Simulating organic aerosol in Delhi with WRF-Chem using the VBS approach: Exploring model uncertainty with a Gaussian Process emulator

Ernesto Reyes-Villegas1,a, Douglas Lowe1,b, Jill S. Johnson2,c, Kenneth S. Carslaw2, Eoghan Darbyshire1,d, Michael Flynn1, James D. Allan1,e, Hugh Coe1, Ying Chen3, Oliver Wild3, Scott Archer-Nicholls4, Alex Archibald4, Siddhartha Singh5, Manish Shrivastava6, Rahul A. Zaveri1, Vikas Singh7, Gufran Beig8, Ranjeet Sokhi9, Gordon McFiggans1

1Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
2Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
3Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
4NCAS-Climate, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
5Ozone Unit, India Meteorology Department, New Delhi, 110003, India
6Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
7National Atmospheric Research Laboratory, Gadanki, AP, India
8National Institute of Advanced Studies, IISc Campus, Bengaluru, India
9Centre for Atmospheric and Climate Physics Research, University of Hertfordshire, Hertfordshire, AL10 9AB, UK
anow at: School of Engineering and Sciences, Tecnologico de Monterrey, Guadalajara, 45201, Mexico
bnow at: IT Services, University of Manchester, Manchester, M13 9PL, UK
cnow at: University of Sheffield, Sheffield, S10 2TN, UK
dnow at: The Conflict and Environment Observatory, Hebden Bridge, HX7 5HZ, UK
eNational Centre for Atmospheric Science, The University of Manchester, Manchester, M13 9PL, UK

Correspondence to: Gordon McFiggans (g.mcfiggans@manchester.ac.uk)

Abstract. The nature and origin of organic aerosol in the atmosphere remain unclear. The gas-particle partitioning of semi-volatile organic compounds (SVOC) that constitute primary organic aerosols (POA) and the multigenerational chemical aging of SVOCs are particularly poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), can be a useful tool to describe POA production and aging. However, the main disadvantage is its complexity, making the evaluation of model uncertainty and the optimal model parameterisation expensive to probe using only WRF-Chem simulations. Gaussian process emulators, trained on simulations from relatively few WRF-Chem simulations, are capable of reproducing model results and estimating the sources of model uncertainty within a defined range of model parameters. In this study, a WRF-Chem VBS parameterisation is proposed; we then generate a perturbed parameter ensemble of 111 model runs, perturbing ten parameters of the WRF-Chem model relating to organic aerosol emissions and the VBS oxidation reactions. This allowed us to cover the model’s uncertainty space and compare output from each run to aerosol mass spectrometer observations of organic aerosol concentrations and O:C ratios measured in New Delhi, India. The simulations spanned the organic aerosol concentrations measured with the aerosol mass spectrometer (AMS). However, they also highlighted potential structural errors in the model that may be related to unsuitable diurnal cycles in the emissions and/or failure to adequately represent the dynamics of the planetary boundary layer. While the structural errors prevented us from clearly identifying an optimised VBS approach in WRF-Chem, we were able to apply the emulator in two periods: the full period (1st -29th May) and the period 14:00- 16:00 hrs local time, 1st-29th May. The combination of emulator analysis and model evaluation metrics allowed us to identify plausible parameter combinations...
for the analysed periods. We demonstrate that the methodology presented in this study can be used to determine the model uncertainty and identify the appropriate parameter combination for the VBS approach, and hence provide valuable information to improve our understanding on SOA production.

1 Introduction

Over the last decades, India has been facing air pollution problems and is ranked fifth in the 2020 world air quality ranking (IQair, 2021) and Delhi ranked as one of the most polluted cities in the world with related health burden of about 10,000 premature deaths annually (Chen et al., 2020a), based on PM$_{2.5}$ measurements (particulate matter lower than 2.5 micrometers in diameter). This situation has a remarkable impact on Indian citizens due to India having a population that is larger than one billion inhabitants. Organic aerosols (OA) are one of the main constituents of submicron particulate matter, accounting for between 20% – 90% of the total aerosol mass concentration globally (Kanakidou et al., 2005; Zhang et al., 2007).

Various studies have been performed in India looking at the particulate matter composition and source identification of OA using receptor modelling tools (Kompalli et al., 2020; Jain et al., 2020; Cash et al., 2021; Reyes-Villegas et al., 2021) along with investigating the health risks associated with aerosols (Shivani et al., 2019; Gadi et al., 2019). However, one limitation of receptor models is that they do not involve chemical processing. The use of regional atmospheric models allows the study of the temporal and spatial behaviour of various chemical species of OA. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is a regional 3-D atmospheric model that simulates the emissions and dispersion of gaseous and particulate species, including the chemical processes and their interaction with meteorology. There have been recent WRF-Chem studies investigating PM$_{2.5}$ concentrations (Bran and Srivastava, 2017; Chen et al., 2020b; Jat et al., 2021) and VOC compounds (Chutia et al., 2019) over India.

Despite the recent studies on aerosol sources and processes involving both observations and modelling, there is still a gap between observations and modelling studies, for example with particulate organic matter being generally underestimated by models (Bergström et al., 2012; Tsagaridis et al., 2014), mainly attributed to the lack of understanding of the emission sources and the POA processes. Hence, we need to understand the capability of organic matter to produce and retain fine particulate mass in order to fully understand their processes and impacts on air quality and climate (Carlton et al., 2010; von Schneidemesser et al., 2015). It is here where the volatility basis set (VBS) scheme can be valuable when implemented in chemical transport models. The VBS scheme describes the chemical ageing of particulate organic matter, its chemical processing and associated volatility (Donahue et al., 2006; Srivastava et al., 2011). It treats POA emissions as semi volatile and distributes particulate organic matter by its volatility. This distribution, based on their saturation concentration (C’), includes low volatility (LVOC), semivolatile (SVOC) and intermediate volatility (IVOC) organic compounds (Tsimpidi et al., 2016). POA constitutes emissions from anthropogenic combustion processes and open biomass burning (Stewart et al., 2021a; Stewart et al., 2021b) and by being considered to be semivolatile, the initial particulate organic matter partially evaporates due to atmospheric dilution followed by the oxidation of evaporated semi-volatile organic vapors. The resulting low volatility oxidized organic vapors can condense to produce oxidized primary organic aerosols (oPOA) (Srivastava et al., 2008). This favours the formation of IVOCs and SVOCs in the gas phase. Previous studies have found that IVOCs and SVOCs can act as a reservoir of organic species that are able to repartition to the particle phase after suffering chemical processing (Robinson et al., 2007; Lane et al., 2008).

Regional (Li et al., 2016; Akherati et al., 2019) and global models (Tsagaridis et al., 2014; Tilmes et al., 2019) have been successfully used to simulate aerosol dispersion and chemical processing to some extent. However, they can be highly uncertain (Bellouin et al., 2016; Johnson et al., 2020), particularly when comparing with on-site observations in a high time resolution. This uncertainty can be due to a wide range of parameter settings, emission sources or missing processes, and is challenging to comprehensively evaluate by only running direct model simulations, due to the computing time and expense needed. Statistical analysis to evaluate model performance over parameter uncertainty can be made tractable through the use
of a statistical emulator (Carslaw et al., 2018). With a trained emulator, it is possible to study thousands or millions of model variants (parameter combinations) and estimate the sources of uncertainty (Lee et al., 2011; Johnson et al., 2018; Wild et al., 2020).

The VBS approach is often tuned to the environment of interest (Bergström et al., 2012; Shrivastava et al., 2013; Tilmes et al., 2019; Shrivastava et al., 2019; Shrivastava et al., 2022) and, as mentioned before, doing this only with WRF-Chem runs is particularly challenging and time consuming. The aim of this study is to determine an effective way of tuning the VBS scheme using observations, and also to learn about the processes controlling OA in Delhi. Hence, we need to explore the combination of different techniques, i.e., observations, WRF-Chem modelling with VBS implementation and statistical emulators, to better understand the partitioning of matter between gaseous and particulate phases, and the chemical aging of POA. In this study, a WRF-Chem parameterisation is proposed to simulate organic mass concentrations and organic to carbon (O:C) ratios over the region of New Delhi, India, that includes detailed VBS and secondary organic aerosol (SOA) formation schemes. The model performance is evaluated over a multi-dimensional parameter uncertainty space that explores parameter uncertainty in these schemes. We generate a perturbed parameter ensemble (PPE) of 111 model runs that cover the model’s uncertainty space and compare output from each run to AMS observations of OA concentrations and O:C ratios measured at New Delhi, India. The PPE is then used to construct statistical emulators and sample densely over the uncertainty for a more detailed comparison over a specific time-period of the observations. The evaluation over specific time-periods will allow to study the behaviour of the model setup under different conditions, i.e., high vs low mass concentrations, and analyse the impact the different parameter setups have on the organic mass concentrations.

2 Methodology

2.1 WRF-Chem parameterisation and setup

The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to simulate the emission, transport, mixing, and chemical transformation of trace gases and aerosols concurrently with meteorology data (Grell et al., 2005; Fast et al., 2006). Here, WRF-Chem version 3.8.1 is run with a 15 km domain, 55 x 55 grid cells, (Figure 1) and a simulation period from 19th April - 29th May 2018, with substantial modification, details in below. This period was selected in order to compare with aerosol measurements performed at New Delhi (Reyes-Villegas et al., 2021). Table 1 lists the components that contribute to our model set-up, including the chemistry and aerosol schemes, emissions inventories and boundary condition specifications. Gas-phase chemistry is simulated with the Common Representative Intermediates (CRI) mechanism which permits a reasonably detailed representation of volatile organic compound oxidation. The aerosol chemistry is simulated using the sectional MOSAIC module (Zaveri et al., 2008), including N2O5 heterogeneous chemical reactions (Archer-Nicholls et al., 2014; Bertram and Thornton, 2009) and is coupled to the aqueous phase, which allows aerosols to act as cloud condensation nuclei, as well as the removal of aerosols through wet deposition processes. The aerosol size distribution in MOSAIC is described by eight size bins spanning a dry particle diameter range of 39nm to 10μm (Zaveri et al., 2008).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Set up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas phase mechanism</td>
<td>CRI-v2R5 (Watson et al., 2008; Archer-Nicholls et al., 2014)</td>
</tr>
<tr>
<td>Aerosol module</td>
<td>MOSAIC (Zaveri et al., 2008; Fast et al., 2006)</td>
</tr>
<tr>
<td>Anthropogenic emissions</td>
<td>with VBS (Shrivastava et al., 2011)</td>
</tr>
<tr>
<td>Fire emissions</td>
<td>with SOA (Tsimpidi et al., 2010)</td>
</tr>
<tr>
<td>Biogenic emissions</td>
<td>EDGAR-HTAP and SAFAR-India (CRI-v2R5 speciation)</td>
</tr>
<tr>
<td>Chemical Boundaries</td>
<td>FINN 1.5 (Wiedinmyer et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>MEGAN (Guenther et al., 2006)</td>
</tr>
<tr>
<td></td>
<td>CESM2/WACCM (Danabasoglu et al., 2020)</td>
</tr>
</tbody>
</table>
Our main modifications are focused on the treatment of the OA components. POA is treated as semi-volatile, using the VBS treatment of Shrivastava et al. (2011). Their 9 volatility bin VBS scheme has been adapted for use in the 8 size bin version of MOSAIC. Secondary organic aerosol (SOA) has been included based on the scheme described in Tsimpidi et al. (2010), providing ‘anthropogenic’ (ARO1 and ARO2) and ‘biogenic’ (Isoprene and monoterpenes) SOA components, each covering 4 volatility bins. ARO1 represents the aromatics with OH reaction rates less than 2x10^4 ppm⁻¹ min⁻¹, and ARO2 the aromatics with OH reaction rates greater than 2x10^4 ppm⁻¹ min⁻¹. Co-condensation of water has been added for these semi-volatile organics, and they have been coupled to the aqueous phase in the same manner as other aerosol compounds in MOSAIC. Previous studies have demonstrated that the condensation of semivolatile organic material onto aerosol particles substantially increases the soluble mass of particles, their chemical composition and eventually their effective dry size (Topping et al., 2013; Crooks et al., 2018).

Previous studies using the VBS have used scaling factors from POA to derive SVOC emissions in each volatility bin based on equilibrium partitioning calculations, as well as volatility distributions based on laboratory studies and assumed oxygenation and chemical reaction rates (Shrivastava et al., 2011; Fountoukis et al., 2014). To investigate the impact of these assumptions on the model predictions, we have modified the model code so that the VBS emissions, the oxygenation rates and VBS reaction rates, can be directly controlled via namelist options. The parameters which are perturbed in this way for this study are described in more detail in Section 2.3.

The volatility distribution for biomass burning emissions is taken from May et al. (2013), and multiplied by a scaling factor of 3 (based on equilibrium partitioning calculations) to ensure reasonably similar condensed mass at emission as that reported in the FINN 1.5 emission dataset. Similar calculations have been made in previous studies, giving roughly the same scaling factor (Shrivastava et al., 2011; Fountoukis et al., 2014; Ciarelli et al., 2017). The volatility distribution for anthropogenic emissions is also multiplied by a scaling factor of 3 for the same reasons as above. More information about the VBS distributions and parameter space setup is in section S1 in the supplementary material.

Anthropogenic emissions are derived from the EDGAR-HTAP, SAFAR-India (CRI-v2R5 speciation) and NMVOC global emission datasets, with NMVOC emissions speciated for the CRI-v2R5 chemical scheme, and applying diurnal activity cycles to the emissions based on emission sectors in Europe (Olivier et al., 2003). We used these diurnal activity cycles (Figure S1 in supplement) as there were no data available for activity behavior in Delhi. Biogenic emissions are calculated online using the MEGAN model (Guenther et al., 2006). Biomass burning emissions are taken from the FINNv1.5 global inventory (Wiedinmyer et al., 2011).

Figure 1. WRF-Chem model domain with PM₁₀ concentrations. White marker highlights the location of IMD New Delhi, where the AMS observations were taken.
2.2 Observations

Aerosol observations were made at the Indian Meteorology Department (IMD) at Lodhi road in New Delhi, India (Lat 28.588, Lon 77.217) from 26th April to 30th May 2018 as part of the PROMOTE campaign (Reyes-Villegas et al., 2021). A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS, Aerodyne Research Inc.), hereafter referred to as AMS, was used to measure mass spectra of non-refractory particulate matter with an aerodynamic diameter equal or lower than 1 μm (PM₁), including organic aerosols (OA), sulphate (SO₄²⁻), nitrate (NO₃⁻), ammonium (NH₄⁺) and chloride (Cl⁻), in a 5-minute time resolution. The AMS operation principle has been previously described by DeCarlo et al. (2006). The AMS was calibrated during the campaign for the ionisation efficiency of nitrate (IE) and the relative ionisation efficiency (RIE) of other inorganic compounds using nebulised ammonium nitrate and ammonium sulphate with a diameter of 300 nm. The data were analysed using the IGOR Pro (WaveMetrics, Inc., Portland, OR, USA) based software SQUIRREL (Sequential Igor data Retrieval) v.1.63I and PIKA (Peak Integration by Key Analysis) v.1.23I. The organic to carbon (O:C) ratios were calculated with PIKA using the improved-Ambient elemental analysis method for AMS spectra measured in air (Canagaratna et al., 2015). The AMS data, OA mass concentrations and O:C ratios, are used to compare with the WRF-Chem model outputs: total organic matter mass concentration (Total_OM) and organic to carbon ratios (OC_ratio).

There were no Planetary boundary layer height (PBLH) measurements available at IMD Lodhi road, hence, PBLH data were sourced from ECMWF ERA5 with 0.25 deg. results in 1-hour resolution for the coordinates closest to the IMD site. Meteorology data was downloaded from https://ncdc.noaa.gov/ (last access: 05/01/2019) for the Indira Gandhi International Airport, India meteorology station.

The meteorology data were used to interpret the diurnal behaviour of the chemical species and to compare with meteorology outputs from WRF-Chem. A dataset of meteorology was not available at IMD. The use of meteorology from airports has been previously used and is considered to be representative of regional meteorology without being affected by surrounding buildings (Reyes-Villegas et al., 2016).

2.3 Perturbed Parameter Ensemble

To evaluate the sensitivity to variations in the VBS emission and processing parameters of our WRF-Chem model of the simulated OA over the New Delhi region, we generated a perturbed parameter ensemble (PPE). We choose a set of simulations with optimal space-filling properties that provide effective coverage across the multi-dimensional space of the uncertain model parameters. Here, we perturb ten parameters of the WRF-Chem model that relate to OA emissions and the aging of these VBS compounds. The parameters correspond to five processes in the model, which are perturbed with respect to both anthropogenic emissions and biomass burning emissions. These process parameters are:

1. **VBS ageing rate**: The reaction rates of VBS compounds with OH - each reaction reduces the volatility of the compound by a factor of 10 (1 decade in saturation concentration, Ci*, position), and adds 7.5% oxygen. Ci* is the condensed mass loading at which half of the organic material in that volatility bin will be in the condensed phase, and half will be in gas phase (Donahue et al., 2006).

2. **SVOC volatility distribution**: This parameter is expressed in terms of an “equivalent age”, determined using a simple ageing model. At time = 0 all VBS molecules will be highly volatile, with a Ci* = 4. These compounds are processed at a fixed reaction rate (at each step 0.1% of the gaseous mass in a volatility bin is moved to the next volatility bin), with simple equilibrium partitioning of the VBS components between the gas and condensed phases (to roughly simulate the manner in which VBS compounds are partitioned and aged within the WRF-Chem scheme). This processing reduces the overall volatility of the VBS compounds, first providing a spread of mass across the volatility range, before accumulating the mass in the lowest volatility bins until 90% of the VBS mass is in the Ci* = 2 volatility bin (“time” = 1). This parameter is a scalar variable (between 0-1), that indicates the dimensionless position between these two points, and has an associated volatility distribution. After examining the range of volatility distributions
given by this simple ageing model, we have chosen to use distributions within the range of 0.05 to 0.4. Using values above 0.05 ensures there will always be some lower volatility compounds to condense. Above 0.4 almost everything is condensed, so we have excluded values above this so that our PPE does not become too heavily weighted towards these scenarios. Example volatility distributions across the chosen range are shown in supplementary figure S2.

3. **SVOC oxidation rate**: This parameter represents the degree of oxidation that occurs with (or is induced by) each reaction with an OH molecule. Previous studies have used values between 0.075 (7.5%) extra oxygen (or one oxygen atom) (Robinson et al., 2007) and 0.40 (40%) extra oxygen (or five extra oxygen atoms per reaction) (Grieshop et al., 2009). Grieshop et al. (2009) stated that with 7.5%, there is not enough addition of oxygen to the organic mass, while with the 40% there is a noticeable improvement to the OA oxygen content with little effect on the predicted organic mass production. In our study, the lowest level is 0.075 extra oxygen (or one oxygen atom) and the uppermost level is 0.45 (or six extra oxygen atoms per reaction).

4. **IVOC scaling**: IVOC compounds bridge the gap from SVOC to VOC (log10(C*) 4-6). Including the IVOC independently to parameter (2) (based on our simple ageing model) enables us to still include these within the volatility distribution (this does restrict the impact of parameter (2) to influencing the shape of the volatility distribution for the lower C* values only. These IVOC emissions are calculated using a fixed volatility distribution which scales from the non-volatile OA mass in the emissions inventory. The fractional emitted masses are: 0.2 for Ci* = 4; 0.5 for Ci* = 5; and 0.8 for Ci* = 6 (as shown in supplementary Figure S2). These fractions are then adjusted by this scaling factor, in the range 0-3.

5. **SVOC scaling**: This parameter is the scaling factor of the SVOC emissions, (which have been given a volatility distribution by parameter 2). Traditionally such scaling has been used: to ensure that the condensed mass of the emitted SVOC is the same as the non-volatile OA mass in the emissions inventory; however, this scaling could also be used to off-set errors in the emission inventory estimates of OA emissions. The scaling needed to ensure that the emitted condensed mass is the same will never be less than 1, but could go to x20 (or more) for the “younger” SVOC volatility ranges (as estimated using the equilibrium partitioning tool for parameter 2). However, in order to accommodate potential over-estimates of the emission inventories, and to avoid too much OA being generated after aging of any highly-volatile emissions, we chose an SVOC scaling range 0.5 to 4.

Table 2 shows the uncertainty ranges applied to each of the parameters, that we explore with the PPE, and Table S1 in the supplementary information shows an example of a ‘namelist.input’ file with the parameters to control the VBS scheme, that was used to create the model simulation. A total of 111 model simulations make up the ensemble. Following the statistical methodology outlined in Lee et al. (2011), the combinations of input parameters used for the simulations in the PPE were selected using an optimal Latin hypercube statistical design algorithm (Stocki, 2005), providing a good coverage of the multi-dimensional parameter space. The selection of combinations was performed in three subsets, for use in building statistical emulators to densely sample key outputs from the model over its uncertainties. First, a single design of 61 runs was generated for training the emulators (subset 1), and then a second set of 20 runs was made that ‘augmented’ into the larger gaps of the first design, for use in validating the emulators (subset 2). On an initial comparison to observations, the observations were found to be outside the range of the PPE’s output, and following an investigation into this, the lower bound of the anthropogenic SVOC scaling parameter (parameter 5) was extended from 0.5x down to 0.1x. Hence, an extra, third, set of 30 runs were designed and simulated to cover the extended parameter space (subset 3), leading to a total of 111 runs in the final PPE. Table S2 in supplementary information provides a list of the model runs that make up the PPE.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Parameter name</th>
<th>min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anthropogenic VBS ageing rate</td>
<td>1.00E-13</td>
<td>1.00E-11</td>
</tr>
<tr>
<td>2</td>
<td>Anthropogenic SVOC volatility distribution</td>
<td>0.05</td>
<td>0.4</td>
</tr>
</tbody>
</table>
3 Added oxygen per generation of ageing 0.075 0.45
4 Anthropogenic IVOC scaling 0 3
5 Anthropogenic SVOC scaling * 0.1 4
6 Biomass Burning VBS ageing rate 1.00E-13 1.00E-11
7 Biomass Burning SVOC volatility distribution 0.05 0.4
8 Added oxygen per generation of ageing 0.075 0.45
9 Biomass Burning IVOC scaling 0 3
10 Biomass Burning SVOC scaling 0.5 4

* 81 runs were performed with an anthropogenic SVOC scaling min = 0.5 and max = 4 and 30 runs were performed with an anthropogenic SVOC scaling min = 0.1 and max = 0.5. This due to a min = 0.5 and max = 4 giving high Org mass concentrations, when compared with AMS.

2.4 Emulation

For each PPE member, a time series of the OC_ratio and Total_OM from the WRF-Chem model run was extracted at the closest coordinates to the IMD site (Lat 28.628, Lon 77.209) in the model output. Gaussian process emulators (O’Hagan, 2006; Lee et al, 2011) were built using the PPE. Similarly to the approach described in Johnson et al. (2018), initial emulators were constructed using only training simulations (subsets 1 and 3) and these were validated using the validation runs (subset 2). Once validated, a further new emulator was then constructed using both the training and validation simulations of the PPE together as training data, to obtain a final emulator based on all of the information that the PPE contains. An additional verification of the quality of each final emulator was obtained via a ‘leave-one-out’ validation procedure (where each simulation in turn is removed from the full set of 111 runs and a new emulator is built and used to predict that removed simulation).

Monte Carlo sampling of the emulators enabled dense samples of model output to be generated over the 10-dimensional parameter uncertainty of the model. We produced output samples for a set of 0.5 million input parameter combinations across the uncertainty space, hereafter called ’model variants’, to explore the model’s uncertainty.

2.5 Model evaluation

Alongside the emulation, outputs from the 111 model runs (OC_ratio and Total_OM) were additionally evaluated, against the AMS observations (O:C and OA), using various model evaluation tools, including the fraction of predictions within a factor of two (FAC2), mean bias (MB) and the index of agreement (IOA). Section S2 of the supplementary information provides a detailed explanation of the calculations for each evaluation metric and information on how to interpret the values.

3 Results and discussion

3.1 Model outputs and observational analysis

The model outputs of the central WRF-Chem run, from the original parameter space (Subsets 1 and 2), are used to compare with observations in order to analyse the model performance. As mentioned in the methods section, the VBS setup will affect OA concentrations and PM, with no implications to inorganic aerosols or gaseous species. Figure 2 shows the comparison for the full dataset (1st – 29th May 2018) between model outputs and observations performed at IMD Lodhi road, where we see higher PM2.5 and NOx concentrations in the model simulation. The high NOx concentrations in the model seem to be related to high NO2 concentrations as the NO concentrations are in line with the range of the observations of NO. Looking at the meteorological parameters, we can see similar temperatures and wind speeds between the model and observations, with lower RH and higher PBLH in the model.
Figure 2. Comparison of observations (At Lodhi Road for air quality and IGI Airport for meteorology parameters) and model outputs of various parameters. May 2018. Bars highlight medians, quartiles and 95%, triangles highlight the mean.

3.2 Model runs and AMS observations

Here, we analyse and compare the mean values of Total_OM and OC_ratio for the full period, 1st – 29th May 2018, of the 111 WRF-Chem model runs (Table S2 in supplement) with the AMS observations (OA and O:C). The top panel in figure 3 shows a bar plot of the mean OC_ratio for the model runs coloured by the mean total_OM concentrations. The bottom panel shows the mean total_OM concentrations for the model runs coloured by the mean OC_ratio. The model runs are sorted from low to high values of the y-variable. The continuous and dashed red lines show the mean ± one standard deviation (SD) of the O:C ratio (top) and OA (bottom) measured with the AMS. In general, compared to mean values measured with the AMS, a large number of WRF-Chem runs had a low O:C_ratio and high mean Total_OM concentrations. The bottom panel shows the mean total_OM concentrations of 47 runs lay within one SD of the mean OA concentration of 21.77 µg.m⁻³ measured with the AMS. Moreover, the model runs with mean Total_OM concentrations near the mean OA concentrations have OC_ratio mean values near the O:C mean AMS value (0.5), with a cyan colour. This analysis shows a number of model runs with mean Total_OM and OC_ratio values near the mean values measured with an AMS.
Figure 3. Analysis of the 111 model runs for the full period. Mean OC_ratio coloured by mean Total_OM (top plot) and mean Total_OM coloured by mean OC_ratio (bottom plot). The red lines highlight the mean ± SD of AMS observations (O:C top and OA bottom). The mean AMS values are O:C = 0.5 and OA = 21.77 µg.m⁻³.

3.3 Diurnal analysis to WRF-Chem runs

The high time resolution data collected with the AMS provides the opportunity of analysing the WRF-Chem outputs in more detail, for example by looking at the diurnal cycles. Figure 4 shows the diurnal cycles of chosen WRF-Chem runs with Total_OM concentrations and OC_ratio close to the AMS observations. In the model runs, we were able to span high and low Total_OM and OC_ratio. However, in the case of OC_ratio, we were not able to span the range of the O:C from AMS observations with mean values of 0.3 at night and 0.7 during the day. Looking at the Total_OM concentrations, we identified two potential structural errors in the WRF-Chem outputs, the early morning peak and the late evening low concentrations. This could be due to application of unsuitable diurnal activity cycles to the emissions or WRF-Chem not being able to capture completely the dynamics of the planetary boundary layer. With no activity data available for Delhi, we used diurnal cycles of activities based on emission sectors in Europe (Olivier et al., 2003) (Figure S1 in supplement). For the diurnal cycles of meteorology (Figure S4), we can see that the model agrees with the PBLH-ERA5 in the early morning and until 14:00 h, time when PBLH-ERA5 starts dropping and PBLH-Model remains high, perhaps preventing concentrations to accumulate. This makes building and testing the emulator challenging as we may get the correct concentrations for the wrong reasons. The emulator can be built over a specific time-period and be compared with the observations. Hence, the emulator was built over two periods of interest; the full period (1st-29th May) and a period where no potential structural errors were identified from 14:00-16:00 hrs for 1st-29th May (2-4 pm period). Emulator analysis involving the filtering of model results to avoid structural errors has been successfully performed previously in constraining a climate model (Johnson et al., 2020). Looking at the mean OC_ratio and Total_OM of the model runs for the 2-4 pm period (Figure S6), 34 runs lay within one SD of the OA mean concentration (12.20 µg.m⁻³) measured with the AMS, compared with the 47 runs identified from figure 3. This means that even by analysing the 2-4 pm period we still have model runs that cover the AMS observations.
3.4 Model evaluation

There are various tools that can be used to compare the model outputs with the observations. In this study, we use a number of statistical metrics (see Section S3 in the supplementary information for a detailed description of each metric we consider) to evaluate the ensemble of 111 model runs for the 2-4 pm period and the full period. The fraction of predictions within a factor of two (FAC2) represents the fraction of data where predictions are within a factor of two of observations. The Mean Bias (MB) gives an indication of the mean over- or under-estimation of predictions. The Index of Agreement (IOA) is a commonly used metric in model evaluation (Willmott et al., 2012), ranging between -1 and +1, with values close to +1 representing a better model performance. Table S3 shows the results of the model evaluation for the 2-4 pm period and table S4 the results for the full period. When comparing the performance of the two periods; the model runs of the 2-4 pm period have a better performance with 103 runs for O:C and 29 runs for OA with FAC2 > 0.6 compared to 94 runs for O:C and 4 runs for OA with FAC2 > 0.6 for the full period. The negative MB in O:C suggests the models are underestimating the O:C ratios (between -0.01 to -0.15) measured with the AMS. However, the FAC2 values of 0.96 and higher indicate that the models are doing a good job overall at simulating the O:C ratios. This is not the same for OA concentrations, where the models show an over-estimate of the concentration compared to observations, and where only 0.56 -0.62 of predictions were within a factor of two of the OA observations.

The IOA provides similar results with a better model performance in the 2-4 pm period, with 10 model runs for the 2-4 pm period and only two runs for the full period with IOA values equal or higher than 0.45. It is interesting to see that while FAC2 was higher, for OA and O:C, in the 2-4 period runs compared to the full period, IOA values in 2-4 period were high with OA but low with O:C, which reached IOA values of 0.53 in the 2-4 period and 0.56 in the full period. Previous studies performing modelling evaluation determined similar IOA values using various models (Ciarelli et al., 2017; Fanourgakis et al., 2019). For instance, Chen et al. (2021), modelling SOA formation, obtained IOA between 0.39 – 0.49. Huang et al. (2021) published recommendations on model evaluation and identified IOA of around 0.5 for organic carbon. Lee et al. (2020) performed a sensitivity analysis to two different SOA modules and obtained IOA values of 0.46 – 0.52.

The model evaluation metrics, along with the parameter setup for each ensemble member, allow us to analyse the model setup that gives a better performance. Figure 5 shows the relative variation (%) of the five anthropogenic parameters of the PPE (1 – 5) for the 2-4 pm period (Figure S7 in supplementary material shows the analysis for the full period). Each pentagon represents the 5-D parameter space and the positions of the dots connected with lines show the position of each parameter.
within its range for that specific ensemble member. The filled area within the dots represents the explored parameter space in each ensemble member. We are analysing the five anthropogenic PPE only since the five parameters related to biomass burning represented a low contribution to the Total_OM concentrations. We are looking for blue, light blue or green colours in the lines and dots (high FAC2 values from the O:C analysis) and blue, light blue or green colours in the filled area (high FAC2 values from the OA analysis) to identify the model runs with a good evaluation. In figure 5, we can see that the best runs according to the O:C and OA model evaluation are TRAIN127 and TRAIN121 with other TRAIN runs also with good performance such as (126, 036, 117, 104, 115, 119 and 058). In general, these model runs have low SVOC volatility distribution and SVOC scaling. TRAIN127 and TRAIN121 have low VBS ageing rate, SVOC volatility distribution and SVOC scaling and with either high SVOC Oxidation rate or high IVOC scaling.
Figure 5. Relative variation (%) of the 5 anthropogenic PPE (1 – 5) for the 2-4 pm period. Each pentagon represents the 5-D parameter space and the positions of the dots connected with lines show the position of each parameter within its range for that specific ensemble member. The filled area within the dots represents the explored parameter space in each ensemble member. Anticlockwise from top there are the five anthropogenic parameters: VBS ageing rate (1), SVOC volatility distribution (2), SVOC Oxidation rate (3), IVOC scaling (4) and SVOC scaling (5). The values of the 5 parameters have been normalised dividing by their respective maximum values, hence their values in this plot range from 0 – 1. Example of interpretation in bottom right: the five parameters are towards their high values = 1.0. The colour in the lines and dots represents the FAC2 values from the O:C analysis and the fill colour represents the FAC2 values from the OA analysis. Red = 0 – 0.2, orange = 0.2 – 0.4, yellow = 0.4 – 0.6, green = 0.6 – 0.8, light blue/cyan = 0.8 -0.9 and blue = 0.9 -1.0.
3.5 Emulator analysis

3.5.1 Emulator building and testing

Once we confirm that the ensemble of 111 model runs span the AMS observations we can use it to build the emulator. The emulators are tested using the leave-one-out validation approach (Johnson et al., 2018). In this analysis, each ensemble run is first excluded from the emulator build, and then the emulator is used to predict the output at the parameter setting of the excluded run. Figure 6 shows plots of the emulator predictions (with 95% credible intervals from the emulator model) vs the model outputs of the 111 runs from the leave-one-out validation for OA. Predictions from a perfect emulator would follow exactly along the 1:1 line on the plots.

We built and tested the emulator for the full period (1st – 29th May) to have an overview of the emulator performance. The emulator can be built over a specific time-period to compare with the observations. This allows to study the model performance under different conditions, i.e., high/low aerosol concentrations, day/night, etc. We selected four period time-slots to build and test the emulator under high and low Total_OM concentrations and two time-slots. These four emulators showed a good validation analysis (Refer to section S5.1.1 in the supplementary material). However, due to the potential structural errors identified from the diurnal analysis (Section 3.3), we will focus on the selected period without structural errors, 2-4 pm period. Figures S11 and S12 in supplementary material show the spread of Total_OM and OC_ratio respectively, for the ensemble of 111 model runs vs the 10 parameters.

We see in Figure 6 that overall, the emulators built for the two periods; full period (6.a and 6.b) and 2-4 pm period (6.c and 6.d) show a good performance; For the 2-4 pm period, Total_OM with only nine runs that are not within the 95% CI from prediction (red markers) and OC_ratio with ten runs that are not within the 95% CI from prediction. With the new 30 runs (error bars in blue) we managed to reduce the Total_OM concentrations with good prediction on the emulator. However, there is a compromise in the OC_ratio with eight runs with high OC_ratio values that at not within the 95% of the prediction interval of the emulator.
Figure 6. Validation of the full (a and b) and 2-4 pm (c and d) periods for O:C ratio and Total OM. Circles are the original 81 runs. Squares with error bars in blue are the new 30 runs with low settings of the anthropogenic SVOC scaling parameter (which has led to low aerosol mass). Runs where the actual model output lies outside the 95% prediction interval of the emulator are shown in red.

3.5.2 Emulator sensitivity analysis

We use a variance-based sensitivity analysis (Lee et al., 2011; Johnson et al., 2018) to decompose the overall variance in the model output for key variables of interest into percentage fractions for the 10 parameters. This analysis was performed to the full period and the 2-4 pm period (Figure 7). Looking at the parameters for the two periods, the anthropogenic SVOC scaling has the highest contribution to the variance, which suggests that constraining this parameter would lead to a reduction in the uncertainty in these outputs from the model. Anthropogenic SVOC volatility distribution has some impact on O:C ratios with a fraction of variance of around 15%.

Figure 7. Sensitivity evaluation of the 10 chosen parameters for the 2-4 pm period (a) and the full period (b).

3.5.3 Impact of constraint on uncertainty

The emulator was used to predict model outputs for a sample of size 0.5 million, for the full period and the 2-4 pm period. Figure 8 shows the probability distribution of OC_ratio and Total_OM predicted over the full parameter uncertainty. The AMS mean ± 1SD are shown in red. We can see the higher density (lower values) of the Total_OM show a good agreement with the AMS-OA concentrations. However, in the case of O:C, the higher density lies on the low O:C ratios compared to the O:C-AMS observations which lie in the upper tail of the predicted distribution. The OC_ratio varies within the two periods, with a wider density range for the full period, 0.25-0.55, which represents the variability of the OC_ratio over the full day. In the case of the 2-4 pm period, we can see more narrow density, 0.3-0.5, which, while lower than the mean O:C ratio measured
with the AMS (0.65), may be representative of the O:C ratios estimated with the WRF-Chem runs. This suggests that when analysing diurnal behaviour of WRF-Chem outputs without structural errors, we would be able to analyse more into detail the WRF-Chem performance over different hours of the day.

Figure 8. 0.5 million emulator sample, before constraint, covering the full parameter uncertainty space of the model for the full period (a and b) and for the 2-4 pm period (c and d). Red highlights the AMS mean +/- SD observations.

3.5.4 Constraint effect.

The AMS observations, OA concentrations and O:C ratios, are used to constrain the emulation, applying an observation uncertainty as mean ± SD. With mean as the emulator prediction and 1 SD uncertainty, we apply the constraint when accounting for emulator prediction uncertainty, by retaining the variant if the range mean ± SD overlaps with the observation uncertainty range.

Figure 9 is a 2-d histogram for joint constraint (Total_OM and OC_ratio) for the 2-4pm period, with colour showing frequency of variants in a pixel of an underlying grid arranged as a pairwise (shown by the label box on each axis (above/to right)). Each 2-d pairwise space has been split into a 25×25 uniform grid to calculate the frequencies. Where the plots show yellow to red, more variants are retained than in the green / blue areas, highlighting the most likely (higher probability) area of space. This analysis shows that when constraining both Total_OM and O:C ratios, the emulator retains 52310 variants from 0.5 million, which is approximately a 10.46% of the original variants generated. Figure S13 shows the histogram for the full period.

White areas indicate no variants at all retained in that pixel, so that 2-d space is ruled out with respect to all 10 dimensions (probability=0). Where the colour is uniform, e.g., biomass burning parameter plots in figure 9, the parameter is essentially un-constrained, and all parts of parameter space with respect to those 2 parameters are equally likely/covered by variants (as it was before the constraint was applied). These plots show where in parameter space is most likely given the comparison to observation. These are the variants that we cannot rule out (are plausible) given the uncertainty – it does not mean they are all
‘good’. It is worth mentioning that with this analysis we do not locate the exact ‘best’ run, we provide a range of potential combinations to test the WRF-Chem set-up.

These results agree with the analysis in the model evaluation (Section 3.4). Figure 9 shows, in red colour, the higher probability that with low SVOC volatility distribution and low SVOC scaling would give a good model performance. However, there is no clear pattern with the other parameters.

Figure 9. 2-d histogram for joint constraint effect (Total_OM and OC_ratio) accounting for emulator uncertainty. Retain 52310 variants from 0.5 million emulations (~10.46%).

3.5.5 Marginal parameter constraints.

These plots show the marginal constraint (1-d projection) on the parameters over their ranges. The unconstrained sample (black) has even coverage (is sampled uniformly) across all parameter ranges and the parameter space. The unconstrained sample covers the full 10-d space.
Where the probability density function (pdf) of the constrained sample is above the black unconstrained pdf, this means the likelihood of the parameter taking a value at that point of its range is increased on constraint (more probability). Where it is below, it is now less likely on constraint (less probability). The more ‘squashed’ the unconstrained distribution is – the more the likelihood of the parameter taking values in the range with higher density is. This analysis is a useful tool to identify the more likely values of the 10 parameters over all the parameter space. Here, we can see that low SVOC volatility distribution and low SVOC are clear parameter values that we can use to improve the WRF-Chem model setup. Other parameters that we can start testing on WRF-Chem are; high BB VBS ageing rate (6) and BB IVOC scaling (9). It is worth highlighting the similarity of the effects on the anthropogenic and biomass burning parameters.

Figure 10. Marginal Parameter Constraints: joint constraint effect (Total_OM and OC_ratio).
3.6 Analysis of model evaluation and emulator runs.

Table 4 shows the WRF-Chem runs with both mean Org and mean O:C values close to AMS observations for the two periods and also selected runs from the 2-d histograms (Figure 9). Here we can see a couple of interesting findings. First, the O:C ratios presented a better performance with the model evaluation metrics; FAC2 values higher than 0.9 compared with FAC2 values up to 0.73 for the Total OM. Looking at the Total OM, there are higher FAC2 values in the 2-4 pm period, which might be related to the structural errors impacting the model performance in the full period. The MB provides an estimation of the over prediction of the Total OM. In this study, WRF-Chem runs were in general overpredicting the Total OM concentrations. Hence, MB is an important metric. In both periods, there are runs where the overprediction was 5 μg.m$^{-3}$ or lower, i.e., TRAIN110, TRAIN1121, TRAIN117, etc. This highlights the use of all the analysis presented in this study where we are able to identify probable values for the VBS model parameters and be able to model Total OM and O:C ratios.

Table 3. Analysis of model evaluation metrics and comparison with observations for the full and 2-4 pm periods. The FAC2 ranking is based on high FAC2 values of the Total OM analysis. Mean AMS values for the full period: OA = 21.77 μg.m$^{-3}$ and O:C = 0.5. Mean AMS values for 2-4 pm period: OA = 12.20 μg.m$^{-3}$ and O:C = 0.67.

<table>
<thead>
<tr>
<th>Model</th>
<th>FAC2 ranking</th>
<th>FAC2</th>
<th>MB</th>
<th>OIA</th>
<th>Mean Total OM</th>
<th>SD Total OM</th>
<th>FAC2 ranking</th>
<th>FAC2</th>
<th>MB</th>
<th>Mean O:C ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAIN10</td>
<td>1</td>
<td>0.62</td>
<td>2.23</td>
<td>0.45</td>
<td>23.75</td>
<td>16.58</td>
<td>27</td>
<td>0.94</td>
<td>-0.04</td>
<td>0.48</td>
</tr>
<tr>
<td>TRAIN126</td>
<td>2</td>
<td>0.61</td>
<td>5.13</td>
<td>0.38</td>
<td>26.42</td>
<td>19.83</td>
<td>20</td>
<td>0.95</td>
<td>-0.04</td>
<td>0.51</td>
</tr>
<tr>
<td>TRAIN19</td>
<td>5</td>
<td>0.60</td>
<td>9.54</td>
<td>0.31</td>
<td>30.83</td>
<td>22.05</td>
<td>7</td>
<td>0.97</td>
<td>-0.04</td>
<td>0.54</td>
</tr>
<tr>
<td>TRAIN117</td>
<td>6</td>
<td>0.59</td>
<td>3.18</td>
<td>0.41</td>
<td>24.56</td>
<td>16.93</td>
<td>10</td>
<td>0.97</td>
<td>-0.01</td>
<td>0.53</td>
</tr>
<tr>
<td>TRAIN009</td>
<td>8</td>
<td>0.59</td>
<td>10.54</td>
<td>0.30</td>
<td>68.50</td>
<td>36.13</td>
<td>15</td>
<td>0.96</td>
<td>-0.08</td>
<td>0.51</td>
</tr>
<tr>
<td>VALID002</td>
<td>12</td>
<td>0.58</td>
<td>13.27</td>
<td>0.24</td>
<td>34.49</td>
<td>24.15</td>
<td>2</td>
<td>0.98</td>
<td>-0.08</td>
<td>0.52</td>
</tr>
<tr>
<td>TRAIN003</td>
<td>13</td>
<td>0.57</td>
<td>12.65</td>
<td>0.24</td>
<td>33.73</td>
<td>23.56</td>
<td>6</td>
<td>0.97</td>
<td>0.00</td>
<td>0.55</td>
</tr>
<tr>
<td>TRAIN127</td>
<td>16</td>
<td>0.56</td>
<td>4.78</td>
<td>0.37</td>
<td>26.12</td>
<td>20.02</td>
<td>5</td>
<td>0.97</td>
<td>-0.02</td>
<td>0.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>FAC2 ranking</th>
<th>FAC2</th>
<th>MB</th>
<th>OIA</th>
<th>Mean Total OM</th>
<th>SD Total OM</th>
<th>FAC2 ranking</th>
<th>FAC2</th>
<th>MB</th>
<th>Mean O:C ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAIN127</td>
<td>1</td>
<td>0.73</td>
<td>4.37</td>
<td>0.44</td>
<td>15.64</td>
<td>10.72</td>
<td>3</td>
<td>0.99</td>
<td>0.02</td>
<td>0.51</td>
</tr>
<tr>
<td>TRAIN121</td>
<td>3</td>
<td>0.72</td>
<td>2.03</td>
<td>0.48</td>
<td>14.88</td>
<td>11.67</td>
<td>7</td>
<td>0.98</td>
<td>0.00</td>
<td>0.52</td>
</tr>
<tr>
<td>TRAIN126</td>
<td>4</td>
<td>0.72</td>
<td>4.35</td>
<td>0.43</td>
<td>15.77</td>
<td>9.35</td>
<td>12</td>
<td>0.98</td>
<td>0.01</td>
<td>0.50</td>
</tr>
<tr>
<td>VALID002</td>
<td>12</td>
<td>0.58</td>
<td>13.27</td>
<td>0.24</td>
<td>34.49</td>
<td>24.15</td>
<td>2</td>
<td>0.98</td>
<td>-0.08</td>
<td>0.52</td>
</tr>
<tr>
<td>TRAIN117</td>
<td>5</td>
<td>0.69</td>
<td>5.13</td>
<td>0.40</td>
<td>17.23</td>
<td>12.85</td>
<td>1</td>
<td>1.00</td>
<td>0.03</td>
<td>0.51</td>
</tr>
<tr>
<td>TRAIN036</td>
<td>11</td>
<td>0.68</td>
<td>1.27</td>
<td>0.47</td>
<td>16.66</td>
<td>14.80</td>
<td>5</td>
<td>0.99</td>
<td>0.04</td>
<td>0.48</td>
</tr>
<tr>
<td>TRAIN104</td>
<td>16</td>
<td>0.68</td>
<td>5.50</td>
<td>0.47</td>
<td>16.41</td>
<td>11.18</td>
<td>14</td>
<td>0.98</td>
<td>0.03</td>
<td>0.47</td>
</tr>
<tr>
<td>TRAIN115</td>
<td>16</td>
<td>0.68</td>
<td>3.27</td>
<td>0.39</td>
<td>18.17</td>
<td>15.48</td>
<td>6</td>
<td>0.99</td>
<td>0.05</td>
<td>0.46</td>
</tr>
<tr>
<td>TRAIN119</td>
<td>19</td>
<td>0.67</td>
<td>7.12</td>
<td>0.35</td>
<td>18.96</td>
<td>11.26</td>
<td>10</td>
<td>0.98</td>
<td>0.01</td>
<td>0.51</td>
</tr>
<tr>
<td>TRAIN058</td>
<td>20</td>
<td>0.67</td>
<td>8.52</td>
<td>0.33</td>
<td>22.12</td>
<td>19.15</td>
<td>13</td>
<td>0.98</td>
<td>0.05</td>
<td>0.48</td>
</tr>
</tbody>
</table>

5 Conclusions

In this study we aimed to determine an effective way of tuning the VBS scheme using observations, and also to learn about the processes controlling OA in Delhi. WRF-Chem model runs with the VBS setup that successfully span the OA concentrations and O:C ratios from AMS observations can be identified, with many model runs overestimating organic mass concentrations and underestimating the O:C ratios compared with AMS observations. However, we identified two structural errors in the model related to a combination of unsuitable diurnal activity cycles applied to the emissions and/or WRF-Chem...
not being able to capture completely the dynamics of the planetary boundary layer. It is worth mentioning that these structural errors might also be related to representation of other organic aerosol processes not represented by the VBS approach. Recent studies, for example, have examined particle-phase and multiphase chemistry in aqueous aerosols and clouds (Shrivastava et al., 2022), and reactions of SOA precursors with other radicals like chlorine relevant to Indian conditions (Gunthe et al., 2021).

The structural errors prevented us from providing an optimised VBS approach in WRF-Chem. However, we were able to apply the emulator in two periods: the full period (1st-29th May) and the 2-4 pm period (14:00-16:00 hrs, 1st-29th May) to present a methodology to evaluate a model performance using Gaussian emulators and metrics such as FAC2, IOA and MB. Optimization is a stage-by-stage process, future analysis would imply to do an emulation study to address diurnal activity and PBL directly, perhaps using NOx or total PM.

The performance of the two emulators, the full period and the 2-4 pm period, was similar, with the two emulators performing a good prediction of the model outputs and presenting a similar high variance of the anthropogenic SVOC scaling (Parameter 5). The model performance would highly improve if we are able to constrain the input values for the parameter 5.

When looking at the emulator sensibility analysis, we identified that the parameter anthropogenic SVOC scaling has the highest contribution to the variance, with fractions higher than 70%. This suggests that constraining this parameter would lead to a reduction in the uncertainty in these outputs from the model. Anthropogenic SVOC volatility distribution has little impact on the fraction of variance to O:C ratios with a fraction of variance of around 15%. None of the parameters show a clear variance to improve the model performance.

The model evaluation analysis based on FAC2, IOA and MB agreed with the emulator analysis in identifying that using low SVOC volatility distribution and low SVOC scaling would give improved model performance. Based on the MB analysis, for both the full and the 2-4 pm periods, there are runs where the Total OM overprediction was 5 µg.m\(^{-3}\) or lower, i.e, TRAIN110, TRAN112, TRAIN117, etc. This overprediction is considered low compared to the mean Total OM concentrations of \(\sim 20-30\ \mu\text{g.m}\(^{-3}\)). Hence, we are able to identify probable values for the VBS model parameters and are able to model Total OM and O:C ratios in the range of the AMS observations.

The combination of the emulator analysis and the model evaluation metrics (FAC2, IOA and mean bias) allowed us to identify the plausible parameter combinations for the analysed periods. The more plausible combinations were found to be with a low SVOC volatility distribution and low SVOC scaling. The methodology presented in this study is shown to be a useful approach to determine the model uncertainty and determine the optimal parameterisation to the WRF-Chem VBS setup. This information is valuable to increase our understanding on secondary organic aerosol formation, which in turn will help to improve regional and global model simulations, emission inventories as well as making informed decisions towards the improvement of air quality in urban environments.

Data availability

Emission generation scripts: https://github.com/douglowe/WRF_UoM_EMIT

Scripts for running WRF-Chem (and reducing the outputs to key diagnostics):

https://github.com/douglowe/promote_wrfchem_scripts

Scenario configuration files, and python script for calculating the “pseudo-age” of the emitted VBS:

https://github.com/douglowe/PROMOTE_VBS_scenarios

Scenario chemistry input files

This research has been supported by the UK NERC and MoES, India through the PROMOTE project under the Newton Bhabha Fund programme “Air Pollution and Human Health in a Developing Megacity (APHH-India)”, NERC grant numbers NE/P016480/1 and, NE/P016405. M.S. was supported by the U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research (BER) through the Early Career Research Program. R.A.Z. acknowledges support from the Office of Science of the U.S. DOE through the Atmospheric System Research (ASR) program at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. This paper is based on interpretation of scientific results and in no way reflects the viewpoint of the funding agencies.

References

Topping, D., Connolly, P., and McFiggans, G.: Cloud droplet number enhanced by co-condensation of organic vapours, Nat Geosci, 6, 443-446, 10.1038/ngeo1809, 2013.

