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Abstract.

Using co-located space-based measurements of carbon dioxide (CO2) from the Orbiting Carbon Observatory 2 and 3 (OCO-

2/3) and carbon monoxide (CO) and nitrogen dioxide (NO2) from the Tropospheric Monitoring Instrument (TROPOMI), we

calculate total column enhancements for observations influenced by anthropogenic emissions from urban regions relative to

clean background values. We apply this method to observations taken over or downwind of 27 large (> 1 million population)5

urban areas from around the world. Enhancement ratios between species are calculated and compared to emission ratios derived

from four globally gridded anthropogenic emission inventories. We find that these global inventories underestimate CO emis-

sions in many North American and European cities relative to our observed enhancement ratios, while smaller differences were

found for NO2 emissions. We further demonstrate that the calculation and intercomparison of enhancement ratios of multiple

tracers can help to identify the underlying biases leading to disagreement between observations and inventories. Additionally,10

we use high-resolution CO2 inventories for two cities (Los Angeles and Indianapolis) to estimate emissions of CO and NO2

using our calculated enhancement ratios, and find good agreement with both a previous modelling study for the Los Angeles

megacity and California Air Resource Board (CARB) inventory estimates.

1 Introduction

Improving air quality and reducing greenhouse gas emissions are focuses of environmental policy from the global to municipal15

levels (Gurney et al., 2018a). Emissions inventories provide information about the distribution and sources of air pollution and

greenhouse gas emissions as well as their trends over time. These inventories are constructed using bottom-up approaches:

Information on socio-economic activity is used alongside expected emissions factors for these activities to model emissions

(Gurney et al., 2012; Janssens-Maenhout et al., 2019). Atmospheric measurements have been shown to be useful as part of

top-down approaches in validating and refining these emissions inventories (McKain et al., 2012; Duren and Miller, 2012).20

1

https://doi.org/10.5194/acp-2022-474
Preprint. Discussion started: 28 July 2022
c© Author(s) 2022. CC BY 4.0 License.



The expansion of the constellation of Earth-observing satellites taking measurements of greenhouse gases and air pollutants

has led to observations over urban regions with unprecedented spatiotemporal coverage. Kort et al. (2012) used observations

from the Greenhouse Gases Observing SATellite (GOSAT), launched January 2009, to measure enhancements of atmospheric

carbon dioxide (CO2) over megacities. Since the launch of the Orbiting Carbon Observatory-2 (OCO-2) in July 2014 (Crisp

et al., 2004), further studies have characterized emissions from urban regions (e.g., Wu et al., 2018; Reuter et al., 2019).25

The Orbiting Carbon Observatory-3 (OCO-3) aboard the International Space Station (ISS) since May 2019 (Eldering et al.,

2019) has provided additional observations of CO2 in urban areas (Kiel et al., 2021). Satellite remote sensing of additional air

pollutants has been greatly expanded with the launch of the TROPOspheric Monitoring Instrument (TROPOMI) aboard the

Sentinel-5 Precursor (S5P) satellite on 13 October 2017 (Veefkind et al., 2012). Early investigations into the TROPOMI carbon

monoxide (CO) and nitrogen dioxide (NO2) products have shown the ability of TROPOMI to map concentrations of these air30

pollutants at the city-scale (e.g., Borsdorff et al., 2018; Zhao et al., 2020).

Enhancement ratios have been shown to be useful in evaluating the validity of emissions inventories and estimating emissions

from a variety of anthropogenic sources of greenhouse gases and air pollutants. Wunch et al. (2009) used a ground-based

remote sensing instrument to measure the diurnal variation of greenhouse gases within California’s South Coast Air Basin

(SoCAB) and calculate enhancement ratios between CO2, CO, CH4 and N2O. Hedelius et al. (2018) used a combination of35

ground-based and satellite-based remote sensing instruments and a Lagrangian particle dispersion model to derive improved

enhancement and emissions ratios between CO2, CO and CH4 for the SoCAB, while also demonstrating good agreement

between ratios computed using different methods. Enhancement ratio methods involving both greenhouse gases (primarily

CO2) and air pollutants have also been used to investigate the combustion characteristics of anthropogenic activities; Silva

and Arellano (2017) used satellite measurements of CO2, NO2 and CO to show a correlation between the dominant forms of40

combustion and both NO2:CO and CO:CO2 enhancement ratios in 14 regions from around the world. More recently, Lama

et al. (2020) used measurements from TROPOMI to investigate burning efficiencies in six megacities by computing NO2:CO

enhancement ratios and comparing to emissions ratios from global inventories. Plant et al. (2022) used TROPOMI methane

and CO enhancements to assess methane emissions from several US cities.

In this paper, we describe a method to compute enhancement ratios between CO2, CO and NO2 over 27 large urban areas45

by combining measurements from three different space-based instruments. We use measurements of atmospheric CO2 from

OCO-2 and OCO-3 and measurements of CO and NO2 from TROPOMI to measure anomalies over urban areas relative to a

regional background. Results across multiple overpasses of these urban regions are used to derive enhancement ratios, which

are then compared to ratios calculated from four global emissions inventories: The Emissions Database for Global Atmospheric

Research (EDGAR), The Open Source Data Inventory for Anthropogenic CO2 (ODIAC), the Fossil Fuel Data Assimilation50

System (FFDAS) and the Mapping Atmospheric Chemistry and Climate and CityZen (MACCity) inventory.

In section 2, we will describe the datasets and global emission inventories used in our analyses. In section 3, we will describe

our approach to derive enhancement ratios between gases from satellite measurements. Section 4 will present the results of this

analysis and section 5 will discuss the implications of these findings. Finally, section 6 will summarize our conclusions and

suggest future work.55
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2 Data

2.1 OCO-2

We use measurements of the column averaged dry air mole fraction of carbon dioxide (XCO2 ) from OCO-2 (Crisp et al., 2004).

OCO-2 was launched on 2 July 2014 into a sun-synchronous orbit with an equator crossing time of about 13:30 (ascending

node) as part of the afternoon constellation (or A-train) of satellites. OCO-2 has been collecting science measurements of60

(XCO2 ) since 6 September 2014, collecting around 1 million total column observations per day (Crisp et al., 2017). The OCO-

2 instrument includes three different grating spectrometers that measure reflected solar radiation in the near-infrared (NIR) and

shortwave infrared (SWIR) spectral regions. The spectral bands include the O2 A-Band from 0.7576—0.7726 µm, along with

the “weak” and “strong” CO2 bands measured at 1.5906—1.6218 and 2.0431—2.0834 µm, respectively. Measurements are

taken in a horizontal row with 8 cross-track footprints, with 3 rows of observations collected every second. Each individual65

footprint has dimensions of approximately 2.25 km in the along-track direction and up to 1.29 km in the cross-track direction

(depending on the satellite orientation). OCO-2 observes in three different modes of operation. In nadir mode, the observations

are taken at the sub-satellite point and measurements taken over water are typically filtered out. In glint mode, the satellite

makes observations near the point of the Earth’s surface where sunlight is specularly reflected (Crisp et al., 2017; Eldering

et al., 2019). Finally, OCO-2 can operate in a target mode, where a small area of the Earth is observed for several minutes70

while the satellite passes overhead. This mode is often used for the validation of measurements against ground-based remote

sensing stations (e.g., Wunch et al., 2017).

For this study we use bias-corrected measurements of XCO2 from the OCO-2 Level 2 Lite files, version 9 (Kiel et al., 2019),

accessed from the Goddard Earth Sciences Data and Information Services Center (GES-DISC) (https://disc.gsfc.nasa.gov/).

The bias-correction process for OCO-2 adjusts XCO2 based on spurious correlations with retrieved aerosols, surface albedo and75

the difference between the vertical gradients of the retrieved and a priori CO2 profiles. Version 9 includes an additional surface

pressure based bias correction to account for pointing offsets which can cause greater uncertainties in regions with considerable

topographic changes. Binary quality flags are provided in the files to indicate high and low accuracy measurements; for this

study we only use measurements that have been flagged as “good”.

2.2 OCO-380

We also use measurements of XCO2 from OCO-3 aboard the International Space Station (ISS). OCO-3 was launched to the ISS

on 4 May 2019, and began providing science measurements on 6 August 2019. The OCO-3 instrument is a nearly identical spec-

trometer to OCO-2, measuring spectra in the O2 A Band and weak and strong CO2 bands to provide an eight footprint swath

of parallelogram-shaped soundings measuring approximately 1.6 km in the cross-track direction by 2.2 km in the along-track

direction, with 3 rows of observations taken every second (Eldering et al., 2019). OCO-2 pointing is carried out by maneuvers85

to the spacecraft, which is not possible on the ISS, thus OCO-3 is equipped with a pointing mirror assembly (PMA). In addition

to the three observation modes described for OCO-2, the PMA enables OCO-3 to scan in an additional “Snapshot Area Map”

(SAM) mode, where a two-dimensional area is swept out by adjacent swaths of measurements. This mode measures across
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regions on the order of 100 km× 100 km, with the goal of capturing detailed maps of sources of CO2 such as cities, fossil fuel

burning power plants and volcanoes. According to the OCO-3 SAM web-page (https://ocov3.jpl.nasa.gov/sams/index.php),90

between 6 August 2019 and 30 June 2020 there were over 2000 SAM maneuvers executed by OCO-3, with around half of

these instances corresponding to sites influenced by anthropogenic sources of CO2.

Bias-corrected measurements of XCO2 from the early (VEarly) release of the OCO-3 Version 10 Lite Files were accessed

from the NASA GES-DISC. We found that most instances of dense measurements over cities were obtained while the instru-

ment was operating in SAM mode (Eldering et al., 2019).95

2.3 TROPOMI

In our analysis, we use measurements of NO2 and CO retrieved from TROPOMI observations. TROPOMI was launched on

board the European Space Agency (ESA) Sentinel-5 Precursor (S5P) satellite on 13 October 2017 into a sun-synchronous orbit

with an equator crossing time of about 13:30 (ascending node) and has been providing science measurements since 30 April

2018. TROPOMI is a nadir-viewing grating spectrometer that measures Earth-reflected solar irradiance in three spectral bands:100

In the ultra-violet and visible light (UV-Vis) band from 0.27–0.5 µm, an NIR band from 0.675–0.775 µm and a SWIR band

from 2.305–2.385 µm (Veefkind et al., 2012). Measurements in these bands enable quantification of CO and NO2, as well as

methane (CH4), sulfur dioxide (SO2), formaldehyde (HCHO), ozone (O3), and additional aerosol properties. The 2600 km

wide swath of TROPOMI allows for global coverage every day (van Geffen et al., 2020) (before loss of data due to clouds).

2.3.1 TROPOMI CO105

A subset of TROPOMI measurements from the SWIR band (2.315–2.338 µm) are used to infer the total column of CO, along

with corresponding column averaging kernels and error estimates under clear-sky conditions (Landgraf et al., 2016). From 30

April 2018 until 6 August 2019, TROPOMI CO pixels were 7 km × 7 km, with 215 cross-track pixels. From 6 August 2019

onward, the along-track resolution of the instrument was improved to 5.5 km. The TROPOMI data that we use is version 1 of

the data product.110

TROPOMI total column CO values exhibit a stripe bias between adjacent rows of along-track observations (Borsdorff et al.,

2018). In addition to creating offsets to adjacent observations, the magnitude of the bias can change in the along-track direction.

To remove this bias we use the Fourier Filter De-striping (FFD) method described by Borsdorff et al. (2019) as a non-uniformity

correction. This algorithm involves taking the two-dimensional Fourier Transform (FT) of the CO measurements from a single

orbit, and filtering out modes with high frequency in the cross-track direction and low frequency in the along-track direction.115

We identified a similar bias in the surface level values of the CO column averaging kernels, so FFD was applied to these values

as well.

The quality of the measurements of the total column of CO from TROPOMI are denoted by a quality assurance value

(“qa_value”) provided with each observation, with 0 indicating the lowest quality and 1 the highest. Following the product user

manual (https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide), we120

use measurements with a qa_value of 0.7 or greater, which indicates clear sky conditions. Furthermore, we filter out measure-
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ments taken either entirely or partially over water. Finally, we convert the provided total column in mol/m2 to total column

dry-air mole fractions (XCO) in ppb as described in Wunch et al. (2016) using the retrieved total column of water and the

provided surface pressure for each observation.

2.3.2 TROPOMI NO2125

Observations over 0.405–0.465 µm from the UV-Vis spectrometer in TROPOMI are used to infer the tropospheric vertical

column densities of NO2 (van Geffen et al., 2020). TROPOMI NO2 ground sampling distance is approximately 3.5 km in

the cross-track, with the same along-track distance as the CO product. Similar to the TROPOMI CO product, the quality of

measurements of the tropospheric column of NO2 is described by a qa_value field. Following the NO2 Product User Manual

(https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide), we use only130

NO2 measurements with a qa_value of 0.75 or greater. No stripe bias correction is needed for the NO2 product, as corrections

have already been applied to the values provided in the NO2 Level 2 files. Again the column densities are converted to dry-air

mole fractions using the retrieved column of water and reported surface pressure. Finally, tropospheric averaging kernels are

derived from the provided total column averaging kernels following the method described by Eskes et al. (2019).

2.4 Cities135

For information on the location and extent of cities from around the world, we use the European Commission Joint Research

Centre’s (EC-JRC) Global Human Settlement layer Urban Centres Database (GHS-UCDB) (Florczyk et al., 2019). Though

“cities” in this database are often urban agglomerations composed of multiple municipalities, we refer to an urban agglomera-

tion as a single city for convenience. Spatial extents of over 13000 cities are determined based on the presence and density of

buildings and from the population density of the region from the GHS Built-up Areas (GHS-BUILT) and GHS population den-140

sity (GHS-POP) databases (Corbane et al., 2018), respectively. Polygons defining the boundaries of each city are provided on

a 1 km × 1 km grid. We focus our attention primarily on cities with total populations greater than 1 million persons, where we

typically observe average XCO2 enhancements on the order of 1 ppm compared to nearby measurements that are not influenced

by anthropogenic sources. We also look at lower population cities in North America and Europe which have high per capita

emissions. While emissions for smaller cities are not investigated, their presence in the dataset is often useful in explaining145

additional enhancements or plumes observed within the data.

2.5 Emissions Inventories

Bottom-up emissions inventories are used as a separate way to derive emissions ratios. Emission inventories are typically

on a mass basis, and need to be converted to a molar basis for comparison with satellite-derived estimates. We derive the

inventory-based ratio A:B from150

α=
(
MB

MA

)
ECity, Inv

A

ECity, Inv
B

, (1)
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where MA and MB are the molar masses of the respective species, and ECity, Inv
A and ECity, Inv

B are the total emissions estimates

for the given city and inventory in mass per year. Total emissions for a city are derived by integrating the fluxes over the extent

of the GHS polygon for the given city. We combine four different gridded global anthropogenic inventories to derive ratios for

NO2:CO, NO2:CO2 and CO:CO2.155

The Open Source Data Inventory for Anthropogenic CO2 (ODIAC2018) is a high resolution global emissions inventory for

CO2 that provides anthropogenic fluxes on an approximately 1 km × 1 km grid with monthly temporal frequency from 2000–

2019 (Oda and Maksyutov, 2011). Gridded fluxes are disaggregated from total country emissions using information on strong

point sources and satellite observations of night lights. The monthly estimates provided by ODIAC can be further disaggregated

at weekly and diurnal time scales using the Temporal Improvements for Modeling Emissions by Scaling (TIMES) scaling160

factors (Nassar et al., 2013) which provide gridded (0.25◦× 0.25◦) scale factors based on both the day of the week and hour of

the day.

The Fossil Fuel Data Assimilation System Version 2.2 (FFDAS) is a high resolution anthropogenic CO2 emissions inventory

which provides yearly fluxes for the period 1997–2015 on a 0.1◦× 0.1◦ spatial grid (Asefi-Najafabady et al., 2014). Because

the FFDAS time period does not extend to the operational period of TROPOMI, we use the 2015 values to derive our estimates.165

Similar to ODIAC, night lights data are used to disaggregate national emissions data down to a finer resolution. TIMES scaling

factors are also applied to the disaggregated data in the development of FFDAS. Before being intergrated over the GHS polygon

extent to get city-wide estimates, the FFDAS grid is downscaled to the ODIAC resolution, with uniform distribution across the

original grid cell.

The EC-JRC Emissions Database for Global Atmospheric Research Version 5.0 (EDGARv5.0) is a global emissions inven-170

tory which provides gridded fluxes for many greenhouse gases and air pollutants for 1970–2015 (Crippa et al., 2020; European

Commission and Joint Research Centre et al., 2019). We use the inventories for CO2, CO and NOx (the combination of NO and

NO2). Emissions of NO2 are approximated by dividing the provided NOx emissions by a factor of 1.32 (Pandis and Seinfeld,

2006). EDGAR is provided on a 0.1◦× 0.1◦ grid with yearly fluxes for the time period 1970–2015. Similar to FFDAS, we

apply TIMES scaling factors to the CO2 inventory, and downscale the grid to the ODIAC resolution before integrating over a175

city region.

The final inventory that is used is the Mapping Atmospheric Chemistry and Climate and CityZen (MACCity, Granier et al.,

2011). MACCity provides yearly fluxes of CO and NOx on a 0.5◦× 0.5◦ global grid from 1990–2010. As with the other

inventories, MACCity was downscaled to the resolution of ODIAC before city emissions were derived. Table 1 summarizes

emissions estimates from these inventories for all cities that are considered in this study.180

3 Methods

3.1 Co-location of OCO-2 and TROPOMI Data

Because OCO-2 and S5P have sun-synchronous orbits with similar equator crossing times and repeat cycles, there is often

overlap between observations from the two instruments. We locate overpasses of cities by searching for OCO-2 observations
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within 75 km of a city boundary of interest. Winds at 50 metres are chosen to represent the boundary layer and are used to filter185

overpasses. We interpolate from the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2,

Molod et al., 2015) at a spatial resolution of 0.5◦ latitude × 0.625◦ longitude and 3-hourly temporal resolution to the location

and time of the overpass. When the boundary layer wind direction points away from the location of the OCO-2 swath the

overpass is rejected, as the pollution plume from the city is not captured. Further filtering is performed to remove overpasses

where the OCO-2 data downwind of the city is extremely sparse ( >95% of OCO-2 observations near the city flagged as bad),190

which is often the case when there is significant cloud cover in the region. After these filtering steps, the OCO-2 data, along

with the TROPOMI data from the same time period are visualized and inspected to check for issues such as the presence

of secondary sources of greenhouse gases or pollutants, and to ensure there are coincident measurements between the two

satellites. During this step, corrections are applied to the MERRA-2 wind direction if considerable discrepancies are observed

between the given wind bearing and the behaviour of the plume emanating from the city, which is generally most visible in the195

TROPOMI NO2 product. Similar manual corrections have been employed in past studies using observations from OCO-2 (e.g.,

Nassar et al., 2017; Reuter et al., 2019; Nassar et al., 2021). At best, our manual inspections found that 83% of the overpasses

which passed the initial automatic filtering were viable in a city, and at worst, all of the overpasses were rejected for a city. The

median retention rate is 31% of the overpasses per city.

A similar approach is used to search for co-located measurements from OCO-3 and TROPOMI. This task is more complex200

as the ISS is in a different type of orbit than OCO-2 and S5P, and thus does not consistently take co-located measurements

with the instruments in sun-synchronous orbits. This can lead to much greater time differences between co-located OCO-3 and

TROPOMI measurements compared to the differences between observations from OCO-2 and TROPOMI. Upon identifying a

favorable OCO-3 overpass of a city, the TROPOMI track which lies closest to the city is selected. Time offsets are as large as

6 hours between observations from the two instruments. This leads to greater uncertainties in cases where the wind direction205

has changed significantly in the time between overpasses, as the regions that are affected by the city’s plume may no longer

coincide with one another.

Finding instances of co-located measurements of NO2 and CO from TROPOMI is a far simpler task. Here we search for

instances of measurements directly over each city of interest, leading to 1 or sometimes even 2 overpasses per day, depending

on the longitude of the ground tracks. Due to this much higher data volume, only direct observation of the cities are considered210

when deriving NO2:CO ratios to avoid including measurements which are not influenced by the cities due to wind direction

errors.
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3.2 Identifying Enhancements

To identify the subset of measurements which are influenced by emissions from the city, we transform the latitude-longitude

positions of the observations into along- and cross-wind distances from the city centre and use the equation for the spread of a215

vertically-integrated Gaussian plume, defined by Krings et al. (2011) as

σy = a

(
x+x0

xc

)0.894

, (2)

where x is the downwind distance in metres, xc = 1000 m is a characteristic length scale and a is the atmospheric stability

parameter (Pasquill, 1961; Krings et al., 2011; Nassar et al., 2017, 2021) which controls the spread of the plume based on

the observed MERRA-2 50 m wind speed, so that the plume changes width depending on the wind speed and insolation.220

Following Nassar et al. (2017), we use the Pasquill-Gifford stability class to determine the atmospheric stability parameter

(Martin, 1976), and as in Nassar et al. (2021) we assume solar insolation to be strong given the clear-sky requirements for

dense OCO-2/3 observation. The distance x0 is used to define the initial width of the plume and is defined by

x0 = xc

(
y0
4a

) 1
0.894

, (3)

where y0 is the cross-wind extent of the city in metres. The factor of 4 in the definition of x0 follows the method of Krings et al.225

(2011) so that the cross-wind extent of the city is associated with a ±2σy(x0) spread of the plume. Downwind observations

with cross-wind distances that are less than 2σy(x) from the mean path from the city y are considered to be in the plume. In

cases where the winds point parallel to the affected OCO-2 track, a maximum downwind distance for the plume is determined

manually to limit the length of the plume to an area where significant enhancements are observed.

For comparisons between the TROPOMI NO2 and CO products, where we do not consider a plume region, the enhancement230

area is taken as the bounding box of the GHS polygon for the city.

3.3 Anomaly Calculation

3.3.1 Smoothing of Urban Influenced Data

To decrease the amount of noise in the OCO-2/3 and TROPOMI data, we apply a nearest neighbour fit with a constant radius

to smooth out the data (Altman, 1992). For the narrow swath width of OCO-2, we find that fitting a surface to the OCO-2 time235

series and using a radius of 2 seconds leads to a fit that removes high frequency noise but retains the overall trends (Figure

1). Due to the wide swath width of TROPOMI, it is more appropriate to fit a spatial surface to the data. We find that using

a radius of 15 km effectively smooths the data, and is comparable in spatial extent to the smoothing applied to the OCO-2

data. Fitting these surfaces to the datasets has the added advantage that predictions can be made at locations which do not have

direct measurements, but have adequate nearby coverage. This lessens the impact of spurious missing data when trying to find240

co-located measurements.
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3.3.2 Background Calculation

A regional background for XCO2 is determined using nearby measurements from OCO-2 that are free from anthropogenic

influence. A nearest neighbour fit similar to that used to smooth the urban influenced data is applied here, but with a much

larger radius of 20 seconds (approximately 140 km). This choice of radius creates a background whose extent is similar to245

those in the simulations performed by Wu et al. (2018). The background fit is performed using typically the lowest 75 percent

of the retrievals, so that potential enhancements are removed. For some individual overpasses, the choice of percent must

be tuned if the nearest neighbor background fit gives a trend that appears to be too high or too low compared to nearby

observations which are unaffected by any urban plumes. The performance of this method appears to be most accurate when

winds run perpendicular to the OCO-2 track and there exist dense soundings both prior to and after crossing the plume of the250

city, however satisfactory results were still found in cases where soundings were missing on one side of the plume, which is

often the case when cities close to a body of water are observed in nadir mode. Figure 1 shows an example of the process of

smoothing the data, identifying an enhancement, and calculating the background for an overpass of Moscow with OCO-2.

A similar method is used to define the background for TROPOMI. A radius of 150 km is used for this fit, again using only

the lowest 75 percent of data to avoid the influence of anthropogenic enhancements on the background. Due to the larger swath255

width and generally more dense measurements of the TROPOMI products, we find the value does not need to be tuned from

75 percent for individual overpasses.

3.3.3 Calculation of Anomalies

Anomalies are calculated by subtracting the background estimates from the smoothed urban influenced values. Coincident

observation locations are then chosen using the locations from the sparser of the two species being investigated. For example,260

if a ratio between CO and CO2 is being determined, the observation locations from OCO-2 or OCO-3 are used, as their spatial

coverage is much smaller than that of the TROPOMI CO product.

These anomalies are divided by the surface averaging kernel values, which is similar to the method used by Wunch et al.

(2009) to account for the sensitivities of the instruments to changes in trace gas concentrations near the surface of the Earth,

where the emissions from cities originate. Figure 2 demonstrates this anomaly calculation procedure, and Figure 3 shows an265

example of the distributions of surface averaging kernels for the three gases that are considered.

3.4 Determination of Enhancement Ratios

To determine enhancement ratios, we regress one set of anomalies onto the other using a reduced major axis regression as de-

scribed by York et al. (2004), as shown in Figure 4. The variance of the samples is used as the uncertainty for each observation.

Reduced major axis regression has the property that the resulting slope is independent of which variable is chosen to be on the270

abscissa and which is chosen to be on the ordinate axis. Furthermore, the calculated slope is unaffected by the scaling of axes

by a constant value, so that the calculated slopes are independent of the choice of mixing ratio units that are used (i.e. ppm or

ppb). This method is then bootstrapped (Efron and Gong, 1983) 500 times to get an error estimate for the fit. Bootstrapping

9
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Figure 1. An example of of the background and anomaly calculation procedure for OCO-2 data over Moscow (Russia) on 25 August 2018.

The grey points represent the original measurements from the OCO-2 Lite files. The black and red points indicate the smoothed data, with the

red points corresponding to those in the urban enhancement plume of the city being investigated. The blue line shows the derived background

using the lowest 75 percent of data.

is a re-sampling technique in which random samples of the same size as the original data are drawn with replacement and fit

independently, and has been used in previous emissions ratio studies (e.g., Wunch et al., 2009, 2016; Lama et al., 2020). We275

take twice the standard deviation of the resulting set of slopes as the uncertainty estimate for the fit.

3.5 NO2 Lifetime Correction

NO2 has a short atmospheric lifetime compared to those of both CO2 and CO, and can be on the same order as the advective

time scales associated with emissions on the scale of large cities. To account for this, we apply a correction to the observed

enhancement ratios to model the effect of NO2 lifetime. Following Lutsch et al. (2020), the multiplicative correction takes the280

form

C = exp(τA/τNO2), (4)

where τA is a time scale for advection and τNO2 is the lifetime of NO2. This uses the fact that the chemical loss of NO2 can

be modeled as NO2,orig · exp(−t/τNO2). Thus, when t= τA, the ratio of NO2,orig/NO2,downwind = C. As we are correcting

enhancement ratios, the effect of dispersion cancels out in the ratio. We use the method described in Laughner and Cohen285

(2019) to calculate NO2 lifetimes for each city separately for summer and winter (details given in Appendix B). We apply a

10

https://doi.org/10.5194/acp-2022-474
Preprint. Discussion started: 28 July 2022
c© Author(s) 2022. CC BY 4.0 License.



29 ∘

31 ∘

33 ∘

La
tit
ud

e

Observed Mask

30 ∘ 32 ∘ 34 ∘

Longitude

29 ∘

31 ∘

33 ∘

La
tit
ud

e

Background

30 ∘ 32 ∘ 34 ∘

Longitude

Anomalies

0.00 0.05 0.09 0.14 0.18
XNO2 [ppb]

-0.11 -0.05 0.00 0.05 0.11
ΔXNOΔ [ppb]

Cairo 15 Ju e Δ019

Figure 2. An example of the background and anomaly calculation procedure for TROPOMI NO2 observations over Cairo on 15 June 2019.

The top left panel shows the smoothed set of observations. The top right shows the mask for the background calculation; green points are used

in the calculation while grey points are omitted, and red points indicate observations in the enhancement. The selection of the enhancement

region is done liberally, as the location of OCO-2/3 observations is often a more limiting factor. The lower left panel then shows the derived

background, and the lower right panel the calculated anomalies. The extent of the GHS polygon for Cairo is shown in yellow. Thick black

lines mark coastlines, and thin black lines indicate geopolitical boundaries.
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Figure 3. Example histograms of the surface level averaging kernel values for OCO-2/3 and TROPOMI from all the data collected over

Phoenix (USA), which are used to account for the sensitivity of the instruments to concentration changes at the surface.
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Figure 4. Regression of anomalies of XNO2 onto anomalies of XCO over Tehran using TROPOMI data from June–August 2018. The red

dashed line indicates the estimated enhancement ratio, while the yellow lines represent ±2σ uncertainties in the ratio. Each data point

represents a single observation, and is assigned a color to indicate the density of points by binning the observations into 100 bins across each

axis, and counting the number of points in the bin in which the observation resides. N is the total number of points included in the regression,

R is the correlation coefficient, Y is the equation of best fit, and αG is the slope and 2σ uncertainty determined by bootstrapping.
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single lifetime correction by scaling the observed enhancement ratio so that αCorrected = Cα, with an advection time scale given

by

τA =
1
U

(
A

π

)1/2

, (5)

where U is the average wind speed averaged across all overpasses of the city and weighted by the number of observations in290

each overpass, and A is the area of the city provided in GHS-UCDB so that the relevant length scale is the radius of the city

if it were perfectly circular. In applying these corrections, we have neglected the lifetimes of CO and CO2, which are on the

order of months and centuries, respectively, and therefore will have a negligible effect on the observed enhancement ratios. To

account for errors in the NO2 lifetimes as well as the wind speeds used to calculate the advective time scales, we prescribe an

additional uncertainty of 20% to the enhancement ratios when the lifetime correction is applied.295

4 Results

4.1 NO2:CO2 and CO:CO2 Ratios

Using these methods, we are able to quantify NO2:CO2 ratios from 21 cities, and CO:CO2 ratios from 20 cities using co-

located observations from TROPOMI, OCO-2 and OCO-3. A total of 162 overpasses occurring from April 2018 to May 2020

are used to derive NO2:CO2 ratios, with 135 consisting of observations from TROPOMI and OCO-2, and the remaining 27300

involving TROPOMI and OCO-3. The most overpasses for an individual city are found for Phoenix (United States), where we

found 20 usable overpasses; Toronto has the fewest, where only a single overpass is used. In many cases, overpasses involving

OCO-3 had to be filtered out due to observed non-linear relations between the derived XCO2 anomalies and those from the

two TROPOMI products for a given day. This issue is most likely caused by the greater time differences between overpasses

of the ISS and S5P—the location and distribution of the plumes could change significantly between the two times at which305

measurements are made so that the measurements are no longer approximately co-located in time and space.

Cities located in the Southwestern United States (Los Angeles, San Francisco, Phoenix, and Las Vegas) and in the Middle

East (Tehran, Baghdad, and Cairo), generally yielded more usable overpasses than cities located elsewhere in the world due

to the greater number of cloud-free daylight hours in these regions. Few good overpasses were found for cities located in

East and Southeast Asia, as observations from OCO-2/3 are often very sparse due to persistent clouds; other than Guangzhou310

(China) and Seoul (South Korea), megacities in these regions of the globe are not considered in this study. Overpasses were also

generally better for inland cities compared to those situated next to large bodies of water, where loss of data from nadir viewing

in the OCO-2/3 product and data filtering the TROPOMI CO product led to more limited opportunities to make observations

downwind of the city. The presence of mountains near cities also presented some problems; in such cases large corrections to

the reported MERRA-2 wind directions were often required to properly capture the plume. In the unique case of Los Angeles315

and the SoCAB in which the city resides, we considered only measurements directly above the SoCAB in our analysis, as the

surrounding mountain ranges prevent air from easily leaving the basin.
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Figure 5. CO:CO2 enhancement ratios derived using observations from OCO-2/3 and TROPOMI compared to inventory estimates using

CO emissions from EDGAR and CO2 emissions from EDGAR, FFDAS and ODIAC. The numbers on top of the bars denote the correlation

coefficient between the two sets of observed anomalies. The light blue areas atop the bars represent the uncertainty in the measured ratios.

Figure 5 shows the derived CO:CO2 enhancement ratios from our analysis compared to inventory based estimates of the

enhancement ratios derived from the ODIAC, FFDAS and EDGAR emissions inventories. For cities across the United States,

Canada, and Europe, we find that apart from the Dallas-Fort Worth area, our measured enhancement ratios are higher than the320

inventory-based estimates, with our results ranging from around 1.1 (Phoenix) to 4.8 (Paris) times greater than the respective

EDGAR estimates. Results for the remainder of the cities show a less consistent picture, with the largest underestimate being

for Baghdad (Iraq), where we find an enhancement ratio that is around 3 times lower than that of the EDGAR estimate, and

the largest overestimate for Tehran, where the measured enhancement ratio is around 1.6 times greater than the EDGAR value.

When comparing to ratios calculated using CO emissions from the MACCity inventory, shown in Appendix A, we find a more325

pronounced underestimation compared to observations across North America and Europe.

Figure 6 similarly shows results for the derived NO2:CO2 ratios, both with the correction for NO2 lifetime and without.

Here we find that without any NO2 lifetime correction, almost all of the cities considered have derived ratios that are smaller

than the inventory-based estimates. As with the CO:CO2 results, this discrepancy is most pronounced in the United States

and Europe. Upon applying our lifetime correction to the ratios, the ratios in many of these cities are brought closer to the330

inventory-based estimates, with a few cities (Delhi, Johannesburg, Mexico City and Tehran) having ratios that are higher than

any of the inventory estimates. Additionally, correlation coefficients between the two sets of anomalies were generally found

to be greater in this case when compared to the CO:CO2 enhancement ratios results. Ratios calculated using the MACCity
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Figure 6. Same as in Figure 5 but for NO2:CO2 ratios derived using OCO-2/3 and TROPOMI observations. NO2 enhancements are

calculated without a lifetime correction in blue, and with a lifetime correction in green.

inventory, shown in Appendix A, show better agreement with those derived using satellite observations prior to the application

of the lifetime correction, but observed enhancements are generally higher than the inventory estimates after the atmospheric335

lifetime correction is applied.

4.2 NO2:CO Ratios

We also derive NO2:CO ratios for the same cities using only measurements from TROPOMI. Because NO2:CO enhancement

ratios do not use observations from OCO-2/3 which have more limited coverage, there are far more opportunities for calculating

these ratios. In the absence of cloud cover, we obtain 1–2 overpasses per day for each city. We consider a smaller subset of340

the TROPOMI product from June–August 2018, which is the same subset of data used by Lama et al. (2020), so that our

enhancement ratios are derived from 40–100 overpasses for each city. Because there are more overpasses averaged into the

NO2:CO estimates of enhancement ratios, we expect them to be more robust than those involving OCO-2/3.

Figure 7 shows the derived NO2:CO ratios compared to inventory-based estimates from EDGAR and MACCity. Here we

observe ratios that are significantly lower than inventory-based estimates both before and after the lifetime correction has been345

applied. Again these differences are generally more significant over cities in North America and Europe, and Johannesburg and

Baghdad are outliers, with observed enhancement ratios higher than either of the inventory estimates. Table 2 summarizes the

results of all three sets of emissions ratios for all the cities considered.

We also compare our NO2:CO results to those of Lama et al. (2020), where two different methods were used to calculate

NO2:CO enhancement ratios in six megacities (Tehran, Mexico City, Cairo, Riyadh, Lahore and Los Angeles) using measure-350
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Figure 7. Same as in Figure 5 but for NO2:CO ratios derived using observations from TROPOMI. EDGAR and MACCity are used to

calculate inventory-based estimates of the emissions ratios.

ments from TROPOMI. Lama et al. also use an averaging kernel correction to their ratios, except with a different methodology;

they apply column averaging kernels to reported profiles of NO2 and CO from the Copernicus Atmospheric Monitoring Ser-

vice (CAMS) to determine the impact on XNO2 and XCO. Lama et al. also apply a correction which accounts for the short

lifetime of NO2 due to chemical reactions with hydroxyl (OH) in the atmosphere by constructing a correcting scale factor

using CAMS-reported OH concentrations and the observed wind speed. Comparing the results of Lama et al. (2020) to our355

calculated values without their respective NO2 lifetime corrections, we find good agreement in the ratios for Tehran, Mexico

City, Cairo and Los Angeles, with ratios agreeing to within 25% of each other. Larger discrepancies are observed for Riyadh

and Lahore, where we find ratios significantly higher than those of Lama et al., by factors of around 3.5 and 2, respectively.

These differences may be influenced by the different averaging kernel corrections used, as the corrections used in Lama et al.

are derived from averaging kernels and CAMS data over Riyadh and Lahore for a limited number of days, while our correction360

uses averaging kernels from each overpass of the city. After the application of the respective NO2 lifetime corrections, the

results for Mexico City and Los Angeles still demonstrate good agreement; enhancement ratios for these two cities agree to

within 15%. For Tehran and Cairo the agreement has been degraded, as the NO2 lifetime correction of Lama et al. (2020) is

around twice the magnitude of our correction for these two cities.
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5 Discussion365

5.1 Analysis of Measured Ratios

The CO:CO2 ratios that we derive using TROPOMI and OCO-2/3 are larger than the inventory-based estimates calculated from

EDGAR, ODIAC, and FFDAS in 70% of the cities we studied (Figure 5). This is the case for nearly all cities in North America

and Europe, though mixed results are observed for the rest of the world; in cities such as Tehran (Iran) and Cairo (Egypt) we

observe high ratios relative to inventory estimates, while in Johannesburg (South Africa), Baghdad (Iraq) and Buenos Aires370

(Argentina), we observe ratios that are lower than the inventory values. We also observe larger CO:CO2 enhancement ratios

relative to reported emissions ratios when using CO emissions from the MACCity inventory (Figure A1). Here, the low bias

for inventory estimates appears to be even stronger for cities in North America and Europe, while Johannesburg and Baghdad

remain as outliers with lower observed enhancement ratios.

For the NO2:CO2 ratios that we calculate (Figure 6), we find that without any correction for NO2 lifetime, this trend375

is reversed: we observe ratios that are considerably lower than those derived from EDGAR, ODIAC and FFDAS in 77%

of the cities. Upon application of our correction for NO2 lifetime, the ratios for many of these cities are brought in closer

agreement with the inventory estimates. Los Angeles is the city most affected by the addition of the lifetime correction, with

its ratio increasing by a factor of around 3. Johannesburg is a notable outlier, with an observed ratio that is comparable to

the EDGAR and FFDAS estimates, yet is around twice the EDGAR:ODIAC estimated ratio before correction, and higher380

than all three emission ratios after correction. Delhi, Mexico City and Tehran also have ratios that exceed inventory-based

estimates by a similar amount after the lifetime correction has been applied. An added complication for the specific case of

Johannesburg is the presence of a collection of large coal-fired power plants located ~100 km east of the city which together

emit > 10 TgCO2/yr and an additional two power plants located ~50 km to the south according to the Carbon Monitoring for

Action (CARMA) database (Ummel, 2012). Plumes from these sites are clearly visible in CO and NO2 measurements from385

TROPOMI and depending on the wind direction and distance from the city could influence the measurements in the OCO-2

swath. Interestingly, the positions of these four cities (Delhi, Johannesburg, Mexico City, Tehran) as outliers appears to be

consistent for both EDGAR NOx emissions and those from MACCity.

In general, we find that measured NO2 : CO enhancement ratios are smaller than those inferred from the inventories, while

measured CO : CO2 ratios are generally larger. Measured NO2 : CO2 ratios are generally in good agreement with the inferred390

inventory enhancement ratios. From our observed CO:CO2 ratios, which are generally larger than the inventory ratios, we

infer that the inventories we considered tend to either underestimate CO emissions, overestimate emissions of CO2, or both.

Similarly, the NO2:CO2 ratios that are observed to generally agree with the EDGAR NOx-based estimates suggests that either

the inventories accurately capture emissions of both NO2 and CO2, or that emissions of these two gases are both biased either

high or low by a similar magnitude. Given that the spread provided by the three CO2 inventories (which is on average about395

20% around the mean of the three, and exceeds 30% for only Alexandria, Delhi, Johannesburg and Moscow) coincides with

the uncertainty range for the NO2:CO2 enhancement ratio in 8 out of 22 cities, and is close for another 7 cities, the NO2:CO2

emissions ratios do not appear to be affected by systematic biases as much as the CO:CO2 ratios. From this, we infer that the
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discrepancies in the NO2:CO ratios are likely caused by an underestimation of CO emissions within the EDGAR inventory.

A similar picture emerges for the MACCity NO2:CO ratios using figures A1 and A2. Here, the high NO2:CO ratios (yellow400

bars in Figure 7) relative to observations seem to be driven by an even stronger underestimation of CO emissions.

If we were to rescale the CO inventory emissions so that their emissions ratios matched the observed CO : CO2 enhancement

ratios, EDGAR CO emissions would have to be about doubled on average. For MACCity, the required rescaling factor is

considerably higher; this was driven in part by severely low-biased CO emissions estimates in Riyadh (Saudi Arabia), Las

Vegas (USA) and Phoenix (USA). This suggests that MACCity may systematically underestimate CO emissions in desert405

cities. Even when neglecting these three cities, the low-biased emissions in MACCity would still require a rescaling factor of

around 4 on average to match the observed enhancement ratios.

5.2 Emissions Estimates using High-Resolution Inventories

In addition to the global, gridded inventories that we have employed up to this point, the cities of Indianapolis (USA) and Los

Angeles (USA) also have high-resolution anthropogenic CO2 inventories. The Hestia Inventory provides gridded fluxes for the410

cities of Los Angeles, Indianapolis, Salt Lake City and Baltimore at both hourly and annual temporal resolutions for the years

2010–2015 (Gurney et al., 2018b, 2019). The inventory for Los Angeles is provided at a spatial resolution of 1 km × 1 km for

the SoCAB and the surrounding area, and the inventory for Indianapolis is given on a 200 m × 200 m grid. When summed

across the GHS polygons for each city, the annual emissions for Los Angeles and Indianapolis from the Hestia inventory are

120.9 TgCO2/yr and 13.5 TgCO2/yr, respectively. For Los Angeles, the annual estimates of the global gridded inventories415

(EDGAR, ODIAC, and FFDAS) are between 25-33% lower than this high resolution estimate, while for Indianapolis, the

Hestia estimate is similar to the mean of the three global inventories. When comparing with the TIMES-corrected emissions

rates from the global inventories for Los Angeles, the estimates are brought into better agreement with the Hestia inventory,

with emissions rates that are now only 6-17% lower than Hestia. For Indianapolis, the TIMES-corrected EDGAR estimate of

9.5 TgCO2/yr is about 30% lower than the Hestia estimate, while the ODIAC and FFDAS values are around 30% higher.420

Using the CO:CO2 enhancement ratio that was calculated for Los Angeles along with the Hestia emissions estimate and

equation 1, we estimate CO emissions to be 638 ± 130 GgCO/yr after assuming a 20% uncertainty in the Hestia emissions

estimate, which has good overlap with the estimate of 487 ± 122 GgCO/yr found by Hedelius et al. (2018) for 2013–2016, as

well as the value of 581 GgCO/yr for the SoCAB which is reported by the California Air Resources Board (CARB) for the

year 2015 in the CARB2017 database (https://www.arb.ca.gov/app/emsinv/2017/emssumcat.php). In a similar way we estimate425

emissions of NO2 within the SoCAB to be 40 ± 8 GgNO2/yr, which is around 68% lower than the CARB estimate for 2015

of 105 GgNO2/yr. After applying the NO2 lifetime correction, the estimate is increased to 149 ± 42 GgNO2/yr, bringing it

closer into agreement with the CARB estimate for 2015 and the annual EDGAR estimate of 132 GgNO2/yr, but far greater

than the MACCity estimate of 43.3 GgNO2/yr. CARB2017 projections for the year 2020 estimate that SoCAB emissions of

CO and NOx should decrease by 21% and 26% respectively.430

A similar approach using the Hestia CO2 Inventory for Indianapolis yields estimated CO emissions of 115 ± 24 GgCO/yr,

much higher than both the EDGAR and MACCity estimates of 40.7 GgCO/yr and 11.7 GgCO, respectively. Using the un-
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corrected NO2:CO2 ratio, emissions of NO2 are estimated to be 6.0 ± 1.3 GgNO2/yr; application of the correction gives

an estimate of 10.5 ± 3.0 GgNO2/yr, which is considerably higher than the MACCity estimate of 3.9 Gg NO2/yr, but has an

uncertainty range that covers the EDGAR estimate of 13.4 GgNO2/yr. These investigations of Los Angeles and Indianapolis il-435

lustrate how the high MACCity NO2:CO ratios observed in Figure 7 are driven by a strong underestimation of CO emissions,

even though the NOx emissions are also underestimated in MACCity compared to the estimate derived from enhancement

ratios and Hestia.

6 Conclusions

This study demonstrates a method to derive enhancement ratios between CO2, CO and NO2 using measurements from the440

OCO-2, OCO-3, and TROPOMI satellite instruments located downwind of or over large urban areas. This method is applied to

derive enhancement ratios for 27 cities from around the world. These ratios are then compared to enhancement ratios derived

from the EDGAR, ODIAC, FFDAS, and MACCity global inventories. We find that CO:CO2 ratios from these inventories are

generally lower in cities across Europe and North America compared to the satellite-based ratios. After applying a correction

to account for the short atmospheric lifetime of NO2, observed NO2:CO2 ratios are mostly higher than inventory ratios when445

using NOx emissions from MACCity but generally show good agreement when using emissions from EDGAR, apart from a

few outlier cities where observed ratios were high compared to inventory estimates. NO2:CO ratios retrieved from TROPOMI

observations over these cities show low values relative to inventory estimates and good agreement with the NO2 : CO ratios

derived in a previous study by Lama et al. (2020).

We demonstrate that deriving enhancement ratios between more than two species can aid in the interpretation of results. By450

measuring ratios of CO:CO2, NO2:CO2, and NO2:CO, we are able to better diagnose which emissions lead to discrepancies

between satellite- and inventory-derived ratios. For the EDGAR inventory, this analysis suggests an underestimation of CO

emissions by around 50% on average, while for the MACCity inventory, we infer a more significant underestimation of CO

emissions of about 75% on average, alongside a smaller underestimation of NOx emissions. In both EDGAR and MACCity,

many of the largest underestimations are observed for cities in Europe and North America, with MACCity showing significant455

underestimation in desert cities (Riyadh, Phoenix, Las Vegas). Further, we show that by combining these enhancement ratios

with high-resolution CO2 inventories, emissions of CO and NO2 can be calculated, which, in the case of Los Angeles, show

good agreement with both region-specific inventories and previous modelling studies. These analyses with high-resolution

inventories additionally provide further support for the underestimation of urban CO emissions in EDGAR and MACCity.

There is considerable potential for further study using the methodology that has been laid out here. In particular, these460

methods could be applied to other anthropogenic co-emitters of CO2, CO and NO2. Fossil fuel burning power plants are a

candidate for future investigations, as other studies have already used multi-sensor techniques involving NO2 and CO2 to

estimate power plant emissions (e.g., Reuter et al., 2019; Hakkarainen et al., 2021). Furthermore, enhancement ratios involving

other species are observed by TROPOMI, such as CH4, HCHO, and SO2 over urban regions could be explored using the

framework that has been described here.465
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Due to the limited number of usable co-locations between OCO-2/3 and TROPOMI that were available in this study, we

have limited our enhancement ratio results to single values across the full time periods. As the constellation of CO2 observing

satellites expands in the coming years, there will be greater potential for co-locations of observations, which could provide

reliable information on long-term trends of these enhancement ratios and open up the possibility for comparison to trends

in ratios derived from emissions inventories. When paired with state-of-the-art CO2 inventories, these enhancement ratios470

could provide a flexible framework to determine whether emissions reduction targets for a wide array of greenhouse gases and

pollutants are being met on schedule by cities around the world.

Data availability. OCO-2 and OCO-3 data were obtained from the Goddard DAAC https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_

9r/summary, https://disc.gsfc.nasa.gov/datasets/OCO3_L2_Lite_FP_10.4r/summary?keywords=OCO-3%20vEarly. TROPOMI data were ob-

tained from the NASA GES DISC (CO: https://tropomi.gesdisc.eosdis.nasa.gov/data/S5P_TROPOMI_Level2/S5P_L2__CO____.1 and NO2:475

https://tropomi.gesdisc.eosdis.nasa.gov/data/S5P_TROPOMI_Level2/S5P_L2__NO2____HiR.1/. TROPOMI NO2 data for the lifetime cal-

culation was obtained from the Sentinel-5P hub (https://s5phub.copernicus.eu/dhus/). GHS-UCDB is available from https://data.europa.

eu/doi/10.2760/037310. ODIAC2020 is available from http://doi.org/10.17595/20170411.001. FFDAS2.2 is available from http://ffdas.rc.

nau.edu/Data.html. TIMES is available from https://cdiac.ess-dive.lbl.gov/ftp/Nassar_Emissions_Scale_Factors/... EDGAR5.0 is available

from https://edgar.jrc.ec.europa.eu/dataset_ghg50. MACCity is available from http://accent.aero.jussieu.fr/MACC_metadata.php. MERRA-480

2 data are available from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. Hestia data are available from https://catalog.data.gov/dataset/

hestia-fossil-fuel-carbon-dioxide-emissions-inventory-for-urban-regions-82c05.

Appendix A: Comparison of CO:CO2 and NO2:CO2 ratios with emission ratios derived from MACCity

Comparison of our observed CO:CO2 enhancement ratios with emission ratios calculated using CO emissions from the MAC-

City inventory are shown in Figure A1. Results are similar to those using the EDGAR CO emissions, with underestimation485

by the inventories relative to the observations even more pronounced for many cities in Europe and North America. Simi-

larly, Figure A2 shows a comparison of observed NO2:CO2 with MACCity derived emissions ratios. These emission ratios

are characterized by a greater underestimation relative to the observed enhancement ratios when compared with the EDGAR

emissions. As with the EDGAR emissions ratios, the cities of Delhi, Johannesburg, Mexico City and Tehran stand out as the

cases where this underestimation is the most pronounced.490

Appendix B: NO2 lifetime calculation

We compute NO2 lifetimes similarly to Laughner and Cohen (2019) using NO2 column densities from offline TROPOMI data

(processor version 1.3). Wind direction for each day is calculated from GEOS-5 FP-IT reanalysis data (Lucchesi, 2015) by

interpolating the bottom five levels of the wind fields to 13:30 local time. Horizontal averaging uses a flat topped Gaussian

(fourth power) centered on each city, with a width chosen based on the city size. NO2 column densities from each day are495
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Figure A1. Same as is Figure 5 but for enhancement ratios calculated using CO emissions from the MACCity inventory.
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rotated so that the wind directions are aligned, and pixels with qa_value > 0.75 are averaged in time, weighted by the pixel

area. Line densities are computed by integrating the rotated line densities perpendicular to the wind direction. An exponentially-
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Figure B1. Example of lifetime fitting using Paris as a demonstration. The top row shows summer fits and the bottom row winter fits, with

the specific dates used given in the title of the right panels. The left columns show the average NO2 column density after aligning wind

direction (right = downwind). The right columns show the line densities (black circles) and fits (grey lines) computed from the wind-aligned

column densities.

modified Gaussian function,

F (x|a,x0,µx,σx,B) =
a

2x0
exp

(
µx
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+
σ2

x

2x2
0

− x

x0

)
erfc

(
− 1√

2

[
x−µx

σx
− σx

x0

])
(B1)

is fit to the line densities. x is the along wind distance and a, x0, µx, σx, and B are fitting parameters. erfc is the error function500

complement. Lifetime is calculated as x0/u, where u is the average wind speed from GEOS FP-IT.
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Table 2. Summary of all the enhancement ratios that were derived using OCO-2/3 and TROPOMI. Instances where a poor linear relation

was observed when regressing one set of anomalies onto another are marked by a dash. The number of OCO-2/3 overpasses used to derive

CO:CO2 ratios is given first, and the number used to derive NO2:CO2 ratios is shown in brackets.

City No. of

OCO-2/3

Overpasses

CO:CO2 Enhancement

Ratio [ppb:ppm]

NO2:CO2 Enhance-

ment Ratio [ppb:ppm]

NO2:CO Enhance-

ment Ratio [ppb:ppb]

Ahmadabad 3(-) 12.8 ± 1.1 - -

Alexandria -(5) - 0.40 ± 0.04 0.018 ± 0.002

Baghdad 4(8) 6.3 ± 0.3 0.91 ± 0.04 0.180 ± 0.013

Buenos Aires 10(10) 7.9 ± 0.3 0.57 ± 0.02 0.048 ± 0.004

Cairo 14(14) 13.9 ± 0.9 0.50 ± 0.02 0.038 ± 0.001

Chicago 5(5) 13.3 ± 0.7 0.63 ± 0.02 0.028 ± 0.003

Dallas 4(4) 3.7 ± 0.2 0.18 ± 0.01 0.032 ± 0.002

Delhi 4(5) 13.1 ± 0.5 0.88 ± 0.04 0.017 ± 0.001

Guangzhou 3(-) 13.0 ± 1.6 - 0.016 ± 0.002

Houston -(6) - 0.37 ± 0.02 0.015 ± 0.001

Indianapolis 7(7) 13.4 ± 0.9 0.42 ± 0.03 0.018 ± 0.003

Johannesburg 11(11) 15.4 ± 0.5 2.50 ± 0.15 0.166 ± 0.012

Lahore -(-) - - 0.022 ± 0.002

Las Vegas 11(11) 8.1 ± 0.4 0.41 ± 0.02 0.021 ± 0.001

London 2(2) 5.8 ± 0.3 0.53 ± 0.01 0.075 ± 0.007

Los Angeles 9(9) 8.3 ± 0.3 0.32 ± 0.01 0.030 ± 0.001

Madrid -(10) - 0.95 ± 0.04 0.099 ± 0.008

Mexico City 12(12) 19.0 ± 0.8 1.29 ± 0.05 0.041 ± 0.003

Moscow 5(5) 12.5 ± 0.7 1.38 ± 0.07 0.083 ± 0.007

Paris 6(6) 12.6 ± 1.1 0.70 ± 0.04 0.054 ± 0.006

Phoenix 20(20) 6.6 ± 0.2 0.30 ± 0.01 0.028 ± 0.001

Riyadh 8(-) 11.2 ± 0.5 - 0.372 ± 0.029

San Francisco -(7) - 0.26 ± 0.02 0.009 ± 0.001

Seoul -(4) - 0.71 ± 0.04 0.069 ± 0.008

Tehran 13(13) 23.9 ± 1.3 1.94 ± 0.18 0.052 ± 0.001

Toronto 1(1) 10.7 ± 1.1 0.80 ± 0.07 0.026 ± 0.004

Vienna 2(-) 7.2 ± 0.6 - -
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Table 3. Summary of all the NO2:CO2 and NO2:CO enhancement ratios that were derived using OCO-2/3 and TROPOMI, with the

correction for NO2 lifetime added.

City No. of

OCO-2/3

Overpasses

NO2:CO2 Enhance-

ment Ratio [ppb:ppm]

NO2:CO Enhance-

ment Ratio [ppb:ppb]

Alexandria 5 0.45 ± 0.10 0.019 ± 0.005

Baghdad 8 1.14 ± 0.23 0.214 ± 0.045

Buenos Aires 10 1.26 ± 0.25 0.074 ± 0.015

Cairo 14 0.86 ± 0.17 0.093 ± 0.019

Chicago 5 1.24 ± 0.25 0.047 ± 0.010

Dallas 4 0.32 ± 0.06 0.123 ± 0.025

Delhi 5 6.48 ± 1.30 0.045 ± 0.009

Guangzhou 3 - 0.516 ± 0.103

Houston 6 0.77 ± 0.15 0.061 ± 0.012

Indianapolis 7 0.57 ± 0.12 0.032 ± 0.007

Johannesburg 11 2.74 ± 0.57 0.179 ± 0.038

Lahore 11 - 0.074 ± 0.015

Las Vegas 11 0.90 ± 0.18 0.054 ± 0.011

London 2 0.67 ± 0.13 0.121 ± 0.025

Los Angeles 9 0.69 ± 0.14 0.057 ± 0.011

Madrid 10 1.78 ± 0.36 0.213 ± 0.043

Mexico City 12 3.95 ± 0.79 0.146 ± 0.029

Moscow 5 2.52 ± 0.51 0.166 ± 0.034

Paris 6 1.30 ± 0.26 0.204 ± 0.041

Phoenix 20 2.06 ± 0.41 0.375 ± 0.075

Riyadh 8 - 0.522 ± 0.108

San Francisco 7 0.32 ± 0.07 0.010 ± 0.002

Seoul 4 1.46 ± 0.30 0.323 ± 0.065

Tehran 13 4.26 ± 0.87 0.080 ± 0.016

Toronto 1 2.46 ± 0.50 0.055 ± 0.012
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