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Abstract. The nature and origin of organic aerosol in the atmosphere remain unclear. The gas-particle partitioning of semi-28 
volatile organic compounds (SVOC) that constitute primary organic aerosols (POA) and the multigenerational chemical aging 29 
of SVOCs are particularly poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such 30 
as WRF-Chem, can be a useful tool to describe emissions of POA and its chemical evolutionPOA production and aging. 31 
However, the main disadvantage is its complexity, making the evaluation of model uncertainty and the optimal model 32 
parameterisation maybe expensive to probe using only WRF-Chem simulations. Gaussian process emulators, trained on 33 
simulations from relatively few WRF-Chem simulations, are capable of reproducing model results and estimating the sources 34 
of model uncertainty within a defined range of model parameters. In this study, a WRF-Chem VBS parameterisation is 35 
proposed; we then generate a perturbed parameter ensemble of 111 model runs, perturbing ten parameters of the WRF-Chem 36 
model relating to organic aerosol emissions and the VBS oxidation reactions. This allowed us to cover the model’s uncertainty 37 
space and compare output from each run to aerosol mass spectrometer observations of organic aerosol concentrations and O:C 38 
ratios measured in New Delhi, India. The simulations spanned the organic aerosol concentrations measured with the AMS. 39 
However, they also highlighted potential structural errors in the model that may be related to unsuitable diurnal cycles in the 40 
emissions and/or failure to adequately represent the dynamics of the planetary boundary layer. While the structural errors 41 



prevented us from clearly identifying an optimised VBS approach in WRF-Chem, we were able to apply the emulator in two 42 
periods: the full period (1st -29th May) and the a subperiod period 14:00- 16:00 hrs local time, 1st-29th May. The combination 43 
of emulator analysis and model evaluation metrics allowed us to identify plausible parameter combinations for the analysed 44 
periods. We demonstrate that the methodology presented in this study can be used to determine the model uncertainty and 45 
identify the appropriate parameter combination for the VBS approach, and hence provide valuable information to improve our 46 
understanding on SOA production. 47 

1 Introduction 48 

Over the last decades, India has been facing air pollution problems and is ranked fifth in the 2020 world air quality ranking 49 
(IQair, 2021) and Delhi ranked as one of the most polluted cities in the world with related health burden of about 10,000 50 
premature deaths  annually (Chen et al., 2020a), based on PM2.5 measurements (particulate matter lower than 2.5 micrometers 51 
in diameter). This situation has a remarkable impact on Indian citizens due to India having a population that is larger than one 52 
billion inhabitants.  53 

Organic aerosols (OA) are one of the main constituents of submicron particulate matter, accounting for between 20% – 90% 54 
of the total aerosol mass concentration globally in urban environments (Kanakidou et al., 2005;Zhang et al., 2007).Various 55 
studies have been performed in India looking at the particulate matter composition and source identification of OA using 56 
receptor modelling tools (Kompalli et al., 2020;Jain et al., 2020;Cash et al., 2021;Reyes-Villegas et al., 2021) along with 57 
investigating the health risks associated with aerosols (Shivani et al., 2019;Gadi et al., 2019). However, one limitation of 58 
receptor models is that they do not involve chemical processing. The use of regional atmospheric models allows the study of 59 
the temporal and spatial behaviour of various chemical species of OA. The Weather Research and Forecasting model coupled 60 
with Chemistry (WRF-Chem) is a regional 3-D atmospheric model that simulates the emissions and dispersion of gaseous and 61 
particulate species, including the chemical processes and their interaction with meteorology. There have been recent WRF-62 
Chem studies investigating PM2.5 concentrations (Bran and Srivastava, 2017;Chen et al., 2020b;Jat et al., 2021; Ghosh et al., 63 
2021) and volatile organic compounds (VOC) compounds (Chutia et al., 2019) over India. 64 

Despite the recent studies on aerosol sources and processes involving both observations and modelling, there is still a gap 65 
between observations and modelling studies, for example with particulate organic matter being generally underestimated by 66 
models (Bergström et al., 2012;Tsigaridis et al., 2014), mainly attributed to the lack of understanding of the emission sources, 67 
and the POA processes and SOA mechanisms. Hence, we need to understand the capability of organic matter to produce and 68 
retain fine particulate mass in order to fully understand their processes and impacts on air quality and climate (Carlton et al., 69 
2010;von Schneidemesser et al., 2015). It is here where the volatility basis set (VBS) scheme can be valuable when 70 
implemented in chemical transport models. The VBS scheme describes the chemical ageing of particulate organic matter, its 71 
chemical processing and associated volatility (Donahue et al., 2006;Shrivastava et al., 2011; Bianchi et al., 2019). It treats 72 
POA emissions as semi volatile and distributes particulate organic matter by its volatility. This distribution, based on their 73 
saturation concentration (C*), includes low volatility (LVOC), semivolatile (SVOC) and intermediate volatility (IVOC) 74 
organic compounds (Tsimpidi et al., 2016). POA constitutes emissions from anthropogenic combustion processes and open 75 
biomass burning (Stewart et al., 2021a;Stewart et al., 2021b) and by being considered to be semivolatile, the initial particulate 76 
organic matter partially evaporates due to atmospheric dilution followed by the oxidation of evaporated semi-volatile organic 77 
vapors. The resulting low volatility oxidized organic vapors can condense to produce oxidized primary organic aerosols 78 
(oPOA)secondary organic aerosol (SOA) (Shrivastava et al., 2008). This favours the formation of IVOCs and SVOCs in the 79 
gas phase. Previous studies have found that IVOCs and SVOCs can act as a reservoir of organic species that are able to 80 
repartition to the particle phase after suffering chemical processing (Robinson et al., 2007;Lane et al., 2008). 81 

Regional (Li et al., 2016;Akherati et al., 2019) and global models (Tsigaridis et al., 2014;Tilmes et al., 2019) have been 82 
successfully used to simulate aerosol dispersion and chemical processing to some extent. However, they can be highly 83 



uncertain (Bellouin et al., 2016;Johnson et al., 2020), particularly when comparing with on-site observations in a high time 84 
resolution. This uncertainty can be due to a wide range of parameter settings, emission sources or missing processes, and is 85 
challenging to comprehensively evaluate by only running direct model simulations, due to the computing time and expense 86 
needed.  Statistical analysis to evaluate model performance over parameter uncertainty can be made tractable through the use 87 
of a statistical emulator (Carslaw et al., 2018). With a trained emulator, it is possible to study thousands or millions of model 88 
variants (parameter combinations) and estimate the sources of uncertainty (Lee et al., 2011;Johnson et al., 2018;Wild et al., 89 
2020) 90 

The VBS approach is often tuned to the environment of interest (Bergström et al., 2012;Shrivastava et al., 2013;Tilmes et al., 91 
2019;Shrivastava et al., 2019;Shrivastava et al., 2022) and, as mentioned before, doing this only with WRF-Chem runs is 92 
particularly challenging and time consuming. The aim of this study is to determine an effective way of tuning the VBS scheme 93 
using observations, and also to learn about the processes controlling OA in Delhi. Hence, we need to explore the combination 94 
of different techniques, i.e., observations, WRF-Chem modelling with VBS implementation and statistical emulators, to better 95 
understand the partitioning of matter between gaseous and particulate phases,of organic matter and the chemical 96 
agingevolution of POA. In this study, a WRF-Chem parameterisation is proposed to simulate organic mass concentrations and 97 
organic to carbon (O:C) ratios over the region of New Delhi, India, that includes detailed primary and ageing parameters in 98 
the VBS and secondary organic aerosol (SOA) formation schemes. In this parameterisation we explore the perturbation to the 99 
chosen anthropogenic POA and biomass burning POA parameters that would be needed to give the best fit to the observed 100 
OA, without perturbing the SOA parameters from the base case. The model performance is evaluated over a multi-dimensional 101 
parameter uncertainty space that explores parameter uncertainty in these schemes. We generate a perturbed parameter 102 
ensemble (PPE) of 111 model runs that cover the model’s uncertainty space and compare output from each run to AMS 103 
observations of OA concentrations and O:C ratios measured at New Delhi, India. The PPE is then used to construct statistical 104 
emulators and sample densely over the uncertainty for a more detailed comparison over a specific time-period of the 105 
observations. The evaluation over specific time-periods will allow to study the behaviour of the model setup under different 106 
conditions, i.e., high vs low mass concentrations, and analyse the impact the different parameter setups have on the organic 107 
mass concentrations.  108 

2 Methodology 109 

2.1 WRF-Chem parameterisation and setup 110 

The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to simulate the emission, 111 
transport, mixing, and chemical transformation of trace gases and aerosols concurrently with meteorology data (Grell et al., 112 
2005; Fast et al., 2006). Here, WRF-Chem version 3.8.1 is run with a 15 km domain, 12755 x 12755 grid cells, (Figure 1) and 113 
a simulation period from 19th April - 29th May 2018, with substantial modification, details in below. This period was selected 114 
in order to compare with aerosol measurements performed at New Delhi (Reyes-Villegas et al., 2021). Table 1 lists the 115 
components that contribute to our model set-up, including the chemistry and aerosol schemes, emissions inventories and 116 
boundary condition specifications. Gas-phase chemistry is simulated with the Common Representative Intermediates (CRI) 117 
mechanism which permits a reasonably detailed representation of volatile organic compound oxidation. The aerosol chemistry 118 
is simulated using the sectional MOSAIC module (Zaveri et al., 2008), including N2O5 heterogeneous chemical reactions 119 
(Archer-Nicholls et al., 2014;Bertram and Thornton, 2009) and is coupled to the aqueous phase, which allows aerosols to act 120 
as cloud condensation nuclei, as well as the removal of aerosols through wet deposition processes. The aerosol size distribution 121 
in MOSAIC is described by eight size bins spanning a dry particle diameter range of 39nm to 10μm (Zaveri et al., 2008).  122 

Table 1: WRF-Chem setup 123 

Parameter Set up 



Gas phase mechanism CRI-v2R5 (Watson et al., 2008;Archer-Nicholls et al., 2014) 

Aerosol module MOSAIC (Zaveri et al., 2008;Fast et al., 2006)  
with VBS (Shrivastava et al., 2011) 

with SOA (Tsimpidi et al., 2010) 
Anthropogenic emissions EDGAR-HTAP and SAFAR-India (CRI-v2R5 speciation) 

Fire emissions FINN 1.5 (Wiedinmyer et al., 2011)  

Biogenic emissions 

Chemical Boundaries 

Meteorological Boundaries 

MEGAN 2.04 (Guenther et al., 2006) 

CESM2/WACCM (Danabasoglu et al., 2020) 

ECMWF Reanalysis (Hersbach et al., 2018) 

 124 

Our main modifications are focused on the treatment of the organic aerosol (OA) components. Primary organic aerosol (POA) 125 
is treated as semi-volatile, using the Volatility Basis Set (VBS) treatment of Shrivastava et al. (2011). Their 9 volatility bin 126 
VBS scheme has been adapted for use in the 8 size bin version of MOSAIC. Secondary organic aerosol (SOA) has been 127 
included based on the scheme described in Tsimpidi et al. (2010), providing ‘anthropogenic’ (ARO1 and ARO2 in the original 128 
scheme, SAPRC99) and ‘biogenic’ (iIsoprene and monoterpenes) SOA components, each covering 4 volatility bins with C* 129 
values (at 298 K) of 1, 10, 100, and 1000 g.m-3. ARO1 represents the aromatics with OH reaction rates less than 2x104 ppm−1 130 
min−1, and ARO2 the aromatics with OH reaction rates greater than 2x104 ppm−1 min−1. In mapping these to the CRI-v2R5 131 
scheme we have used TOLUENE and BENZENE as the precursors for the ARO1 reactions, OXYL (xylene and other 132 
aromatics) for the ARO2 reactions, and APINENE for the monoterpenes. Indicative SOA yields are given in Table S1 in the 133 
supplementary material. Co-condensation of water has been added for these semi-volatile organics, and they have been coupled 134 
to the aqueous phase in the same manner as other aerosol compounds in MOSAIC. Previous studies have demonstrated that 135 
the condensation of semivolatile organic material onto aerosol particles substantially increases the soluble mass of particles, 136 
their chemical composition and eventually their effective dry size (Topping et al., 2013;Crooks et al., 2018). The mapping of 137 
CESM2/WACCM compounds to CRI-v2R5 and MOSAIC components, for the chemical boundaries, is detailed in Table S2 138 
in the supplementary material. A spin-up period of 11 days was used, from 19th April to 1st May. The meteorological driving 139 
fields were taken from ERA5 reanalysis data. Spectral nudging of the uv wind parameters, temperature and geopotential height 140 
variables to these, above model level 18 and for wavelengths greater than 950km, was used. The domain is conformed of 38 141 
model layers, variable height and terrain following, model levels, up to a pressure of 50 hPa. The first model layer has a mean 142 
height of 59m over Delhi (and a mean height of 56m over the whole model domain). 143 

Previous studies using the VBS have used scaling factors from POA to derive SVOC emissions in each volatility bin based on 144 
equilibrium partitioning calculations, as well as volatility distributions based on laboratory studies and assumed oxygenation 145 
and chemical reaction rates (Shrivastava et al., 2011;Fountoukis et al., 2014). To investigate the impact of these assumptions 146 
on the model predictions, we have modified the model code so that the VBS emissions, the oxygenation rates and VBS reaction 147 
rates, can be directly controlled via namelist options. The parameters which are perturbed in this way for this study are 148 
described in more detail in Section 2.3. 149 

The volatility distribution for of open biomass burning emissions is taken from May et al. (2013), and multiplied by a scaling 150 
factor of 3 (based on equilibrium partitioning calculations) to ensure reasonably similar condensed mass at emission as that 151 
reported in the FINN 1.5 emission dataset. Similar calculations have been made in previous studies, giving roughly the same 152 
scaling factor (Shrivastava et al., 2011;Fountoukis et al., 2014; Denier Van Der Gon et al., 2015;Ciarelli et al., 2017). The 153 
volatility distribution for anthropogenic emissions is also multiplied by a scaling factor of 3 for the same reasons as above. It 154 
is worth mentioning that the perturbed space explored here is embedded in the parent VBS scheme that has been adopted. 155 
There have been a large number of developments in, and variants of, the VBS aiming to address particular questions related 156 
to SOA formation at various levels of complexity; for example, the mechanistic measurement-constrained radical 2D-VBS 157 
examining the role of ELVOC and ULVOC in new particle formation; (Zhao et al., 2020; Zhao et al., 2021). In the current 158 
study, our implementation has been developed from the VBS version available in the distribution version of WRF-Chem and 159 
our results should be interpreted in the context of the structural capabilities and limitations therein. More information about 160 
the VBS distributions and parameter space setup is in section S1 in the supplementary material. 161 

Anthropogenic emissions are derived from the EDGAR-HTAP, SAFAR-India (CRI-v2R5 speciation) and NMVOC global 162 
emission datasets, with NMVOC emissions speciated for the CRI-v2R5 chemical scheme, and applying diurnal activity cycles 163 



to the emissions based on emission sectors in Europe (Olivier et al., 2003). We used these diurnal activity cycles (Figure S1 164 
in supplement) as there were no data available for activity behavior in Delhi. Biogenic emissions are calculated online using 165 
the MEGAN model (Guenther et al., 2006). Biomass burning emissions are taken from the FINNv1.5 global inventory 166 
(Wiedinmyer et al., 2011). 167 

 168 

    169 
Figure 1. WRF-Chem model domain with PM1 concentrationstopography data. White The red marker highlights the location 170 
of IMD New Delhi, where the AMS observations were taken and the red rectangle shows the area that covers the model 171 
results.  172 

2.2 Observations 173 

Aerosol observations were made at the Indian Meteorology Department (IMD) at Lodhi road in New Delhi, India (Lat 28.588, 174 
Lon 77.217) from 26th April to 30th May 2018 as part of the PROMOTE campaign (Reyes-Villegas et al., 2021). A High-175 
Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS, Aerodyne Research Inc.), hereafter referred to as 176 
AMS, was used to measure mass spectra of non-refractory particulate matter with an aerodynamic diameter equal or lower 177 
than 1 µm (PM1), including organic aerosols (OA), sulphate (SO4

2-), nitrate (NO3
-), ammonium (NH4

+) and chloride (Cl-), in a 178 
5-minute time resolution. The AMS operation principle has been previously described by DeCarlo et al. (2006). The AMS was 179 
calibrated during the campaign for the ionisation efficiency of nitrate (IE) and the relative ionisation efficiency (RIE) of other 180 
inorganic compounds using nebulised ammonium nitrate and ammonium sulphate with a diameter of 300 nm. The data were 181 
analysed using the IGOR Pro (WaveMetrics, Inc., Portland, OR, USA) based software SQUIRREL (Sequential Igor data 182 
Retrieval) v.1.63I and PIKA (Peak Integration by Key Analysis) v.1.23I. The organic to carbon (O:C) ratios were calculated 183 
with PIKA using the improved-Ambient elemental analysis method for AMS spectra measured in air (Canagaratna et al., 184 
2015). The AMS data, OA mass concentrations and O:C ratios, are used to compare with the WRF-Chem model outputs: total 185 
organic matter mass concentration (Total_OM)  and organic to carbon ratios (OC_ratio). 186 

There were no Planetary boundary layer height (PBLH) measurements available at IMD Lodhi road, hence, PBLH data were 187 
sourced from ECMWF ERA5 with 0.25 deg. results in 1-hour resolution for the coordinates closest to the IMD site. 188 
Meteorology data was downloaded from https://ncdc.noaa.gov/ (last access: 05/01/2019) for the Indira Gandhi International 189 
Airport, India meteorology station. 190 

The meteorology data were used to interpret the diurnal behaviour of the chemical species and to compare with meteorology 191 
outputs from WRF-Chem. A dataset of meteorology was not available at IMD. The use of meteorology from airports has been 192 



previously used and is considered to be representative of regional meteorology without being affected by surrounding buildings 193 
(Reyes-Villegas et al., 2016). 194 

2.3 Perturbed Parameter Ensemble 195 

To evaluate the sensitivity to variations in the VBS emission and processing parameters of our WRF-Chem model of the 196 
simulated OA over the New Delhi region, we generated a perturbed parameter ensemble (PPE). We choose a set of simulations 197 
with optimal space-filling properties that provide effective coverage across the multi-dimensional space of the uncertain model 198 
parameters. Here, we perturb ten parameters of the WRF-Chem model that relate to semi-volatile POA emissions and the aging 199 
of these VBS compounds. The parameters correspond to five processes in the model, which are perturbed with respect to both 200 
anthropogenic emissions and biomass burning emissions. These process parameters are: 201 

1. VBS ageing rate: The reaction rates of VBS compounds with OH - each reaction reduces the volatility of the 202 
compound by a factor of 10 (1 decade in saturation concentration, Ci*, position), and adds between 7.5% and 40% 203 
oxygen (determined by the SVOC oxidation rate parameter, below). Ci* is the condensed mass loading at which half 204 
of the organic material in that volatility bin will be in the condensed phase, and half will be in gas phase (Donahue et 205 
al., 2006). 206 

2. SVOC volatility distribution: This parameter is expressed in terms of an “equivalent age”, determined using a simple 207 
ageing model. At time = 0 all VBS molecules will be highly volatile, with a Ci*= 4. These compounds are processed 208 
at a fixed reaction rate (at each step 0.1% of the gaseous mass in a volatility bin is moved to the next volatility bin), 209 
with simple equilibrium partitioning of the VBS components between the gas and condensed phases (to roughly 210 
simulate the manner in which VBS compounds are partitioned and aged within the WRF-Chem scheme). This 211 
processing reduces the overall volatility of the VBS compounds, first providing a spread of mass across the volatility 212 
range, before accumulating the mass in the lowest volatility bins until 90% of the VBS mass is in the Ci*=-2 volatility 213 
bin (“time” = 1). This parameter is a scalar variable (between 0-1), that indicates the dimensionless position between 214 
these two points, and has an associated volatility distribution. After examining the range of volatility distributions 215 
given by this simple ageing model, we have chosen to use distributions within the range of 0.05 to 0.4. Using values 216 
above 0.05 ensures there will always be some lower volatility compounds to condense. Above 0.4 almost everything 217 
is condensed, so we have excluded values above this so that our PPE does not become too heavily weighted towards 218 
these scenarios. Example volatility distributions across the chosen range are shown in supplementary figure S2. 219 

3. SVOC oxidation rate: This parameter represents the degree of oxidation that occurs with (or is induced by) each 220 
reaction with an OH molecule. Previous studies have used values between 0.075 (7.5%) extra oxygen (or one oxygen 221 
atom)  (Robinson et al., 2007) and 0.40 (40%) extra oxygen (or five extra oxygen atoms per reaction ) (Grieshop et 222 
al., 2009). Grieshop et al. (2009) stated that with 7.5%, there is not enough addition of oxygen to the organic mass, 223 
while with the 40% there is a noticeable improvement to the OA oxygen content with little effect on the predicted 224 
organic mass production. In our study, the lowest level is 0.075 extra oxygen (or one oxygen atom) and the uppermost 225 
level is 0.45 (or six extra oxygen atoms per reaction). 226 

4. IVOC scaling: IVOC compounds bridge the gap from SVOC to VOC (log10(C*) 4-6). Including the IVOC 227 
independently to parameter (2) (based on our simple ageing model) enables us to still include these within the 228 
volatility distribution (this does restrict the impact of parameter (2) to influencing the shape of the volatility 229 
distribution for the lower C* values only. These IVOC emissions are calculated using a fixed volatility distribution 230 
which scales from the non-volatile OA mass in the emissions inventory. The fractional emitted masses are: 0.2 for 231 
Ci* = 4; 0.5 for Ci* = 5; and 0.8 for Ci* = 6 (as shown in supplementary Figure S2) (0.2+0.5+0.8=1.5), this is the 232 
initial emission amount that then will be scaled by another factor, between 0-3, to probe the sensitivity of the model 233 
to the abundance of IVOCs.. These fractions are then adjusted by this scaling factor, in the range 0-3. 234 



5. SVOC scaling: This parameter is the scaling factor of the SVOC emissions, (which have been given a volatility 235 
distribution by parameter 2). Traditionally such scaling has been used: to ensure that the condensed mass of the 236 
emitted SVOC is the same as the non-volatile OA mass in the emissions inventory; however, this scaling could also 237 
be used to off-set errors in the emission inventory estimates of OA emissions. The scaling needed to ensure that the 238 
emitted condensed mass is the same will never be less than 1, but could go to x20 (or more) for the "younger" SVOC 239 
volatility ranges (as estimated using the equilibrium partitioning tool for parameter 2). However, in order to 240 
accommodate potential over-estimates of the emission inventories, and to avoid too much OA being generated after 241 
aging of any highly-volatile emissions, we chose an SVOC scaling range 0.5 to 4. 242 

Table 2 shows the uncertainty ranges applied to each of the parameters, that we explore with the PPE, and Table S31 in the 243 
supplementary information shows an example of a ‘namelist.input’ file with the parameters to control the VBS scheme, that 244 
was used to create the model simulation. A total of 111 model simulations make up the ensemble. Following the statistical 245 
methodology outlined in Lee et al. (2011), the combinations of input parameters used for the simulations in the PPE were 246 
selected using an optimal Latin hypercube statistical design algorithm (Stocki, 2005), providing a good coverage of the multi-247 
dimensional parameter space. The selection of combinations was performed in three subsets, for use in building statistical 248 
emulators to densely sample key outputs from the model over its uncertainties. First, a single design of 61 runs was generated 249 
for training the emulators (subset 1), and then a second set of 20 runs was made that ‘augmented’ into the larger gaps of the 250 
first design, for use in validating the emulators (subset 2). On an initial comparison to observations, the observations were 251 
found to be outside the range of the PPE’s output, and following an investigation into this, the lower bound of the anthropogenic 252 
SVOC scaling parameter (parameter 5) was extended from 0.5x down to 0.1x. Hence, an extra, third, set of 30 runs were 253 
designed and simulated to cover the extended parameter space (subset 3), leading to a total of 111 runs in the final PPE. Table 254 
S42 in supplementary information provides a list of the model runs that make up the PPE with their respective values. 255 

Table 2: Range of the parameter space used for SVOCs co-emitted within anthropogenic POAsemi-volatile POA emissions 256 
and processing in the PPE with 111 model variants. 257 

Parameter 

number 

Parameter name min Max 

1 Anthropogenic VBS ageing rate (cm3 molec-1 s-1) 1.00E-

13 

1.00E-

11 

2 Anthropogenic SVOC volatility distribution 0.05 0.4 

3 Added oxygen per generation of ageing 0.075 0.45 

4 Anthropogenic IVOC scaling 0 3 

5 Anthropogenic SVOC scaling * 0.1 4 

6 Biomass Burning VBS ageing rate (cm3 molec-1 s-1) 1.00E-

13 

1.00E-

11 

7 Biomass Burning SVOC volatility distribution 0.05 0.4 

8 Added oxygen per generation of ageing 0.075 0.45 

9 Biomass Burning IVOC scaling 0 3 

10 Biomass Burning SVOC scaling 0.5 4 

* 81 runs were performed with an anthropogenic SVOC scaling min = 0.5 and max = 4 and 30 runs were performed with an 258 
anthropogenic SVOC scaling min = 0.1 and max = 0.5. This due to a min = 0.5 and max = 4 giving high Org mass 259 
concentrations, when compared with AMS. 260 

2.4 Emulation 261 

For each PPE member, a time series of the OC_ratio and Total_OM from the WRF-Chem model run was extracted at the 262 
closest coordinates to the IMD site (Lat 28.628, Lon 77.209) in the model output.  Gaussian process emulators (O’Hagan, 263 
2006; Lee et al, 2011) were built using the PPE. Similarly to the approach described in Johnson et al. (2018), initial emulators 264 



were constructed using only training simulations (subsets 1 and 3) and these were validated using the validation runs (subset 265 
2). Once validated, a further new emulator was then constructed using both the training and validation simulations of the PPE 266 
together as training data, to obtain a final emulator based on all of the information that the PPE contains. An additional 267 
verification of the quality of each final emulator was obtained via a ‘leave-one-out’ validation procedure (where each 268 
simulation in turn is removed from the full set of 111 runs and a new emulator is built and used to predict that removed 269 
simulation). 270 

Monte Carlo sampling of the emulators enabled dense samples of model output to be generated over the 10-dimensional 271 
parameter uncertainty of the model. We produced output samples for a set of 0.5 million input parameter combinations across 272 
the uncertainty space, hereafter called ‘model variants’, to explore the model’s uncertainty. 273 

2.5 Model evaluation 274 

Alongside the emulation, outputs from the 111 model runs (OC_ratio and Total_OM) were additionally evaluated, against the 275 
AMS observations (O:C and OA), using various model evaluation tools, including the fraction of predictions within a factor 276 
of two (FAC2), mean bias (MB) and the index of agreement (IOA). Section S23 of the supplementary information provides a 277 
detailed explanation of the calculations for each evaluation metric and information on how to interpret the values. 278 

3 Results and discussion 279 

3.1 Model outputs and observational analysis 280 

The model outputs of the central WRF-Chem run, from the original parameter space (Subsets 1 and 2), are used to compare 281 
with observations in order to analyse the model performance. As mentioned in the methods section, the VBS setup will affect 282 
OA concentrations and PM, with no implications to inorganic aerosols or gaseous species. As mentioned in the methods 283 
section, the VBS setup will directly affect OA concentrations and PM. The oxidative budget for inorganic chemistry is not 284 
directly affected, however, by changing the aerosol size distribution there are some indirect effects on inorganic aerosol and 285 
gaseous species through changes in aerosol water content, cloud fields, and aerosol-radiation interactions. Figure 2 shows the 286 
comparison for the full dataset (1st – 29th May 2018) between model outputs and observations performed at IMD Lodhi road, 287 
where we see higher PM2.5 and NOx concentrations in the model simulation. The high NOx concentrations in the model seem 288 
to be related to high NO2 concentrations as the NO concentrations are in line with the range of the observations of NO. Looking 289 
at the meteorological parameters, we can see similar temperatures and wind speeds between the model and observations, with 290 
lower RH and higher PBLH in the model. 291 

      292 



 293 

Figure 2. Comparison of observations (At Lodhi Road for air quality and IGI Airport for meteorology parameters) and model 294 
outputs of various parameters. May 2018. Bars highlight medians, quartiles and 95%, triangles highlight the mean. 295 

3.2 Model runs and AMS observations 296 

Here, we analyse and compare the mean values of Total_OM (modelled particle phase) and OC_ratio for the full period, 1st – 297 
29th May 2018, of the 111 WRF-Chem model runs (Table S42 in supplement) with the AMS observations (OA and O:C).  The 298 
top panel in figure 3 shows a bar plot of the mean OC_ratio for the model runs coloured by the mean total_OM concentrations. 299 
The bottom panel shows the mean total_OM concentrations for the model runs coloured by the mean OC_ratio. The model 300 
runs are sorted from low to high values of the y-variable. The continuous and dashed red lines show the mean ± one standard 301 
deviation (SD) of the O:C ratio (top) and OA (bottom) measured with the AMS.  In general, compared to mean values measured 302 
with the AMS, a large number of WRF-Chem runs had a low O:C_ratio and high mean Total_OM concentrations. The bottom 303 
panel shows the mean total_OM concentrations of 47 runs lay within one SD of the mean OA concentration of 21.77 µg.m-3 304 
measured with the AMS. Moreover, the model runs with mean Total_OM concentrations near the mean OA concentrations 305 
have OC_ratio mean values near the O:C mean AMS value (0.5), with a cyan colour. This analysis shows a number of model 306 
runs with mean Total_OM and OC_ratio values near the mean values measured with an AMS.  307 

 308 
 309 
 310 

 311 



 312 

Figure 3. Analysis of the 111 model runs for the full period. Mean OC_ratio coloured by mean Total_OM (top plot) and 313 
mean Total_OM coloured by mean OC_ratio (bottom plot). The red lines highlight the mean ± SD of AMS observations 314 
(O:C top and OA bottom). The mean AMS values are O:C = 0.5 and OA = 21.77 µg.m-3. 315 

3.3 Diurnal analysis to WRF-Chem runs 316 

The high time resolution data collected with the AMS provides the opportunity of analysing the WRF-Chem outputs in more 317 
detail, for example by looking at the diurnal cycles. Figure 4 shows the diurnal cycles of chosen WRF-Chem runs with 318 
Total_OM concentrations and OC_ratio close to the AMS observations. In the model runs, we were able to span high and low 319 
Total_OM and OC_ratio. However, in the case of OC_ratio, we were not able to span the range of the O:C from AMS 320 
observations with mean values of 0.3 at night and 0.7 during the day. Looking at the Total_OM concentrations, we identified 321 
two potential structural errors in the WRF-Chem outputs, the early morning peak and the late evening low concentrations. This 322 
could be due to application of unsuitable diurnal activity cycles to the emissions or WRF-Chem not being able to capture 323 
completely the dynamics of the planetary boundary layer. With no activity data available for Delhi, we used diurnal cycles of 324 
activities based on emission sectors in Europe (Olivier et al., 2003) (Figure S1 in supplement). We can observe in figure S5 a 325 
slightly better comparison in CO model vs observations, with flatter CO concentrations when looking at the observations.  For 326 
the diurnal cycles of meteorology (Figure S4), we can see that the model agrees with the PBLH- ERA5 in the early morning 327 
and until 14:00 h, time when PBLH- ERA5 starts dropping and PBLH-Model remains high, perhaps preventing concentrations 328 
to accumulate. This makes building and testing the emulator challenging as we may get the correct concentrations for the 329 
wrong reasons. The emulator can be built over a specific time-period and be compared with the observations. Hence, the 330 
emulator was built over two periods of interest; the full period (1st-29th May) and a period where no potential structural errors 331 
were identified from 14:00- 16:00 hrs for 1st-29th May (2-4 pm period). Emulator analysis involving the filtering of model 332 
results to avoid structural errors has been successfully performed previously in constraining a climate model (Johnson et al., 333 
2020). Looking at the mean OC_ratio and Total_OM of the model runs for the 2_4 pm period (Figure S6), 34 runs lay within 334 
one SD of the OA mean concentration (12.20 µg.m-3) measured with the AMS, compared with the 47 runs identified from 335 
figure 3. This means that even by analysing the 2-4 pm period we still have model runs that cover the AMS observations.  336 

 337 



  338 

Figure 4. Diurnal cycle of selected WRF-Chem runs with values near the AMS observations (black line). 339 

3.4 Model evaluation 340 

There are various tools that can be used to compare the model outputs with the observations. In this study, we use a number 341 
of statistical metrics (see Section S3 in the supplementary information for a detailed description of each metric we consider) 342 
to evaluate the ensemble of 111 model runs for the 2-4 pm period and the full period. The fraction of predictions within a 343 
factor of two (FAC2) represents the fraction of data where predictions are within a factor of two of observations. The Mean 344 
Bias (MB) gives an indication of the mean over- or under-estimation of predictions. The Index of Agreement (IOA) is a 345 
commonly used metric in model evaluation (Willmott et al., 2012), ranging between -1 and +1, with values close to +1 346 
representing a better model performance. Table S3 shows the results of the model evaluation for the 2-4 pm period and table 347 
S4 the results for the full period. When comparing the performance of the two periods; the model runs of the 2-4 pm period 348 
have a better performance with 103 runs for O:C and 29 runs for OA with FAC2 > 0.6 compared to 94 runs for O:C and 4 runs 349 
for OA with FAC2 > 0.6 for the full period. The negative MB in O:C suggests the models are underestimating the O:C ratios 350 
(between -0.01 to -0.15) measured with the AMS. However, the FAC2 values of 0.96 and higher indicate that the models are 351 
doing a good job overall at simulating the O:C ratios. This is not the same for OA concentrations, where the models show an 352 
over-estimate of the concentration compared to observations, and where only 0.56 -0.62 of predictions were within a factor of 353 
two of the OA observations.  354 

The IOA provides similar results with a better model performance in the 2-4 pm period, with 10 model runs for the 2-4 pm 355 
period and only two runs for the full period with IOA values equal or higher than 0.45. It is interesting to see that while FAC2 356 
was higher, for OA and O:C, in the 2-4 period runs compared to the full period, IOA values in 2-4 period were high with OA 357 
but low with O:C, which reached IOA values of 0.53 in the 2-4 period and 0.56 in the full period. Previous studies performing 358 
modelling evaluation determined similar IOA values using various models (Ciarelli et al., 2017;Fanourgakis et al., 2019) . For 359 
instance, Chen et al. (2021), modelling SOA formation, obtained IOA between 0.39 – 0.49. Huang et al. (2021) published 360 
recommendations on model evaluation and identified IOA of around 0.5 for organic carbon. Lee et al. (2020) performed a 361 
sensitivity analysis to two different SOA modules and obtained IOA values of 0.46 – 0.52. 362 

The model evaluation metrics, along with the parameter setup for each ensemble member, allow us to analyse the model setup 363 
that gives a better performance. Figure 5 shows the relative variation (%) of the five anthropogenic parameters of the PPE (1 364 
– 5) for the 2-4 pm period (Figure S7 in supplementary material shows the analysis for the full period). Each pentagon 365 
represents the 5-D parameter space and the positions of the dots connected with lines show the position of each parameter 366 



within its range for that specific ensemble member. The filled area within the dots represents the explored parameter space in 367 
each ensemble member. We are analysing the five anthropogenic PPE only since the five parameters related to biomass burning 368 
represented a low contribution to the Total_OM concentrations. We are looking for blue, light blue or green colours in the 369 
lines and dots (high FAC2 values from the O:C analysis) and blue, light blue or green colours in the filled area (high FAC2 370 
values from the OA analysis) to identify the model runs with a good evaluation. In figure 5, we can see that the best runs 371 
according to the O:C and OA model evaluation are TRAIN127 and TRAIN121 with other TRAIN runs also with good 372 
performance such as (126, 036, 117 ,104, 115, 119 and 058). In general, these model runs have low SVOC volatility distribution 373 
(emitted VBS compounds are more volatile) and SVOC scaling. TRAIN127 and TRAIN121 have low VBS ageing rate, SVOC 374 
volatility distribution and SVOC scaling and with either high SVOC Oxidation rate or high IVOC scaling.  375 



 376 

 377 

 378 



Figure 5. Relative variation (%) of the 5 anthropogenic PPE (1 – 5) for the 2-4 pm period. Each pentagon represents the 5-D 379 
parameter space and the positions of the dots connected with lines show the position of each parameter within its range for 380 
that specific ensemble member. The filled area within the dots represents the explored parameter space in each ensemble 381 
member. Anticlockwise from top there are the five anthropogenic parameters: VBS ageing rate (P1), SVOC volatility 382 
distribution (P2), SVOC Oxidation rate (P3), IVOC scaling (P4) and SVOC scaling (P5). The values of the 5 parameters have 383 
been normalised dividing by their respective maximum values, hence their values in this plot range from 0 – 1. Example of 384 
interpretation in bottom right: the five parameters are towards their high values = 1.0. The colour in the lines and dots represents 385 
the FAC2 values from the O:C analysis and the fill colour represents the FAC2 values from the OA analysis. Red = 0 – 0.2, 386 
orange = 0.2 – 0.4, yellow = 0.4 – 0.6, green = 0.6 – 0.8, light blue/cyan = 0.8 -0.9 and blue = 0.9 -1.0 387 

3.5 Emulator analysis 388 

3.5.1 Emulator building and testing 389 

Once we confirm that the ensemble of 111 model runs span the AMS observations we can use it to build the emulator. The 390 
emulators are tested using the leave-one-out validation approach (Johnson et al., 2018). In this analysis, each ensemble run is 391 
first excluded from the emulator build, and then the emulator is used to predict the output at the parameter setting of the 392 
excluded run. Figure 6 shows plots of the emulator predictions (with 95% credible intervals from the emulator model) vs the 393 
model outputs of the 111 runs from the leave-one-out validation for OA. Predictions from a perfect emulator would follow 394 
exactly along the 1:1 line on the plots. 395 

We built and tested the emulator for the full period (1st – 29th May) to have an overview of the emulator performance. The 396 
emulator can be built over a specific time-period to compare with the observations. This allows to study the model performance 397 
under different conditions, i.e., high/low aerosol concentrations, day/night, etc. We selected four period time-slots to build and 398 
test the emulator under high and low Total_OM concentrations and two time-slots. These four emulators showed a good 399 
validation analysis (Refer to section S5.1.1 in the supplementary material). However, due to the potential structural errors 400 
identified from the diurnal analysis (Section 3.3), we will focus on the selected period without structural errors, 2-4 pm period. 401 
Figures S11 and S12 in supplementary material show the spread of Total_OM and OC_ratio respectively, for the ensemble of 402 
111 model runs vs the 10 parameters.  403 

We see in Figure 6 that overall, the emulators built for the two periods; full period (6.a and 6.b) and 2-4 pm period (6.c and 404 
6.d) show a good performance; For the 2-4 pm period, Total_OM with only nine runs that are not within the 95% CI from 405 
prediction (red markers) and OC_ratio with ten runs that are not within the 95% CI from prediction. With the new 30 runs 406 
(error bars in blue) we managed to reduce the Total_OM concentrations with good prediction on the emulator. However, there 407 
is a compromise in the OC_ratio with eight runs with high OC_ratio values that at not within the 95% of the prediction interval 408 
of the emulator. 409 



 410 

 411 

Figure 6. Validation of the full (a and b) and 2-4 pm (c and d) periods for O:C ratio and Total OM. Circles are the original 81 412 
runs. Squares with error bars in blue are the new 30 runs with low settings of the anthropogenic SVOC scaling parameter 413 
(which has led to low aerosol mass). Runs where the actual model output lies outside the 95% prediction interval of the 414 
emulator are shown in red. 415 

3.5.2 Emulator sensitivity analysis 416 

We use a variance-based sensitivity analysis (Lee et al., 2011;Johnson et al., 2018) to decompose the overall variance in the 417 
model output for key variables of interest into percentage fractions for the 10 parameters. This analysis was performed to the 418 
full period and the 2-4 pm period (Figure 7). Looking at the parameters for the two periods, the anthropogenic SVOC scaling 419 
has the highest contribution to the variance, which suggests that constraining this parameter would lead to a reduction in the 420 
uncertainty in these outputs from the model. Anthropogenic SVOC volatility distribution has some impact on O:C ratios with 421 
a fraction of variance of around 15%. 422 



423 

 424 

Figure 7. Sensitivity evaluation of the 10 chosen parameters for the 2-4 pm period (a) and the full period (b). 425 

3.5.3 Impact of constraint on uncertainty 426 

The emulator was used to predict model outputs for a sample of size 0.5 million, for the full period and the 2-4 pm period. 427 
Figure 8 shows the probability distribution of OC_ ratio and Total_OM predicted over the full parameter uncertainty. The 428 
AMS mean ± 1SD are shown in red. We can see the higher density (lower values) of the Total_OM show a good agreement 429 
with the AMS-OA concentrations. However, in the case of O:C, the higher density lies on the low O:C ratios compared to the 430 
O:C-AMS observations which lie in the upper tail of the predicted distribution. The OC_ratio varies within the two periods, 431 
with a wider density range for the full period, 0.25-0.55, which represents the variability of the OC_ratio over the full day. In 432 
the case of the 2-4 pm period, we can see more narrow density, 0.3-0.5, which, while lower than the mean O:C ratio measured 433 
with the AMS (0.65), may be representative of the O:C ratios estimated with the WRF-Chem runs. This suggests that when 434 
analysing diurnal behaviour of WRF-Chem outputs without structural errors, we would be able to analyse more into detail the 435 
WRF-Chem performance over different hours of the day. 436 



Figure 8. 0.5 million emulator sample, before constraint, covering the full parameter uncertainty space of the model for the 437 
full period (a and b) and for the 2-4 pm period (c and d). Red highlights the AMS mean +/- SD observations. 438 

3.5.4 Constraint effect. 439 

The AMS observations, OA concentrations and O:C ratios, are used to constrain the emulation, applying an observation 440 
uncertainty as mean ± SD. With mean as the emulator prediction and 1 SD uncertainty, we apply the constraint when 441 
accounting for emulator prediction uncertainty, by retaining the variant if the range mean ± SD overlaps with the observation 442 
uncertainty range. 443 

Figure 9 is a 2-d histogram for joint constraint (Total_OM and OC_ratio) for the 2-4pm period, with colour showing frequency 444 
of variants in a pixel of an underlying grid arranged as a pairwise (shown by the label box on each axis (above/to right). Each 445 
2-d pairwise space has been split into a 25x25 uniform grid to calculate the frequencies. Where the plots show yellow to red, 446 
more variants are retained than in the green / blue areas, highlighting the most likely (higher probability) area of space. This 447 
analysis shows that when constraining both Total_OM and O:C ratios, the emulator retains 52310 variants from 0.5 million, 448 
which is approximately a 10.46% of the original variants generated. Figure S13 shows the histogram  449 

White areas indicate no variants at all retained in that pixel, so that 2-d space is ruled out with respect to all 10 dimensions. 450 
(probability=0). Where the colour is uniform, e.g., biomass burning parameter plots in figure 9, the parameter is essentially 451 
un-constrained, and all parts of parameter space with respect to those 2 parameters are equally likely/covered by variants (as 452 
it was before the constraint was applied). These plots show where in parameter space is most likely given the comparison to 453 
observation. These are the variants that we cannot rule out (are plausible) given the uncertainty – it does not mean they are all 454 
‘good’. It is worth mentioning that with this analysis we do not locate the exact ‘best’ run, we provide a range of potential 455 
combinations to test the WRF-Chem set-up. 456 



These results agree with the analysis in the model evaluation (Section 3.4). Figure 9 shows, in red colour, the higher probability 457 
that with low SVOC volatility distribution and low SVOC scaling would give a good model performance. However, there is 458 
no clear pattern with the other parameters. 459 

 460 

 461 

Figure 9. 2-d histogram for joint constraint effect (Total_OM and OC_ratio) accounting for emulator uncertainty. Retain 462 
52310 variants from 0.5 million emulations (~10.46%). 463 

 464 

3.5.5 Marginal parameter constraints.  465 

These plotsFigure 10 shows the marginal constraint (1-d projection) on the parameters over their ranges. The unconstrained 466 
sample (black) has even coverage (is sampled uniformly) across all parameter ranges and the parameter space. The 467 
unconstrained sample covers the full 10-d space. 468 

Where the probability density function (pdf) of the constrained sample is above the black unconstrained pdf, this means the 469 
likelihood of the parameter taking a value at that point of its range is increased on constraint (more probability). Where it is 470 



below, it is now less likely on constraint. (less probability). The more ‘squashed’ the unconstrained distribution is – the more 471 
the likelihood of the parameter taking values in the range with higher density is. This analysis is a useful tool to identify the 472 
more likely values of the 10 parameters over all the parameter space. Here, we can see that low SVOC volatility distribution 473 
and low SVOC are clear parameter values that we can use to improve the WRF-Chem model setup. Other parameters that we 474 
can start testing on WRF-Chem are; high BB VBS ageing rate (6) and BB IVOC scaling (9). It is worth highlighting the 475 
similarity of the effects on the anthropogenic and biomass burning parameters. 476 

 477 

Figure 10. Marginal Parameter Constraints: joint constraint effect (Total_OM and OC_ratio). 478 
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3.6 Analysis of model evaluation and emulator runs. 482 

Table 4 shows the WRF-Chem runs with both mean Org and mean O:C values close to AMS observations for the two periods 483 
and also selected runs from the 2-d histograms (Figure 9). Here we can see a couple of interesting findings. First, the O:C 484 
ratios presented a better performance with the model evaluation metrics; FAC2 values higher than 0.9 compared with FAC2 485 
values up to 0.73 for the Total OM. Looking at the Total OM, there are higher FAC2 values in the 2-4 pm period, which might 486 
be related to the structural errors impacting the model performance int eh full period. The MB provides an estimation of the 487 
over prediction of the Total_OM. In this study, WRF-Chem runs were in general overpredicting the Total OM concentrations. 488 
Hence, MB is an important metric. In both periods, there are runs where the overprediction was 5 µg.m-3 or lower, i.e, 489 
TRAIN110, TRANI121, TRAIN117, etc. This highlights the use of all the analysis presented in this study where we are able 490 
to identify probable values for the VBS model parameters and be able to model Total OM and O:C ratios. 491 

Table 34. Analysis of model evaluation metrics and comparison with observations for the full and 2-4 pm periods. The 492 
FAC2 ranking is based on high FAC2 values of the Total_OM analysis. Mean AMS values for the full period: OA = 21.77 493 
µg.m-3 and O:C = 0.5. Mean AMS values for 2-4 pm period: OA = 12.20 µg.m-3 and O:C = 0.67. 494 

Full period Total_OM O:C ratio 

model 
FAC2 

ranking 
FAC2 MB IOA 

Total_OM 
mean 

Total_OM 
SD 

FAC2 
ranking 

FAC2 MB IOA 
O:C ratio 

mean 
O:C ratio 

SD 

TRAIN110 1 0.62 2.23 0.45 23.75 16.58 27 0.94 -0.04 0.48 0.46 0.12 

TRAIN126 2 0.61 5.13 0.38 26.42 19.83 20 0.95 -0.04 0.51 0.46 0.11 

TRAIN119 5 0.60 9.54 0.31 30.83 22.05 7 0.97 -0.04 0.54 0.47 0.10 

TRAIN117 6 0.59 3.18 0.41 24.56 16.93 10 0.97 -0.01 0.53 0.49 0.11 

TRAIN009 8 0.59 10.54 0.30 68.50 36.13 15 0.96 -0.08 0.51 0.42 0.11 

TRAIN121 9 0.59 2.87 0.41 24.17 18.59 21 0.95 -0.05 0.50 0.45 0.11 

TRAIN104 11 0.58 5.77 0.39 24.17 18.59 8 0.97 -0.01 0.56 0.45 0.11 

VALID002 12 0.58 13.27 0.24 34.49 24.15 2 0.98 -0.08 0.52 0.43 0.09 

TRAIN003 13 0.57 12.65 0.24 33.73 23.56 6 0.97 0.00 0.55 0.50 0.12 

TRAIN127 16 0.56 4.78 0.37 26.12 20.02 5 0.97 -0.02 0.55 0.48 0.10 

2-4 pm period Total_OM O:C ratio 

model 
FAC2 

ranking 
FAC2 MB IOA 

Total_OM 
mean 

Total_OM 
SD 

FAC2 
ranking 

FAC2 MB IOA 
O:C ratio 

mean 
O:C ratio 

SD 

TRAIN127 1 0.73 4.37 0.44 15.64 10.72 3 0.99 0.02 0.51 0.50 0.06 

TRAIN121 3 0.72 1.02 0.48 14.48 11.67 7 0.98 0.00 0.52 0.44 0.08 

TRAIN126 4 0.72 4.35 0.43 15.77 9.35 12 0.98 0.01 0.50 0.46 0.08 

TRAIN110 5 0.70 2.03 0.53 13.45 9.42 23 0.96 0.02 0.47 0.45 0.09 

TRAIN036 11 0.69 5.13 0.40 17.23 12.85 1 1.00 0.03 0.51 0.52 0.05 

TRAIN117 13 0.68 1.27 0.47 16.66 14.80 5 0.99 0.04 0.48 0.51 0.08 

TRAIN104 14 0.68 5.50 0.47 16.41 11.18 14 0.98 0.03 0.47 0.54 0.06 

TRAIN115 16 0.68 3.27 0.39 18.17 15.48 6 0.99 0.05 0.46 0.51 0.06 

TRAIN119 19 0.67 7.12 0.35 18.96 11.26 10 0.98 0.01 0.51 0.49 0.07 

TRAIN058 20 0.67 8.52 0.33 22.12 19.15 13 0.98 0.05 0.48 0.56 0.04 

 495 

5 Conclusions 496 

In this study we aimed to determine an effective way of tuning the VBS scheme using observations, and also to learn about 497 
the processes controlling OA in Delhi. WRF-Chem model runs with the VBS setup that successfully span the OA 498 
concentrations and O:C ratios from AMS observations can be identified, with many model runs overestimating organic mass 499 
concentrations and underestimating the O:C ratios compared with AMS observations. However, we identified two structural 500 
errors in the model related to a combination of unsuitable diurnal activity cycles applied to the emissions and/or WRF-Chem 501 



not being able to capture completely the dynamics of the planetary boundary layer. It is worth mentioning that these structural 502 
errors might also be related to representation of other organic aerosol processes not represented by the VBS approach. Recent 503 
studies, for example, have examined particle-phase and multiphase chemistry in aqueous aerosols and clouds (Shrivastava et 504 
al., 2022), and reactions of SOA precursors with other radicals like chlorine relevant to Indian conditions (Gunthe et al., 2021).   505 

The structural errors prevented us from providing an optimised VBS approach in WRF-Chem. However, we were able to apply 506 
the emulator in two periods: the full period (1st -29th May) and the 2-4 pm period (14:00- 16:00 hrs, 1st-29th May) to present 507 
a methodology to evaluate a model performance using Gaussian emulators and metrics such as FAC2, IOA and MB. 508 
Optimization is a stage-by-stage process, future analysis would imply to do an emulation study to address diurnal activity and 509 
PBL directly, perhaps using NOx or total PM.  510 

The performance of the two emulators, the full period and the 2-4 pm period, was similar, with the two emulators performing 511 
a good prediction of the model outputs and presenting a similar high variance of the anthropogenic SVOC scaling (Parameter 512 
5). The model performance would highly improve if we are able to constrain the input values for the parameter 5. 513 

When looking at the emulator sensibility analysis, we identified that the parameter anthropogenic SVOC scaling has the highest 514 
contribution to the variance, with fractions higher than 70%. This suggests that constraining this parameter would lead to a 515 
reduction in the uncertainty in these outputs from the model. Anthropogenic SVOC volatility distribution has little impact on 516 
the fraction of variance to O:C ratios with a fraction of variance of around 15%. None of the parameters show a clear variance 517 
to improve the model performance. 518 

The model evaluation analysis based on FAC2, IOA and MB agreed with the emulator analysis in identifying that using low 519 
SVOC volatility distribution and low SVOC scaling would give improved model performance. Based on the MB analysis, for 520 
both the full and the 2-4 pm periods, there are runs where the Total OM overprediction was 5 ug.m-3 or lower, i.e, TRAIN110, 521 
TRANI121, TRAIN117, etc. This overprediction is considered low compared to the mean Total_OM concentrations of  ~20 – 522 
30  µg.m-3. Hence, we are able to identify probable values for the VBS model parameters and are able to model Total OM and 523 
O:C ratios in the range of the AMS observations. 524 

The combination of the emulator analysis and the model evaluation metrics (FAC2, IOA and mean bias) allowed us to identify 525 
the plausible parameter combinations for the analysed periods. The more plausible combinations were found to be with a low 526 
SVOC volatility distribution and low SVOC scaling, which means a more volatile distribution. The methodology presented in 527 
this study is shown to be a useful approach to determine the model uncertainty and determine the optimal parameterisation to 528 
the WRF-Chem VBS setup. This information is valuable to increase our understanding on secondary organic aerosol formation, 529 
which in turn will help to improve regional and global model simulations, emission inventories as well as making informed 530 
decisions towards the improvement of air quality in urban environments. 531 

Data availability 532 

Emission generation scripts: https://github.com/douglowe/WRF_UoM_EMIT 533 
Scripts for running WRF-Chem (and reducing the outputs to key diagnostics): 534 
https://github.com/douglowe/promote_wrfchem_scripts 535 
 536 
Scenario configuration files, and python script for calculating the “pseudo-age” of the emitted VBS: 537 
https://github.com/douglowe/PROMOTE_VBS_scenarios 538 
Scenario chemistry input files 539 
https://github.com/douglowe/PROMOTE_VBS_scenarios/tree/master/Scenario_Configurations/scenario_chemistry_files_A540 
ug2020 541 

 542 

https://github.com/douglowe/WRF_UoM_EMIT
https://github.com/douglowe/promote_wrfchem_scripts
https://github.com/douglowe/PROMOTE_VBS_scenarios
https://github.com/douglowe/PROMOTE_VBS_scenarios/tree/master/Scenario_Configurations/scenario_chemistry_files_Aug2020
https://github.com/douglowe/PROMOTE_VBS_scenarios/tree/master/Scenario_Configurations/scenario_chemistry_files_Aug2020


 543 

Financial support 544 

 545 
This research has been supported by the UK NERC and MoES, India through the PROMOTE project 546 

under the Newton Bhabha Fund programme “Air Pollution and Human Health in a Developing 547 

Megacity (APHH-India)”, NERC grant numbers NE/P016480/1 and, NE/P016405. M.S. was supported 548 

by the U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental 549 

Research (BER) through the Early Career Research Program. R.A.Z. acknowledges support from the 550 

Office of Science of the U.S. DOE through the Atmospheric System Research (ASR) program at Pacific 551 

Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle Memorial Institute 552 

under contract DE-AC06-76RLO 1830. This paper is based on interpretation of scientific results and in 553 

no way reflects the viewpoint of the funding agencies. 554 

Acknowledgements 555 

We acknowledge use of the WRF-Chem preprocessor tools mozbc, fire_emiss, bio_emiss and anthro_emiss, provided by the 556 
Atmospheric Chemistry Observations and Modeling Lab (ACOM) of NCAR. 557 

References 558 

Akherati, A., Cappa, C. D., Kleeman, M. J., Docherty, K. S., Jimenez, J. L., Griffith, S. M., Dusanter, S., Stevens, P. 559 
S., and Jathar, S. H.: Simulating secondary organic aerosol in a regional air quality model using the statistical 560 
oxidation model – Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic 561 
compounds and NOx, Atmos. Chem. Phys., 19, 4561-4594, 10.5194/acp-19-4561-2019, 2019. 562 
Archer-Nicholls, S., Lowe, D., Utembe, S., Allan, J., Zaveri, R. A., Fast, J. D., Hodnebrog, Ø., Denier van der Gon, 563 
H., and McFiggans, G.: Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online 564 
regional model, WRF-Chem, Geosci. Model Dev., 7, 2557-2579, 10.5194/gmd-7-2557-2014, 2014. 565 
Bellouin, N., Baker, L., Hodnebrog, Ø., Olivié, D., Cherian, R., Macintosh, C., Samset, B., Esteve, A., Aamaas, B., 566 
Quaas, J., and Myhre, G.: Regional and seasonal radiative forcing by perturbations to aerosol and ozone 567 
precursor emissions, Atmos. Chem. Phys., 16, 13885-13910, 10.5194/acp-16-13885-2016, 2016. 568 
Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H., Yttri, K. E., and Simpson, D.: Modelling of organic 569 
aerosols over Europe (2002&ndash;2007) using a volatility basis set (VBS) framework: application of different 570 
assumptions regarding the formation of secondary organic aerosol, Atmos. Chem. Phys., 12, 8499-8527, 571 
10.5194/acp-12-8499-2012, 2012. 572 
Bertram, T. H., and Thornton, J. A.: Toward a general parameterization of N<sub>2</sub>O<sub>5</sub> 573 
reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. 574 
Chem. Phys., 9, 8351-8363, 10.5194/acp-9-8351-2009, 2009. 575 
Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., 576 
Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., 577 
Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation 578 



Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, Chemical Reviews, 119, 3472-3509, 579 
10.1021/acs.chemrev.8b00395, 2019. 580 

 581 
Bran, S. H., and Srivastava, R.: Investigation of PM2.5 mass concentration over India using a regional climate 582 
model, Environmental Pollution, 224, 484-493, https://doi.org/10.1016/j.envpol.2017.02.030, 2017. 583 
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, 584 
E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio 585 
measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, 586 
and implications, Atmos. Chem. Phys., 15, 253-272, 10.5194/acp-15-253-2015, 2015. 587 
Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. O., Sarwar, G., Pinder, R. W., Pouliot, G. A., and Houyoux, 588 
M.: Model Representation of Secondary Organic Aerosol in CMAQv4.7, Environmental Science & Technology, 589 
44, 8553-8560, 10.1021/es100636q, 2010. 590 
Carslaw, K. S., Lee, L. A., Regayre, L. A., and Johnson, J. S.: Climate models are uncertain, but we can do 591 
something about it, Eos, 99, https://doi.org/10.1029/2018EO093757C, 2018. 592 
Cash, J. M., Langford, B., Di Marco, C., Mullinger, N. J., Allan, J., Reyes-Villegas, E., Joshi, R., Heal, M. R., Acton, 593 
W. J. F., Hewitt, C. N., Misztal, P. K., Drysdale, W., Mandal, T. K., Shivani, Gadi, R., Gurjar, B. R., and Nemitz, E.: 594 
Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical 595 
characterisation, source apportionment and new marker identification, Atmos. Chem. Phys., 21, 10133-10158, 596 
10.5194/acp-21-10133-2021, 2021. 597 
Chen, X., Zhang, Y., Zhao, J., Liu, Y., Shen, C., Wu, L., Wang, X., Fan, Q., Zhou, S., and Hang, J.: Regional modeling 598 
of secondary organic aerosol formation over eastern China: The impact of uptake coefficients of dicarbonyls and 599 
semivolatile process of primary organic aerosol, Science of The Total Environment, 793, 148176, 600 
https://doi.org/10.1016/j.scitotenv.2021.148176, 2021. 601 
Chen, Y., Wild, O., Conibear, L., Ran, L., He, J., Wang, L., and Wang, Y.: Local characteristics of and exposure to 602 
fine particulate matter (PM2.5) in four indian megacities, Atmospheric Environment: X, 5, 100052, 603 
https://doi.org/10.1016/j.aeaoa.2019.100052, 2020a. 604 
Chen, Y., Wild, O., Ryan, E., Sahu, S. K., Lowe, D., Archer-Nicholls, S., Wang, Y., McFiggans, G., Ansari, T., Singh, 605 
V., Sokhi, R. S., Archibald, A., and Beig, G.: Mitigation of PM2.5 and ozone pollution in Delhi: a sensitivity study 606 
during the pre-monsoon period, Atmos. Chem. Phys., 20, 499-514, 10.5194/acp-20-499-2020, 2020b. 607 
Chutia, L., Ojha, N., Girach, I. A., Sahu, L. K., Alvarado, L. M. A., Burrows, J. P., Pathak, B., and Bhuyan, P. K.: 608 
Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem simulation 609 
versus observations, Environmental Pollution, 252, 256-269, https://doi.org/10.1016/j.envpol.2019.05.097, 610 
2019. 611 
Ciarelli, G., Aksoyoglu, S., El Haddad, I., Bruns, E. A., Crippa, M., Poulain, L., Äijälä, M., Carbone, S., Freney, E., 612 
O'Dowd, C., Baltensperger, U., and Prévôt, A. S. H.: Modelling winter organic aerosol at the European scale with 613 
CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog 614 
chamber experiments, Atmos. Chem. Phys., 17, 7653-7669, 10.5194/acp-17-7653-2017, 2017. 615 
Crooks, M., Connolly, P., and McFiggans, G.: A parameterisation for the co-condensation of semi-volatile 616 
organics into multiple aerosol particle modes, Geosci. Model Dev., 11, 3261-3278, 10.5194/gmd-11-3261-2018, 617 
2018. 618 
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, 619 
J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., 620 

https://doi.org/10.1016/j.envpol.2017.02.030
https://doi.org/10.1029/2018EO093757C
https://doi.org/10.1016/j.scitotenv.2021.148176
https://doi.org/10.1016/j.aeaoa.2019.100052
https://doi.org/10.1016/j.envpol.2019.05.097


Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. 621 
S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-622 
Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., 623 
Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2 624 
(CESM2), Journal of Advances in Modeling Earth Systems, 12, e2019MS001916, 625 
https://doi.org/10.1029/2019MS001916, 2020. 626 
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., 627 
Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight 628 
aerosol mass spectrometer, Anal Chem, 78, 8281-8289, Doi 10.1021/Ac061249n, 2006. 629 
Denier van der Gon, H. A. C., Bergström, R., Fountoukis, C., Johansson, C., Pandis, S. N., Simpson, D., and 630 
Visschedijk, A. J. H.: Particulate emissions from residential wood combustion in Europe – revised estimates and 631 
an evaluation, Atmos. Chem. Phys., 15, 6503-6519, 10.5194/acp-15-6503-2015, 2015. 632 

Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled Partitioning, Dilution, and Chemical 633 
Aging of Semivolatile Organics, Environmental Science & Technology, 40, 2635-2643, 10.1021/es052297c, 2006. 634 
Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A., Hamilton, D. S., 635 
Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U., Luo, G., Makkonen, R., Matsui, H., 636 
Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., van Noije, T., Wang, H., Watson-Parris, D., 637 
Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari, S., Gysel-Beer, M., Kalivitis, N., Liu, X., 638 
Mahowald, N. M., Myriokefalitakis, S., Schrödner, R., Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu, F.: 639 
Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for 640 
cloud droplet formation, Atmos. Chem. Phys., 19, 8591-8617, 10.5194/acp-19-8591-2019, 2019. 641 
Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., and 642 
Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston 643 
using a fully coupled meteorology-chemistry-aerosol model, Journal of Geophysical Research: Atmospheres, 644 
111, https://doi.org/10.1029/2005JD006721, 2006. 645 
Fountoukis, C., Megaritis, A. G., Skyllakou, K., Charalampidis, P. E., Pilinis, C., Denier van der Gon, H. A. C., 646 
Crippa, M., Canonaco, F., Mohr, C., Prévôt, A. S. H., Allan, J. D., Poulain, L., Petäjä, T., Tiitta, P., Carbone, S., 647 
Kiendler-Scharr, A., Nemitz, E., O'Dowd, C., Swietlicki, E., and Pandis, S. N.: Organic aerosol concentration and 648 
composition over Europe: insights from comparison of regional model predictions with aerosol mass 649 
spectrometer factor analysis, Atmos. Chem. Phys., 14, 9061-9076, 10.5194/acp-14-9061-2014, 2014. 650 
Gadi, R., Shivani, Sharma, S. K., and Mandal, T. K.: Source apportionment and health risk assessment of organic 651 
constituents in fine ambient aerosols (PM2.5): A complete year study over National Capital Region of India, 652 
Chemosphere, 221, 583-596, https://doi.org/10.1016/j.chemosphere.2019.01.067, 2019. 653 
Ghosh, S., Verma, S., Kuttippurath, J., and Menut, L.: Wintertime direct radiative effects due to black carbon 654 
(BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE, Atmos. Chem. 655 
Phys., 21, 7671–7694, https://doi.org/10.5194/acp-21-7671-2021, 2021. 656 
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled 657 
“online” chemistry within the WRF model, Atmos Environ, 39, 6957-6975, 658 
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. 659 
Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical 660 
oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution, 661 
Atmos. Chem. Phys., 9, 1263-1277, 10.5194/acp-9-1263-2009, 2009. 662 

https://doi.org/10.1029/2019MS001916
https://doi.org/10.1029/2005JD006721
https://doi.org/10.1016/j.chemosphere.2019.01.067
https://doi.org/10.1016/j.atmosenv.2005.04.027


Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial 663 
isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 664 
6, 3181-3210, 10.5194/acp-6-3181-2006, 2006. 665 
Gunthe, S. S., Liu, P., Panda, U., Raj, S. S., Sharma, A., Darbyshire, E., Reyes-Villegas, E., Allan, J., Chen, Y., Wang, 666 
X., Song, S., Pöhlker, M. L., Shi, L., Wang, Y., Kommula, S. M., Liu, T., Ravikrishna, R., McFiggans, G., Mickley, L. J., 667 
Martin, S. T., Pöschl, U., Andreae, M. O., and Coe, H.: Enhanced aerosol particle growth sustained by high 668 
continental chlorine emission in India, Nat Geosci, 14, 77-84, 10.1038/s41561-020-00677-x, 2021. 669 
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., 670 
Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels 671 
from 1979 to present.  Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Copernicus, 672 
10.24381/cds.bd0915c6, 2018. 673 
Huang, L., Zhu, Y., Zhai, H., Xue, S., Zhu, T., Shao, Y., Liu, Z., Emery, C., Yarwood, G., Wang, Y., Fu, J., Zhang, K., 674 
and Li, L.: Recommendations on benchmarks for numerical air quality model applications in China – Part 1: 675 
PM2.5 and chemical species, Atmos. Chem. Phys., 21, 2725-2743, 10.5194/acp-21-2725-2021, 2021. 676 
World Air Quality: https://www.iqair.com/, access: 05/08/2021, 2021. 677 
Jain, S., Sharma, S. K., Vijayan, N., and Mandal, T. K.: Seasonal characteristics of aerosols (PM2.5 and PM10) and 678 
their source apportionment using PMF: A four year study over Delhi, India, Environmental Pollution, 262, 679 
114337, https://doi.org/10.1016/j.envpol.2020.114337, 2020. 680 
Jat, R., Gurjar, B. R., and Lowe, D.: Regional pollution loading in winter months over India using high resolution 681 
WRF-Chem simulation, Atmos Res, 249, 105326, https://doi.org/10.1016/j.atmosres.2020.105326, 2021. 682 
Johnson, J. S., Regayre, L. A., Yoshioka, M., Pringle, K. J., Lee, L. A., Sexton, D. M. H., Rostron, J. W., Booth, B. B. 683 
B., and Carslaw, K. S.: The importance of comprehensive parameter sampling and multiple observations for 684 
robust constraint of aerosol radiative forcing, Atmos. Chem. Phys., 18, 13031-13053, 10.5194/acp-18-13031-685 
2018, 2018. 686 
Johnson, J. S., Regayre, L. A., Yoshioka, M., Pringle, K. J., Turnock, S. T., Browse, J., Sexton, D. M. H., Rostron, J. 687 
W., Schutgens, N. A. J., Partridge, D. G., Liu, D., Allan, J. D., Coe, H., Ding, A., Cohen, D. D., Atanacio, A., Vakkari, 688 
V., Asmi, E., and Carslaw, K. S.: Robust observational constraint of uncertain aerosol processes and emissions in 689 
a climate model and the effect on aerosol radiative forcing, Atmos. Chem. Phys., 20, 9491-9524, 10.5194/acp-690 
20-9491-2020, 2020. 691 
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, 692 
B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., 693 
Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and 694 
global climate modelling: a review, Atmos. Chem. Phys., 5, 1053-1123, 10.5194/acp-5-1053-2005, 2005. 695 
Kompalli, S. K., Suresh Babu, S. N., Satheesh, S. K., Krishna Moorthy, K., Das, T., Boopathy, R., Liu, D., Darbyshire, 696 
E., Allan, J. D., Brooks, J., Flynn, M. J., and Coe, H.: Seasonal contrast in size distributions and mixing state of 697 
black carbon and its association with PM1.0 chemical composition from the eastern coast of India, Atmos. 698 
Chem. Phys., 20, 3965-3985, 10.5194/acp-20-3965-2020, 2020. 699 
Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic aerosol formation using the 700 
volatility basis-set approach in a chemical transport model, Atmos Environ, 42, 7439-7451, 701 
https://doi.org/10.1016/j.atmosenv.2008.06.026, 2008. 702 
Lee, H.-J., Jo, H.-Y., Song, C.-K., Jo, Y.-J., Park, S.-Y., and Kim, C.-H.: Sensitivity of Simulated PM2.5 Concentrations 703 
over Northeast Asia to Different Secondary Organic Aerosol Modules during the KORUS-AQ Campaign, 704 
Atmosphere, 11, 1004, 2020. 705 

https://www.iqair.com/
https://doi.org/10.1016/j.envpol.2020.114337
https://doi.org/10.1016/j.atmosres.2020.105326
https://doi.org/10.1016/j.atmosenv.2008.06.026


Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Emulation of a complex global aerosol 706 
model to quantify sensitivity to uncertain parameters, Atmos. Chem. Phys., 11, 12253-12273, 10.5194/acp-11-707 
12253-2011, 2011. 708 
Li, J.-L., Zhang, M.-G., Gao, Y., and Chen, L.: Model analysis of secondary organic aerosol over China with a 709 
regional air quality modeling system (RAMS-CMAQ), Atmospheric and Oceanic Science Letters, 9, 443-450, 710 
10.1080/16742834.2016.1233798, 2016. 711 
May, A. A., Levin, E. J. T., Hennigan, C. J., Riipinen, I., Lee, T., Collett Jr., J. L., Jimenez, J. L., Kreidenweis, S. M., 712 
and Robinson, A. L.: Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning, Journal 713 
of Geophysical Research: Atmospheres, 118, 11,327-311,338, https://doi.org/10.1002/jgrd.50828, 2013. 714 
Olivier, J., Peters, J., Granier, C., Pétron, G., Muller, J. F., and Wallens, S.: POET inventory - Metadata, GEIA-715 
ACCENT emission data portal, France, 2003. 716 
Reyes-Villegas, E., Green, D. C., Priestman, M., Canonaco, F., Coe, H., Prévôt, A. S. H., and Allan, J. D.: Organic 717 
aerosol source apportionment in London 2013 with ME-2: exploring the solution space with annual and 718 
seasonal analysis, Atmos. Chem. Phys., 16, 15545-15559, 10.5194/acp-16-15545-2016, 2016. 719 
Reyes-Villegas, E., Panda, U., Darbyshire, E., Cash, J. M., Joshi, R., Langford, B., Di Marco, C. F., Mullinger, N. J., 720 
Alam, M. S., Crilley, L. R., Rooney, D. J., Acton, W. J. F., Drysdale, W., Nemitz, E., Flynn, M., Voliotis, A., 721 
McFiggans, G., Coe, H., Lee, J., Hewitt, C. N., Heal, M. R., Gunthe, S. S., Mandal, T. K., Gurjar, B. R., Shivani, Gadi, 722 
R., Singh, S., Soni, V., and Allan, J. D.: PM1 composition and source apportionment at two sites in Delhi, India, 723 
across multiple seasons, Atmos. Chem. Phys., 21, 11655-11667, 10.5194/acp-21-11655-2021, 2021. 724 
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., 725 
Pierce, J. R., and Pandis, S. N.: Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging, 726 
Science, 315, 1259-1262, doi:10.1126/science.1133061, 2007. 727 
Shivani, Gadi, R., Sharma, S. K., and Mandal, T. K.: Seasonal variation, source apportionment and source 728 
attributed health risk of fine carbonaceous aerosols over National Capital Region, India, Chemosphere, 237, 729 
124500, https://doi.org/10.1016/j.chemosphere.2019.124500, 2019. 730 
Shrivastava, M., Fast, J., Easter, R., Gustafson Jr, W. I., Zaveri, R. A., Jimenez, J. L., Saide, P., and Hodzic, A.: 731 
Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility 732 
basis set approach, Atmos. Chem. Phys., 11, 6639-6662, 10.5194/acp-11-6639-2011, 2011. 733 
Shrivastava, M., Berg, L. K., Fast, J. D., Easter, R. C., Laskin, A., Chapman, E. G., Gustafson Jr., W. I., Liu, Y., and 734 
Berkowitz, C. M.: Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field 735 
study, Journal of Geophysical Research: Atmospheres, 118, 1343-1360, https://doi.org/10.1029/2012JD018218, 736 
2013. 737 
Shrivastava, M., Andreae, M. O., Artaxo, P., Barbosa, H. M. J., Berg, L. K., Brito, J., Ching, J., Easter, R. C., Fan, J., 738 
Fast, J. D., Feng, Z., Fuentes, J. D., Glasius, M., Goldstein, A. H., Alves, E. G., Gomes, H., Gu, D., Guenther, A., 739 
Jathar, S. H., Kim, S., Liu, Y., Lou, S., Martin, S. T., McNeill, V. F., Medeiros, A., de Sá, S. S., Shilling, J. E., 740 
Springston, S. R., Souza, R. A. F., Thornton, J. A., Isaacman-VanWertz, G., Yee, L. D., Ynoue, R., Zaveri, R. A., 741 
Zelenyuk, A., and Zhao, C.: Urban pollution greatly enhances formation of natural aerosols over the Amazon 742 
rainforest, Nature Communications, 10, 1046, 10.1038/s41467-019-08909-4, 2019. 743 
Shrivastava, M., Rasool, Q. Z., Zhao, B., Octaviani, M., Zaveri, R. A., Zelenyuk, A., Gaudet, B., Liu, Y., Shilling, J. E., 744 
Schneider, J., Schulz, C., Zöger, M., Martin, S. T., Ye, J., Guenther, A., Souza, R. F., Wendisch, M., and Pöschl, U.: 745 
Tight Coupling of Surface and In-Plant Biochemistry and Convection Governs Key Fine Particulate Components 746 
over the Amazon Rainforest, ACS Earth and Space Chemistry, 6, 380-390, 10.1021/acsearthspacechem.1c00356, 747 
2022. 748 

https://doi.org/10.1002/jgrd.50828
https://doi.org/10.1016/j.chemosphere.2019.124500
https://doi.org/10.1029/2012JD018218


Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.: Effects of gas particle 749 
partitioning and aging of primary emissions on urban and regional organic aerosol concentrations, Journal of 750 
Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2007JD009735, 2008. 751 
Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Farren, N. J., Hopkins, J. R., Ward, M. W., Swift, S. J., 752 
Arya, R., Mondal, A., Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K., Yunus, S. S. M., Hewitt, C. N., Nemitz, E., 753 
Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N., Rickard, A. R., Lee, J. D., Mandal, T. K., and Hamilton, J. F.: 754 
Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, 755 
India, Atmos. Chem. Phys., 21, 2407-2426, 10.5194/acp-21-2407-2021, 2021a. 756 
Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Hopkins, J. R., Yunus, S. S. M., Hewitt, C. N., Nemitz, 757 
E., Mandal, T. K., Gadi, R., Sahu, L. K., Rickard, A. R., Lee, J. D., and Hamilton, J. F.: Comprehensive organic 758 
emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel 759 
combustion in Delhi, India, Environmental Science: Atmospheres, 1, 104-117, 10.1039/D0EA00009D, 2021b. 760 
Tilmes, S., Hodzic, A., Emmons, L. K., Mills, M. J., Gettelman, A., Kinnison, D. E., Park, M., Lamarque, J.-F., Vitt, F., 761 
Shrivastava, M., Campuzano-Jost, P., Jimenez, J. L., and Liu, X.: Climate Forcing and Trends of Organic Aerosols 762 
in the Community Earth System Model (CESM2), Journal of Advances in Modeling Earth Systems, 11, 4323-4351, 763 
https://doi.org/10.1029/2019MS001827, 2019. 764 
Topping, D., Connolly, P., and McFiggans, G.: Cloud droplet number enhanced by co-condensation of organic 765 
vapours, Nat Geosci, 6, 443-446, 10.1038/ngeo1809, 2013. 766 
Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y., Bauer, S. E., 767 
Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M., Curci, G., 768 
Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, 769 
J. W., Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, 770 
N., Morcrette, J. J., Müller, J. F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J. E., Pozzoli, L., 771 
Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., 772 
Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen, 773 
K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., and Zhang, X.: The AeroCom 774 
evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14, 10845-10895, 775 
10.5194/acp-14-10845-2014, 2014. 776 
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L., and Pandis, S. N.: 777 
Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City 778 
metropolitan area, Atmos. Chem. Phys., 10, 525-546, 10.5194/acp-10-525-2010, 2010. 779 
Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., and Lelieveld, J.: Global combustion sources of organic aerosols: 780 
model comparison with 84 AMS factor-analysis data sets, Atmos. Chem. Phys., 16, 8939-8962, 10.5194/acp-16-781 
8939-2016, 2016. 782 
von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, A., Morgan, W. T., 783 
Paasonen, P., Righi, M., Sindelarova, K., and Sutton, M. A.: Chemistry and the Linkages between Air Quality and 784 
Climate Change, Chemical Reviews, 115, 3856-3897, 10.1021/acs.chemrev.5b00089, 2015. 785 
Watson, L. A., Shallcross, D. E., Utembe, S. R., and Jenkin, M. E.: A Common Representative Intermediates (CRI) 786 
mechanism for VOC degradation. Part 2: Gas phase mechanism reduction, Atmos Environ, 42, 7196-7204, 787 
https://doi.org/10.1016/j.atmosenv.2008.07.034, 2008. 788 
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire 789 
INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, 790 
Geosci. Model Dev., 4, 625-641, 10.5194/gmd-4-625-2011, 2011. 791 

https://doi.org/10.1029/2007JD009735
https://doi.org/10.1029/2019MS001827
https://doi.org/10.1016/j.atmosenv.2008.07.034


Wild, O., Voulgarakis, A., O'Connor, F., Lamarque, J. F., Ryan, E. M., and Lee, L.: Global sensitivity analysis of 792 
chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity, Atmos. Chem. 793 
Phys., 20, 4047-4058, 10.5194/acp-20-4047-2020, 2020. 794 
Willmott, C. J., Robeson, S. M., and Matsuura, K.: A refined index of model performance, International Journal 795 
of Climatology, 32, 2088-2094, https://doi.org/10.1002/joc.2419, 2012. 796 
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry 797 
(MOSAIC), Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2007JD008782, 2008. 798 
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., 799 
Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, 800 
J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, 801 
S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. 802 
Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in 803 
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys Res Lett, 34, L13801, Artn L13801 804 
Doi 10.1029/2007gl029979, 2007. 805 
Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M., Shilling, J. E., Zaveri, R. A., Wang, J., Andreae, M. 806 
O., Zhao, C., Gaudet, B., Liu, Y., Fan, J., and Fast, J. D.: High concentration of ultrafine particles in the Amazon free 807 
troposphere produced by organic new particle formation, Proc Natl Acad Sci U S A, 117, 25344-25351, 808 
10.1073/pnas.2006716117, 2020. 809 
Zhao, B., Fast, J. D., Donahue, N. M., Shrivastava, M., Schervish, M., Shilling, J. E., Gordon, H., Wang, J., Gao, Y., Zaveri, 810 
R. A., Liu, Y., and Gaudet, B.: Impact of Urban Pollution on Organic-Mediated New-Particle Formation and Particle 811 
Number Concentration in the Amazon Rainforest, Environ Sci Technol, 55, 4357-4367, 10.1021/acs.est.0c07465, 2021. 812 

https://doi.org/10.1002/joc.2419
https://doi.org/10.1029/2007JD008782

