82 0.80 0.68 0.64 0.65 0.67 ↓ * ↓ * ↓ * ↓ * 

Zhuhai 0.66 0.81 0.68 0.71 0.61 0.63 0.58 0.60 ↓ * ↓ * ↓ * ↓ * 
Haikou 0.63 0.73 0.66 0.62 0.61 0.60 0.65 0.58 ↓ ↓ — ↓ * 
Sanya 0.52 0.56 0.61 0.52 0.51 0.49 0.49 0.44 ↓ * ↓ * ↓ * ↓ * 

SO₂ 
(μg·m-3) 

Guangzhou 11 15 11 12 12 7 8 9 ↓ ↓ * ↓ * ↓ * 
Zhanjiang 8 10 7 9 8 6 9 9 — — — ↓ * 
Shenzhen 7 9 8 8 8 6 6 7 ↓ * ↓ * ↓ * ↓ * 

Zhuhai 7 8 10 9 8 5 4 6 ↓ * ↓ * ↓ * ↓ * 
Haikou 6 6 6 6 6 5 5 5 ↓ ↓ * — — 
Sanya 4 3 4 3 3 4 4 4 ↑ ↑ * ↑ * ↑ * 

↑* (↓*): Increasing (Decreasing) trend, i.e., p < 0.05;  
↑ (↓): Probably increasing (decreasing) trend, i.e., 0.05 ≤ p < 0.1; 
 —: Stable trend;  
N: No trend. 

 



25 
 

Table 2: The PCs of six criteria pollutants and (NO2+O3) calculated from original averages, RF-deweathered and BRTs-
deweathered concentrations and ICEEMDAN-decomposed residuals and the robust ranges of DePC in six cities (units in %, * 
represents no robust DePC). 670 

Pollutant city original RF BRTs ICEE-
MDAN 

DePC 
range final range 

PM₂.₅ Guangzhou -39 -33 -35 -35 [-37, -33] [-35, -33] 
Zhuhai -36 -38 -37 -26 [-41, -39] * 

Shenzhen -28 -35 -34 -30 [-36, -31] [-35, -31] 
Haikou -22 -19 -20 -20 [-27, -26] * 
Sanya -22 -23 -21 -24 [-39, -30] * 

Zhanjiang 8 14 3 5 [5,13] [5, 13] 
PM₁₀ Zhuhai -21 -27 -24 -9 [-20, -14] [-20, -14] 

Sanya -21 -26 -27 -28 [-27, -23] [-27, -26] 
Shenzhen -20 -23 -22 -21 [-28, -15] [-23, -21] 
Haikou -17 -19 -16 -13 [-21, -20] * 

Zhanjiang -16 -23 -20 -22 [-22, -21] [-22, -21] 
Guangzhou -11 -15 -13 -15 [-18, -11] [-15, -13] 

O₃ Haikou 65 54 65 64 [43,59] [54, 59] 
Guangzhou 40 28 25 26 [19,34] [25, 28] 
Shenzhen 28 19 20 10 [20, 26] [20, 20] 

Zhuhai 25 16 10 17 [14, 15] [14, 15] 
Zhanjiang 18 18 17 32 [-16, 5] * 

Sanya 3 0 1 7 [0, 4] [0, 4] 
NO₂+O₃ Haikou 62 39 55 48 [49, 65] [49, 55] 

Guangzhou 15 11 7 15 [5,10] [7, 10] 
Zhanjiang 14 18 13 20 [-15, 5] * 

Zhuhai 10 6 3 -1 [1,23] [1, 6] 
Shenzhen 9 3 3 3 [3,16] [3, 3] 

Sanya 0 -1 -1 0 [-3, -1] [-1, -1] 
NO₂ Shenzhen -21 -18 -20 -21 [-22, -22] * 

Zhuhai -18 -17 -16 -8 [-26,0] [-17, -8] 
Sanya -14 -10 -14 -9 [-19, -4] [-14, -9] 

Guangzhou -13 -4 -11 -13 [-13, -12] [-13, -13] 
Zhanjiang 0 0 -2 9 [0,6] [0, 6] 

Haikou 20 21 16 7 [14,36] [14, 21] 
CO Shenzhen -36 -40 -36 -39 [-39, -38] [-39, -38] 

Zhanjiang -34 -32 -34 -32 [-62, -26] [-34, -32] 
Zhuhai -26 -28 -26 -32 [-32, -24] [-32, -26] 
Sanya -22 -21 -18 -14 [-20, -14] [-20, -14] 
Haikou -20 -34 -17 -12 [-15, -7] [-15, -12] 

Guangzhou -14 -14 -14 -19 [-29, -17] [-19, -17] 
SO₂ Guangzhou -44 -46 -46 -47 [-75, -50] * 

Zhuhai -34 -40 -37 -40 [-59, -47] * 
Shenzhen -22 -24 -23 -32 [-70, -18] [-32, -23] 
Haikou -19 -18 -16 -20 [-25, -20] [-20, -20] 

Zhanjiang -16 -20 -14 -25 [-22, -5] [-22, -14] 
Sanya 75 68 76 98 [83, 94] [83, 94] 
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