Characterization the properties of VOCs and submicron organic aerosol at a street canyon environment

Sanna Saarikoski^{1,*}, Heidi Hellén¹, Arnaud P. Praplan¹, Simon Schallhart¹, Petri Clusius², Jarkko V. Niemi³, Anu Kousa³, Toni Tykkä¹, Rostislav Koutznetsov¹, Minna Aurela¹, Laura Salo⁴, Topi Rönkkö⁴, Luis M. F. Barreira¹, Liisa Pirjola^{2,5}, Hilkka Timonen¹

¹Atmospheric composition research, Finnish Meteorological Institute, Helsinki, 00101, Finland

²Institute for Atmospheric and Earth Systems Research, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland

³Helsinki Region Environmental Services Authority HSY, Helsinki, 00066, Finland

⁴Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, 33014, Finland

⁵Department of Automotive and Mechanical Engineering, Metropolia University of Applied Sciences, P.O. Box 4071, 01600, Vantaa, Finland

Supplemental material

VOC species	DL	Conc ng m ⁻³	kOH (298K)	kO ₃ (298K)	kNO ₃ (298K)
	ng m ⁻³	$(ave \pm stdev)$	cm ⁻³ s ⁻¹	cm ⁻³ s ⁻¹	cm ⁻³ s ⁻¹
Benzene	5.3	340 ± 220	1.2E-12	-	n.a.
Toluene	18	1630 ± 1340	5.6E-12	-	n.a.
Ethylbenzene	2.7	370 ± 360	7.0E-12	-	1.2E-16
p/m-xylene	4.1	1070 ± 1060	3.7E-11 (avg)	-	2.8E-16 (avg)
styrene	11	65 ± 78	5.8E-11	-	1.5E-12
o-xylene	1.6	400 ± 410	1.4E-11	-	4.1E-16
3-ethyltoluene	0.4	190 ± 2020	1.9E-11	-	4.5E-16
4-ethyltoluene	0.6	83 ± 110	1.2E-11	-	8.6E-16
1,3,5-trimethylbenzene	0.7	93 ± 130	5.7E-11	-	8.8E-16
2-ethyltoluene	1.6	110 ± 150	1.2E-11	-	7.1E-16
1,2,4-trimethylbenzene	0.9	390 ± 560	3.3E-11	-	1.8E-15
1,2,3-trimethylbenzene	0.4	83 ± 140	3.3E-11	-	1.9E-15
aVOCs sum		4820 ± 4390			
isoprene	14	<u>38 ± 35</u>	1.0E-10	1.3E-17	6.5E-13
α-pinene	9	200 ± 310	5.3E-11	9.4E-17	6.2E-12
camphene	1.9	13 ± 20	7.8E-11	6.8E-19	6.2E-13
β-pinene	1.1	78 ± 142	7.4E-11	1.9E-17	2.5E-12
Δ 3-carene	4.5	92 ± 194	8.8E-11	4.8E-17	9.1E-12
p-cymene	3.3	27 ± 27	1.5E-11	5.0E-20	n.a.
1,8-cineol	4.6	33 ± 27	1.1E-11	1.5E-19	n.a.
limonene	5.6	54 ± 63	1.6E-10	2.1E-16	1.2E-11
terpinolene	6.3	15 ± 21	2.3E-10	1.6E-15	9.7E-11
longicyclene	2.5	0.1 ± 1.1	9.4E-12	-	n.a.
iso-longifolene	7	0.13 ± 1.1	9.6E-11	1.1E-17	3.9E-12
β-caryophyllene	6.7	3.7 ± 7.5	2.0E-10	1.2E-14	1.9E-11
α-humulene	7	0.04 ± 0.63	2.6E-10	1.2E-16	3.5E-11
nopinone	4.5	32 ± 25	1.4E-11	-	n.a.
bVOCs sum		570 ± 770			

Table S1. Detection limits (DL), average (\pm stdev) concentrations and reaction rate coefficients of studied VOCs.

'-': irrelevant, 'n.a.': reaction rate not available

Source/ Case	Traffic	Coffee roastery	LRT	Biogenic organics
Time	28 August 2019	7 September 2019	9 September 2019	29 August 2019
periods	6:35–9:05;	08:10-	09:40 -	10:35-14:05;
	29 August 2019	13:40	11 September 2019	29 August 2019
	6:35–9:05;		05:20	15:35-17:05;
	3 September 2019			2 September 2019
	5:40–7:10;			11:40–13:10;
	3 September 2019			2 September 2019
	8:40–9:10;			14:40–16:10;
	6 September 2019			10 September 2019
	8:50–9:20;			12:30-13:00;
	7 September 2019			10 September 2019
	7:50-8:20;			14:30-16:00
	11 September 2019			
	9:30-10:00			
Selection	$NO_x > 160 \ \mu g \ m^{-3};$	CoOA elevated	LV-OOA-LRT	Ambient temperature
criteria	$NO > 70 \ \mu g \ m^{-3}$		elevated;	>20 °C;
			back trajectories	Aromatics < 3000 ng
			indicate LRT	m ⁻³

Table S2. Time periods and selection criteria for the air quality cases.

Source / Case		Traffic	Coffee roastery	LRT	Biogenic organics
Temperature (°C)		16.4	16.4	17.9	21
Mixing layer height (m)		207	326	225	764
Ratio toluene/be	enzene	6.7	4.3	3.1	3.8
VOCs (ng m ⁻³)	aromatic	13278	2450	2730	2320
	isoprene	75	20.8	27.9	33
	monoterpene	1849	222	374	235
	sesquiterpene	19.7	0	3.49	0.5
	nopinone	9.8	16.1	25.9	40
Organic aerosol (µg m ⁻³)	HOA-1	1.74	0.69	0.38	0.35
	HOA-2	0.57	0.92	0.48	0.25
	CoOA	0.39	6.63	0.42	0.01
	SV-OOA	1.82	0.43	3.46	2.80
	LV-OOA	0.29	0.05	0.14	0.22
	LV-OOA-LRT	0.55	0.26	2.22	1.52
Oxidation state		-1.00	-1.32	0.59	-0.52
Inorganic species (µg m ⁻³)	Nitrate	0.15	0.059	0.28	0.075
	Sulfate	0.42	0.16	1.1	0.68
	Ammonium	0.15	0.051	0.33	0.17
	$\mathrm{BC}_{\mathrm{ff}}$	2.71	0.69	1.06	1.06
	BC_{wb}	1.33	0.49	0.61	0.42
Gases (µg m ⁻³)	O ₃	12.3	42.5	34.8	52
	NO	98	14.5	18.1	14
	NO _x	221	49.0	56.3	47
	СО	0.30	0.20	0.217	0.2
	NO_2	70	26.8	28.6	25
Particle number concentration (# cm ⁻³)	>10 nm	23100	20700	8150	5840
	10–25 nm	12700	6040	3190	1840

Table S3. Average meteorological parameters and particle and gas concentrations during the air quality cases.

Figure S1. Comparison of the mass spectra for the PMF factors calculated with OA and OA + NO^+/NO_2^+ ions. Units are fraction in OA.

Figure S2. Comparison of the mass concentrations for the PMF factors calculated with OA and OA + NO^+/NO_2^+ ions.

Figure S3. Meteorological parameters during the measurement period. Observations were done every 10 minutes.

Figure S4. $PM_{2.5}$, $PM_{2.5-10}$ and particle number (> 10 nm) concentrations during the measurement period. $PM_{2.5}$ and $PM_{2.5-10}$ concentrations are presented as 1-hour averages and the number concentration with 9 minutes time-resolution.

Figure S5. Average diurnal trends of HOA-1, HOA-2, BC_{ff}, BC_{wb} NO, CO₂, NO₂, particle number and particle mass at different days of the week.

Figure S6. The comparison of PM_1 from the SP-AMS and AE33 against PM_1 from the DMPS in terms of the PMF factor contributions. DMPS number size distributions were converted to PM_1 by using the constant density of 1.42 g cm⁻³.

Figure S7. The comparison of PM_1 from the SP-AMS and AE33 against PM_1 from the DMPS for the collection efficiency (CE). DMPS number size distributions were converted to PM_1 by using the constant density of 1.42 g cm⁻³.

Figure S8. Average number (a) and mass (b) size distributions during four air quality cases measured by the DMPS. D_p denotes mobility diameter.

Figure S9. Average diurnal trends for LV-OOA-LRT and OxPRO₃.

Figure S10. Schematic diagram of the sources and processing of VOCs and OA at the street canyon.