

1 **Particle number concentrations and size distributions in the stratosphere: Implications of
2 nucleation mechanisms and particle microphysics**

3 Fangqun Yu¹, Gan Luo¹, Arshad Arjunan Nair¹, Sebastian Eastham^{2, 3}, Christina J. Williamson⁴,
4 ^{5, a}, Agnieszka Kupc^{5, 6}, and Charles A. Brock⁵

5 ¹ Atmospheric Sciences Research Center, University at Albany, Albany, New York, US

6 ² Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics,
7 Massachusetts Institute of Technology, Cambridge, MA 02139, USA

8 ³ Joint Program on the Science and Policy of Global Change, Massachusetts Institute of
9 Technology, Cambridge, MA 02139, USA

10 ⁴ Cooperative Institute for Research in Environmental Sciences, University of Colorado,
11 Boulder, CO 80309, USA

12 ⁵ Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder,
13 CO 80305, USA

14 ⁶ Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, 1090
15 Vienna, Austria

16 ^a now at: Climate Research Programme, Finnish Meteorological Institute, 00101 Helsinki,
17 Finland and Institute for Atmospheric and Earth System Research/Physics, Faculty of Science,
18 University of Helsinki, 00014 Helsinki, Finland.

19

20 Correspondence to: F. Yu (fyu@albany.edu)

21

22 **Abstract.** While formation and growth of particles in the troposphere have been extensively
23 studied in the past two decades, very limited efforts have been devoted to understanding these in
24 the stratosphere. Here we use both Cosmics Leaving OUtdoor Droplets (CLOUD) laboratory
25 measurements taken under very low temperatures (205–223K) and Atmospheric Tomography
26 Mission (ATom) in-situ observations of particle number size distributions (PNSD) down to 3 nm
27 to constrain nucleation mechanisms and to evaluate model simulated particle size distributions in
28 the lowermost stratosphere (LMS). We show that the binary homogenous nucleation (BHN)
29 scheme used in most of the existing stratospheric aerosol injection (a proposed method of solar
30 radiation modification) modeling studies overpredict the nucleation rates by 3–4 orders of

31 magnitude (when compared to CLOUD data) and particle number concentrations in the
32 background LMS by a factor $\sim 2\text{--}4$ (when compared to ATom data). Based on a recently developed
33 kinetic nucleation model, which gives rates of both ion-mediated nucleation (IMN) and BHN at
34 low temperatures in good agreement with CLOUD measurements, both BHN and IMN occur in
35 the stratosphere. However, IMN rates are generally more than one order of magnitude higher than
36 BHN rates and thus dominate nucleation in the background stratosphere. In the Southern
37 Hemisphere (SH) LMS with minimum influence of anthropogenic emissions, our analysis shows
38 that ATom measured PNSDs generally have four apparent modes. The model captures reasonably
39 well the two modes (Aitken mode and the first accumulation mode) with the highest number
40 concentrations and the size-dependent standard deviations. However, the model misses an apparent
41 second accumulation mode peaking around 300–400 nm, which is in the size range important for
42 aerosol direct radiative forcing. The bi-modal structure of accumulation mode particles has also
43 been observed in the stratosphere well above tropopause and in the volcano-perturbed stratosphere.
44 We suggest that this bi-modal structure may be caused by the effect of charges on coagulation and
45 growth, which is not yet considered in any existing models and may be important in the
46 stratosphere due to high ionization rates and long lifetime of aerosols. Considering the importance
47 of accurate PNSDs for projecting realistic radiation forcing response to stratospheric aerosol
48 injection (SAI), it is essential to understand and incorporate such potentially important processes
49 in SAI model simulations and carry out further research to find out what other processes that the
50 present models might have missed.

51

52

53

54 **1. Introduction**

55 Solar radiation modification (also known as solar geoengineering) approaches are being
56 developed in response to the climate crisis (IPCC, 2021). They would temporarily offset climate
57 change by reducing incoming sunlight, augmenting (currently inadequate) mitigation efforts and
58 buying time to reduce atmospheric levels of CO₂, which is the root cause of the climate crisis. A
59 recent report by the National Academies of Sciences, Engineering and Medicine (NASEM)
60 emphasizes the urgent need to have a comprehensive understanding of the feasibility and potential
61 risks/benefits of solar climate intervention approaches (NASEM, 2021). Stratospheric aerosol
62 injection (SAI) has demonstrated the most promise as proximately engineerable (Shepherd et al.,
63 2009; Lockley et al., 2020; IPCC, 2021) and has been extensively studied using models (e.g.,
64 GeoMIP: Kravitz et al., 2011; GLENS: Mills et al., 2017; Richter et al., 2022). The NASEM report
65 (NASEM, 2021) pointed out that “the overall magnitude and spatial distribution of the forcing
66 produced by SAI depends strongly on the aerosol size distribution” and “One of the research
67 priorities for SAI is thus to address critical gaps in knowledge about the evolution of the aerosol
68 particle size distribution”. In the stratosphere, sulfate aerosols are formed by nucleation, followed
69 by condensational growth and coagulation, and lost by evaporation in the upper stratosphere and
70 downward sedimentation into the troposphere (Turco et al., 1982). New particle formation (NPF)
71 (or nucleation) affects not only the number abundance but also the size distributions of
72 stratospheric particles (e.g., Brock et al., 1995; Lee et al., 2003). There is increasing evidence
73 (Weisenstein et al., 2022, Laakso et al., 2022) that a careful treatment of microphysical processes
74 is necessary for projecting realistic radiative forcing response to SAI.

75 The process of NPF under tropospheric conditions has been extensively explored over the last
76 two decades through laboratory and field measurements, theoretical studies, and numerical
77 simulations (e.g., Yu and Turco, 2000; Vehkamäki et al., 2002; Kulmala et al., 2004; Kirkby et al.,
78 2011; Dawson et al., 2012; Zhang et al., 2012; Kürten et al., 2016; Yu et al., 2018; Kerminen et
79 al., 2018; Lee et al., 2019). Although some of the advances in our understanding of nucleation
80 gained in the last two decades can be applied to stratospheric conditions, focused studies
81 specifically examining the mechanisms of NPF under stratospheric conditions are quite limited.
82 Indeed, the H₂SO₄–H₂O binary homogenous nucleation (BHN) parameterization developed two
83 decades ago by Vehkamäki et al. (2002) (named BHN_V2002 thereafter) has been widely used in
84 SAI modeling studies when nucleation process is explicitly considered (e.g., Tilmes et al., 2015;
85 Jones et al., 2021; Weisenstein et al., 2022). Tilmes et al. (2015) described a Geoengineering
86 Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models,
87 using the stratospheric aerosol distribution derived from the ECHAM5-HAM microphysical model
88 (Stier et al., 2005) which calculated nucleation rates with the BHN_V2002 scheme. Both models
89 (UKESM1 and CESM2-WACCM6) employed for a recent GeoMIP G6sulfur study (Jones et al.,
90 2021) used the BHN_V2002 scheme. In another recent SAI study based on three interactive
91 stratospheric aerosol microphysics models (Weisenstein et al., 2022), two models (MAECHAM5-
92 HAM and SOCOL-AER) used BHN_V2002 scheme while the other (CESM2-WACCM) used an
93 empirical nucleation scheme to calculate nucleation rate as a function of sulfuric acid concentration
94 only (i.e, no dependence on temperature and relative humidity). To our knowledge, the
95 performance of this widely used BHN_V2002 under stratospheric conditions has not been
96 carefully examined, probably due to the lack of suitable in situ measurements of freshly nucleated
97 particles in the stratosphere for constraining the scheme. In this regard, particle size distributions
98 down to 3 nm measured in-situ during the NASA Atmospheric Tomography Mission (ATom) in

99 the lowermost stratosphere (LMS) of both SH and NH in four different seasons (Williamson et al.,
100 2019, 2021; Kupc et al., 2020; Brock et al., 2021) provide much-needed data to constrain our
101 understanding of the nucleation and particle microphysics in the stratosphere. In addition, well-
102 controlled CLOUD experiments taken under low temperature (within the range of stratosphere)
103 can also be used to assess the performance of nucleation schemes under stratospheric conditions.
104 Another important issue related to stratospheric particles is the role of ionization in nucleation. It
105 is well established that nucleation of $\text{H}_2\text{SO}_4\text{-H}_2\text{O}$ on ions is favored over homogenous nucleation
106 (Hamill et al., 1982; Yu and Turco, 2000; Lovejoy et al., 2004; Kirkby et al. 2011; Yu et al., 2018)
107 but the role of ionization in NPF in the stratosphere has not been considered in any previous SAI
108 studies (to our knowledge) in spite of the very high ionization rates in the stratosphere.

109 In this study, we use both CLOUD laboratory measurements taken under very low
110 stratospheric temperatures and ATom PNSD measurements in LMS to constrain nucleation
111 mechanisms and model simulated particle size distributions. For 3-D simulation of size-resolved
112 stratospheric aerosols, we use the GEOS-Chem with the unified tropospheric-stratospheric
113 chemistry-transport model with the size-resolved advanced particle microphysics (APM) package.
114

115 2. Model and data

116 2.1 GEOS-Chem/APM

117 The GEOS-Chem model is a global 3-D model of atmospheric composition (e.g., Bey et al.,
118 2001) and is continuously being improved (e.g., Luo et al., 2020; Holmes et al., 2019; Keller et al.,
119 2014; Murray et al., 2012; Pye and Seinfeld, 2010; van Donkelaar et al., 2008; Evans and Jacob,
120 2005; Martin et al., 2003). The GEOS-Chem tropospheric–stratospheric unified chemistry
121 extension (UCX; Eastham et al., 2014), now the standard GEOS-Chem configuration, implements
122 stratospheric chemistry, calculation of J-values for shorter wavelengths, and improved modeling
123 of high-altitude aerosols. Extension of the chemistry mechanism to include reactions relevant to
124 the stratosphere enables the capturing of stratospheric responses and troposphere–stratosphere
125 coupling. UCX adds 28 species and 104 kinetic reactions, including 8 heterogeneous reactions,
126 along with 34 photolytic decompositions. Atomic oxygen [both $\text{O}({}^3\text{P})$ and $\text{O}({}^1\text{D})$] is explicitly
127 modeled; although also of short lifetime in the stratosphere, these species are important in correctly
128 modeling stratospheric chemistry. Photochemistry is extended up to the stratopause to high-energy
129 photons (177 nm) using the Fast-JX model, which includes cross-section data for many species
130 relevant to the troposphere and stratosphere. Photolysis rates respond to changes in the
131 stratospheric ozone layer. Additional heterogeneous reactions (Kirner et al., 2011, Rotman et al.,
132 2001, Shi et al., 2001) are included to capture seasonal ozone depletion. H_2O is treated as a
133 chemically-active advected tracer within the stratosphere. These permit chemical feedbacks
134 between stratospheric ozone and aerosols and tropospheric photochemistry. The improved GEOS-
135 Chem with coupled stratospheric–tropospheric responses has been evaluated with sonde and
136 satellite measurements of O_3 , HNO_3 , H_2O , HCl , ClO , NO_2 and stratospheric intrusions (Eastham
137 et al., 2014; Gronoff et al., 2021; Knowland et al., 2022). Yu and Luo (2009) incorporated a size-
138 resolved (sectional) APM package into GEOS-Chem, henceforth referred to as GC-APM. The
139 APM separates secondary particles from primary particles, uses 40 bins to represent secondary
140 particles with high size resolution for the size range important for the growth of nucleated particles
141 to accumulation mode sizes, and contains options to calculate nucleation rates based on different

142 nucleation schemes. In GC-APM, nucleation is calculated before condensation using a time-
143 splitting technique. Therefore, no competition between nucleation and condensation for sulfuric
144 acid vapor is considered. In most conditions, nucleation consumes only a very small fraction (<1%)
145 of sulfuric acid vapor in the air and the time splitting does not affect the results. When nucleation
146 rate is high, reduced time step for nucleation and growth is used to ensure that the fraction of
147 sulfuric acid vapor consumed by nucleation each time step is small. The GC-APM uses a semi-
148 implicit scheme to calculate sulfuric acid condensation together with sulfuric acid gas phase
149 production to ensure that the change of sulfuric acid vapor concentration is smooth. APM is fully
150 coupled with GEOS-Chem in both the troposphere and stratosphere.

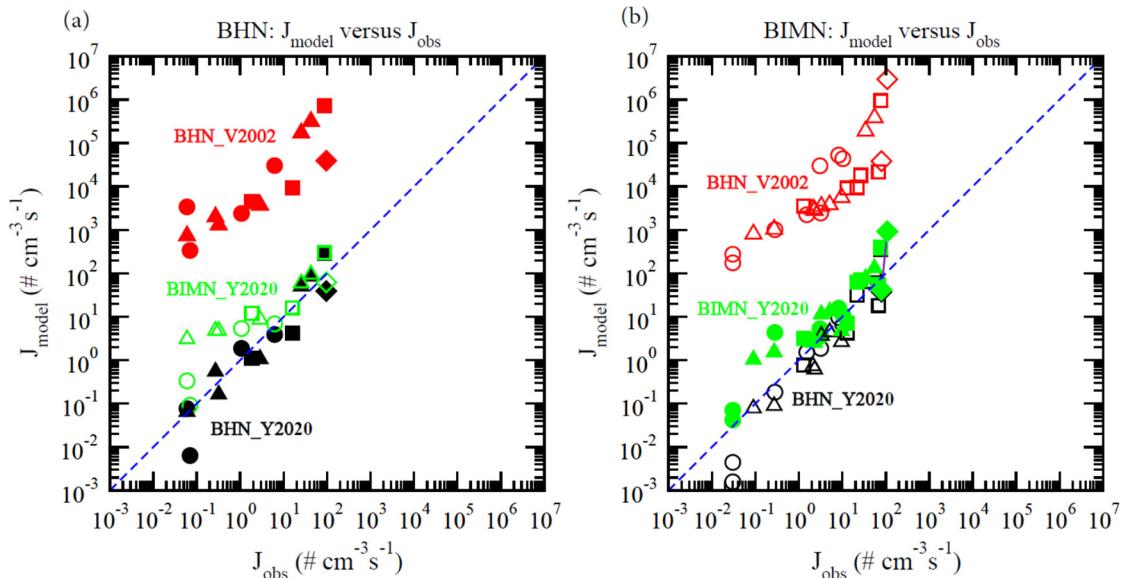
151 In the present study we have carried out GEOS-Chem-UCX/APM global simulations from
152 01/2015 to 05/2018, with the first 17 months as spin-up and the remaining period covering ATom
153 1-4 periods (06/2016–05/2018). The horizontal resolution is $4^{\circ} \times 5^{\circ}$ and there are 72 vertical layers.
154 Emissions from different sources, regions, and species are computed via the Harvard-NASA
155 Emissions Component (HEMCO) on a user-defined grid (Keller et al., 2014). Historical global
156 anthropogenic emissions are based on the Community Emissions Data System (CEDS) inventory
157 (Hoesly et al., 2018). Regional anthropogenic emissions over the United States, Canada, Europe,
158 and East Asia are replaced by regional emission inventories of the National Emissions Inventory
159 (NEI, <https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data>), the Air Pollutant Emission Inventory (APEI, <https://www.canada.ca/en/environment-climate-change/services/pollutants/air-emissions-inventory-overview.html>), the Co-operative
160 Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in
161 Europe (EMEP, <https://www.emep.int/index.html>), and the MIX Asian emission inventory (Li et
162 al., 2017), respectively. Monthly mean aircraft emissions are generated based on the Aviation
163 Emissions Inventory v2.0 (Stettler et al., 2011). The aircraft particle emissions include nucleation
164 mode sulfate particles (Emission index = $2 \times 10^{17} / \text{kg-fuel}$, mean diameter = 9 nm, based on Kärcher
165 et al., 2000), and black carbon and primary organic carbon (POC) particles. Global biomass
166 burning is taken from Global Fire Emissions Database version 4 (van der Werf et al., 2017). The
167 volcanic emissions of SO₂ are taken from AeroCom point-source data (Carn et al., 2015). Fixed
168 global surface boundary conditions are applied for N₂O, CFCs, HCFCs, halons, OCS and long-
169 lived organic chlorine species (Eastham et al., 2014).
170

171 2.2 Airborne ATom measurements of PNSD

172 Measurements are essential in advancing our understanding of stratospheric aerosol properties
173 and the fundamental processes governing these properties. NASA's Atmospheric Tomography
174 Mission (ATom; Wofsy et al., 2021; Thompson et al., 2022) is a multi-agency effort that provides
175 global in situ aircraft observations of the vertical structure of aerosols from near surface to ~ 12 km
176 altitude. PNSDs are measured using the NOAA Aerosol Microphysical Properties (AMP) package
177 (Brock et al., 2019) comprising nucleation-mode aerosol size spectrometer(s) (NMASS)
178 (Williamson et al. 2018), ultra-high-sensitivity aerosol spectrometer(s) (UHSAS) (Kupc et al.
179 2018), and a laser aerosol spectrometer (LAS) covering aerosol sizes from 3 nm to 4.5 μm . The
180 aerosol number abundance can be obtained by integrating the PNSD measurements.
181

182 2.3 The CLOUD (Cosmics Leaving OUtdoor Droplets) measurements

185 Laboratory measurements of nucleation rates as a function of key controlled parameters have
 186 been carried out in a 26.1 m³ stainless steel cylinder chamber at the European Organization for
 187 Nuclear Research (CERN), in the framework of the CLOUD experiment (Cosmics Leaving
 188 OUtdoor Droplets) (e.g., Kirkby et al., 2011; Kürten et al., 2016; Dunne et al., 2016). Some of
 189 these experiments were conducted at the temperature in the range of those in the stratosphere
 190 (Kirkby et al., 2011; Dunne et al., 2016) which are used in this study to evaluate nucleation
 191 schemes under stratospheric conditions.


192

193 3. Results

194 3.1 H₂SO₄–H₂O binary homogeneous nucleation (BHN) and binary ion-mediated nucleation 195 (BIMN) under stratospheric conditions

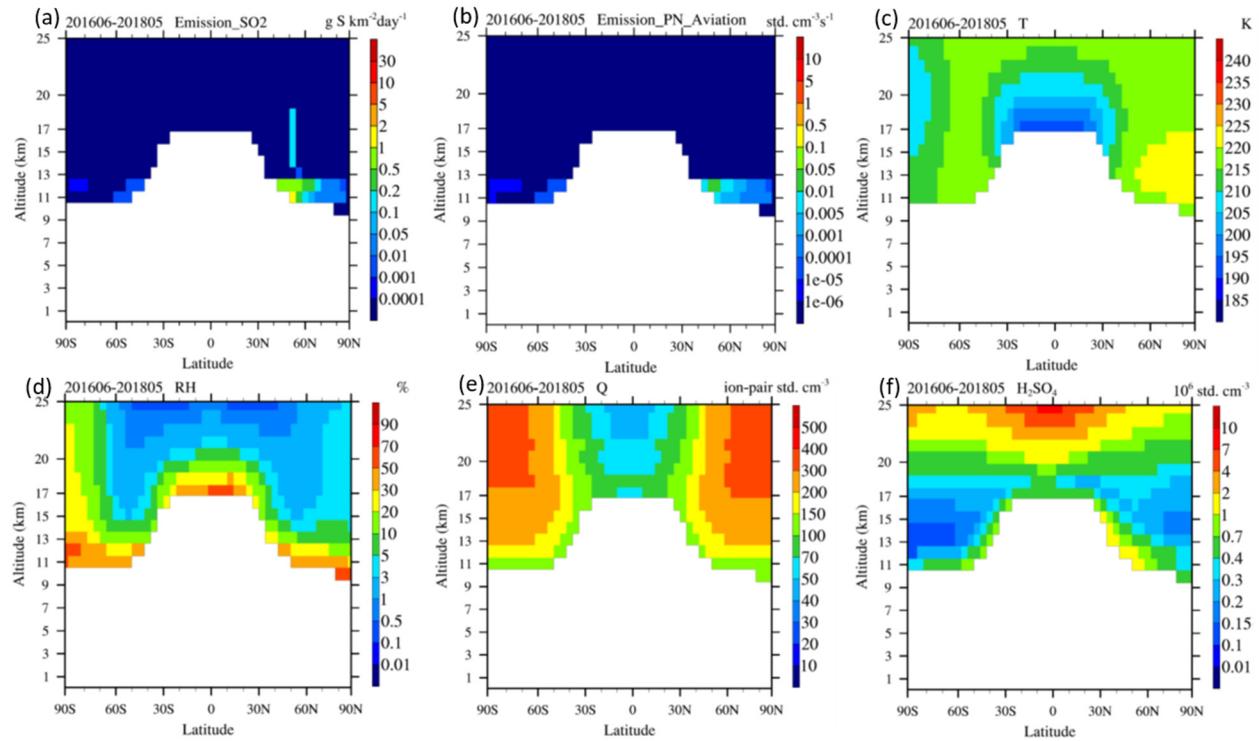
196 Nucleation is one of the microphysical processes influencing particle size distributions in the
 197 stratosphere (Turco et al., 1982) The CLOUD measurements under a wide range of well-controlled
 198 conditions (Kirkby et al., 2011; Dunne et al., 2016) provide a unique set of data to evaluate the
 199 nucleation theories. Yu et al. (2020) compared nucleation rates calculated based on a number of
 200 commonly used aerosol nucleation parameterizations with the CLOUD measurements. Here we
 201 specifically examine the comparison under stratospheric conditions where temperature is below ~
 202 230 K. Since ammonia concentrations in the stratosphere are generally negligible, we focus on
 203 binary nucleation in the present study. The contribution of organics to particle formation, growth,
 204 and compositions in the upper troposphere and LMS has been investigated in several studies (Kupc
 205 et al., 2020; Murphy et al., 2021; Williamson et al., 2021). Because of the lack of information with
 206 regard to the low volatile gaseous organic species, the possible role of organics in new particle
 207 formation in LWS is not considered in the present study.

208

209

210 **Figure 1.** Comparison of nucleation rates based on three different schemes with CLOUD
 211 measurements within the low temperature range ($T = 205$ –223 K) as that in the stratosphere for (a)
 212 binary homogeneous nucleation (no ionization) and (b) ion nucleation (at the presence of
 213 ionization rates 2.51 – 110 ion-pairs $\text{cm}^{-3} \text{ s}^{-1}$). The different nucleation schemes shown are: BHN
 214 of Vehkamäki et al. (2002) (BHN_V2002), BHN of Yu et al. (2020) (BHN_Y2020), and BIMN
 215 of Yu et al. (2020) (BIMN_Y2020). For comparison, under binary condition of (a), BIMN rates at

216 $Q = 20$ ion-pairs $\text{cm}^{-3}\text{s}^{-1}$ are given while under binary ion nucleation condition of (b), BHN rates
217 are also given. Values of H_2SO_4 vapor concentration ($[\text{H}_2\text{SO}_4]$) range from 10^6 to $3 \times 10^7 \text{ cm}^{-3}$ and
218 are separated into four groups in the plots (Circles: $10^6 - 5 \times 10^6 \text{ cm}^{-3}$; triangles: $5 \times 10^6 - 10^7 \text{ cm}^{-3}$;
219 Squares: $10^7 - 1.5 \times 10^7 \text{ cm}^{-3}$; Diamonds: $1.5 \times 10^7 - 3 \times 10^7 \text{ cm}^{-3}$).

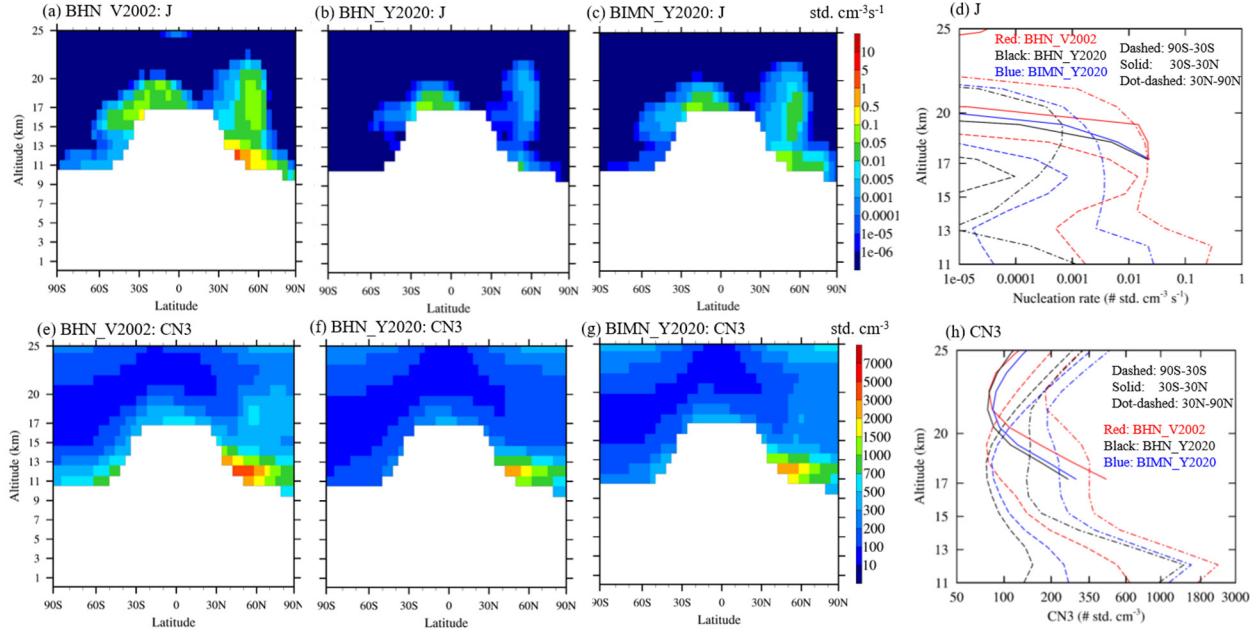

220
221 Figure 1 compares nucleation rates based on the following three different schemes with
222 CLOUD measurements under stratospheric temperature range ($T = 205-223 \text{ K}$): BHN of
223 Vehkamäki et al. (2002) (BHN_V2002), BHN of Yu et al. (2020) (BHN_Y2020), and BIMN of
224 Yu et al. (2020) (BIMN_Y2020). BHN_V2002 and BHN_Y2020 differ in term of thermodynamic
225 data and nucleation approach used (Yu et al., 2020). To show the relative importance of
226 homogeneous versus ion nucleation, BIMN rates at $Q = 20$ ion-pairs $\text{cm}^{-3}\text{s}^{-1}$ were given under
227 binary homogeneous condition in Fig. 1a and BHN rates were also given under binary ion
228 nucleation condition in Fig. 1b. Nucleation rates based on BHN_V2002 are consistently 3–5 orders
229 of magnitude higher than those observed under H_2SO_4 – H_2O binary nucleation conditions without
230 (Fig. 1a) and with (Fig. 1b) the effect of ionizations, while those based on BHN_Y2020 and
231 BIMN_Y2020 are close to the observed values. It should be noted that similar to the CLOUD
232 measurements with the effect of ionization, BHN rates are included in the BIMN rates (Yu et al.,
233 2018) and the difference between BIMN and BHN rates indicates the contribution of ion mediated
234 or induced nucleation. Under the conditions of Fig. 1a, assuming ionization rate of 20 ion-pairs
235 $\text{cm}^{-3}\text{s}^{-1}$ (within the range of its typical value in the stratosphere) the BIMN rates are about one
236 order of magnitude higher than BHN rates when the nucleation rates are below $\sim 5 \text{ cm}^{-3}\text{s}^{-1}$ but
237 close to BHN rates when nucleation rates are above $\sim 5 \text{ cm}^{-3}\text{s}^{-1}$. Similar difference between
238 BHN_Y2020 and BIMN_Y2020 can also be seen in Fig. 1b, indicating the importance of ion
239 nucleation at relatively lower nucleation rates (mostly associated with relatively lower $[\text{H}_2\text{SO}_4]$)
240 and dominance of homogeneous nucleation at higher nucleation rates (associated with larger
241 $[\text{H}_2\text{SO}_4]$). As we show next, $[\text{H}_2\text{SO}_4]$ in the background stratosphere is generally quite low and
242 thus ion nucleation dominates but BHN can become important in the SO_2 plumes injected into the
243 stratosphere.

244 3.2 Nucleation rates and particle number concentrations in the stratosphere

245 Figure 2 shows the zonal mean SO_2 emission ($\text{SO}_2_{\text{emit}}$), particle number emitted by aviation
246 ($\text{PN}_{\text{aviation}}$), temperature (T), relative humidity (RH), ionization rate (Q), and $[\text{H}_2\text{SO}_4]$ averaged
247 during the two-year period (06/2016–05/2018) covering ATom 1-4. To focus on lower stratosphere
248 (LS), only the values of these variables in the stratosphere (grid boxes with more than 50% time
249 above tropopause) are shown. The SO_2 emissions include all sources including volcanos and
250 aviation. During this period, there was one relatively strong volcanic event, the Bezymianny
251 volcano ($55.98^\circ\text{N}, 160.59^\circ\text{E}$), on December 20, 2017 that injected $5 \times 10^6 \text{ kg S}$ into an altitude of \sim
252 14–18 km (Carn et al., 2015). Aviation emission is generally limited to below $\sim 12.5 \text{ km}$ altitude.
253 Based on MERRA2 meteorology data, which is used to drive GEOS-Chem, almost all of grid
254 boxes at 12 km are under the tropopause in the tropics (30°N – 30°S), most of grid boxes at 12 km
255 in the high latitude regions (60°N – 90°N , 60°S – 90°S) are above tropopause, and some fractions of
256 grid boxes at 12 km in the middle latitude regions (30°N – 60°N , 30°S – 60°S) are above tropopause.
257 As can be seen from Fig. 2b, some of aviation emissions in the middle and high latitude regions
258 are in the LMS, and the amount emitted into NH LMS is much higher (by several orders of
259

260 magnitude) than that in SH. The temperature in the LS ranges from 190–225K, with the lowest
 261 value in the region just above tropical tropopause (Fig. 2c). RH in LS has highest values near
 262 tropopause but drops quickly with increasing altitude, from ~30–50% near tropopause to ~0.1–1%
 263 at ~ 25 km in the tropical and middle latitudes (Fig. 2d). The spatial variations of T and RH have
 264 important effects on nucleation in LS. The cosmic ray induced ionization rate in LS has large
 265 latitudinal gradient, ranging from ~40–100 ion-pair std. $\text{cm}^{-3}\text{s}^{-1}$ (here “std. cm^{-3} ” refers to per cubic
 266 centimeter at standard temperature and pressure, 273 K and 1013 hPa respectively) in the tropics
 267 to 100–400 ion-pair std. $\text{cm}^{-3}\text{s}^{-1}$ in middle and high latitude region (Fig. 2e). The high ionization
 268 rates may have important implication for particle microphysics in LS, which will also be discussed
 269 in Section 3.3. H_2SO_4 is the most important aerosol precursor in LS and its concentration depends
 270 on SO_2 concentrations and oxidation, condensation sink, and its vapor pressure that depends on T
 271 and RH. The annual mean $[\text{H}_2\text{SO}_4]$ (Fig. 2f) has large spatial variations, ranging from a minimum
 272 of ~ $1\text{--}2 \times 10^5$ std. cm^{-3} at altitudes of ~ 12–15 km in polar regions to ~ $4\text{--}20 \times 10^5$ std. cm^{-3} close
 273 to the tropopause. From ~ 18–25 km (well above the ATom measurement altitude), $[\text{H}_2\text{SO}_4]$
 274 increases with altitude, mainly due to the increasing H_2SO_4 vapor pressure associated with vertical
 275 changes of T (Fig. 2c) and RH (Fig. 2d).

276
 277



278
 279 **Figure 2.** Zonal mean SO_2 _emit, PN_Emit, T , RH, Q , and $[\text{H}_2\text{SO}_4]$ averaged during the two-year
 280 period (06/2016-05/2018) covering ATom 1-4. To focus on the lower stratosphere, only the values
 281 of these variables in grid boxes with more than 50% time above tropopause and below 25 km are
 282 shown.

283

284 To demonstrate the effect of nucleation schemes on simulated aerosol properties, we compare
285 in Fig. 3 zonal mean and vertical profiles of nucleation rates (J) and number concentrations of
286 condensation nuclei larger than 3 nm (CN3) simulated based on the three nucleation schemes:
287 BHN_V2002, BHN_Y2020, and BIMN_Y2020. In all three schemes, the aviation emissions of
288 both SO_2 (Fig. 2a) and particle numbers (Fig. 2b) are the same. The model simulations indicate
289 that NPF occurs in the lower stratosphere but is mostly confined to LMS except in the area of
290 volcano injection (for example, above ~ 14 km around $\sim 52^\circ\text{N}$). There exist large differences in
291 the nucleation rates predicted by the three schemes (noting the logarithmic color scale), with
292 BHN_V2002 rates generally 1–4 orders of magnitude higher while BIMN_Y2020 rates \sim one
293 order of magnitude higher than those based on BHN-Y2020. The difference between
294 BIMN_Y2020 and BHN_V2002 rates are smaller in the LMS over tropics (30°S - 30°N) where
295 temperature is the lowest (see Fig. 2c). The magnitudes of differences are consistent with
296 comparisons with CLOUD measurements (Fig. 1). The difference in nucleation rates leads to
297 substantial difference in CN3 in LMS, with those based on BHN_V2002 a factor 2–5 higher than
298 those based on BHN_Y2020 in LMS. LMS CN3 based on BIMN_Y2020 is about 50% higher than
299 that of BHN_Y2020. Compared to the difference in nucleation rates, the differences in CN3 is
300 much smaller. This is expected because on one hand only a small fraction of nucleated particles
301 survive the coagulation scavenging and grow beyond 3 nm, and on the other hand direct emission
302 of particle numbers from aviation (Fig. 2b; treated as direct emission but most of these are actually
303 nucleated on chemi-ions in the exhaust plume shortly after emission) (Brock et al., 2000) and
304 transport provide substantial amount of CN3 even without nucleation. Nevertheless, nucleation is
305 still significant enough to affect the CN3. It is interesting to note that CN3 based on BIMN_Y2020
306 is higher at altitudes $> \sim 22$ km (Fig. 3h), which is associated with higher nucleation rates based
307 on BIMN_Y2020 than those based on BHN_V2002 and BHN_Y2020 within the altitude range of
308 35–55 km. Another interesting point is that there is a much smaller vertical gradient in
309 BHN_V2002 nucleation rates in the tropical region (30°S - 30°N) within ~ 17 – 20 km (see Figs. 3a
310 and 3d), likely a result of different dependences of nucleation rates based on different schemes on
311 T, RH, and $[\text{H}_2\text{SO}_4]$ which have large vertical variations (see Fig. 2). It can be seen from Fig. 3
312 that the simulations based on three nucleation schemes all show large hemispheric difference in
313 particle number concentrations (by a factor of \sim 3–6) in LMS at middle and high latitudes,
314 consistent with the ATom measurements (Williamson et al., 2021). Our sensitivity study (by
315 turning off aviation emission, not shown, to be reported in a separate study) indicates this large
316 hemispheric difference is largely caused by aviation emissions, confirming the analysis of
317 Williamson et al. (2021).

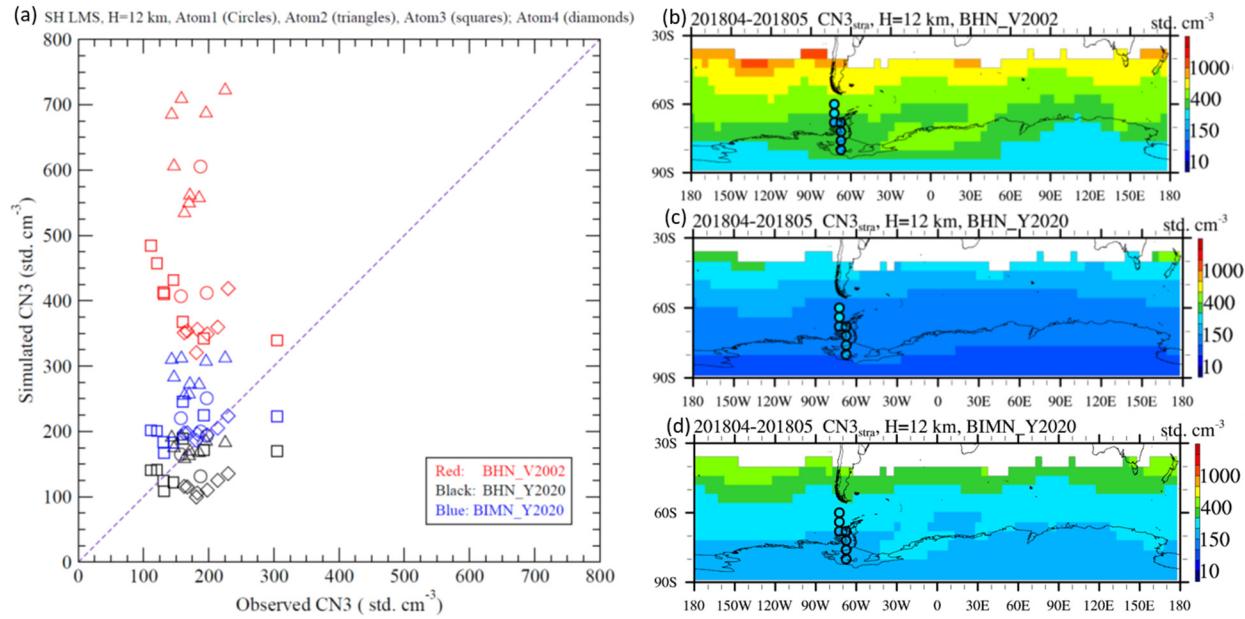
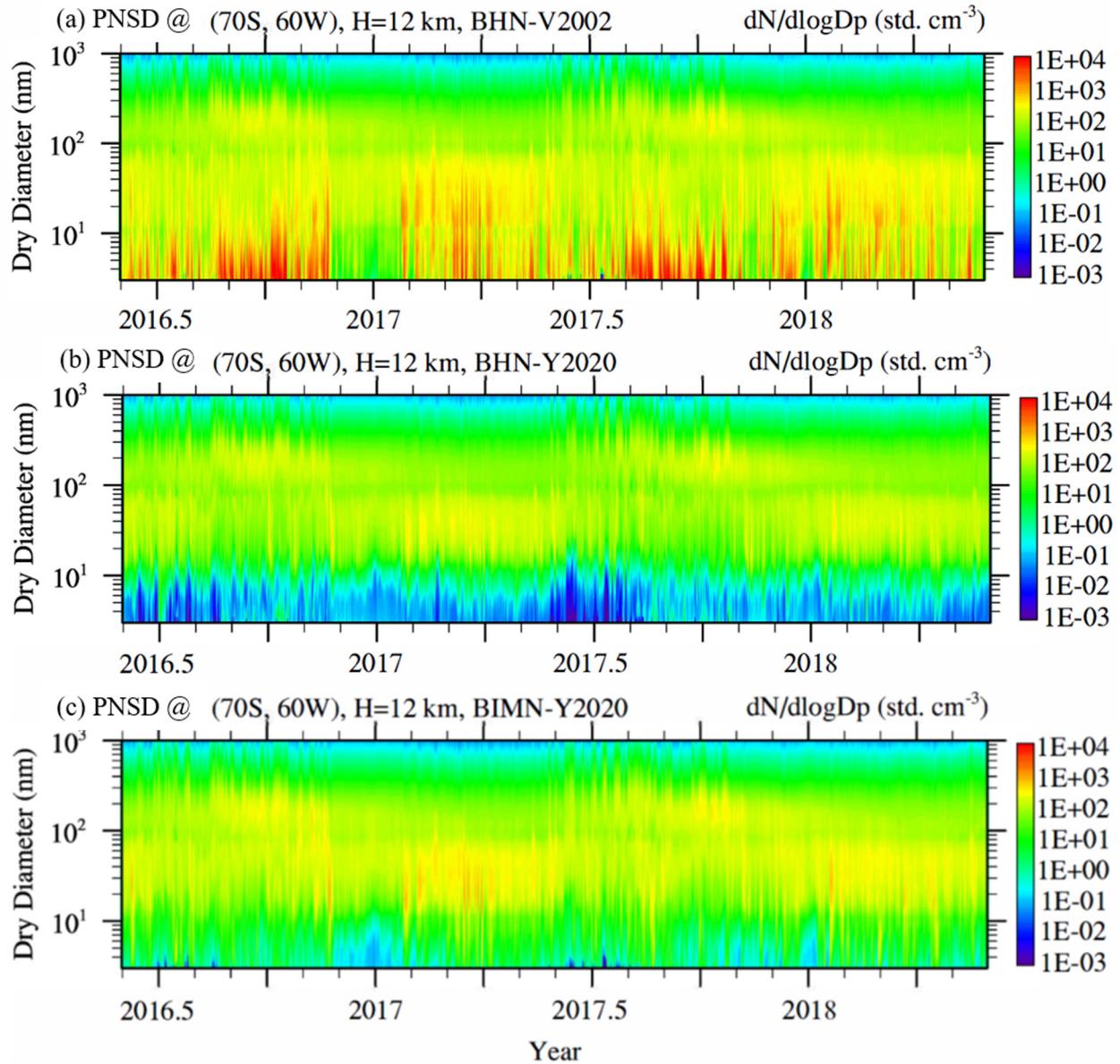

318

Figure 3. Model simulated zonal mean and vertical profiles of nucleation rates (J; upper panels) and number concentrations of particles larger than 3 nm (CN3; lower panels) in the stratosphere during the two-year period covering ATom 1-4 (06/2016- 05/2018), based on three nucleation schemes (a&e: BHN_V2002, b&f: BHN_Y2020, and c&g: BIMN_Y2020). The vertical profiles in (d) and (h) are averaged for three latitude zones (90S-30S, 30S-30N, and 30N-90N). The values for those grids with at least 50% of time above the tropopause are shown.


While it is difficult to observe nucleation rates in the stratosphere, the measurement of freshly nucleated nanoparticles can be used to constrain nucleation schemes. Figure 4a compares the model simulated CN3 (all particles with diameter larger than 3 nm, with the upper size limit of 12 μm corresponding to the size of last model bin) based on the three nucleation schemes at altitudes of around 12 km in SH middle and high altitudes during four seasons with the corresponding ATom 1-4 observations. As an example, Figures 4b-d show the model simulated horizontal distributions of CN3 at 12 km altitude during ATom 4 with the values and locations of ATom4 CN3 data overlaid. We choose SH for comparison, as it represents the background stratosphere with minimum influence of anthropogenic emissions (i.e., aviation) (Fig. 2b), to avoid the uncertainty associated with aviation emissions. In Figure 4, the model results are two-month average corresponding to the flight months of each ATom campaign while the measurement data points shown are those sampled within the altitudes range of 11.5–12.5 km, in the stratosphere (ozone>250 ppbv and RH<10%, following the same stratosphere definitions as in Murphy et al. (2021) and Williamson et al. (2021)), and averaged to a $4^\circ\text{x}5^\circ$ gridbox for comparison with modeled results. The impact of nucleation scheme on CN3 can be clearly seen: BHN_V2002 overpredicted CN3 by a factor of 2–4, BHN_Y2020 slightly underpredicted CN3, and BIMN_Y2020 slightly overpredicted CN3. The larger vertical spread in CN3 from BHN_V2002 is caused by the large CN3 latitude gradient associated with higher nucleation near tropopause

345 (Fig. 3). The comparisons above show that the ATom measurements provide a good constraint on
 346 our understanding of the processes controlling CN3 in the LMS at mid-high latitudes.
 347

348
 349 **Figure 4.** CN3 at altitudes of around 12 km in SH middle and high latitudes: (a) Model simulated
 350 versus observed during ATom 1-4 (Circles: ATom1; Triangles: ATom2; Squares: ATom3;
 351 Diamonds: ATom4); (b-d) model simulated horizontal distributions corresponding to ATom 4
 352 based on three different nucleation schemes (BHN_V2002, BHN_Y2020, and BIMN_Y2020),
 353 with the values and locations of ATom 4 CN3 measurements shown in the circles.

354
 355 **3.3 PNSDs in the stratosphere**
 356 Figure 5 shows the model simulated evolution of PNSDs at an altitude of 12 km over a site in
 357 SH (70°S, 60°W) during the two-year ATom period based on the three different nucleation
 358 schemes. The PNSDs shown in Fig. 5 are averaged into four different seasons corresponding to
 359 the months of ATom 1-4 field campaigns and are presented in Fig. 6 for comparison with the
 360 observed mean PNSDs in SH LMS (Williamsons et al., 2021). It should be noted that modeled
 361 PNSDs in Fig. 6 are two-month average at one fixed site at an altitude of 12 km (in the region
 362 where many of SH LMS measurements were taken, see Fig. 4) while the observed ones are
 363 averaged over all SH LMS air mass sampled during the corresponding ATom campaign. While
 364 the comparison in Fig. 6 is not exactly coterminous, it allows us to make quantitative comparisons
 365 of modeled and observed PNSDs. To take into account the variations in both model and observed
 366 PNSDs, standard deviations are shown as error bars in the measured and modeled curves based on
 367 BIMN_Y2020.
 368

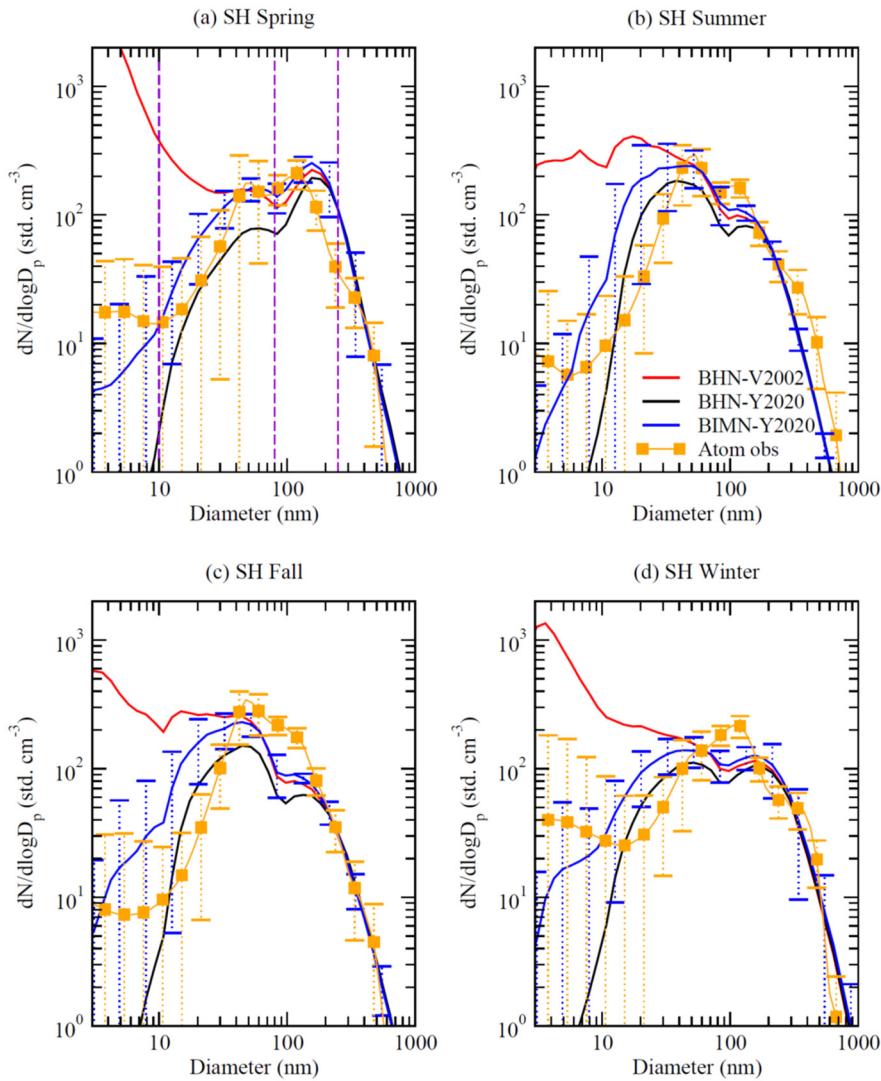

369
370
371

Figure 5. Model simulated evolution of PNSDs at a site in SH (70S, 60 W) at altitude of 12 km based on three nucleation schemes (BHN_2002, BHN_Y2020, and BIMN_Y2020).

372
373
374
375
376
377
378
379
380
381

Figure 6 shows that PNSDs measured in the background LMS have multiple modes: a nucleation mode (NuClM: $\lesssim 10$ nm), an Aitken mode (AitkenM: $\sim 10 - 80$ nm), and two accumulation modes (AccuM1: $\sim 80 - 250$ nm and AccuM2: $\sim 250 - 700$ nm). It should be noted that these modes are not the same size limits as those presented in the public ATom dataset. As shown in Figures 5 and 6, the model based on all three nucleation schemes generally captures the AitkenM and AccuM1 and the existence of a minimum in PNSDs around 80 nm, although there exist differences. Interestingly, the relative height (or peak values of $dN/d\log D_p$) of AitkenM and AccuM1 has strong seasonal variations. The model captures a relatively higher AitkenM in SH Summer and Fall and a higher AccuM1 in SH Spring. The model simulated PNSDs also agree

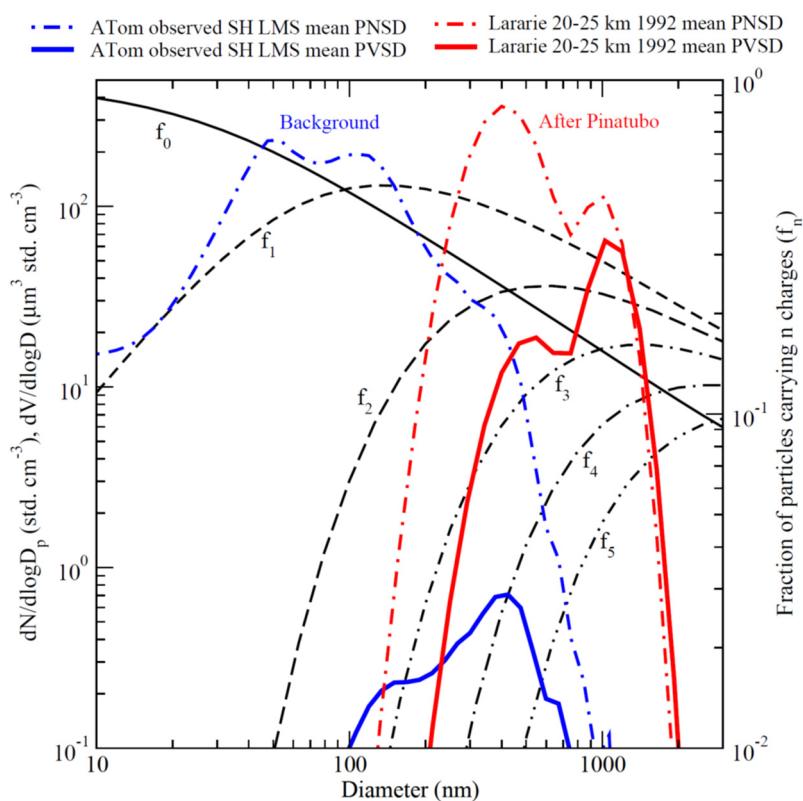
382 well with the measurements in term of the size-dependent normalized standard deviation (σ_N , i.e.,
 383 the standard deviation σ divided by the mean): relatively smaller σ_N for AccuM1 and larger size
 384 part of AitkenM and much larger σ_N for NuclM, smaller size part of AitkenM, and AccuM2. While
 385 the larger σ_N for NuclM is understandable because of NPF, it is surprising for AccuM2. The
 386 AccuM2 particles have relatively long lifetime and are expected to be well-mixed (and thus have
 387 small variations) in LS. The transport of AccuM2 particles from UT may contribute to the larger
 388 variations. Murphy et al. (2021) showed the chemical signature of this transported mode, and here
 389 we show that the variation in the size distribution may also contain information about the mixing
 390 of UT particles into LMS. Compared to the observations, the model simulated AccuM2 σ_N are
 391 larger in SH Winter and Spring but are smaller in SH Summer and Fall. The possible reasons for
 392 the large variations of AccuM2 in LMS and the differences between model simulations and
 393 measurements remain to be studied.

394
 395 **Figure 6.** Model simulated seasonal mean PNSDs at a site in SH (70°S , 60°W) at altitude of 12
 396 km based on three nucleation schemes and comparisons with the corresponding ATom
 397 measurements (a: SH Spring 09–10/2017, b: SH Summer 01–02/2017, c: SH Fall 04–05/2018, and

398 d: SH Winter 06–07/2016). To take into account the variations in both model and observed PNSDs,
399 standard deviations are shown as error bars in the measured and modeled curves based on
400 BIMN_Y2020. Three vertical dashed lines at 10 nm, 80 nm, and 250 nm are drawn in (a) to guide
401 the eye to the four modes discussed in the text.

402
403

404 The large impacts of nucleation schemes on PNSDs, especially those smaller than 100 nm, can
405 be seen in Fig. 6. The formation rates and concentrations of nucleation mode particles are very
406 high based on BHN_V2002 (peak $dN/d\log D_p$ values reaching well above 10^3 std. cm^{-3}), negligible
407 based on BHN_Y2020 ($dN/d\log D_p$ values for particles < 10 nm are generally below 1 std. cm^{-3}),
408 and moderate based on BIMN_Y2020. When compared to the observed values, the number
409 concentrations of particles within 3–10 nm based on BHN_V2002 are 1–2 orders of magnitude
410 too high but those based on BHN_Y2020 are 1–2 orders of magnitudes too low, while those based
411 on BIMN_Y2020 are of the same order of magnitude. The impact of nucleation schemes on NuclM
412 propagates into the AitkenM and AccuM1, with BHN_Y2020 giving the lowest number
413 concentrations while BHN_V2002 gives the highest AitkenM and BIMN_Y2020 gives the highest
414 AccuM1. It should be noted that, while the line of BHN-Y2020 is lower than that of BIMN and
415 BHN-V2002 for particles of smaller sizes ($< \sim 300$ nm), it is slightly higher for larger particles ($> \sim$
416 300 nm). This is consistent with the competition of sulfuric acid gas between pre-existing larger
417 particles and nucleated smaller particles. It is interesting to note that AccuM1 based on
418 BIMN_Y2020 is higher than that based on BHN_V2002 although BHN_V2002 predicts higher
419 NuclM and AitkenM, indicating a non-linear interaction among nucleation, growth, and
420 coagulation. The competition between nucleation and condensation for available sulfuric acid gas
421 has been shown to be important for SAI studies (Laakso et al., 2022).


422 There exist a number of differences in the simulated and observed PNSDs. Firstly,
423 measurements indicate a slight increase of $dN/d\log D_p$ with decreasing sizes for particles < 10 nm
424 but the simulated PNSDs based on BIMN_Y2020, the scheme mostly consistent with CLOUD
425 measurements and predicting NuclM concentrations closest to those observed, decreases with
426 decreasing sizes for particles < 10 nm. The possible reasons of the difference remain to be
427 investigated but probably are associated with uncertainty in nucleation rates and size-dependent
428 growth rates of freshly nucleated particles, and/or the fact that ATom observations are bias towards
429 daytime. In addition, the small number of particles in this mode is likely within the uncertainty in
430 the ATom measurements (about 7% of the total number of particles), so that this measured mode
431 may not be significant. Secondly, the model appears to overpredict the smaller size part (~ 10 –40
432 nm) of AitkenM although it is close to the larger part of the mode (~ 40 –80 nm). The overprediction
433 may be a result of the underestimated growth rates or coagulation scavenging rates of these
434 particles or overpredicted growth rates of NuclM particles. Thirdly, the model generally
435 overpredicts the mean mode sizes of AccuM1 and underpredicts the concentrations of the mode
436 except in SH Spring. The nucleation schemes have observable effects on the concentrations and
437 mean sizes of AccuM1 and overall the simulations based on BIMN_Y2020 are in stronger
438 agreement with measurements. Finally, the observed PNSDs show a clear AccuM2 in all seasons
439 except Fall but such a mode cannot be clearly seen in the model simulated PNSDs, indicating that
440 the model underpredicts the concentrations of AccuM2 mode particles. AccuM2 particles are

441 within the size range with most efficient scattering of solar radiation and thus are important for
442 SAI. It is therefore necessary to identify the sources of this difference and to improve the model.

443 As pointed out earlier, the comparison in Fig. 6 does not exactly match in terms of time and
444 location, which likely contributes to some of the differences shown in Fig. 6. Some of the
445 differences can also be caused by the uncertainties in the model in term of emissions, transport,
446 chemistry, aerosol microphysics, and deposition. Nevertheless, some of these differences,
447 especially the shape of PNSDs (AccuM2, NuclM, etc.), are unlikely to be fully accounted for by
448 the above-mentioned possible mismatch or model uncertainties and thus may indicate that some
449 fundamental processes are not represented in the model. One possible cause of the differences is
450 that the transport of organic-sulfate particles from UT (Murphy et al., 2014, 2021) is not properly
451 simulated by the model. Based on size-resolved particle composition measurements, Murphy et al.
452 (2021) showed that the LMS accumulation mode particles (diameter ~ 0.1 and $1.0 \mu\text{m}$) have at
453 least two modes: the larger mode consists mostly of sulfuric acid particles produced in the
454 stratosphere, and the smaller mode consists mostly of organic-sulfate particles transported from
455 the troposphere. Murphy et al. (2014) showed that the fraction of organic-sulfate aerosols above
456 tropopause decreases quickly with altitudes. While the organic-sulfate mode aerosols from UT
457 may contribute to the bi-modal structure of accumulation mode particles in the LMS observed
458 during ATom, it is unlikely to contribute to the bi-modal structure of particles larger than ~ 200 nm
459 observed at altitude above ~ 20 km both in the background and in volcano perturbed stratosphere
460 (Deshler et al., 2013, 2019; also see Fig. 7). Here, we suggest that the role of charges on
461 coagulation and growth of particles in the stratosphere could be another process causing the bi-
462 modal of large particles in the stratosphere.

463 As shown Fig. 2e, ionization rates are high in LS, ranging from ~ 40 – 100 ion-pair std. $\text{cm}^{-3}\text{s}^{-1}$.
464 Due to their low number concentrations (~ 100 – 1000 std. cm^{-3}) but long lifetime, particles in the
465 stratosphere are expected to be in charge equilibrium. Figure 7 shows mean particle number size
466 distribution (PNSD) and particle volume size distribution (PVSD) observed during ATom 1-4 in
467 SH LMS and measured within 20–25 km altitude over Lararie WY in 1992, and fraction of particles
468 carrying n charges based on the modified Boltzmann equilibrium equation (Clement and Harrison,
469 1992). The bi-modal structure of accumulation mode particles can be clearly seen in both
470 background and volcano perturbed stratosphere. It should be noted that while the smaller mode
471 generally dominates the number concentrations, the larger mode dominates mass concentrations.
472 Under equilibrium more particles are charged (i.e., $1-f_0 > 50\%$) than neutral (f_0) for particles with
473 diameter larger than ~ 80 nm and a significant fraction ($> 25\%$) of particles larger than 300 nm
474 carrying multiple charges. While the equilibrium charge fraction is small for NuclM particles (\lesssim
475 10 nm), this fraction can be much larger when nucleation on ions occurs, which is consistent with
476 the observed overcharging of freshly nucleated particles (Laakso et al. 2007; Yu and Turco, 2008).
477 Particle coagulation rates are influenced by forces exerted between colliding particles, including
478 van der Waals and electrostatic forces, which can modify the effective collision cross section and
479 sticking coefficient. The van der Waals force has been shown to be important in the stratosphere
480 (English et al., 2011, 2012) and has been considered in the simulations shown above. The effects
481 of charges on coagulation and implications for PNSDs in the stratosphere have not yet been studied
482 (to our knowledge). Since coagulation is a dominant process for the growth of accumulation mode
483 particles in the stratosphere, we hypothesize that differential coagulation rates for neutral and

484 charged particles in accumulation modes can potentially act as a physical process separating the
 485 modeled single accumulation mode (Fig. 6) into two modes (AccuM1 and AccuM2) as observed.
 486 Further research is needed to test this hypothesis. In addition to affecting coagulation, charge on
 487 small particles can also enhance the growth rate due to ion-dipole interactions of condensing
 488 molecules with charged particles (Nadykto and Yu, 2005). This enhancement is expected to be
 489 stronger in the stratosphere because of lower temperature (Nadykto and Yu, 2005). Beside these,
 490 Svensmark et al. (2020) showed that the condensation of ion clusters can enhance particle growth
 491 rates. How much the enhanced coagulation and growth rates of charged particles may shape
 492 PNSDs and modes in the stratosphere remains to be investigated.
 493

494
 495 **Figure 7.** ATOM 1-4 mean observed particle number size distribution (PNSD, or $dN/d\log D_p$) and
 496 particle volume size distribution (PVSD, or $dV/d\log D_p$) in SH LMS, balloon-borne measured
 497 mean PNSD and PVSD within 20-25 km altitude over Lararie WY in 1992, and fraction of
 498 particles carrying n ($n = 0, 1, 2, 3, 4$, and 5) charges based on the modified Boltzmann equilibrium
 499 equation (Clement and Harrison, 1992). Note that f_n with $n \geq 1$ including both positive and negative
 500 charges, i.e., for example, half of f_1 carrying one negative charge while the other half positive.
 501

502 4. Summary and Discussions

503 Interest in stratospheric aerosols has been increasing in recent years, due to the ongoing
 504 discussion about the plausibility, potential benefits and risks of offsetting climate change through
 505 stratospheric aerosol injection (SAI) to buy time for reduction of CO_2 in the atmosphere. Recent
 506 studies indicate the dependence of SAI radiative efficacy (Dai et al., 2018) on the particle size
 507 distribution (NASEM, 2021) and thus it is critical to improve foundational understanding and

508 model representation of aerosol microphysics processes controlling the evolution of stratospheric
509 aerosols, both under background conditions and perturbed scenarios. While formation and growth
510 of particles in the troposphere have been extensively studied in the past two decades, very limited
511 efforts have been devoted to understanding these in the stratosphere.

512 In the present study we use both CLOUD laboratory measurements taken under very low
513 stratospheric temperatures and ATom in-situ observations of particle number size distributions
514 (PNSD) down to 3 nm to constrain nucleation schemes and model-simulated particle size
515 distributions in the lowermost stratosphere (LMS). We show that the binary homogenous
516 nucleation scheme used in most of the existing SAI modeling studies overpredicts the nucleation
517 rates by 3–4 orders of magnitude (when compared to CLOUD data), leading to significant
518 overprediction of particle number concentrations in the background stratosphere (by a factor of 2–
519 4 in SH LMS, compared to ATom data). Based on a recently developed kinetic nucleation model
520 which provides rates of both ion-mediated nucleation (IMN) and BHN at low temperatures in good
521 agreement with CLOUD measurements, both BHN and IMN occur in the stratosphere but IMN
522 rates are generally more than one order of magnitude higher than BHN rates and thus dominate
523 nucleation in the background stratosphere.

524 In the SH LMS that has minimal influences from anthropogenic emissions, our analysis shows
525 that ATom-measured PNSDs generally have four apparent modes: a nucleation mode (NuclM: \lesssim
526 10 nm), which may not be statistically significant, an Aitken mode (AitkenM: \sim 10–80 nm), and
527 two accumulation modes (AccuM1: \sim 80–250 nm and AccuM2: \sim 250–700 nm). The model
528 generally captures the AitkenM and AccuM1 and the existence of a minimum in PNSDs at \sim 80
529 nm, although there are differences. The model captures a relatively higher AitkenM in SH Summer
530 and Fall and a higher AccuM1 in SH Spring. The model simulated PNSDs also agree well with
531 the measurements in term of the size-dependent standard deviations: relatively smaller standard
532 deviations for AccuM1 and larger size part of AitkenM and much larger standard deviations for
533 NuclM, smaller size part of AitkenM, and AccuM2.

534 A detailed comparison indicates the existence of a third PNSD mode peaking around 300–400
535 nm in the ATom measurements that are not captured by the model. Compared to the observations,
536 the model-simulated AccuM2 standard deviations are larger in SH Winter and Spring but are
537 smaller in SH Summer and Fall. In addition, the model overpredicts the number concentration of
538 particles in the size range of 10–50 nm. These differences may indicate that, in addition to
539 nucleation, the model may be missing some fundamental microphysical processes of stratospheric
540 aerosols. Our analysis shows that, in the stratosphere, more particles are charged (positive +
541 negative) than neutral for particles with diameter larger than \sim 80 nm and a significant fraction ($>$
542 25%) of particles larger than 300 nm carrying multiple charges. We propose that the role of charges
543 on coagulation and growth of particles in the stratosphere, where ionization rates are high and
544 particles have very long lifetime, is likely one of such processes. Considering the importance of
545 accurate particle size distributions (especially the accumulation mode particles) for projecting
546 realistic radiative forcing response to stratospheric aerosols, it is essential to understand and
547 incorporate such potentially important processes in model simulations of future changes in the
548 stratosphere. It should be noted that the ATom measurement period does not have a high
549 stratospheric aerosol loading (i.e., no major volcano eruptions). It remains to be investigated if
550 previous assessments of volcanic aerosol microphysics missed something important. We expect

551 the uncertainties in the nucleation schemes and unknown cause of the bi-modal structure of
552 accumulation mode particles will affect particle optical properties and surface area and thus
553 radiative forcing or chemistry. In addition to what we have shown in this study, there are likely
554 other uncertainties or missing processes we do not know and the community needs to identify and
555 resolve these. The present work highlights the importance of advancing scientific understanding
556 of processes controlling properties of stratospheric particles, identifying important processes that
557 the present models might have missed, and further development, improvement, and validation of
558 models for reducing uncertainties of SAI simulations (e.g., Golja et al., 2021, Sun et al., 2022).

559

560 **Conflict of interest:** The authors declare that they have no conflict of interest.

561

562 **Acknowledgments.** The MERRA-2 data used in this study have been provided by the Global
563 Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. This research
564 has been supported by NASA (grant nos. 80NSSC19K1275 and 80NSSC21K1199) and
565 SilverLining.

566 **Data availability.** The GEOS-Chem model is available to the public at <https://geos-chem.seas.harvard.edu/>. Simulation output in this analysis is available at
567 <https://doi.org/10.5281/zenodo.6909944>. The ATom dataset is published as Wofsy et al., (2021,
568 <https://doi.org/10.3334/ORNLDAAC/1925>) and is also available at
569 <https://espoarchive.nasa.gov/archive/browse/atom> (last access: June 2022).

571 References

572 Brock, C. A., Hamill, P., Wilson, J. C., Jonsson, H. H., and Chan, K. R.: Particle formation in the
573 upper tropical troposphere – A source of nuclei for the stratospheric aerosol, *Science*, 270,
574 1650–1653, <https://doi.org/10.1126/science.270.5242.1650>, 1995.

575 Brock, C. A., Schröder, F., Kärcher, B., Petzold, A., Busen, R., and Fiebig, M.: Ultrafine particle
576 size distributions measured in aircraft exhaust plumes, *J. Geophys. Res.-Atmos.*, 105, 26555–
577 26567, <https://doi.org/10.1029/2000jd900360>, 2000.

578 Brock, C. A., Williamson, C., Kupc, A., Froyd, K. D., Erdesz, F., Wagner, N., Richardson, M.,
579 Schwarz, J. P., Gao, R.-S., Katich, J. M., Campuzano-Jost, P., Nault, B. A., Schroder, J. C.,
580 Jimenez, J. L., Weinzierl, B., Dollner, M., Bui, T., and Murphy, D. M.: Aerosol size
581 distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties,
582 and data products, *Atmos. Meas. Tech.*, 12, 3081–3099, <https://doi.org/10.5194/amt-12-3081-2019>, 2019.

583 Brock, C.A., Froyd, K.D., Dollner, M., Williamson, C.J., Schill, G., Murphy, D.M., Wagner, N.J.,
584 Kupc, A., Jimenez, J.L., Campuzano-Jost, P., Nault, B.A., Schroder, J.C., Day, D.A., Price,
585 D.J., Weinzierl, B., Schwarz, J.P., Katich, J.M., Wang, S., Zeng, L., Weber, R., Dibb, J.,
586 Scheuer, E., Diskin, G.S., DiGangi, J.P., Bui, T., Dean-Day, J.M., Thompson, C.R., Peischl,
587 J., Ryerson, T.B., Bourgeois, I., Daube, B.C., Commane, R., and Wofsy, S.C. Ambient
588 aerosol properties in the remote atmosphere from global-scale in situ measurements, *Atmos.*
589 *Chem. Phys.*, 21: 15023-63. 2021.

591 Carn, S. A., Yang, K., Prata, A. J. and Krotkov, N. A.: Extending the long-term record of volcanic
592 SO₂ emissions with the Ozone Mapping and Profiler Suite nadir mapper. *Geophys. Res. Lett.*,
593 42: 925– 932. doi: 10.1002/2014GL062437, 2015.

594 Clement, C. F., & Harrison, R. G.: The charging of radioactive aerosols. *Journal of Aerosol
595 Science*, 23(5), 481–504. [https://doi.org/10.1016/0021-8502\(92\)90019-R](https://doi.org/10.1016/0021-8502(92)90019-R), 1992.

596 Dai, Z., Weisenstein, D. K., & Keith, D. W.: Tailoring meridional and seasonal radiative forcing
597 by sulfate aerosol solar geoengineering. *Geophysical Research Letters*, 45, 1030–1039.
598 <https://doi.org/10.1002/2017GL076472>, 2018.

599 Dawson, M. L., Varner, M. E., Perra, V., Ezell, M. J., Gerber, R. B., & Finlayson-Pitts, B. J.:
600 Simplified mechanism for new particle formation from methanesulfonic acid, amines, and
601 water via experiments and ab initio calculations. *Proceedings of the National Academy of
602 Sciences*, 109(46), 18719–18724, 2012.

603 Dunne, E. M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K.,
604 Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F.,
605 Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N. M., Ehrhart, S., Flagan,
606 R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma,
607 J., Kirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann,
608 G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C.
609 L. S., Riccobono, F., Richards, N. A. D., Rissanen, M. P., Rondo, L., Sarnela, N.,
610 Schobesberger, S., Sengupta, K., Simon, M., Sipilä, M., Smith, J. N., Stozkhov, Y., Tomé,
611 A., Tröstl, J., Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw, K.
612 S.: Global particle formation from CERN CLOUD measurements, *Science*, 354, 1119–1124,
613 <https://doi.org/10.1126/science.aaf2649>, 2016.

614 Eastham, S. D., Weisenstein, D. K., & Barrett, S. R.: Development and evaluation of the unified
615 tropospheric–stratospheric chemistry extension (UCX) for the global chemistry-transport
616 model GEOS-Chem. *Atmospheric Environment*, 89, 52–63, 2014.

617 English, J. M., Toon, O. B., Mills, M. J., & Yu, F.: Microphysical simulations of new particle
618 formation in the upper troposphere and lower stratosphere. *Atmospheric Chemistry and
619 Physics*, 11(17), 9303–9322, 2011.

620 Evans, M. J., & Jacob, D. J.: Impact of new laboratory studies of N₂O₅ hydrolysis on global model
621 budgets of tropospheric nitrogen oxides, ozone, and OH. *Geophysical Research Letters*, 32(9),
622 2005.

623 Golja, C. M., Chew, L. W., Dykema, J. A., & Keith, D. W.: Aerosol dynamics in the near field of
624 the SCoPEx stratospheric balloon experiment. *Journal of Geophysical Research: Atmospheres*,
625 126, e2020JD033438. <https://doi.org/10.1029/2020JD033438>, 2021.

626 Gronoff, G., Berkoff, T., Knowland, K. E., Lei, L., Shook, M., Fabbri, B., Carrion, W., & Langford,
627 A. O.: Case study of stratospheric intrusion above Hampton, Virginia: lidar-observation and
628 modeling analysis. *Atmospheric Environment*, 118498, 2021.

629 Hamill, P., Turco, R. P., Kiang, C. S., Toon, O. B., and Whitten, R. C.: An analysis of various
630 nucleation mechanisms for sulfate particles in the stratosphere, *J. Aerosol Sci.*, 13, 561–585,
631 1982.

632 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert,
633 J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa,

634 J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical
635 (17502014) anthropogenic emissions of reactive gases and aerosols from the Community
636 Emissions Data System (CEDS), *Geosci. Model Dev.*, 11, 369-408, 2018.

637 Holmes, C. D., Bertram, T. H., Confer, K. L., Graham, K. A., Ronan, A. C., Wirks, C. K., & Shah,
638 V.: The role of clouds in the tropospheric NO_x cycle: A new modeling approach for cloud
639 chemistry and its global implications. *Geophysical Research Letters*, 46(9), 4980-4990, 2019.

640 IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
641 Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-
642 Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
643 Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock,
644 T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press, 2021.

645 Jones, A., Haywood, J. M., Jones, A. C., Tilmes, S., Kravitz, B., and Robock, A.: North Atlantic
646 Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling
647 is needed for understanding regional implications of solar radiation management, *Atmos.*
648 *Chem. Phys.*, 21, 1287–1304, <https://doi.org/10.5194/acp-21-1287-2021>, 2021.

649 Kärcher, B., Turco, R. P., Yu, F., Danilin, M. Y., Weisenstein, D. K., Miake-Lye, R. C., & Busen,
650 R.: A unified model for ultrafine aircraft particle emissions. *Journal of Geophysical Research: Atmospheres*, 105(D24), 29379-29386, 2000.

652 Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A. M., Pawson, S., and Jacob D. J.: HEMCO
653 v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric
654 models, *Geosci. Model Dev.*, 7, 1409–1417, 2014.

655 Kerminen, V. M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., & Bianchi, F.: Atmospheric new
656 particle formation and growth: review of field observations. *Environmental Research Letters*,
657 13(10), 103003, 2018.

658 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné, S.,
659 Ickes, L., Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S.,
660 Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A.,
661 Dommen, J., Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W.,
662 Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R.,
663 Makhmutov, V., Mathot, S., Mikkilä, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A.,
664 Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M., Stozhkov, Y., Stratmann,
665 F., Tomé, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H., Weingartner,
666 E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala,
667 M.: The role of sulfuric acid, ammonia and galactic cosmic rays in atmospheric aerosol
668 nucleation, *Nature*, 476, 429–433, 2011.

669 Kirner, O., Ruhnke, R., Buchholz-Dietsch, J., Jöckel, P., Brühl, C., & Steil, B.: Simulation of polar
670 stratospheric clouds in the chemistry-climate-model EMAC via the submodel
671 PSC. *Geoscientific Model Development*, 4(1), 169-182, 2011.

672 Knowland, K. E., Keller, C. A., Wales, P. A., Wargan, K., Coy, L., Johnson, M. S., et al. (2022).
673 NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric
674 composition. *Journal of Advances in Modeling Earth Systems*, 14, e2021MS002852.
675 <https://doi.org/10.1029/2021MS002852>.

676 Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov, G., & Schulz, M.:
677 The geoengineering model intercomparison project (GeoMIP). *Atmospheric Science
678 Letters*, 12(2), 162-167, 2011.

679 Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V. M., W. Birmili,
680 & McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review
681 of observations. *Journal of Aerosol Science*, 35(2), 143-176. doi:
682 10.1016/j.jaerosci.2003.10.003, 2004.

683 Kupc, A., Williamson, C., Wagner, N. L., Richardson, M., & Brock, C. A.: Modification,
684 calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle
685 size distribution and volatility measurements during the Atmospheric Tomography Mission
686 (ATom) airborne campaign. *Atmospheric Measurement Techniques*, 11(1), 369-383.
687 doi:10.5194/amt-11-369-2018, 2018.

688 Kupc, A., Williamson, C. J., Hodshire, A. L., Kazil, J., Ray, E., Bui, T. P., Dollner, M., Froyd, K.
689 D., McKain, K., Rollins, A., Schill, G. P., Thames, A., Weinzierl, B. B., Pierce, J. R., and
690 Brock, C. A.: The potential role of organics in new particle formation and initial growth in
691 the remote tropical upper troposphere, *Atmos. Chem. Phys.*, 20, 15037-15060, 10.5194/acp-
692 20-15037-2020, 2020.

693 Kürten, A., Bianchi, F., Almeida, J., Kupiainen-Määttä, O., Dunne, E. M., Duplissy, J., Williamson,
694 C., Barmet, P., Breitenlechner, M., Dommen, J., Donahue, N. M., Flagan, R. C., Franchin,
695 A., Gordon, H., Hakala, J., Hansel, A., Heinritzi, M., Ickes, L., Jokinen, T., Kangasluoma, J.,
696 Kim, J., Kirkby, J., Kupc, A., Lehtipalo, K., Leiminger, M., Makhmutov, V., Onnela, A.,
697 Ortega, I. K., Petäjä, T., Praplan, A. P., Riccobono, F., Rissanen, M. P., Rondo, L.,
698 Schnitzhofer, R., Schobesberger, S., Smith, J. N., Steiner, G., Stozhkov, Y., Tomé, A., Tröstl,
699 J., Tsagkogeorgas, G., Wagner, P. E., Wimmer, D., Ye, P., Baltensperger, U., Carslaw, K.,
700 Kulmala, M., and Curtius, J.: Experimental particle formation rates spanning tropospheric
701 sulfuric acid and ammonia abundances, ion production rates, and temperatures, *J. Geophys.
702 Res.-Atmos.*, 121, 12377–12400, <https://doi.org/10.1002/2015JD023908>, 2016.

703 Laakso, A., Niemeier, U., Visioni, D., Tilmes, S., and Kokkola, H.: Dependency of the impacts of
704 geoengineering on the stratospheric sulfur injection strategy – Part 1: Intercomparison of
705 modal and sectional aerosol modules, *Atmos. Chem. Phys.*, 22, 93–118,
706 <https://doi.org/10.5194/acp-22-93-2022>, 2022.

707 Laakso, L., Gagné, S., Petäjä, T., Hirsikko, A., Aalto, P. P., Kulmala, M., & Kerminen, V. M.:
708 Detecting charging state of ultra-fine particles: instrumental development and ambient
709 measurements. *Atmospheric Chemistry and Physics*, 7(5), 1333-1345, 2007.

710 Lee, S. H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., & Zhang, R.: New particle
711 formation in the atmosphere: From molecular clusters to global climate. *Journal of
712 Geophysical Research: Atmospheres*, 124(13), 7098-7146, 2019.

713 Lee, S. H., Reeves, J. M., Wilson, J. C., Hunton, D. E., Viggiano, A. A., Miller, T. M., Ballenthin,
714 J. O., and Lait, L. R.: Particle formation by ion nucleation in the upper troposphere and lower
715 stratosphere, *Science*, 301, 1886–1889, <https://doi.org/10.1126/science.1087236>, 2003.

716 Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G.,
717 Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and
718 Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international

719 collaboration framework of the MICS-Asia and HTAP, *Atmos. Chem. Phys.*, 17, 935–963,
720 <https://doi.org/10.5194/acp-17-935-2017>, 2017.

721 Lockley, A., MacMartin, D., & Hunt, H.: An update on engineering issues concerning stratospheric
722 aerosol injection for geoengineering. *Environmental Research Communications*, 2(8),
723 082001, 2020.

724 Lovejoy, E. R., Curtius, J., and Froyd, K. D.: Atmospheric ion-induced nucleation of sulfuric acid
725 and water, *J. Geophys. Res.*, 109, D08204, <https://doi.org/10.1029/2003JD004460>, 2004.

726 Luo, G., Yu, F., & Moch, J. M.: Further improvement of wet process treatments in GEOS-Chem
727 v12. 6.0: impact on global distributions of aerosols and aerosol precursors. *Geoscientific
728 Model Development*, 13(6), 2879-2903, 2020.

729 Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., & Evans, M. J.: Global
730 inventory of nitrogen oxide emissions constrained by space-based observations of NO₂
731 columns. *Journal of Geophysical Research: Atmospheres*, 108(D17), 2003.

732 Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., Tribbia, J.
733 J., Lamarque, J.-F., Vitt, F., Schmidt, A., and Gettelman, A.: Radiative and chemical response
734 to interactive stratospheric sulfate aerosols in fully coupled CESM1 (WACCM), *J. Geophys.
735 Res.*, 122, 13061–13078, <https://doi.org/10.1002/2017JD027006>, 2017.

736 Murphy, D. M., Froyd, K. D., Bourgeois, I., Brock, C. A., Kupc, A., Peischl, J., Schill, G. P.,
737 Thompson, C. R., Williamson, C. J., and Yu, P.: Radiative and chemical implications of the
738 size and composition of aerosol particles in the existing or modified global stratosphere,
739 *Atmos. Chem. Phys.*, 21, 8915-8932, 10.5194/acp-21-8915-2021, 2021.

740 Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., & Koshak, W. J.: Optimized regional
741 and interannual variability of lightning in a global chemical transport model constrained by
742 LIS/OTD satellite data. *Journal of Geophysical Research: Atmospheres*, 117(D20), 2012.

743 Nadykto, A. B., & Yu, F.: Simple correction to the classical theory of homogeneous nucleation.
744 *The Journal of chemical physics*, 122(10), 104511, 2005.

745 NASEM: *Reflecting Sunlight: Recommendations for Solar Geoengineering Research and
746 Research Governance*. Washington, DC: The National Academies Press, 2021.

747 Pye, H. O., & Seinfeld, J. H.: A global perspective on aerosol from low-volatility organic
748 compounds. *Atmospheric Chemistry and Physics*, 10(9), 4377-4401, 2010.

749 Richter, J., Visioni, D., MacMartin, D., Bailey, D., Rosenbloom, N., Lee, W., Tye, M., and
750 Lamarque, J.-F.: Assessing Responses and Impacts of Solar climate intervention on the Earth
751 system with stratospheric aerosol injection (ARISE-SAI), *EGUspHERE* [preprint],
752 <https://doi.org/10.5194/egusphere-2022-125>, 2022.

753 Rotman, D. A., Tannahill, J. R., Kinnison, D. E., Connell, P. S., Bergmann, D., Proctor, D., ... &
754 Kawa, S. R.: Global Modeling Initiative assessment model: Model description, integration,
755 and testing of the transport shell. *Journal of Geophysical Research: Atmospheres*, 106(D2),
756 1669-1691, 2001.

757 Shepherd, J. G.: Geoengineering the climate: science, governance and uncertainty. Royal Society,
758 2009.

759 Shi, Q., Jayne, J. T., Kolb, C. E., Worsnop, D. R., & Davidovits, P.: Kinetic model for reaction of
760 ClONO₂ with H₂O and HCl and HOCl with HCl in sulfuric acid solutions. *Journal of
761 Geophysical Research: Atmospheres*, 106(D20), 24259-24274, 2001.

762 Stettler, M.E.J., S. Eastham, S.R.H. Barrett (2011), Air quality and public health impacts of UK
763 airports. Part I: Emissions, *Atmos. Environ.*, 45, 5415-5424, 2011.

764 Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I.,
765 Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The
766 aerosol-climate model ECHAM5-HAM, *Atmos. Chem. Phys.*, 5, 1125–1156,
767 <https://doi.org/10.5194/acp-5-1125-2005>, 2005.

768 Sun, H., Eastham, S., & Keith, D.: Developing a Plume-in-Grid model for plume evolution in the
769 stratosphere. *Journal of Advances in Modeling Earth Systems*, 14, e2021MS002816.
770 <https://doi.org/10.1029/2021MS002816>, 2022.

771 Svensmark, J., Shaviv, N. J., Enghoff, M. B., & Svensmark, H.: The ION-CAGE code: A
772 numerical model for the growth of charged and neutral aerosols. *Earth and Space Science*, 7,
773 e2020EA001142. <https://doi.org/10.1029/2020EA001142>, 2020.

774 Thompson, C.R., Wofsy, S.C., Prather, M.J., Newman, P.A., Hanisco, T.F., Ryerson, T.B., Fahey,
775 D.W., Apel, E.C., Brock, C.A., Brune, W.H., Froyd, K., Katich, J.M., Nicely, J.M., Peischl,
776 J., Ray, E., Veres, P.R., Wang, S., Allen, H.M., Asher, E., Bian, H., Blake, D., Bourgeois, I.,
777 Budney, J., Bui, T.P., Butler, A., Campuzano-Jost, P., Chang, C., Chin, M., Commane, R.,
778 Correa, G., Crounse, J.D., Daube, B., Dibb, J.E., DiGangi, J.P., Diskin, G.S., Dollner, M.,
779 Elkins, J.W., Fiore, A.M., Flynn, C.M., Guo, H., Hall, S.R., Hannun, R.A., Hills, A., Hintsas,
780 E.J., Hodzic, A., Hornbrook, R.S., Huey, L.G., Jimenez, J.L., Keeling, R.F., Kim, M.J., Kupc,
781 A., Lacey, F., Lait, L.R., Lamarque, J.-F., Liu, J., McKain, K., Meinardi, S., Miller, D.O.,
782 Montzka, S.A., Moore, F.L., Morgan, E.J., Murphy, D.M., Murray, L.T., Nault, B.A.,
783 Neuman, J.A., Nguyen, L., Gonzalez, Y., Rollins, A., Rosenlof, K., Sargent, M., Schill, G.,
784 Schwarz, J.P., Clair, J.M.S., Steenrod, S.D., Stephens, B.B., Strahan, S.E., Strode, S.A.,
785 Sweeney, C., Thamis, A.B., Ullmann, K., Wagner, N., Weber, R., Weinzierl, B., Wennberg,
786 P.O., Williamson, C.J., Wolfe, G.M., and Zeng, L. 'The NASA Atmospheric Tomography
787 (ATom) Mission: Imaging the Chemistry of the Global Atmosphere', *Bulletin of the
788 American Meteorological Society*, 103: E761-E90. 2022.

789 Tilmes, S., Mills, M. J., Niemeier, U., Schmidt, H., Robock, A., Kravitz, B., Lamarque, J.-F., Pitari,
790 G., and English, J. M.: A new Geoengineering Model Intercomparison Project (GeoMIP)
791 experiment designed for climate and chemistry models, *Geosci. Model Dev.*, 8, 43–49,
792 <https://doi.org/10.5194/gmd-8-43-2015>, 2015.

793 Turco, R. P., Whitten, R. C., & Toon, O. B.: Stratospheric aerosols: Observation and theory.
794 *Reviews of Geophysics*, 20(2), 233-279. doi: 10.1029/RG020i002p00233, 1982.

795 van der Werf, G. R., J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, M.
796 Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, and P. S. Kasibhatla,
797 Global fire emissions estimates during 1997–2016, *Earth Sys. Sci. Data*, 9, 697-720, 2017.

798 van Donkelaar, A., Martin, R.V., Leaitch, W.R., Macdonald, A.M., Walker, T.W., Streets, D.G.,
799 Zhang, Q., Dunlea, E.J., Jimenez, J.L., Dibb, J.E., Huey, L.G., Weber, R., Andreae, M.O.:
800 Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport
801 Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to
802 Canada. *Atmospheric Chemistry and Physics*, 8(11), 2999-3014, 2008.

803 Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E., Timmreck, C., Noppel, M., & Laaksonen,
804 A.: An improved parameterization for sulfuric acid–water nucleation rates for tropospheric

805 and stratospheric conditions. *Journal of Geophysical Research: Atmospheres*, 107(D22),
806 AAC-3. doi: 10.1029/2002JD002184, 2002.

807 Weisenstein, D. K., Visioni, D., Franke, H., Niemeier, U., Vattioni, S., Chiodo, G., Peter, T., and
808 Keith, D. W.: An interactive stratospheric aerosol model intercomparison of solar
809 geoengineering by stratospheric injection of SO₂ or accumulation-mode sulfuric acid
810 aerosols, *Atmos. Chem. Phys.*, 22, 2955–2973, <https://doi.org/10.5194/acp-22-2955-2022>,
811 2022.

812 Williamson, C., Kupc, A., Wilson, J., Gesler, D. W., Reeves, J. M., Erdesz, F., McLaughlin, R., &
813 Brock, C. A.: Fast time response measurements of particle size distributions in the 3-60 nm
814 size range with the nucleation mode aerosol size spectrometer. *Atmospheric Measurement
815 Techniques*, 11(6), 3491-3509. doi:10.5194/amt-11-3491-2018, 2018.

816 Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner, M.,
817 Froyd, K. D., Hodshire, A. L., Jimenez, J. L., Kodros, J. K., Luo, G., Murphy, D. M., Nault,
818 B. A., Ray, E. A., Weinzierl, B., Wilson, J. C., Yu, F. Q., Yu, P. F., Pierce, J. R., and Brock,
819 C. A.: A large source of cloud condensation nuclei from new particle formation in the tropics,
820 *Nature*, 574, 399–403, <https://doi.org/10.1038/s41586-019-1638-9>, 2019.

821 Williamson, C. J., Kupc, A., Rollins, A., Kazil, J., Froyd, K. D., Ray, E. A., Murphy, D. M., Schill,
822 G. P., Peischl, J., Thompson, C., Bourgeois, I., Ryerson, T. B., Diskin, G. S., DiGangi, J. P.,
823 Blake, D. R., Bui, T. P. V., Dollner, M., Weinzierl, B., and Brock, C. A.: Large hemispheric
824 difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid-
825 and high latitudes, *Atmos. Chem. Phys.*, 21, 9065–9088, <https://doi.org/10.5194/acp-21-9065-2021>, 2021.

826 Wofsy, S.C., S. Afshar, H.M. Allen, E.C. Apel, E.C. Asher, B. Barletta, J. Bent, H. Bian, B.C.
827 Biggs, D.R. Blake, N. Blake, I. Bourgeois, C.A. Brock, W.H. Brune, J.W. Budney, T.P. Bui,
828 A. Butler, P. Campuzano-Jost, C.S. Chang, M. Chin, R. Commane, G. Correa, J.D. Crounse,
829 P. D. Cullis, B.C. Daube, D.A. Day, J.M. Dean-Day, J.E. Dibb, J.P. DiGangi, G.S. Diskin,
830 M. Dollner, J.W. Elkins, F. Erdesz, A.M. Fiore, C.M. Flynn, K.D. Froyd, D.W. Gesler, S.R.
831 Hall, T.F. Hanisco, R.A. Hannun, A.J. Hills, E.J. Hintsa, A. Hoffman, R.S. Hornbrook, L.G.
832 Huey, S. Hughes, J.L. Jimenez, B.J. Johnson, J.M. Katich, R.F. Keeling, M.J. Kim, A. Kupc,
833 L.R. Lait, K. McKain, R.J. McLaughlin, S. Meinardi, D.O. Miller, S.A. Montzka, F.L. Moore,
834 E.J. Morgan, D.M. Murphy, L.T. Murray, B.A. Nault, J.A. Neuman, P.A. Newman, J.M.
835 Nicely, X. Pan, W. Paplawsky, J. Peischl, M.J. Prather, D.J. Price, E.A. Ray, J.M. Reeves, M.
836 Richardson, A.W. Rollins, K.H. Rosenlof, T.B. Ryerson, E. Scheuer, G.P. Schill, J.C.
837 Schroder, J.P. Schwarz, J.M. St.Clair, S.D. Steenrod, B.B. Stephens, S.A. Strode, C. Sweeney,
838 D. Tanner, A.P. Teng, A.B. Thames, C.R. Thompson, K. Ullmann, P.R. Veres, N.L. Wagner,
839 A. Watt, R. Weber, B.B. Weinzierl, P.O. Wennberg, C.J. Williamson, J.C. Wilson, G.M.
840 Wolfe, C.T. Woods, L.H. Zeng, and N. Vieznor. 2021. ATom: Merged Atmospheric
841 Chemistry, Trace Gases, and Aerosols, Version 2. ORNL DAAC, Oak Ridge, Tennessee,
842 USA. <https://doi.org/10.3334/ORNLDAA/1925>.

843 Yu, F., & Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution
844 of nucleation to aerosol and CCN number concentrations. *Atmospheric Chemistry and
845 Physics*, 9(20), 7691-7710, 2009.

847 Yu, F., & Turco, R. P.: Ultrafine aerosol formation via ion-mediated nucleation. *Geophysical*
848 *Research Letters*, 27(6), 883-886. doi: 10.1029/1999GL011151, 2000.

849 Yu, F., Nadykto, A. B., Herb, J., Luo, G., Nazarenko, K. M., & Uvarova, L. A.: $\text{H}_2\text{SO}_4\text{--H}_2\text{O}\text{--NH}_3$
850 ternary ion-mediated nucleation (TIMN): kinetic-based model and comparison with CLOUD
851 measurements. *Atmospheric Chemistry and Physics*, 18(23), 17451-17474, 2018.

852 Yu, F., Nadykto, A. B., Luo, G., & Herb, J.: $\text{H}_2\text{SO}_4\text{--H}_2\text{O}$ binary and $\text{H}_2\text{SO}_4\text{--H}_2\text{O}\text{--NH}_3$ ternary
853 homogeneous and ion-mediated nucleation: lookup tables version 1.0 for 3-D modeling
854 application. *Geoscientific Model Development*, 13(6), 2663-2670, 2020.

855 Zhang, R., Khalizov, A., Wang, L., Hu, M., & Xu, W.: Nucleation and growth of nanoparticles in
856 the atmosphere. *Chemical reviews*, 112(3), 1957-2011, 2012.

857