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Abstract. The light-absorbing organic aerosol (OA), known as brown carbon (BrC), has important radiative impacts, however 13 

its sources and evolution after emission remain to be elucidated. In this study, the light absorption at multiple wavelengths, 14 

mass spectra of OA and microphysical properties of black carbon (BC) were characterized at a typical sub-urban environment 15 

in Beijing. The absorption of BC is constrained by its size distribution and mixing state and the BrC absorption is obtained by 16 

subtracting the BC absorption from the total aerosol absorption. Aerosol absorption was further apportioned to BC, primary 17 

BrC and secondary BrC by applying the least-correlation between secondary BrC and BC. The multi-linear regression analysis 18 

on the factorized OA mass spectra indicated the OA from traffic and biomass burning emission contributed to primary BrC. 19 

Importantly, the moderately oxygenated OA (O/C=0.62) was revealed to highly correlate with secondary BrC. These OA had 20 

higher nitrogen content, in line with the nitrogen-containing functional groups detected by the Fourier transform infrared 21 

spectrometer. The photochemical processes were found to result in reduced contribution of fraction of total absorbance of 22 

primary BrC about 20% but enhanced contribution of secondary BrC by 30%, implying the concurrent whitening and 23 

darkening of BrC. This provides field evidence that the photochemically produced secondary nitrogen-containing OA can 24 

considerably compensate some bleaching effect on the primary BrC, hereby causing radiative impacts.  25 
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1. Introduction 26 

Atmospheric absorbing organic aerosol (OA), known as brown carbon (BrC), is an important contributor to anthropogenic 27 

absorption besides black carbon (BC) (Laskin et al., 2015; Liu et al., 2020), particularly at shorter visible wavelengths (Bahadur 28 

et al., 2012). Due to complex compositions of OA, the primary sources and subsequent evolution of BrC in the atmosphere 29 

remains to be explicitly understood and causes uncertainties in evaluating the radiative impacts of BrC (Liu et al., 2020).  30 

The chromophores of BrC are mainly aromatic compounds associated with certain functional groups (Liu et al., 2015c). 31 

Particularly, compounds containing nitro, nitrated or other forms of nitrogen-containing functional groups are more absorbing 32 

(Nakayama et al., 2013; Jacobson, 1999). It is well established that primary OA, especially from biomass burning, contains a 33 

large fraction of BrC (Andreae and Crutzen, 1997; Rizzo et al., 2013; Bond, 2001). These primary BrC has a range of 34 

absorptivity, which was found to be controlled by burning phases. OA co-emitting with BC (the flaming phase) exhibited a 35 

higher absorptivity than OA-dominated smoldering phase (Liu et al., 2021). BrC can experience reactions with atmospheric 36 

oxidants after emission. Previous studies (Satish et al., 2017; Satish and Rastogi, 2019; Dasari et al., 2019) found nitrogenous 37 

compounds from biomass burning were responsible for BrC over South Asia and the chromophores were photobleached in the 38 

afternoon. Numerous field and laboratory studies found the decrease of BrC absorptivity due to photobleaching of 39 

chromophores, with lifetime ranging from a few hours (Zhao et al., 2015; Liu et al., 2021) to a few days (Forrister et al., 2015), 40 

which may depend on the concentration of ambient hydroxyl radical (Wang et al., 2014), also influenced by relative humidity 41 

and particle volatility (Schnitzler et al., 2020). The absorptivity of BrC could be also enhanced due to addition of functional 42 

groups by forming conjugated structure with aromatics. This was supported by a number of laboratory studies that BrC 43 

absorptivity could be enhanced when forming nitrogen-containing organic compounds, such as the formation of nitro-44 

aromatics when aromatics reacted with NOx (Nakayama et al., 2013), or produced organic amine after reacting with ammonia 45 

(Updyke et al., 2012). The enhancement of BrC absorptivity could occur either through nitration of existing chromophores, or 46 

formation of new secondary organic aerosol (SOA) chromophores through gas-phase oxidation.  47 

The above findings mean the enhancement or bleaching of BrC absorptivity via photooxidation will coexist. The time scale 48 

between both competing processes will ultimately determine the lifetime of BrC in the atmosphere. However, both processes 49 

have been rarely investigated in the field to explicitly determine the BrC components which principally determine the 50 

respective enhancement or decrease of its absorptivity, particularly in regions influenced by combined anthropogenic sources.  51 

In this study, by measurements using multiple-wavelength absorption and microphysical properties of BC in a sub-urban region, 52 

the absorption of BC, primary and secondary BrC was discriminated. In conjunction with source attribution via OA mass 53 

spectra, we are able to link the segregated absorption with certain sources and investigate their primary information and 54 

subsequent evolution. The competition between photobleaching and secondary formation of BrC was investigated in real world. 55 

2. Experimental and instrumentation 56 
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2.1 Site description and meteorology 57 

The experiment was conducted during springtime at the Beijing Cloud Laboratory and Observational Utilities Deployment 58 

Base (117.12°E, 40.14°N), which is located in the northeast suburban area in Beijing (Fig S1a). The site is surrounded by the 59 

northwest mountain ridge, without significant local primary anthropogenic emissions (Hu et al., 2021). The 72-h backward 60 

trajectories with every 3 hours initializing from the site are analyzed by the HYSPLIT model (Draxier and Hess, 1998) using 61 

the 3-hourly 1°×1° meteorological field from the GDAS reanalysis product. The obtained backward trajectories were further 62 

clustered to group the similar transport pathways (Makra et al., 2011). The meteorological parameters, including the 63 

temperature (T), ambient relative humidity (RH), wind speed (WS) and wind direction (WD) were measured by a monitoring 64 

station on the site.  65 

2.2 Measurements of BC microphysics and absorption coefficient  66 

In this study, the ambient aerosols were sampled by a large-flow (1.05 m3 min-1) air particle sampler (TH-1000C Ⅱ) with a 67 

PM2.5 impactor (BGI SCC 1.829) and dried by a silica drier before measurement. The single particle soot photometer (SP2, 68 

DMT., USA) used continuous laser at λ=1064nm to incandesce light-absorbing aerosols (such as BC) for irradiating detectable 69 

visible light. The incandescence signal was used to measure the refractory black carbon (rBC) mass. The SP2 incandescence 70 

signal was calibrated using the Aquadag standard (Acheson Inc., USA), and a factor of 0.75 was applied to correct for ambient 71 

BC (Laborde et al., 2012). The scattering signal was calibrated by monodispersed polystyrene latex spheres (PSL). The BC 72 

core diameter (Dc) was calculated from the measured BC mass by assuming a BC density of 1.8 g cm−3 (Bond and Bergstrom, 73 

2006). The leading edge only (LEO) method was applied to reconstruct the scattering signal of BC, which was used to 74 

determine the coated particle diameter (Dp) by a Mie-lookup table with the inputs of scattering and incandescence signal of 75 

each BC particle (Liu et al., 2014; Taylor et al., 2015). The mass median diameter (MMD) is derived from the Dc distribution, 76 

which is determined as below and above MMD the rBC mass concentration is equal (Liu et al., 2019b). The bulk coating 77 

thickness (Dp/Dc) is calculated as the cubic root of ratio of the total coated BC volume divided by the total volume of rBC. 78 

The mass absorption cross section (MAC) (in m2 g−1) of each BC particle can be calculated using the measured coated and 79 

uncoated BC sizes by applying the Mie core-shell calculation. The absorption coefficient of BC at certain wavelength, σabs,BC 80 

(λ) is determined by multiplying the calculated MAC and rBC mass concentration at each size: 81 

σabs,BC (λ)=∑ 𝑀𝐴𝐶(𝜆, 𝐷𝑝,𝑖𝑖 , 𝐷𝑐,𝑖)𝑚(𝑙𝑜𝑔𝐷𝑐,𝑖)∆𝑙𝑜𝑔𝐷𝑐,𝑖                                                            (1) 82 

where m (logDc,i) denotes the BC mass concentration at each logarithmic bin of Dc. The SP2 measurement at λ=1064nm longer 83 

than mostly populated BC size means the derived coatings and subsequent calculation of MAC is relatively independent of 84 

particle shape within uncertainty of 21% (Liu et al., 2014; Hu et al., 2021). 85 

The absorption coefficients at wavelengths λ= 375, 470, 528, 635 and 880 nm were measured by a Micro-Aethalometer 86 

(MA200, Aethlabs, San Francisco, CA, USA). Aerosol particles were collected on filter tapes, on which the light attenuation 87 

was measured continuously with a time resolution of 30 s. The loading effect of filters was automatically corrected by 88 
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measuring attenuation at two different sampling flow rates on two spots in parallel (Drinovec et al., 2015a). Moreover, a multi-89 

scattering correction factor (C-value) of 3.5, 3.2 and 2.4 at the wavelengths 370 nm, 528 nm and 880 nm, respectively were 90 

utilized to correct attenuation for the multiple light scattering effect. It was obtained by comparing the absorption coefficient 91 

with a photoacoustic soot spectrometer (PASS-3, DMT) (Hu et al., 2021).  92 

2.3 Attribution of primary and secondary BrC absorption coefficient 93 

The absorption coefficient of BC at different λ is calculated using the measured uncoated core and coated size as mentioned 94 

above. The absorption coefficient of total BrC is obtained by subtracting the BC absorption coefficient from the total absorption 95 

at certain wavelength, expressed as: 96 

σabs, BrC (λ) = σabs,total (λ)- σabs,BC (λ)                                                                        (2) 97 

where the absorption coefficient of BC (σabs,BC) is obtained from the SP2 measurement, σabs,total (λ) is the total light absorption 98 

of aerosols measured by the MA200. The absorption coefficient of secondary BrC, the absorption not contributed by primary 99 

sources, is obtained by subtracting the absorption of all primary sources from the total absorption (Crilley et al., 2015), 100 

expressed as:  101 

σabs,secBrC (λ)= σabs,total (λ)- σabs,pri (λ)                                                                       (3) 102 

where σabs,pri (λ) is the light absorption from primary sources. Here an assumption is made that light absorption from primary 103 

aerosols is all from combustion sources, and these sources necessarily contain BC (Wang et al., 2018). Therefore, the total 104 

absorption from primary sources can be obtained by scaling a factor from the mass concentration of BC, expressed as:  105 

𝜎abs,pri (𝜆)   = (
𝜎𝑎𝑏𝑠,𝑡𝑜𝑡𝑎𝑙

[𝑟𝐵𝐶]
)

𝑝𝑟𝑖
• [𝑟𝐵𝐶]                                                                       106 

(4) 107 

where [rBC] is the mass concentration of rBC measured by the SP2, (
𝜎𝑎𝑏𝑠,𝑡𝑜𝑡𝑎𝑙

[𝑟𝐵𝐶]
)

𝑝𝑟𝑖
  is the scaling factor to derive the 108 

absorption of primary combustion sources from [rBC]. This factor is obtained using the minimum R-squared (MRS) approach 109 

(Wu and Yu, 2016), by adjusting the factor until a minimum correlation between σabs,secBrC and [rBC] is reached because the 110 

absorption from secondary sources are least likely to covary with that from primary sources (Wang et al., 2019a). This method 111 

has been used in urban and sub-urban environment to obtain the primary BrC associated with combustion sources. Being 112 

different from previous studies, an auxiliary characterization of rBC mass measured by the SP2 is used here to avoid the 113 

possible interference from absorption measured by the same instrument. The (
𝜎𝑎𝑏𝑠,𝑡𝑜𝑡𝑎𝑙

[𝑟𝐵𝐶]
)

𝑝𝑟𝑖
 ratio at λ=375 nm, 470 nm, 528 114 

nm, 635 nm and 880 nm is calculated to be 20.7, 17.0, 14.4, 11.7 and 5, respectively (Fig. S2), which falls within the reported 115 

values from previous studies 11-50 (Zhang et al., 2020; Wang et al., 2019a). This scenario assumes a relatively consistent 116 

absorption relative to BC mass concentration from sources during experiment. This however may not include some sporadic 117 

events when sources with distinct OA or BC mass fraction may be introduced and alter the single (
𝜎𝑎𝑏𝑠,𝑡𝑜𝑡𝑎𝑙

[𝑟𝐵𝐶]
)

𝑝𝑟𝑖
 ratio. The 118 
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σabs,secBrC therefore represents the overall mean value during the experimental period but this ratio will vary with seasons and 119 

locations. The σabs of primary BrC can then be calculated as: 120 

σabs,priBrC (λ)= σabs,BrC (λ)- σabs,secBrC (λ)                                                                    (5) 121 

where σabs,BrC and σabs,secBrC is calculated from Equation (2) and (3), respectively.  122 

2.4 Composition measurement  123 

The mass concentration and chemical composition of non-refractory sub-micron PM (NR-PM1) including organic aerosols 124 

(OA), nitrate (NO3
-), sulfate (SO4

2-), chloride (Cl-) and ammonium (NH4
+) were determined with a High-Resolution Time-of-125 

Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA). The setup, operation, and calibration 126 

procedures of the AMS have been described elsewhere (Canagaratna et al., 2007). During this field observation, the AMS was 127 

operated in V-mode for the quantification of mass concentrations. The composition-dependent collection efficiencies were 128 

applied (Middlebrook et al., 2012), and the ionization efficiency was calibrated using 300 nm pure ammonium nitrate (Jayne 129 

et al., 2000). Elemental ratios of OA including oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C) and nitrogen-to-carbon 130 

(N/C) were determined to the improved-ambient method (Canagaratna et al., 2015). 131 

Positive Matrix Factorization (PMF) (Paatero and Tapper, 1994) was performed on the inorganic and organic high-resolution 132 

mass spectra to distinguish OA components from different sources (Zhang et al., 2011; Ulbrich et al., 2009; Decarlo et al., 133 

2010). The mass spectra of the combined matrix for m/z <120 were excluded in PMF analysis. Five OA factors were identified. 134 

The diagnostics of PMF is summarized in Text S1and Fig. S6.  135 

2.5 Offline Fourier transform infrared spectrometer (FTIR) analysis 136 

Particulate Matter (PM) samples were collected once a day onto prebaked (600℃，4h) quartz fiber filters (Whatman, QMA, 137 

USA) using a large-flow (1.05 m3 min-1) air particle sampler (TH-1000C Ⅱ). The collected filter samples were stored in the 138 

refrigerator at -20℃ before analysis. The infrared spectra of collected samples were measured by a Fourier transform infrared 139 

spectrometer (FTIR, Thermo Scientific, USA) equipped with an iD5 attenuated total reflectance accessory (diamond crystal) 140 

to quantify the chemical functional groups over the wavenumbers range of 550-4000 cm-1 with a resolution of 0.5 cm-1. The 141 

NO and NO2 symmetric stretch in the FTIR spectra can characterize the functional groups associated with nitrogen-containing 142 

organics (Coury and Dillner, 2008). Fig. S3 shows typical examples of FTIR spectra and the assigned functional groups for 143 

the three pollution levels during experiment. The peak at 1110 cm-1 corresponds to the background of the quartz fiber filter 144 

overlapped with some X-H bending vibrations, which is subtracted for the following analysis. The characteristic organic nitrate 145 

spectra appear at wavenumbers 860 cm-1 (NO symmetric stretch), 1280 cm-1 (NO2 symmetric stretch) and 1630-1640cm-1 146 

(NO2 asymmetric stretch) (Bruns et al., 2010). After baseline calibration, The FTIR peaks of 1630cm-1 and 860cm-1 are 147 

integrated the absorption areas above the baseline. The summed integrated area of -NO and -NO2 are hereby used to indicate 148 

the nitrogen-containing organics. There was no discernable peak of carbonyl group for our infrared spectrum, and the peak of 149 
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OH at 2500 cm-1 - 3400 cm-1 for the carboxylic acid is not discernable neither, thus the influence of ketone and carboxylic acid 150 

may be of less importance for our dataset. 151 

3. Results and Discussion 152 

3.1 Source attributed OA 153 

The overview results are shown in Fig. S1. The organics dominated the aerosol compositions for most time, but occasionally 154 

nitrate was the most abundant component (Fig. S1g). Note that the nitrate here may also include components containing in 155 

organics besides ammonium nitrate. Backward trajectories (Fig. S1a-d) showed that the most abundant PM1 concentration was 156 

associated with air masses transported in shorter distance from southern regions (C1), but the longer and faster northerly 157 

transported air mass from cleaner north (C2) could dilute the concentrations. 158 

The resolved OA factors by the PMF analysis are shown in Fig. 1, including the mass spectra, time series and diurnal profiles 159 

of each PMF factor with corresponded external and internal tracers. Three primary OA (POA) were identified as hydrocarbon-160 

like OA (HOA), cooking-related OA (COA), biomass burning OA (BBOA), with O/C of 0.31, 0.18 and 0.39 respectively. 161 

These POA had considerable fraction of hydrocarbon fragments (CxHy), indicating their less aged status. The HOA profile was 162 

characterized by higher contributions of aliphatic hydrocarbons and has dominated ion tracers such as m/z 41 (C3H5
+), 43 163 

(C3H7
+), 55 (C4H7

+) and 57 (C4H9
+). The HOA concentration correlated with BC (r=0.62), which emits from traffic emissions. 164 

The diurnal variation exhibited strong morning and afternoon rush-hour peaks of mass concentration. This factor was consistent 165 

with the mass spectra of previously measured HOA from on-road vehicle emissions in urban cities (Zhang et al., 2005; Aiken 166 

et al., 2009; Sun et al., 2016; Hu et al., 2017), which has m/z peaks characteristic of hydrocarbon fragments in series of CnH2n+1
+ 167 

and CnH2n-1
+. The mass spectrum of HOA shows overall similarity to those of primary OA emitted from gasoline and diesel 168 

combustion sources (r=0.68) (Elser et al., 2016). 169 

The OA from cooking sources (COA) is also characterized by prominent hydrocarbon ion series, however, with higher signal 170 

at CnH2n-1
+ than CnH2n+1

+. COA had apparent fragments of both C4H9
+ and C3H3O+, and has a higher ratio of C3H3O+/C3H5O+ 171 

(3.1), C4H7
+/ C4H9

+ (2.2) than HOA (0.9–1.1), with cooking-related fragments of C5H8O+ (m/z 84), C6H10O+ (m/z 98) and 172 

C7H12O+ (m/z 112) (Sun et al., 2011b; Mohr et al., 2012). The COA shows overall similar spectral pattern to the reference 173 

spectra of COA (r=0.92) (Elser et al., 2016). Its minor peak at noon and larger peak in the evening (Fig. 1l) also corresponded 174 

with the lunch and dinner time respectively. There was only a minor peak at noon for COA, which may be due to the sub-urban 175 

nature of the site where the major aerosols from cooking sources may have been processed and lost the signature near source. 176 

The feature of this factor was also observed in sub-urban environment (Huang et al., 2021). 177 

The BBOA factor was identified based on the prominent signals of m/z 60 (C2H4O2
+) and 73(C3H5O2

+), which are known 178 

fragments of levoglucosan (Cubison et al., 2011). And BBOA also correlated with potassium (K+, r = 0.80), which are indicator 179 

of biomass burning (Pachon et al., 2013; Brown et al., 2016). The m/z 60 and 73 together with a unique diurnal variation have 180 
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been shown to be a robust marker for the presence of aerosols from biomass burning emissions in many urban locations (Sun 181 

et al., 2016). The BBOA shows very similar mass spectral patterns to previously reported reference spectra of biomass burning 182 

(r=0.94) (Elser et al., 2016). The BBOA factor that was identified in spring accounted for 12.8% of the total OA in Beijing, 183 

similar to previous reports (Hu et al., 2017). Biomass (Cheng et al., 2013) and solid fuel burning emissions (Sun et al., 2014) 184 

have been widely observed to importantly contribute to the primary OA in this region. This off-road combustion source was 185 

particularly abundant during wintertime for residential heating activities (Shen et al., 2019; Yang et al., 2018; Liu et al., 2016), 186 

while boiler for industry use (mostly using coal as fuel) was in operation throughout the year (Liu et al., 2015b). During the 187 

springtime of the experiment, the residential heating activities dropped due to increased ambient temperature thus the BBOA 188 

may be mainly contributed by the industry sector. 189 

Two types of oxygenated organic aerosols (OOA) were identified, in moderate (OOA2, O/C=0.62) and high oxidation state 190 

(OOA1, O/C=0.95), respectively, which is very similar to the spectra of OOA factors resolved in other cities (Hayes et al., 191 

2013; Ulbrich et al., 2009). The average mass spectrum of OOA2 in this study is characterized by m/z 29 (mainly CHO+), 43 192 

(mainly C2H3O+) and m/z 44 (CO2
+), similar to the semi-volatile OOA spectrum identified in other locations (Sun et al., 2011a; 193 

Zhou et al., 2016). On average, OOA2 accounts for 42% and 18% of CxHyO+ and CxHyO2
+ ions, respectively (Fig. 1b). These 194 

results clearly indicate that OOA2 was primarily composed of less oxygenated, possibly freshly oxidized organics. Notably, 195 

OOA2 had a substantially higher N/C than other factors (N/C=0.037), and had highest correlation with nitrate (r=0.77) and 196 

with CxHyNz and CxHyNzOp fragments (r=0.83). This factor therefore tends to largely result from nitrogen-containing OA and 197 

its elevation at night may be also associated with dark oxidation by nitrate radical. 198 

The mass spectrum of OOA1, which was characterized by a dominant peak at m/z 44 (mainly CO2
+), a highest O/C (0.95). On 199 

average, OOA1 contributes 51% of the CxHyO+ signal and 23% of the CxHyO2
+ signal (Fig. 1a). OOA1 showed particularly 200 

high correlation with sulfate (r=0.40) because of their similar volatilities (Huffman et al., 2009; Jimenez et al., 2009). The 201 

slight enhancement at noon for OOA1 (also for OOA2) soon after morning rush-hour indicated the likely rapid formation of 202 

SOA through photooxidation. This significantly higher mean OOA2 than median value in the diurnal pattern indicated that 203 

this OA type was largely associated with pollution events. Both OOA1 and OOA2 showed nighttime peak maybe due to 204 

reduced boundary layer.  205 
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 206 
Figure 1. Information of source-apportioned organic aerosols by the PMF analysis. Mass spectra of (a) oxygenated OA1 (OOA1), (b) 207 
oxygenated OA2 (OOA2), (c) biomass burning OA (BBOA), (d) cooking-related OA (COA), (e). hydrocarbon-like OA (HOA), (f-j) 208 
Temporal variations of each PMF factor and the corresponding marker species. (k-o) Diurnal profiles of each factor. The lines, dots 209 
and whiskers denote the median, mean and the 25th/75th percentiles at each hour respectively. 210 

3.2 Segregated aerosol absorption 211 

Fig. 2 shows the time series of BC properties, including the BC mass concentration, Dp/Dc, Dc, MAC and light absorption 212 

coefficient of BC (section 2.2). The MMD of BC core varied between 93 – 274 nm which may correspond to the source-213 

specific information (Liu et al., 2019a) or coagulation process during ageing. The coating of BC (indicated by Dp/Dc) showed 214 

sporadic enhancement which was closely associated with enhanced PM concentration (Fig. 2a). This was consistent with 215 

previous studies that high coatings of BC occurred during heavier pollution due to the enhanced secondary formation of 216 

condensable materials to particle phase (Ding et al., 2019; Zhang et al., 2018). This clearly indicates the variation of mixing 217 

state of BC and this will potentially influence its MAC and absorption Ångström exponent (AAE) (Liu et al., 2015a). It will 218 

introduce considerable uncertainties to use constant MAC or AAE to derive the absorption coefficient of BC at multiple 219 

wavelengths. The MAC estimated using the measured BC core size and coatings (Fig. 2c) is thus used to derive the σabs,BC 220 

(section 2.2, shown in Fig. 2d). The σabs,BC was 9.1±7.3 Mm-1 during experimental period. MAC of BC at λ=375nm showed to 221 
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be at 8.4 -16.6 m2 g-1 with enhanced absorption when high coatings, which was consistent with previous studies which reported 222 

MACBC of 8-10 m2 g−1, and higher value of 9.7 -17.2 m2 g−1 under polluted condition (Ding et al., 2019; Hu et al., 2021). The 223 

uncertainty of (
𝜎𝑎𝑏𝑠,𝑡𝑜𝑡𝑎𝑙

[𝑟𝐵𝐶]
)

𝑝𝑟𝑖
 is 4% for the data points over 1.5 according to (Wang et al., 2019a). The measurement of rBC 224 

mass from the SP2 had uncertainty of 20% (Schwarz et al., 2008), with relative coating thickness having uncertainty of 23% 225 

(Taylor et al., 2015), hereby resulting in a uncertainty of 27% for calculated MACBC. The above results in uncertainties of 31% 226 

and 20% for σabs,BC and σabs,pri, respectively. The absorption measurement by MA200 had uncertainty of 25% (Drinovec et al., 227 

2015b; Duesing et al., 2019). All these uncertainties propagates the uncertainties of σabs,BrC, σabs,priBrC and σabs,secBrC as 40%, 37% 228 

and 32% respectively. These are summarized in Table S1. 229 

 230 
Figure 2. Temporal evolution of BC-related properties. (a) rBC and PM1 mass concentration, (b) BC core diameter and bulk coating 231 
thickness (Dp/Dc), (c) calculated mass absorption cross section (MAC) at λ=375nm, (d) absorption coefficient of BC. 232 

Using the method above, the total (σabs,total) and attributed absorption of BC (σabs,BC), primary (σabs,priBrC) and secondary BrC 233 

(σabs,secBrC) at λ=375nm are shown in Fig. 3a-c. In Fig. 3b, the brown and green shades above the adjacent tracer indicate the 234 

absorption coefficient of primary and secondary BrC, respectively. Fig. 3c shows that the absorption coefficient of primary 235 
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BrC was higher than secondary BrC for most time, but for certain periods they were equivalent or secondary BrC occasionally 236 

exceeds primary BrC. The mean contribution of absorption coefficient for BC, primary BrC and secondary BrC is 51%, 27% 237 

and 22% in this study. The tracers associated with nitrogen-containing organics, such as OOA2 (with highest N/C), CxHyNz 238 

and CxHyNzOp fragments, and the FTIR measured -NO + -NO2, are also shown in Fig. 3d-e.  239 

 240 
Figure 3. Temporal evolution of segregated absorbing properties. (a) Absorbing coefficients (σabs) at multiple wavelengths measured 241 
by the aethalometer, (b) σabs at λ=375nm (σabs,375) for all aerosols, primary OA and BC, (c) σabs,375 for primary BrC and secondary 242 
BrC. (d) mass concentration of OOA2 and the CxHyNz and CxHyNzOp fragments measured by the AMS. (e) FTIR-measured 243 
absorption of -NO and -NO2 bonds.  244 

3.3 Source attribution of BrC absorption 245 

A multiple linear regression (MLR) analysis is performed to apportion the absorption coefficient of BrC with the PMF 246 

attributed OA factors, expressed as:  247 

σabs,BrC=a0+a1•[OOA1]+a2•[OOA2]+a3•[BBOA]+a4•[COA] +a5•[HOA]                                         (6) 248 

where a1 to a5 represents the regression coefficients for each factor. The contribution of each source-specific OA factor to 249 

σabs,BrC can be obtained. This analysis is performed for the total BrC, primary and secondary BrC respectively. The results are 250 

shown in Table 1. MLR on the total BrC shows relatively higher correction (r>0.4) with the factors of HOA, BBOA and OOA2, 251 
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suggesting the potential importance of the primary biomass burning and traffic source along with OOA2 in governing 252 

absorption of BrC. MLR analysis on the primary BrC distinguishes its substantial correlation with BBOA (r=0.40) and HOA 253 

(r=0.46), while MRL on the secondary BrC has a high correlation with OOA2 only (r=0.44). The MRL analysis links the 254 

apportioned absorption of physical properties with source-attributed chemical compositions, therefore validating and 255 

identifying the sources of primary and secondary BrC.  256 

Table 1. Results of the multilinear regression analysis (MLR) between σabs,375 and the five PMF-resolved OA factors, with σabs,375 of 257 
total BrC, primary and secondary BrC as dependent, respectively. All regression coefficients have passed the significance test with 258 
p<0.01. Partial correlations above 0.4 are marked in bold. Since negative values appear when the COA participates, which is thus 259 
not included in the final regression but the values using COA factor are shown in brackets. 260 

Dependent σabs,BrC σabs,pri BrC σabs,sec BrC 

Model Regression 

coefficient 

Partial 

correlation 

Regression 

coefficient 

Partial 

correlation 

Regression 

coefficient 

Partial 

correlation 

Constant 2.26  1.67  1.47 (1.52)  

OOA1 0.57 0.23 0.04 0.02 0.46(0.46) 0.24 (0.24) 

OOA2 1.22 0.53 0.37 0.25 0.74 (0.74) 0.44 (0.44) 

BBOA 2.59 0.46 1.22 0.40 1.14 (1.18) 0.29 (0.29) 

COA 1.30 0.22 1.45 0.36 / (-0.25) / (-0.05) 

HOA 1.70 0.47 1.17 0.46 0.49 (0.52) 0.20 (0.21) 

R2 0.77 0.63 0.55 (0.55) 

Importantly, an oxygenated secondary OA factor (OOA2) is identified to significantly contribute to the secondary BrC. This 261 

OOA has a moderate O/C (0.62) and a highest N/C of 0.037 among all factors. The high N/C means this factor contains the 262 

most abundant nitrogen-containing fragments, implied as its high correlation with the CxHyNz and CxHyNzOp fragments (r=0.83, 263 

Fig. 3d) and with the FTIR absorption for -NO2 and -NO bonds (r=0.69, Fig. S4). The -NO bond is mostly related to the 264 

organic nitrates (RONO2), and -NO2 peak could result from both organic nitrates and nitro-organics (Bruns et al., 2010). There 265 

is no discernable peak for organic amines. These all consistently imply that the OOA2 factor contained substantial fraction of 266 

nitrogen-containing organics, and these compounds have contributed to the absorption of secondary BrC. 267 

3.4 Simultaneous whitening and darkening process of BrC 268 

The relative contribution and diurnal variation of primary and secondary BrC measured by MA200 at 470, 528 and 635nm 269 

wavelengths are similar to those at 375nm wavelengths, but with decreased fraction of BrC absorption with increased 270 

wavelength. Due to the high contribution of BC to total absorption (>50% even at shortest wavelength), the spectral 271 

dependence of absorption in bulk has not shown apparent diurnal variation. The diurnal variation of σabs,375 for BC and primary 272 
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BrC and their fractions showed consistent morning rush-hour peaks at 6:00-8:00 and the night-time enhancement due to 273 

reduced boundary layer (Fig. 4a-b). This was in line with the morning peak of HOA and night peak of BBOA. The traffic 274 

source in this region, in particular the diesel vehicles, was reported to emit considerable OA with certain chromophores, such 275 

as aromatics (Yao et al., 2015) and heterocyclic organic compounds (Gentner et al., 2017; Schuetzle, 1983). In the morning 276 

rush-hour, BC and primary BrC accounted for 51±4% and 29±4% in the total σabs,375 respectively, with the remaining 20±2% 277 

classified as secondary BrC. The morning peak coinciding with the primary BrC may result from the rapid formation of BrC 278 

from sources when emitted gases condensed and formed aerosols. These may lead to high cooccurrence between primary and 279 

secondary BrC. Previous studies in urban environment also observed concurrent peaks of primary and secondary BrC, which 280 

usually occurred at morning rush hour (Zhang et al., 2020). Furthermore, the assumption of the method used to apportion 281 

primary and secondary BrC will cause some error in the distinction of absorption coefficient, it is possible that some of the 282 

primary sources are being attributed to secondary sources and vice versa. This maybe a possible reason for the simultaneous 283 

peak observed for primary and secondary BrC during morning rush hour. The night had contributions from BC and primary 284 

BrC at 50±2% and 30±3% respectively, with 20±3% as secondary BrC. Fig. 4b showed the decrease of primary BrC absorption 285 

tended to be more rapid than the HOA and BBOA mass (even a slight increase for HOA Fig. 1m and Fig. 1o), leading to 286 

decreased absorption coefficient per unit mass of primary BrC (shade in Fig. 4b), which indicates the photobleaching process. 287 

In addition to photobleaching, it possible that some primary species transformed into less absorbing secondary BrC species. 288 

During this period, the type of HOA or BBOA that contribute to absorption may also have a lower absorptivity. In this context, 289 

a recent chamber study reported that the primary BrC from biomass burning plumes could be bleached to half of the initial 290 

absorptivity in 2-3 hours (Liu et al., 2021). Both HOA and BBOA had night peaks at 6-9pm with HOA having a higher 291 

concentration than BBOA. The HOA/BBOA ratio almost unvaried in the diurnal pattern, thus had not resulted in a significant 292 

variation of σabs,priBrC/POA (Fig. 1m, Fig. 1o and Fig. 4b.).    293 

Besides the morning rush-hour peak, there was an early afternoon peak for the absorption coefficient of secondary BrC, 294 

prevailing the dilution effect of daytime boundary layer (Fig. 4c-S5). The night and morning peak of OOA2 and the morning 295 

peak of σabs,secBrC may result from primarily emitted moderately oxygenated OA, which was reported from some diesel sources 296 

(Dewitt et al., 2015; Gentner et al., 2012). The fraction of secondary BrC thus had a pronounced early afternoon peak soon 297 

after the peak solar radiation (Fig. 4f) and a peak after midnight soon after the nighttime peak of primary BrC (Fig. 4e). Fig 298 

4e-f shows the photochemical processes led to an enhanced contribution of secondary BrC to the total absorption by 30% from 299 

the morning rush-hour to midday, but during the same time reduced the contribution of primary BrC to the total absorption 300 

about 20%. This shift of peaking time from primary to secondary BrC demonstrates the likely process of SOA formation from 301 

gases, and these SOA compounds containing nitrogen (i.e., the OOA2) considerably contributed to the light absorption. This 302 

ageing or oxidation likely occurred through photooxidation during early afternoon and aqueous processes (high RH conditions 303 

prevail during nighttime) during nighttime. The oxidized volatile organic compounds (VOCs) with nitrogen chemistry involved 304 

could condense to produce additional mass in particle phase (Ehn et al., 2014; Finewax et al., 2018). Due to the high NOx 305 

emission, photooxidation of traffic VOCs may have largely involved nitrogen chemistry. Previous studies found the NOx-306 
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involved SOA could produce considerable chromophores (Lin et al., 2015; Siemens et al., 2022), such as the traffic VOCs may 307 

produce SOA in a time scale of hours, containing nitro-aromatics (Wang et al., 2019b; Keyte et al., 2016). The daytime 308 

formation of organic nitrate may follow the gas-phase photooxidation mechanism, in which the excess NO could add to the 309 

peroxy radical to produce organic nitrate (Liebmann et al., 2019). The nighttime chemistry involving NO3 radical through the 310 

oxidation of NO2 by O3, contributed to the important formation of organic nitrate by initializing the production of nitrooxy 311 

peroxy radicals (Ng et al., 2008; Rollins et al., 2012). Laboratory studies (Nakayama et al., 2013; Liu et al., 2015c) also widely 312 

observed the rapid production of nitrogen-containing OA involving NOx chemistry could contribute to light absorption of 313 

aerosols. 314 

Overall, by apportioning the absorption of primary and secondary BrC, we found the photochemical processes led to an 315 

enhanced contribution of fraction of total absorbance of secondary BrC by 30% but reduced contribution of primary BrC about 316 

20% in the semi-urban environment. This revealed that the whitening and darkening of BrC occurred simultaneously, and the 317 

secondary BrC produced by photooxidation may compensate some bleaching effect of primary BrC. The dominance of both 318 

competing processes may depend on the timescale and altitude in the atmosphere. For example, the enhanced BrC fraction 319 

observed above the planetary boundary layer may be explained by the enhanced secondary BrC (Tian et al., 2020), while 320 

further ageing may bleach the produced chromophores of these SOA.   321 

 322 
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Figure 4. Diurnal variations of absorption coefficient at λ=375nm (σabs,375) for BC (a), primary BrC and absorption efficiency of 323 
primary BrC (σabs,priBrC)/POA is shown in shade (b), and secondary BrC, along with the CxHyNz and CxHyNzOp fragments (c); the 324 
respective fraction in total for the segregated σabs,375 (d-f), with direct radiation shown in shade. In each plot, the lines, dots and 325 
whiskers denote the median, mean and the 25th/75th percentiles at each hour respectively. 326 

4. Conclusion 327 

This study apportioned the shortwave absorption of BC, primary and secondary BrC, through concurrent measurements of BC 328 

microphysical properties and OA mass spectra. The apportioned primary BrC absorption was linked with traffic and biomass 329 

burning emissions, while secondary BrC was found to be associated with an oxygenated secondary OA factor with higher 330 

nitrogen content. The enhancement of secondary BrC and decease of primary BrC simultaneously occurred via daytime 331 

photooxidation. The results emphasize the importance of nitrogen-containing OA in contributing to BrC. These OA could 332 

primarily emit as aerosol phase, or in gas phase which requires further oxidation to be in aerosol phase to serve as BrC. The 333 

NOx-involved chemistry is prone to add nitrogen element to the existing OA and enhance the absorptivity of chromophores. 334 

The anthropogenic NOx emission could be therefore an important source in producing shortwave absorbing components in the 335 

atmosphere, which may offset some of the conventionally-thought photobleaching of BrC. 336 
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