Supporting Information

2

1

Impact of biogenic SOA loading on the molecular composition of wintertime PM_{2.5} in urban Tianjin: an insight from Fourier

5 transform ion cyclotron resonance mass spectrometry

6 Shujun Zhong¹, Shuang Chen¹, Junjun Deng¹, Yanbing Fan¹, Qiang Zhang¹, Qiaorong Xie¹, Yulin Qi¹,

7 Wei Hu¹, Libin Wu¹, Xiaodong Li¹, Chandra Mouli Pavuluri¹, Jialei Zhu¹, Xin Wang¹, Di Liu², Xiaole

8 Pan², Yele Sun², Zifa Wang², Yisheng Xu³, Haijie Tong⁴, Hang Su⁵, Yafang Cheng⁵, Kimitaka

9 Kawamura⁶, and Pingqing Fu^{1,*}

- 10 ¹Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- 11 ²LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
- ³State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental
 Sciences, Beijing 100012, China
- 14 ⁴Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
- 15 ⁵Max Planck Institute for Chemistry, Mainz, Germany
- 16 ⁶Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan
- 17 Correspondence to: Pingqing Fu (fupingqing@tju.edu.cn)

Table and Figure Captions

Table S1. The elemental composition criteria of molecular formula classification.

Table S2. The number of formulas in each subgroup, the molecular weight, average values of elemental ratios, double bond equivalents (DBE), and aromaticity index (AI_{mod}).

Table S3. The number of formulae in different molecular classifications.

Figure S1. Intensity-weighted contributions of five compound classifications to each PM_{2.5} sample.

Figure S2. Venn diagrams showing the distributions of all molecular formulae in all samples.

Figure S3. Double bond equivalent (DBE) vs. C number for all the CHO compounds.

Figure S4. Double bond equivalent (DBE) vs. C number for all the CHON compounds.

Figure S5. Double bond equivalent (DBE) vs. C number for all the CHOS compounds.

Table S1. The elemental composition criteria of molecular formula classification (Merder et al., 2020;Šantl-Temkiv et al., 2013;Coward et al., 2019).

Classification	Classification	AI_{mod}	H/C	O/C
Polycyclic aromatic hydrocarbons	O-rich	>0.66	-	>0.5
(PAHs-like)	O-poor	>0.66		≤0.50
Polyphenols and PAHs with alphatic chains	O-rich	0.50-0.66	-	>0.50
(Polyphenols-like)	O-poor	0.50-0.66	-	≤0.50
Highly unsaturated and phenolics formulae	O-rich	< 0.50	<1.5	>0.50
(Phenols-like)	O-poor	<0.50	<1.5	≤0.50
Unsaturated aliphatic compounds	O-rich	< 0.50	1.5-2.0	>0.50
(Aliphatics-like)	O-poor	< 0.50	1.5-2.0	≤0.50
Carbohydrates, saturated fatty and sulfonic acids,		<0.50	2.0-2.5	-

carbohydrates

(Carbohydrates-like)

Table S2. The number of formulas in each subgroup,	the molecular w	weight, average	values of	elemental	ratios,	double	bond
equivalents (DBE), and aromaticity index (AI _{mod}).							

Sample ID	Elemental	Number	MW_{w}	O/C _w	H/C _w	OM/OC _w	DBE _w	AImod, _w
	compositions							
	СНО	1154	323	0.38	1.19	1.60	7.86	0.35
	CHON	1254	346	0.44	1.05	1.76	9.44	0.41
High SOA-loading - D	CHOS	1635	360	0.43	1.80	1.90	2.56	0.02
	CHONS	1869	386	0.63	1.72	2.27	3.67	0.02
	Total	5912	332	0.47	1.69	1.95	3.64	0.07
	СНО	1820	322	0.35	1.29	1.58	7.05	0.29
	CHON	2513	326	0.44	1.12	1.79	8.33	0.37
High SOA-loading - N	CHOS	1194	333	0.49	1.78	2.00	2.54	0.02
	CHONS	1432	352	0.72	1.75	2.44	3.15	0.01
	Total	6959	334	0.51	1.56	1.98	4.58	0.13
	СНО	596	326	0.40	0.99	1.62	9.53	0.45
Moderate SOA-loading - D	CHON	272	356	0.44	0.92	1.73	10.74	0.48
	CHOS	1663	357	0.44	1.81	1.91	2.49	0.02
	CHONS	1527	387	0.61	1.67	2.23	3.98	0.03
	Total	4995	361	0.46	1.75	1.95	3.08	0.05
Moderate SOA-loading - N	СНО	1588	317	0.35	1.22	1.57	7.62	0.34
	CHON	1692	326	0.42	1.10	1.74	8.66	0.38
	CHOS	1038	337	0.48	1.79	1.98	2.49	0.02
	CHONS	1091	360	0.66	1.71	2.32	3.52	0.02
	Total	5409	334	0.47	1.54	1.90	4.76	0.15
Low SOA-loading - D	СНО	1967	313	0.28	1.31	1.48	7.13	0.31
	CHON	2438	322	0.34	1.16	1.65	8.54	0.38
	CHOS	853	332	0.40	1.79	1.87	2.67	0.04
	CHONS	575	356	0.57	1.69	2.19	3.61	0.03
	Total	5833	322	0.33	1.39	1.64	6.39	0.26
	СНО	1789	299	0.31	1.22	1.51	7.45	0.36
	CHON	2300	277	0.43	1.05	1.79	7.78	0.44
Low SOA-loading - N	CHOS	1124	321	0.44	1.69	1.93	3.32	0.08
	CHONS	1045	338	0.63	1.61	2.29	4.08	0.05
	Total	6258	304	0.42	1.34	1.79	6.09	0.27

Table S3. The number of formulae in different molecular classifications.

Sample ID	Classification	Total	СНО	CHON	CHOS	CHONS
	PAHs-like, O-rich	23	7	16	0	0
	PAHs-like, O-poor	153	75	78	0	0
	Polyphenols-like, O-rich	66	17	41	2	6
	Polyphenols-like, O-poor	381	154	201	11	15
High SOA-loading - D	Phenols-like, O-rich	1025	148	168	275	434
	Phenols-like, O-poor	1770	442	599	348	381
	Aliphatics-like, O-rich	691	30	43	201	417
	Aliphatics-like, O-poor	1417	270	108	555	484
	Carbohydrates-like	386	11	0	243	132
	PAHs-like, O-rich	33	5	28	0	0
	PAHs-like, O-poor	255	102	153	0	0
	Polyphenols-like, O-rich	73	18	54	0	1
	Polyphenols-like, O-poor	548	213	322	6	7
	Phenols-like, O-rich	1133	208	389	222	314
High SOA-loading - N	Phenols-like, O-poor	2197	657	1049	194	297
	Aliphatics-like, O-rich	737	63	118	201	355
	Aliphatics-like, O-poor	1594	491	400	367	336
	Carbohydrates-like	389	63	0	204	122
	PAHs-like, O-rich	10	7	3	0	0
	PAHs-like, O-poor	84	59	25	0	0
	Polyphenols-like, O-rich	56	23	16	9	8
	Polyphenols-like, O-poor	248	148	68	20	12
Madamata SOA landing D	Phenols-like, O-rich	822	68	32	309	413
Moderate SOA-loading - D	Phenols-like, O-poor	1024	198	128	398	300
	Aliphatics-like, O-rich	541	10	0	188	343
	Aliphatics-like, O-poor	947	83	0	522	342
	Carbohydrates-like	326	0	0	217	109
	PAHs-like, O-rich	19	4	15	0	0
	PAHs-like, O-poor	232	110	122	0	0
	Polyphenols-like, O-rich	57	21	35	0	1
Moderate SOA-loading - N	Polyphenols-like, O-poor	484	225	254	2	3
	Phenols-like, O-rich	777	152	238	184	203
	Phenols-like, O-poor	1823	626	765	182	250
	Aliphatics-like, O-rich	527	47	59	171	250
	Aliphatics-like, O-poor	1180	358	204	323	295
	Carbohydrates-like	310	45	0	176	89
	PAHs-like, O-rich	19	4	15	0	0
	PAHs-like, O-poor	336	157	179	0	0
	Polyphenols-like, O-rich	44	17	26	1	0

Low SOA-loading - D	Polyphenols-like, O-poor	759	332	413	13	1
	Phenols-like, O-rich	428	95	160	90	83
	Phenols-like, O-poor	2207	761	1109	201	136
	Aliphatics-like, O-rich	326	43	45	102	136
	Aliphatics-like, O-poor	1455	491	491	295	178
	Carbohydrates-like	259	67	0	151	41
Low SOA-loading - N	PAHs-like, O-rich	40	6	34	0	0
	PAHs-like, O-poor	329	136	188	4	1
	Polyphenols-like, O-rich	72	18	41	9	4
	Polyphenols-like, O-poor	729	279	370	42	38
	Phenols-like, O-rich	775	135	255	176	209
	Phenols-like, O-poor	2347	708	1001	311	327
	Aliphatics-like, O-rich	424	45	66	133	180
	Aliphatics-like, O-poor	1254	409	345	287	213
	Carbohydrates-like	288	53	0	162	73

Figure S1. Intensity-weighted contributions of five compound classifications to each PM_{2.5} sample. (1) PAHs-like: polycyclic aromatic hydrocarbons, (2) Polyphenols-like: polyphenols and PAHs with aliphatic chains, (3) Phenols-like: highly unsaturated and phenolic compounds, (4) Aliphatics-like: unsaturated aliphatic compounds, (5) Carbohydrates-like: carbohydrate, saturated fatty and sulfonic acids.

Fig cou the

Figure S2. Venn diagrams showing the distributions of all molecular formulae in all samples. The number in overlap areas are counts of molecular formulae that appear in both, or all three of those samples. The number in areas with no overlap is unique to the individual sample.

Figure S3. Double bond equivalent (DBE) vs. C number for all the CHO compounds. The color bar and marker size denote the number of O atoms and the relative peak intensities of molecular formulae on a logarithmic scale.

Figure S4. Double bond equivalent (DBE) vs. C number for all the CHON compounds. The color bar and marker size denote the number of O atoms and the relative peak intensities of molecular formulae on a logarithmic scale. The formulae with highest intensity were C₇H₇O₄N, C₇H₅O₅N, C₈H₉O₃N, C₈H₇O₅N, C₉H₉O₅N, C₉H₇O₆N, respectively. Note that the proposed structures were representative, not determined.

Figure S5. Double bond equivalent (DBE) vs. C number for all the CHOS compounds. The color bar and marker size denote the number of O atoms and the relative peak intensities of molecular formulae on a logarithmic scale.

79 References80

Coward, E. K., Ohno, T., and Sparks, D. L.: Direct Evidence for Temporal Molecular Fractionation of Dissolved
 Organic Matter at the Iron Oxyhydroxide Interface, Environmental Science & Technology, 53, 642-650,
 10.1021/acs.est.8b04687, 2019.

- 84 Merder, J., Freund, J. A., Feudel, U., Hansen, C. T., Hawkes, J. A., Jacob, B., Klaproth, K., Niggemann, J.,
- 85 Noriega-Ortega, B. E., Osterholz, H., Rossel, P. E., Seidel, M., Singer, G., Stubbins, A., Waska, H., and Dittmar, T.:
- ICBM-OCEAN: Processing Ultrahigh-Resolution Mass Spectrometry Data of Complex Molecular Mixtures, Analytical
 Chemistry, 92, 6832-6838, 10.1021/acs.analchem.9b05659, 2020.
- Šantl-Temkiv, T., Finster, K., Dittmar, T., Hansen, B. M., Thyrhaug, R., Nielsen, N. W., and Karlson, U. G.: Hailstones:
 a window into the microbial and chemical inventory of a storm cloud, PloS one, 8, e53550, 2013.