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Abstract. The Tropospheric Monitoring Instrument (TROPOMI) on the Copernicus Sentinel 5 Precursor (S5P) satellite, 10 

launched in October 2017, provides a wealth of atmospheric composition data, including total columns of carbon monoxide 

(TCCO) at high horizontal resolution (5.5 km x 7 km). Near-real time TROPOMI TCCO data have been monitored in the 

global data assimilation system of the Copernicus Atmospheric Monitoring Service (CAMS) since November 2018 to assess 

the quality of the data. The CAMS system already routinely assimilates TCCO data from the Measurement of Pollution in the 

Troposphere (MOPITT) instrument and the Atmospheric Sounding Interferometer (IASI) outside the polar regions. In the 15 

global mean, CAMS TCCO analysis values are about 10% lower than TROPOMI TCCO when only IASI and MOPITT thermal 

infrared (TIR) TCCO data are assimilated (averaged over the period November 2018 to Dec 2021), with the largest relative 

differences (11-14%) found in the polar latitude bands, i.e., the areas where no satellite CO retrievals are assimilated in the 

global CAMS system. Most of these differences are due to a low TCCO bias of the CAMS model, rather than a high bias of 

TROPOMI. 20 

 

The assimilation of NRT TROPOMI TCCO data in the CAMS system was tested for the period 2021-07-06 to 2021-12-31, 

i.e., after the TROPOMI algorithm update to version 02.02.00 in July 2021. It leads to a much-improved CO analysis field, 

with increased CO values and improved fit to independent observations, such as IAGOS aircraft profiles, NDACC FTIR 

tropospheric and total column CO data, as well as surface CO data from the Air Now, AirBase and Chinese air quality 25 

networks. The largest absolute and relative changes from the assimilation of TROPOMI CO, in addition to the already 

assimilated IASI and MOPITT TIR TCCO data, are found in the lower and mid troposphere, i.e., that part of the atmosphere 

that is not already well constrained by the already assimilated TIR MOPITT and IASI data. The largest impact near the surface 

comes from clear-sky TROPOMI data over land, and additional vertical information comes from the retrievals of 

measurements in cloudy conditions. 30 

 

July and August 2021 saw record numbers of boreal wildfires over North America and Russia leading to large amounts of CO 

being released into the atmosphere. The CAMS CO analysis captures the high CO columns resulting from these fires and also 

shows plumes of high CO from the boreal wildfires that are transported from Siberia over the North Pole and from North 

America over the North Atlantic reaching as far as Europe, even though some of the high CO values detected in the upper 35 

troposphere by IAGOS aircraft that intersected parts of the plumes are not quite reached in the CAMS CO analysis. 

1 Introduction 

The Copernicus Atmosphere Monitoring Service (CAMS, atmosphere.copernicus.eu), implemented by the European Centre 

for Medium Range Weather Forecasts (ECMWF) as part of the European Union’s Copernicus Programme, produces daily 
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global near-real time (NRT) forecasts of atmospheric composition up to five days ahead. To improve the quality of the CAMS 

forecasts the initial conditions for some of the chemical species, including Carbon Monoxide (CO), Nitrogen Dioxide (NO2), 

Ozone (O3), Sulphur Dioxide (SO2) and for aerosols are provided by assimilating satellite retrievals of atmospheric 

composition using ECMWF’s 4-dimensional variations (4D-Var) data assimilation system (Remy et al., 2019; Inness et al., 

2019a, 2019b, 2015a; Benedetti et al., 2009). The CAMS global NRT system is constantly advanced and improved through 5 

updates to the chemical scheme, the NWP model, and by including additional satellite retrievals from new satellite instruments 

as they become available, as documented in Inness et al. (2019b). 

 

A wealth of new atmospheric composition data became available with the launch of the Sentinel 5-Precursor (S5P) satellite in 

October 2017. S5P carries the TROPOspheric Monitoring Instrument (TROPOMI) which provides high-resolution spectral 10 

measurements in the ultraviolet (UV), visible (VIS), near infrared (NIR) and shortwave-infrared (SWIR) part of the spectrum. 

This wide spectral range allows the retrieval of several atmospheric pollutants species, including O3, NO2, SO2 and 

Formaldehyde (HCHO) from the UVVIS, and CO and Methane (CH4) from the SWIR part of the spectrum (Veefkind et al, 

2012). These species are all forecast by the CAMS global system, making TROPOMI the perfect instrument to provide 

observations for the CAMS NRT analysis at unprecedented horizontal resolution of about 5.5 km x 3.5 km for the species 15 

retrieved in the UV/VIS and 5.5 km x 7 km for CO and CH4 retrieved from the SWIR. TROPOMI S5P has been operational 

since April 2018, and TROPOMI NRT CO data have been routinely monitored in the CAMS global NRT system since 

November 2018. 

 

Carbon monoxide has natural and anthropogenic sources (Seinfeld and Pandis, 2006; Kanakidou and Crutzen, 1999). Its main 20 

sources are incomplete fossil fuel and biomass burning (Worden et al., 2013), which lead to enhanced surface concentrations, 

and in-situ production via the oxidation of CH4, isoprene and other organic trace gases. Combustion and chemical in-situ 

sources can produce similar amounts of CO on the global scale (Gaubert et al., 2016) but vary in space and time because of 

the changing distribution of anthropogenic and wildfire CO emissions as well as of the biogenic isoprene emissions. In seasonal 

means, the largest CO concentrations are found over the industrial regions of Asia, North America and Europe, and over the 25 

tropical biomass burning areas. However, in areas with large biogenic emissions (e.g., tropical forests), oxidation of biogenic 

volatile organic compounds (VOCs) contributes strongly to the production of CO (Griffin et al. 2007). Hudman et al. (2008) 

found that over the Eastern US during summer the biogenic sources of CO were higher than the anthropogenic ones. Boreal 

and Austral wildfires can also lead to increased CO abundances outside the tropics. Tropical and extratropical wildfires show 

large inter annual variability leading to pronounced CO anomalies in certain years (Flemming and Inness, 2021; Inness et al., 30 

2015b). The main loss process for CO is the reaction with the hydroxyl radical (OH). CO surface concentrations are higher 

during local winter than during the summer months because of the shorter CO lifetime in summer due to higher OH 

concentrations and more intense mixing processes. Tropical biomass burning is most intense during the dry season (December-

April in the Northern Hemisphere (NH) tropics, July-October in the Southern Hemisphere (SH) tropics). CO has a lifetime of 

several weeks and can serve as a tracer for regional and inter-continental transport of polluted air. CO is an indirect short-lived 35 

climate forcer because it is an important precursor for tropospheric ozone (Szopa et al., 2021, section 6.3.3.2), and because it 

impacts OH, which controls the lifetime of CH4. 

 

Before new data can be assimilated in the CAMS NRT analysis, the quality of the data in relation to the current system must 

be established. This is usually done by including the data passively in the data assimilation system, so that statistics of the 40 

differences between the observations and collocated model fields can be calculated without the data influencing the analysis 

and subsequent forecast (Inness et al., 2019b, Garrigues et al., 2022). We call this ‘monitoring’ of the observations. The model 

fields are interpolated in time and space to the location of the observations, and the model equivalents of the observations are 
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calculated, e.g., by applying the averaging kernels of the observations to the model fields. Temporal and spatial statistics of 

the differences between the model fields and the observations can then be analysed.  

 

The differences between the observations and the model equivalents are called departures. We distinguish between first-guess 

departures (observations minus model first-guess field) and analysis departures (observations minus analysed field). The first-5 

guess field is the model forecast from the previous analysis, i.e., before the fields are changed by the analysis increments. 

Long-term monitoring of the departures can disclose errors and biases in the satellite data products, as well as errors or biases 

in the model. Because the departures are usually small, they show up changes more clearly than when looking at the absolute 

model fields or observation values. A sudden jump on a global scale, which is larger than the instrument noise, can be an 

indication of problems in the observations or the model. The advantage of using an assimilation system to monitor satellite 10 

data is that it provides continuous global coverage and allows us to build up global and regional statistics quickly.  If the 

monitoring results show the data to be of good quality, i.e., departures are stable, there are no sudden jumps, the biases with 

respect to the model are not too large, assimilation tests with the data begin, followed by the operational use of the data in the 

CAMS global NRT system. 

 15 

Initial work about the use of early TROPOMI CO data in the CAMS system was published in an ECMWF technical 

memorandum (Inness et al., 2019c) but not in a peer reviewed publication. The current work makes use of a much longer 

timeseries and more mature retrieval version of TROPOMI CO data, contains a lot of additional work, and documents the 

preparation of the global CAMS NRT system for the routine NRT assimilation of TROPOMI total columns CO (TCCO) data. 

For this, we assess the NRT TROPOMI TCCO product and compare it with the global CAMS NRT CO analysis for the period 20 

from 19 November 2018 to 31 December 2021, and we present results from assimilation tests with the NRT TROPOMI TCCO 

data for the period 6 July to 31 December 2021. The paper is structured in the following way. Section 2 describes the CAMS 

model and data assimilation system as well as the NRT TROPOMI TCCO data product and how the data are included in the 

global CAMS system. Section 3 shows results from the monitoring of TROPOMI TCCO data with the NRT CAMS system, 

and Section 4 shows results from assimilation tests with the TROPOMI TCCO data, validating the resulting CO analyses with 25 

independent observations. Section 5 gives the conclusions. 

 

2 Model and Observations 

2.1 CAMS system and CO analysis 

2.1.1 CAMS model and data assimilation system 30 

The CAMS model and data assimilation system is a specific configuration based on ECMWF’s integrated Forecast System 

(IFS). The chemical mechanism of the IFS versions used between 2018 and 2021 is an extended version of the Carbon Bond 

Mechanism 5 (CB05, Huijnen et al. 2010) as implemented in Chemical Transport Model (CTM) Transport Model 5 (TM5). It 

is documented in Flemming et al. (2015, 2017) and more recent updates in Inness et al. (2019a) and Huijnen et al. (2019). 

CB05 is a tropospheric chemistry scheme with 57 species and 131 reactions. The horizontal resolution of the CAMS model is 35 

approximately 40 km (T511 linear spectral truncation and 0.35° by 0.35° grid), i.e., coarser than the resolution of the 

TROPOMI data. 

 

The NRT global CAMS system has used CAMS-GLOBANT anthropogenic emissions (Granier et al., 2019) since July 2019 

and used MACCity anthropogenic emissions (Granier et al., 2011) before then.  Biomass burning emissions have come from 40 

the Global Fire Assimilation System V1.4 (GFAS, Kaiser et al., 2012) since October 2020 and were GFAS V1.2 before. 
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Biogenic emissions are from CAMS-GLOBBIO since July 2019, based on the Model of Emissions of Gases and Aerosols 

from Nature (MEGAN, Guenther et al., 2006), and from MEGAN_MACC, a different application of the MEGAN model, 

before then (see also Table 2 below for CAMS model changes). 

 

The IFS uses an incremental four-dimensional variational (4D-Var) data assimilation system going back to Courtier et al. 5 

(1994). In the current CAMS 4D-Var setup, a cost function that measures the differences between the model fields and the 

observations is minimized to obtain the best possible forecast through the length of the assimilation window by adjusting the 

initial conditions. Several atmospheric composition fields, including CO, are included in the control vector and minimized 

together with the meteorological control variables. The data assimilation methodology for the atmospheric composition fields 

remains unchanged to the one described in Inness et al. (2015a) but the background errors for CO were updated in July 2019 10 

(Figure 1).  CAMS uses 12-hour assimilation windows from 03 UTC to 15 UTC and 15 UTC to 3 UTC, and two minimisations 

at spectral truncations T95 (~ 210 km) and T159 (~ 110 km). 

 

TCCO products from IASI and MOPITT instruments are routinely assimilated in the CAMS NRT system (see Table 1). The 

MOPITT data used by CAMS are the thermal infrared (TIR) MOPITT retrievals from the 4.7 µm band (Deeter et al., 2017, 15 

2019, 2021). IASI TCCO is retrieved from the same band (spectral range 2143-2181.25 cm-1), and the data used during the 

period covered in this paper are produced by Eumetsat using LATMOS/ULB’s Fast Optimal Retrievals on Layers for IASI 

(FORLI, v20151001) algorithm, documented in George et al. (2009) and Clerbaux et al. (2009).  The TIR retrievals have the 

largest sensitivity to CO in the mid troposphere (Deeter et al., 2013; George et al., 2015). In the CAMS system IASI and 

MOPITT TCCO data are thinned to a horizontal resolution of 0.5° x 0.5° by randomly selecting one observation in each grid 20 

cell. 

 
Table 1: Satellite TCCO data products used or monitored in the global CAMS NRT system since November 2018. VarBC stands for 
variational bias correction, LAT denotes latitude, SOE solar elevation, QF the overall quality flags given by the data providers 
(QF=0 for good data) and qa_value a quality assurance flag given in the TROPOMI data. 25 

Instrument/ Satellite Data provider/ version Blacklist criteria / 

thinning 

VarBC 

Predictors for CO 

Reference 

IASI/ 

Metop-A (until 20191031) 

Metop-B 

Metop-C (since 20191101) 

Eumetsat,  

NRT 

QF>0 

Abs(LAT)<65⁰ 

SOE<5⁰ 

Thinned to 0.5⁰x0.5⁰ 

Global constant,  

1000-300 hPa thickness,  

thermal contrast (over 

land) 

George et al. (2009), 

Clerbaux et al. (2009) 

MOPITT/Terra (TIR) NASA,   

V7 NRT (until 20190630) 

V8 NRT (until 20211009) 

V9 NRT (since 20211010) 

QF>0 

Abs(LAT)<65⁰ 

Night-time data over Greenland 

Thinned to 0.5⁰x0.5⁰ 

Not applied  

Deeter et al. (2017) 

Deeter et al. (2019) 

Deeter et al. (2021) 

TROPOMI/ 

Sentinel-5P 

ESA/ SRON 

NRT (see Table 3) 

qa_value<0.5 

LAT<60⁰S 

Clear data over ocean 

Super-obbed to T511 (see 

section 2.3) 

Not applied Landgraf et al. (2016) 

 

The observation operator for TCCO in the CAMS system applies the averaging kernels of the observations to the model fields 

and calculates the model equivalent at the observation location and time, giving departures between the observations and the 

model as: 

𝑑 = 𝑦 − 𝐻&(𝑥!)          (1) 30 

Here, d is the departure between observation and model equivalent in observation space, y the TCCO retrieval, 𝐻& the 

observation operator to calculate the model equivalent of the observations from the 137 model level fields (xm). Neglecting 
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any error terms, the TCCO retrievals can be written using the averaging kernel A, that relates the true vertical CO profile xt 

to the retrieved total columns 

𝑦 = 𝑥"# + 𝐴,𝑥$ − 𝑥"#	.                                                                                                         (2) 

where xap is an apriori profile used in the retrieval of y. In the observation operator we apply the averaging kernels A to the 

model profiles, xm, to smooth the model profiles according to the sensitivity of the retrievals. This means Equation (1) can be 5 

written as 

𝑑 = 𝑥"# + 𝐴,𝑥$ − 𝑥"#	. −	/𝑥"# + 𝐴,𝐻(𝑥!) 	− 𝑥"#	.0 = 𝐴(𝑥$ −𝐻(𝑥!))        .                (3) 

where H is an operator to calculate CO layers from the model profiles on the vertical grid of the apriori. Using this observation 

operator, we remove the influence of the a-priori profile in the calculation of the departures, but knowledge of the a-priori 

profile is still needed in the observation operator calculations for IASI and MOPITT TCCO retrievals.  10 

 

A variational bias correction (VarBC) scheme (Dee and Uppala, 2009), where biases are estimated during the analysis by 

including bias parameters in the control vector, is used for the TCCO IASI data. In this scheme, the bias corrections are 

continuously adjusted to optimize the consistency with all information used in the analysis. VarBC is applied to the IASI 

TCCO data, with three predictors: (1) the thickness of the 1000-300 hPa layer, (2) the thermal contrast between the surface 15 

temperature and the temperature of the lowest model level over land, and (3) a global constant. MOPITT TCCO data are used 

to ‘anchor’ the bias correction, i.e., are assimilated without bias correction. Experience has shown that it is important to anchor 

the variational bias correction scheme, to avoid drifts in the model fields (Inness et al., 2013). MOPITT is used as the anchor 

for ‘historical’ reasons. It was the first instrument assimilated in the early CAMS system, and the assimilation of IASI CO was 

added later.  20 

 

The CAMS NRT model and data assimilation system is continually improved as the NWP model and the chemical scheme are 

further developed and new satellite data are added. Table 2 lists the model upgrades that were implemented during the period 

discussed in this paper. The change to model CY46R1 on 2021-07-09 had a big impact on the CO analysis field and led to 

increased negative biases (see Fig. 3 below), likely to be linked to the change of the emission inventories. 25 

 

In the CAMS 4D-var data assimilation system, the background error covariance matrix is given in a wavelet formulation 

(Fisher, 2004, 2006). This allows both spatial and spectral variations of the background error covariances. The background 

errors for CO used in model cycles CY46R1-CY47R2 (OLDBGE) were calculated using the National Meteorological Center 

(NMC) method (Parrish and Derber, 1992). For this, 150 days of 2-day IFS forecasts (using a 137L configuration of CY45R1) 30 

were run, and differences between pairs of 24- and 48-hour forecast fields were calculated whose statistical characteristics 

serve as proxy for the background errors. For model CY47R3 new CO background errors were calculated (NEWBGE), again 

with the NMC method, but with a newer model configuration (CY47R1), again using 150 days of 2-day forecasts.  

 

Figure 1 shows the globally averaged vertical CO background error standard deviation profiles and the horizontal correlation 35 

profiles from NEWBGE and OLDBGE. NEWBGE standard deviation values are smaller than OLDBGE ones in the 

troposphere below model level 80 (about 260 hPa) and larger between model levels 80 and 65 (about 260 - 130  hPa). This 

means that tropospheric CO increments will be smaller with NEWBGE (assuming the data and all other model settings are the 

same), as the background is penalized less in the 4D-var analysis with NEWBGE than with OLDBGE. The global mean 

horizontal correlations are longer for NEWBGE than OLDBGE in the boundary layer (below model level 120, about 920 hPa), 40 

but shorter above. The horizontal correlations are longest over the continents at the surface, in the Tropics in the free 

troposphere, and in mid-latitudes around 200 hPa (not shown). The CO background errors are univariate, i.e., the error 
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covariance matrix between CO and other chemical species or dynamical fields is diagonal. They are also constant in time, and 

globally averaged vertical background error standard deviation profiles are used in the 4D-var procedure.   

  
Table 2: CAMS model cycles used between November 2018 and December 2021 and changes relevant for CO. The horizontal 
resolution of the global CAMS model was Tl511 throughout the period. More details about model upgrades can be found on 5 
https://confluence.ecmwf.int/display/CKB/CAMS%3A+Global+atmospheric+composition+forecast+data+documentation#CAMS:
Globalatmosphericcompositionforecastdatadocumentation-EvolutionoftheCAMSglobalforecastingsystem).  

In operation from Model cycle Model changes affecting CO  

2018-06-26 CY45R1 Using MACCity (anthropogenic) and MEGAN_MACC (biogenic) emissions 

Super-obbing used with sobmin=1, no separate super-obbing for clear and cloudy data 

2019-07-09 CY46R1 Vertical resolution change from 60L to 137L, including new background errors for 

137L 

New emissions inventories: CAMS_GLOB_ANT v2.1 (anthropogenic) and 

CAMS_GLOB_BIO v1.1 (biogenic) 

Biomass-burning injection heights from GFAS used and updated diurnal cycle 

Online calculation of dry deposition velocities for trace gases 

Updates to wet deposition parameterisations 

Updates to chemical reaction rates 

Super-obbing used with sobmin=6, separate super-obbing for clear and cloudy data 

2020-10-06 CY47R1 Updated emissions inventories: CAMS_GLOB_ANT v4.2 (anthropogenic)  

Update to GFASv1.4 biomass-burning emissions 

Excluded agricultural waste burning from CAMS_GLOB_ANT, avoiding double-

counting with GFAS 

Super-obbing used with sobmin=1, separate super-obbing for clear and cloudy data 

2021-05-18 CY47R2 None 

2021-10-12 CY47R3 Updated background error statistics 
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Figure 1: Profiles of globally averaged CO (a) background error standard deviation and (b) horizontal background error correlation 
profiles used from CY46R1 to CY47R2 (black, OLDBGE) and in CY47R3 (red, NEWBGE Model level 137 is the surface, model 
level 1 the top of the atmosphere and model 60 around 100 hPa. 

2.1.2 Quality of CAMS CO analysis fields 

CAMS NRT data are routinely validated, and validation reports are produced every three months 5 

(https://atmosphere.copernicus.eu/global-services, e.g., Errera et al., 2021). These reports show that the seasonality of the CO 

field is reproduced well by the global CAMS NRT system, i.e., currently still without the assimilation of TROPOMI data, 

when compared with independent data. However, the CAMS CO data generally have a negative bias. Compared to IAGOS 

aircraft CO data the NRT CAMS data show the largest underestimations in the lower troposphere, while upper layers show a 

better agreement. On average, the modified normalised mean biases (MNMB) with respect to IAGOS CO range between -10 

10% and 5% while correlations are mostly between 40 and 60% (e.g., Errera et al., 2021). Figure 2 shows profiles of seasonal 

mean relative differences between CAMS profiles and IAGOS (In-service Aircraft for a Global Observing System, 

www.iagos.org) CO profiles (Nedelec et al., 2003) at Frankfurt airport and averaged over airports in the Eastern United States. 

These airports were chosen because they had the best data coverage for the period discussed in this paper. Figure 2 shows that 

the largest relative errors are found in the lower troposphere, with negative biases between -15% and -25% in all seasons. 15 

Differences above 700 hPa vary between -5% and -15%. Comparisons with IAGOS cruise level data given in the CAMS 

validation reports showed mostly negative biases for CAMS data in September, October, November (SON) and March, April, 

May (MAM) 2021, and no systematic biases in June, July, August (JJA) 2021 and December, January, February (DJF) 

2020/2021 when positive and negative biases within ±20% were found in most regions (Errera et al., 2021).  

 20 

Errera et al., (2021) documents that biases against GAW CO surface observations are within -8% for European GAW stations 

and Asian stations, and around -16% for stations located in the Southern Hemisphere. Their comparisons with EEA Airbase 

surface observations in Europe shows high temporal correlations, small biases over Belgium, Germany, Austria, Switzerland, 

and larger negative biases Spain (-30%), Estonia (-30%), Poland (-50%), the Czech Republic (-60%) and Bulgaria (-65%).   

 25 

Compared to NDACC FTIR tropospheric column CO data (Figure 3) the CAMS NRT system underestimates the tropospheric 

CO column in the Northern Hemisphere (NH). This negative bias increased in July 2019 after the CAMS model upgrade to 

CY46R1 to between -3 to -15 % for most station and is larger than the reported 3% measurement uncertainty. Compared with 

MOPITT and IASI TCCO data, the CAMS validation reports (e.g., Errera et al., 2021) find negative biases of up to -20% and 

-30% respectively. These also increased after the CAMS model upgrade to CY46R1 in July 2019.  The negative CO bias of 30 

the CAMS model is even more pronounced in experiments without CO data assimilation (Errera et al., 2021). 
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Figure 2: Seasonal mean relative CO biases (%) from the CAMS NRT analysis against IAGOS aircraft data at (a) Frankfurt airport 
and (b) averaged over North American airports. Shown are (model - observation)/observation*100 for December, January, 
February (DJF), March, April, May (MAM), June, July, August (JJA) and September, October, November (SON) during the period 
2018-12-01 to 2021-11-30. The shaded areas denote ± 1 standard deviation. 5 

 
Figure 3: Timeseries of monthly mean relative bias (%) for CAMS CO against NDACC FTIR tropospheric columns. The overall 
uncertainty for NDACC tropospheric columns is approximately 3%. The stations are sorted by latitude (northern to southern 
hemisphere). Periods without data are shaded in grey. The FTIR averaging kernels were applied in the comparisons. 

2.2 TROPOMI TCCO data 10 

The monitoring of TROPOMI TCCO data in the global CAMS NRT system began on 19 November 2018. TROPOMI has a 

local overpass time of 13:30 UTC, a spatial resolution of 5.5 km x 7 km in nadir (7 km x 7 km before 6 August 2019) for data 

retrieved from the SWIR band, a swath of 2600 km and provides daily global coverage with 14 orbits per day. For the work in 

this paper, we use NRT TROPOMI TCCO data produced with a retrieval algorithm developed by SRON, the Netherlands 

Institute for Space Research, and provided by ESA/ Eumetsat for the period 19 November 2018 to 31 December 2021. These 15 

NRT data are usually available with 3 hours of the observations being taken.  Information about updates to the TROPOMI CO 

retrieval algorithm since November 2018 is given in Table 3. 
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Table 3: TROPOMI algorithm upgrades (from TROPOMI readme file https://sentinels.copernicus.eu/web/sentinel/user-
guides/sentinel-5p-tropomi/document-library) 

In operation from Processor Version Relevant improvements of TROPOMI CO retrieval 

2018-11-22 01.02.00 Adjusted qa_value in case of eclipse 

2018-12-05 01.02.02 Sun glint was wrongly considered in the qa_value calculation in previous 

versions 

2019-03-27 01.03.00 Added new variables: eastward_wind and northward_wind 

2019-04-30 01.03.01 None 

2019-08-06  TROPOMI resolution upgrade (for SWIR: 7 km x 7 km before, 5.5 km x 7 

km after) 

2019-07-03 01.03.02 Offline and NRTI processing chains employ the same algorithm since this 

Version 

2020-12-02 01.04.00 None 

2021-07-05 02.02.00 Update CH4, CO and H2O cross sections in the CO and CH4 processors.  CO 

de-striping algorithm for offline data. Improved L1b v2.0 data products 

2021-11-17 02.03.01 None 

 

The TROPOMI TCCO retrieval is documented in Landgraf et al. (2016). The retrieval works in the 2.3 μm spectral range of 

the SWIR part of the solar spectrum (2315-2338 nm) and retrieves the TCCO values for clear-sky and cloudy conditions over 5 

land, and for cloudy conditions over ocean. Under clear-sky conditions over oceans, the SWIR signal is too low due to the 

dark sea surface to give a meaningful retrieval. While TIR measurements like MOPITT and IASI are mostly sensitive to CO 

in the mid troposphere (Deeter et al., 2013), TROPOMI SWIR measurements are sensitive to the integrated amount of CO 

along the light path (Landgraf et al., 2016), including the contribution of the planetary boundary layer, making them 

particularly suitable for detecting surface sources of CO. Martinez-Alonso et al. (2020, their Figure 1) show examples of 10 

TROPOMI and MOPITT averaging kernels that illustrate the different sensitivities of the TROPOMI and MOPITT retrievals. 

Since the update to v01.03.02 on 2019-07-03 the NRT TROPOMI data are of the same quality as the offline retrieval. 

 

The operational TROPOMI CO retrieval deploys a profile scaling approach described in detail by Borsdorff et al. (2014) where 

a CO reference profile is scaled to fit the TROPOMI reflectance measurements. For this, global, monthly averaged (3˚ × 2˚) 15 

vertical CO a-priori profiles from the chemical transport model TM5 (Krol et al., 2005) are used. The forward calculation of 

the measurement is accounting for light scattering by clouds and aerosols in the atmosphere and thus simultaneously retrieves 

trace gas columns and effective parameters describing the cloud contamination of the measurements (height scattering layer, 

scattering optical thickness) as demonstrated by Vidot et al. (2012). The TROPOMI TCCO datasets contain total column 

averaging kernels for individual measurements that describe the vertical sensitivity of the retrieved CO columns. The CO 20 

retrieval under clear-sky atmospheric condition shows a good sensitivity throughout the atmosphere with minor variations due 

to the observation geometry of the satellite. Retrievals from cloudy measurements exhibit a reduced vertical sensitivity caused 

by shielding of the cloud in the observation geometry of the satellite. Figure 4 shows examples of TROPOMI averaging kernels 

for clear-sky and cloudy data over land as well as for cloudy data over sea for the NH, Tropics and SH averaged over the 

period 2018-11-19 to 2021-12-31 and illustrates the different vertical sensitivities.  25 

 

Because the TROPOMI CO retrieval is based on the profile scaling inversion (Borsdorff et al., 2014) the total column averaging 

kernel AS5p cannot smooth the vertical CO a-priori profile that is used for scaling within the inversion, and the validation 

https://doi.org/10.5194/acp-2022-458
Preprint. Discussion started: 4 July 2022
c© Author(s) 2022. CC BY 4.0 License.



10 
 

equation (Eq. 2) simplifies to y = AS5p xtrue, where xtrue is the true CO profile. This means that the CAMS model equivalent of 

the TROPOMI observations can be calculated as  

 

𝑥%&' = 𝐴%&'		𝑥!() 	= 𝐴%&'	𝐻(𝑥!)	                                                  (4) 

where xmod is the CAMS model profile on the vertical grid of the TROPOMI a-priori, AS5P the TROPOMI total column 5 

averaging kernel and xS5P the resulting CAMS CO column smoothed by the TROPOMI total averaging kernel AS5P.  

 

 
Figure 4: TROPOMI averaging kernels (means for period 2018-11-19 to 2021-12-31) averaged over (a) NH, (b) Tropics and (c) SH 
for clear data over land (red), cloudy data over land (blue) and cloudy data over sea (black). 10 

 

As recommended in the TROPOMI readme file (https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-

Carbon-Monoxide-Level-2-Product-Readme-File, last access 2/3/2022), we only use data with quality assurance values 

(qa_values) >0.5. This filters out the two most westward pixels (because of unresolved calibration issues) and observations 

with SZA < 80⁰ (where the retrieval is most sensitive to radiometric and retrieval errors due to the long light path through the 15 

atmosphere). Furthermore, we separate the data into clear-sky (i.e., clear-sky and clear-sky equivalent) and cloudy pixels. 

Clear-sky and cloudy data are used over land, while only cloudy data are used over oceans, as in the SWIR clear-sky 

observations over water have too low signal intensities to be meaningful. 

 

First TROPOMI total column CO (TCCO) data produced with the operational algorithm by SRON showed good agreement 20 

with the CAMS NRT CO analysis (Borsdorff et al., 2018) with a mean difference between the data sets of 3.2±5.5 % and a 

correlation coefficient of 0.97 for a period in November 2017. Martinez-Alonso (2020) compared TROPOMI TCCO (offline 

and reprocessed) data for the period November 2017 to March 2019 with MOPITT data and with data from the airborne ATom 

(Atmospheric Tomography mission) campaign and found that over land TROPOMI CO had a small negative bias compared 

to MOPITT TIR data (-3.73% ± 11.51%) while they were biased slightly high over water (2.98% ± 15.71%). Compared to 25 

ATom data (over water) there was also a positive bias of 3.25% ± 11.46%. Sha et al. (2021) reported a bias of 9.22 ± 3.45% 

against standard TCCON XCO data and 2.45±3.38% against TCCON unscaled XCO for the period from the start of the 
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TROPOMI mission to 2020-09-30 using the latest offline and reprocessed versions available at the time. While most stations 

showed positive biases, negative biases were found for urban stations (e.g., Xianghe, JPL and Pasadena). Sha et al. (2021) 

found differences of on average 6.5±3.54% against NDACC CO columns. All these differences are within the TROPOMI 

mission requirements on accuracy (< 15%) and precision (<10%). 

 5 

The routine quarterly TROPOMI validation reports available from https://mpc-vdaf.tropomi.eu/ (last access 7/3/2022) show 

that the S5P L2_CO (NRT or RPRO concatenated with OFFL) carbon monoxide total column data is in good overall agreement 

with co-located measurements from the NDACC and TCCON FTIR monitoring networks. For the period November 2017 to 

September 2021, TROPOMI offline data had a positive bias of 6.5 % with respect to NDACC data and 9.24% with respect to 

TCCON data. The validation report found no latitudinal dependence of the bias and a slight increase of the bias during local 10 

winter. Larger biases (>15%) were seen with respect to NDACC data from Arrival Height (Antarctica). Most individual 

TCCON stations had biases below 12%, but biases > 12% were found in the Arctic and at mountain stations. The biases 

increased with solar zenith angle by about 10% between 10˚ and 80˚. An upper boundary of the random uncertainty of the 

TROPOMI offline CO data is 5%, according to the validation reports. Individual TROPOMI CO data show stripes of erroneous 

CO values < 5% in flight direction, probably associated with calibration issues. A de-striping algorithm has been included for 15 

offline TROPOMI data with the upgrade to v02.02.02 in July 2021, but this is not applied to the NRT data. TROPOMI also 

suffers from instrumental effects in the area of the South Atlantic Anomaly (SAA). 

 

 According to the TROPOMI product readme file (https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-

Carbon-Monoxide-Level-2-Product-Readme-File.pdf/f8942626-ffb6-4951-90fc-a16b6589e39e?t=1639982223246, last 20 

access 27/4/2022) and the validation reports, the TROPOMI NRT CO product (which is used in the global CAMS system and 

in this paper) had an additional positive bias of 3-4 % before July 2019, but since processor version 01.03.02, the same 

configuration settings are used for the NRT and offline data processing streams, and therefore the data products are of the same 

quality. However, there is no noticeable change in the TROPOMI monitoring timeseries (Figures 9 to 11 below) related to the 

switch to the offline algorithm for NRT data, and in the timeseries of analysis departures this change is masked by the CAMS 25 

model change to CY46R1 that happened a few days afterwards. 

 

2.3 TROPOMI super-observations for use in CAMS system 

Because the horizontal resolution of the TROPOMI TCCO data (5.5 km x 7 km) is higher than the model resolution of T511 

(about 40 km x 40 km) the TROPOMI data are not spatially representative for the model grid boxes. To overcome this 30 

representativeness error, the data are converted into so called ‘super-observations’ before they are included in the CAMS 

system. For this, the data are averaged to the T511 resolution of the model. The averaging is carried out separately for different 

surface types (e.g., land, ocean, ice etc.) and for clear and cloudy data, and the observation errors and averaging kernels of the 

data are averaged in the same way as the observations. The super-obbing reduces the random errors in the data.  

 35 

In the current CAMS configuration (CY47R3, see Table 2), super-observations are created if at least one observation is located 

in the grid-box. However, due to a coding error, in an early CAMS configuration (CY46R1), which was operational between 

2019-07-09 and 2020-10-05 (see Table 2), super-observations were only created if at least 6 observations were found in a grid-

box. This led to a reduced number of super-observations during this period (see Fig. 9 to 11 below), and particularly affected 

data at cloud boundaries, where there are often smaller numbers of data of one type in one grid box. In the model cycle used 40 

prior to 2019-07-09 (CY45R1) super-observations were created if at least one observation was available in a grid-box, but the 
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super-observation method did not distinguish between clear and cloudy data. This was later corrected. These changes explain 

the differences in the number of data displayed in the monitoring timeseries in Fig. 9 to 11 below. 

3 Monitoring of TROPOMI NRT data with the CAMS DA system 

Figure 5 shows maps of seasonal mean TROPOM CO columns between December 2018 and November 2021. CO values are 

generally higher in the NH than in the SH, except in the biomass burning regions in the tropics. This reflects the greater 5 

anthropogenic emissions in the NH (e.g., Fortems-Cheiney, 2011). Values in the NH are highest during winter and spring, 

largely due to the lower concentrations of the OH radical during winter, which is the major sink for CO. The largest NH TCCO 

values are found over southeast Asia in DJF and MAM, and transport of CO rich air from southeast Asia and North America 

eastwards by the prevailing winds leads to high CO columns over the North Pacific and North Atlantic, respectively. Minimum 

values in the NH are found in JJA except in areas affected by boreal wildfires (e.g., Siberia, Northern America). CO from 10 

biomass burning in the tropics has a different seasonality. In Africa, maximum CO columns are seen north of the equator in 

DJF, when biomass burning takes place in the Sahel region and equatorial West Africa during the local dry season. In MAM 

the fire signal over Africa is weaker, and by JJA the affected area has moved south of the equator. In SON the signal is weaker 

than in JJA but extends further to the south and east. It generally peaks in August, but the season extends to November. In 

South America the strongest biomass burning signal is seen in SON. Here, deforestation fires and agricultural fires occur south 15 

of 10˚S during August–October with a peak in September.  

 

 
Figure 5: Maps of seasonal mean TROPOMI CO columns in 1018 molec/cm2 for (a) DJF, (b) MAM, (c) JJA and (d) SON for the 
period December 2018 to November 2021. Shown are all ‘good’ values, i.e., all observations given qa_value >0.5 by the data 20 
providers. 
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Figure 6 shows the seasonal mean differences between TROPOMI TCCO observation values and CAMS analysis fields. The 

TROPOMI averaging kernels were applied to the CAMS model profiles in the calculation. The differences are positive 

everywhere except in a small area over Indonesia in SON, which is affected by biomass burning. The largest absolute 

differences are found at high latitudes in the NH in DJF, and over SE Asia, as well as over tropical Africa in DJF and JJA. We 

also see large differences over sea in the area of the South Atlantic Anomaly. These were traced back to observations with 5 

qa_value=1 but marked as clear-sky. In these cases, the forward model assumes a cloud free atmosphere which makes no sense 

over oceans due to the low reflectivity of water in the SWIR. We have excluded these observations in the assimilation 

experiment discussed in Section 4 below. 

 
Figure 6: Seasonal mean maps of TROPOMI CO analysis departures in 1018 molec/cm2 for (a) DJF, (b) MAM, (c) JJA and (d) SON 10 
for the period December 2018 to November 2021. Shown are all ‘good’ values, i.e., all observations given qa_value>0.5 by the data 
providers. 

Figure 7 shows boxplots of relative differences between TROPOMI TCCO and CAMS analysis values for the various latitude 

bands for the period 2018-11-19 to 2021-12-31. Averaged over the globe the median analysis departures are of the order 9-

11%, with the smallest departures (medium value of 9.4%) seen for cloudy data over land and the largest departures (10.7%) 15 

over sea. In the polar latitude bands, i.e., the areas where no satellite data are assimilated in the CAMS system, the analysis 

departures are largest (11-14%). In NH midlatitude (60-30⁰N) the largest departures are found for clear data over land (10.5 

%), while cloudy data over land have smaller departures (9.3 %), and the smallest departures in this latitude band is found over 

sea (8.4 %). In the Tropics the largest analysis departures are found over sea (11.0 %) while values over land have a median 

of 8.8 % for cloudy observations and 6.6 % for clear-sky observations. In the SH mid-latitudes, the smallest median analysis 20 

departures are also found for clear-sky data over land (8.9 %) and the largest ones over sea (10.7 %). 
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Figure 7: Boxplot of relative differences between TROPOMI TCCO observation and CAMS values values in % for the period 2018-
11-19 to 2021-12-31 and the areas: (a) Globe, (b) 90-60˚N, (c) 60-30˚N, (d) 30˚N-30˚S, (e) 30-60˚S and (f) 60-90˚S. The box extends 
from the first (Q1) to the third (Q3) quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges 
of box to show the range of the data. By default, they extend no more than 1.5 * IQR (IQR = Q3 - Q1) from the edges of the box, 5 
ending at the farthest data point within that interval. Outliers are plotted as separate dots. ‘Good’ data are all TROPOMI pixels 
given qa_values >0.5 by the data providers. 

 

Figure 8 shows timeseries of the global mean daily analysis departures, observation values, standard deviation of observations 

and number of observations for TROPOMI TCCO in the NRT CAMS system for the period 2018-11-19 to 2021-12-31. The 10 

TROPOMI TCCO data were monitored passively during this period, i.e., not used in the analysis, and therefore have no impact 

on the CAMS CO fields. The timeseries of the analysis departures is affected by model upgrades (see Table 2) as well as by 

TROPOMI retrieval algorithm upgrades (see Table 3), while the timeseries of the observations and standard deviation of 

observations are only affected by changes to the TROPOMI retrieval algorithm. The changes in TROPOMI data numbers in 

July 2019 and October 2020 come from the changes to the settings for creating the super-observations (discussed in section 15 

2.3) and not from changes to the TROPOMI NRT data delivery. However, there is no noticeable impact from this change on 

the analysis departures and observation values. A small increase in data numbers is seen in August 2019 when the TROPOMI 
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horizontal resolution was increased from 7 km x 7 km to 5.5 km x 7 km, but this increase is small, because TROPOMI data 

were already used at a resolution of T511 in the CAMS system. Separate timeseries are shown in Fig. 8 for good data (i.e., all 

observations with qa_values >0.5), clear and cloudy data over land, and cloudy data over sea. The analysis departures are 

positive throughout the time period, denoting that TROPOMI TCCO data are always larger than the CAMS analysis values. 

This agrees with the negative bias of the CAMS CO data that is documented in the routine CAMS evaluation reports (e.g., 5 

Errera, et al., 2021). The timeseries show a change to increased departures in July 2019 (from relative differences between 5-

10% for ‘good’ data before July 2019 to 10-15% afterwards). Such an increase is not seen in the observation timeseries and is 

related to the CAMS model upgrade to CY46R1. This model upgrade included a change to the anthropogenic and biogenic 

emission data sets used in the CAMS NRT system (from MACCity and MEGAN_MACC prior to July 2019 to 

CAMS_GLOB_ANT and CAMS_BLOB_BIO afterwards). This change led to lower CAMS CO values and an increased 10 

negative bias relative to independent observations, as seen in Fig. 3, and was also reported in the quarterly CAMS evaluation 

reports on https://atmosphere.copernicus.eu/eqa-reports-global-services (e.g. Errera et al., 2021). The other changes listed in 

Tables 2 and 3 had smaller impacts on the global TCCO field, but there is a change after the TROPOMI algorithm upgrade in 

July 2021 leading to lower analysis departures, and after the CAMS upgrade to CY47R3 in October 2021 after which the 

global mean analysis departures for all observation types are below about 8%. The TROPOMI upgrade in July 2021 included 15 

an upgrade to the CO and CH4 cross sections used in the retrieval. It is possible that the better fit of the methane absorption 

gives better cloud parameters and hence a better estimation of the vertical sensitivity. 

 

The timeseries of the observation values and the departures show clear differences between the TROPOMI observations over 

land and sea (to be expected as they cover different areas), and also pronounced differences between the clear-sky and cloudy 20 

data over land the origin of which is not yet clear. The timeseries of the observation standard deviation shows several spikes 

during NH summers related to boreal wildfires that emit large amounts of CO into the atmosphere (Witze 2020; 

https://atmosphere.copernicus.eu/copernicus-reveals-summer-2020s-arctic-wildfires-set-new-emission-records). The spike 

seen in Fig. 6 in January 2020 is related to large Australian bushfires in 2019/2020 (Li et al., 2020; Ohneiser, 2020; Pope et 

al., 2021; John et al., 2021; van der Velde et al., 2021). 25 
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Figure 8: Timeseries of daily mean global mean TROPOMI TCCO (a) analysis departures (in %), (b) observations (in 1018 
molec/cm2), (c) standard deviation of observations (in 1018 molec/cm2) and (d) number of observations for the period 2018-11-19 to 
2021-12-31. Vertical dashed black lines mark IFS model upgrades (see Table 2), yellow lines TROPOMI algorithm upgrades (see 
Table 3), the cyan line the TROPOMI horizontal resolution upgrade on 2019-08-06 and the grey dotted lines the year changes. 5 

 

 
 

 

As already discussed in Section 2.1, CAMS validation reports show negative biases for tropospheric CO against NDACC 10 

FTIR data of about -5 to -15 % after the change to 46R1 in July 2019 and -5 to -10 % against TCCON data, as well as negative 

biases with respect to MOPITT (-5 to -10 %) and IASI (-10 to -30 %). Figure 3 also shows the negative bias in CAMS TCCO 

after the model upgrade in July 2019 of between -3% to -15% with respect to NDACC FTIR data. This suggests that large 
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parts of the TROPOMI TCCO analysis departures shown in Fig. 7 and 8 are the result of a low bias of the CAMS model, rather 

than a high bias of the TROPOMI NRT TCCO product. 

4 Results of TROPOMI CO assimilation test 

4.1 Results from single observation experiments 

Before carrying out longer assimilation experiments with the TROPOMI TCCO data, we look at the results of single 5 

observation experiments with the data to illustrate the different impact clear and cloudy data have in the analysis, and to 

highlight the importance of using the averaging kernels in the observation operators. We carry out three single observation 

experiments. In each one, we place a single TROPOMI observation with a prescribed TCCO value of 4.3 1018 molec/cm2 and 

observation error of 10% at (50˚N, 10˚E) but vary the averaging kernels of the observations, so they are representative of mid-

level cloudy conditions, clear-sky conditions and clear-sky equivalent conditions (i.e., low thin clouds) over land (see Fig. 9). 10 

The resulting analysis increment profiles show that the clear-sky and clear-sky equivalent observations have a large impact in 

the troposphere below 550 hPa, including in the boundary layer. The impact of the cloudy data is reduced in the lower 

troposphere, i.e., below the clouds, where the averaging kernel values are smaller, and are larger above 500 hPa. If the 

averaging kernels were not used in the observation operator, e.g., the model equivalents of the observations were calculated as 

simple vertical integrals, all three experiments would give the same analysis profiles. This illustrates the importance of taking 15 

the averaging kernels into account when comparing model data with satellite retrievals. 

 
Figure 9: (a) TROPOMI total column averaging kernels representative of cloudy (red), clear-sky (cyan) and clear-sky equivalent 
(i.e., low thin clouds) conditions (blue) over land. (b) Analysis increments obtained in single observation experiments with the CAMS 
system using observations with these averaging kernels and prescribed TCCO value of 4.3 1018 molec/cm2 and observation error of 20 
10% located at (50˚N, 10˚E).  

4.2 Results from assimilation experiments for the period 2021-07-06 to 2021-12-31 

Assimilation tests with the CAMS system were carried out with the TROPOMI TCCO data for the period 2021-07-06 to 2021-

12-31, i.e., after the TROPOMI algorithm upgrade to v02.02.00 (see Table 3). In the assimilation experiment (ASSIM, see 

Table 4) TROPOMI data were used between 90˚N and 60˚S, i.e., not over Antarctica, if they had qa_values>0.5. Over oceans, 25 

only cloudy data were used. We also produced a control experiment (CTRL, see Table 4) where TROPOMI data were included 

passively and not assimilated. The differences between ASSIM and CTRL allow us to assess the impact of the TROPOMI 

TCCO data on the CAMS CO analysis. The model cycle used for the experiments was CY47R3, meaning that the CTRL setup 

corresponds to the CAMS NRT configuration that was operational from October 2021. The TROPOMI data in both 
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experiments were super-obbed to the model resolution of T511, as described in Section 2.3. In ASSIM TROPOMI TCCO is 

used without bias correction, because the TROPOMI SWIR retrieval has different sensitivity to CO in the atmosphere than the 

IASI and MOPITT TIR retrievals, and it would not make sense to anchor a bias correction for TROPOMI to MOPITT or IASI.  

 

 5 
Table 4: Experiments used for the TROPOMI assimilation tests for the period 2021-07-06 to 2021-12-31. 

Experiment 

name  

Expver/  

model cycle/ DOI 
Assimilated data Bias correction 

ASSIM 

hmib (Inness, 2022a) 

CY47R3 

https://doi.org/10.21957/ax0c-fm72 
 

TROPOMI, MOPITT (day & night), 

IASI-BC (day) 

VarBC applied to IASI-BC 

(see Table 1) 

CTRL 

hlxm (Inness, 2022b) 

CY47R3 

https://doi.org/10.21957/mwqe-vs95 
 

MOPITT (day & night), IASI-BC (day) 
VarBC applied to IASI-BC 

(see Table 1) 

 

 

4.2.1 Difference plots ASSIM minus CTRL experiments 

Figure 10a shows a map of the relative differences between TCCO fields from ASSIM and CTRL averaged over the period 10 

2021-08-01 to 2021-12-30 and illustrates that the assimilation of TROPOMI TCCO data leads to increased CO columns in the 

analysis. The largest relative increase is found at high latitudes north of 70˚N (25-30%), over North America (10-20%) and 

over oceans (10-20%) in the Tropics. Such increases are expected if the CAMS analysis is drawing to the TROPOMI data, 

considering the positive TROPOMI analysis departures seen in the monitoring plot (Fig. 8) and the generally negative bias of 

the CAMS CO fields. The large differences north of 70˚N are in the area where no IASI or MOPITT TCCO data are assimilated, 15 

i.e., no TCCO at all are assimilated here in CTRL. Figure 10b shows a cross section of the zonal mean absolute differences 

between ASSIM and CTRL for the same period and illustrates that CO is increased most at the surface and in the lower 

troposphere in the NH, with differences north of 60˚N extending throughout the troposphere, as well as in the upper troposphere 

in the Tropics. It is not clear yet if this is the direct result of the assimilation of TROPOMI data leading to increased CO in the 

upper troposphere, or it could be the result of convective transport. Figure 10c shows the time evolution of the zonal mean 20 

relative differences between ASSIM and CTRL and illustrates that the largest differences are found in July and August, i.e., 

at a time when large boreal wildfires burned in Siberia and North America (see also section 4.2.4 below). 

 

https://doi.org/10.5194/acp-2022-458
Preprint. Discussion started: 4 July 2022
c© Author(s) 2022. CC BY 4.0 License.



19 
 

 
Figure 10: (a) Relative TCCO difference in 1018 molec/cm2 (left), (b) zonal mean cross section of CO difference in ppb from ASSIM 
minus CTRL averaged over the period August to December 2021 and (c) timeseries of daily zonal mean TCCO relative differences 
[%] for the period 2021-07-06 to 2021-12-30. 

4.2.2 Instrument-specific analysis departures 5 

Next, we look at the fit of the CO analysis to the assimilated CO data in ASSIM and CTRL. Figure 11 shows boxplots of 

averaged global mean analysis departures from CTRL and ASSIM. In CTRL, TROPOMI analysis departures vary between 

7.3% to 9.1%, for the different data types. Analysis departures for MOPITT (0.6 %), IASI-B (1.5%) and IASI-C (1.3%) are 

much smaller because these data are assimilated, and the analysis is drawing to the data. MOPITT has the smallest analysis 

departures because the data are assimilated without bias correction. In ASSIM, the analysis is drawing to the TROPOMI data 10 

in addition to MOPITT and IASI-BC, so that TROPOMI analysis departures are much reduced and now lie between 0.3 and 
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0.8 % for the various data types. IASI-BC analysis departures are also reduced slightly, illustrating that the assimilation of 

TROPOMI CO improves the fit of the CAMS analysis to the IASI-BC data globally. MOPITT departures are increased in 

ASSIM, because MOPITT TCCO values are generally lower than TROPOMI and IASI values, and by assimilating TROPOMI 

(without bias correction) in addition to the other data products the TCCO analysis values are increased (Fig. 10) and the fit to 

MOPITT is degraded. 5 

 

 
Figure 11: Global mean analysis departures for TROPOMI data (Good, LandClear, LandCloud, SeaCloud) and daytime MOPITT 
and IASI-BC data averaged over the period 2021-07-06 to 2021-12-31 for (a) CTRL and (b) ASSIM. 

Figure 12 shows timeseries of daily mean analysis departures from the four instruments averaged over the area between 60˚N 10 

and 60˚S, i.e., excluding the polar regions where the NRT MOPITT product does not provide data. The analysis in ASSIM is 

drawing strongly to the TROPOMI data (Fig. 12a), and TROPOMI analysis and first-guess departures are much reduced in 

ASSIM compared to CTRL. IASI-BC analysis departures are also reduced in ASSIM during July and August, and of similar 

size to the ones in CTRL for the rest of the timeseries. MOPITT departures in ASSIM are more negative than in CTRL (as 

already seen in Fig. 11b).  Figure 13 takes a closer look at the analysis departures in the Arctic from IASI-B and IASI-C. Here 15 

we see a much-improved fit in July and August when the high CO columns retrieved by IASI-BC, which are the result of 

strong boreal wildfires in Siberia and North America, are not well captured in CTRL. The improved fit against IASI-BC in 

ASSIM continues throughout September and October, i.e., while TROPOMI data are available for assimilation north of 60˚N. 

They are more similar in both experiments after November, when no TROPOMI data are available for assimilation in this 

latitude band. Examples of the impact of boreal wildfires in August 2021 on the CAMS TCCO analysis are discussed in Section 20 

4.2.4 below. 
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Figure 12: Timeseries from 2021-07-06 to 2021-12-31 of daily mean TCCO first-guess and analysis departures from ASSIM and 
CTRL for (a) TROPOMI, (b) IASI-B, (c) IASI-C and (d) MOPITT for all ‘good data’ averaged over between 60⁰N-60⁰S in 1018 
molec/cm2. Analysis departures from ASSIM are in red, for CTRL in magenta. First-guess departures from ASSIM are in blue, for 
CTRL in black. 5 
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Figure 13: Timeseries from 2021-07-06 to 2021-12-31 of daily mean TCCO first-guess and analysis departures from (a) IASI-B and 
(b) IASI-C, and TCCO values from observations, analysis and first-guess for (c) IASI-B and (d) IASI-C in 1018 molec/cm2 for all 
‘good data’ averaged over the area between 90-60⁰N. Analysis departures/ values from ASSIM are in red, for CTRL in magenta. 
First-guess departures/ values from ASSIM are in blue, for CTRL in black. IASI TCCO values are in green. IASI data are not 
assimilated north of 65°N. 5 

4.2.3 Evaluation against independent observations 

To assess the quality of the TROPOMI analysis we compare the TCCO fields from ASSIM and CTRL with independent 

observations, i.e., observations that were not used in the analysis. Figure 14 shows comparison against NDACC FTIR data at 

all available stations. The negative CO total column and tropospheric column biases seen in CTRL are much reduced in ASSIM 

everywhere, except at the Antarctic station of Arrivals Heights where ASSIM shows a larger positive bias which increases 10 

with time. As no TROPOMI CO data are assimilated south of 60˚S in ASSIM, but the assimilation leads to increased CO 

values elsewhere, this increase over Antarctica must be the result of transport into the Antarctic region. Stratospheric CO in 

ASSIM has a reduced bias in the SH, but larger positive biases in the NH and Tropics than in CTR. As the CAMS system only 

uses a tropospheric chemistry scheme, we do not assess the changes to stratospheric CO any further. Figure 15 shows the mean 

biases and standard deviation values at each NDACC station for the period 2021-07-06 to 2021-12-31 and confirms the strong 15 

reduction of the total and tropospheric column CO biases in ASSIM. 

 
Figure 14: Timeseries of relative mean bias for total column CO (row 1), tropospheric CO columns (row 2) and stratospheric column 
(row 3) in % from ASSIM (left) and CTRL (right) against NDACC FTIR data for the period 2021-07-06 to 2021-12-31. The overall 
uncertainty for NDACC tropospheric columns is approximately 3%. The stations are sorted by latitude (northern to southern 20 
hemisphere). Periods without data are shaded in grey. 
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Figure 15: Histogram plot of relative differences in % against NDACC FTIR data tropospheric column CO from ASSIM (red) and 
CTRL (blue) for the period 2021-07-06 to 2021-12-31. Note that St. Petersburg only had one profile on 2021-07-07. 

Figure 16 shows comparisons of tropospheric CO profiles from ASSIM and CTRL with IAGOS aircraft data at various airports 5 

averaged over the period July to December 2021, and Figure 17 shows timeseries of the monthly mean MNMB against IAGOS 

CO for layers in the upper troposphere, mid-troposphere and lower troposphere. We see a clear improvement in ASSIM with 

reduced biases, particularly in the lower and mid-troposphere at Frankfurt, North American and Middle Eastern airports. Here, 

the assimilation of the SWIR TROPOMI TCCO retrievals provides additional information to the CAMS system that is already 

constrained by the TIR MOPITT and IASI TCCO data in CTRL. At the West African airports, the improvement is largest 10 

above 800 hPa. Here, the number of clear data is lower than in the other areas, reducing the sensitivity of TROPOMI to near 

surface CO. 

 

 
Figure 16: Relative difference in % of CO profiles from ASSIM (red) and CTRL (blue) against IASI aircraft data at (a) Frankfurt 15 
airport and averaged over (b) North American, (c) Middle Eastern and (d) West African airports averaged over the period July to 
December 2021. The shaded areas denote ± 1 standard deviation. 
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Figure 17: Time series of monthly mean modified normalised mean bias (MNMB) against IAGOS data for the period July to 
December 2021 at (a) Frankfurt airport, (b) North American, (c) Middle Eastern and (d) West African airports for the layers (1) 
1000-850 hPa, (2) 850-400 hPa  and (3) 400-150 hPa. 

The final comparison is against CO surface air quality observations from the European Airbase network, the US Airnow 5 

network and Chinese air quality data (Fig. 18). We find an improved fit to the surface observations and a reduction of the 

negative MNMB in ASSIM over Europe and North America as the assimilation of TROPOMI CO data leads to changes in 

surface ozone. There is a much smaller impact over China. 
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Figure 18: Timeseries of MNMB of surface CO values from ASSIM (red) and CTRL (blue) from (a) European Airbase stations, (b) 
North American Airnow stations and (c) Chinese air quality data. AirBase (http://acm.eionet.europa.eu/databases/airbase/) is the 
public air quality database system of the European Environmental Agency (EEA; http://www.eea.europa.eu/). Airnow 
(www.airnow.gov) reports air quality for the US. More than 1,500 in situ stations covering all major cities in China are operated by 5 
the China National Environmental Monitoring Center, providing hourly observations of several pollutants, including CO (Bai et al., 
2020). Data can be accessed via websites of third parties (such as http://www.pm25.in and http://www.aqicn.org). 

 

The comparisons against independent CO observations in this section show that the assimilation of NRT TROPOMI CO data 

in the CAMS global system reduces the negative bias of the CAMS CO analysis in the troposphere and has the largest impact 10 

in the lower and free troposphere. This is because the SWIR TROPOMI CO retrieval is sensitive to the CO column, including 

contributions from the boundary layer, especially for clear data. It therefore provides additional information for the CAMS CO 

analysis which is already constrained by the assimilation of TIR MOPITT and IASI CO retrievals that are most sensitive to 

CO in the mid-troposphere. 

4.2.4 Boreal wildfires July and August 2021 15 

High temperatures and drought conditions increase the risk of wildfires and led to the development of strong and persistent 

wildfires between June and August 2021 across many parts of North America, particularly in the western United States and 

Canada, with the so-called ‘Dixie fire’ in northern California one of the biggest ever recorded in the state's history. Boreal 

wildfire activity in 2021 was also strong in Siberia, particularly in the Sakha Republic of Russia, over the same period. The 

Global Fire Assimilation System (GFAS; Kaiser et al., 2012) run by CAMS to produce daily information of fire activity, 20 

showed persistent high daily intensity of the fires in Canada, the US and Siberia in July and August 2021 (Fig. 19), with record 

annual total biomass burning CO emissions for 2021 of 46 Tg (Siberia), 17 Tg (Canada) and 9 Tg (US).  
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The CAMS global NRT forecasts captured the transport of smoke from the persistent large-scale Siberian and North American 

wildfires. In July and August 2021, thick smoke from the North American wildfires was transported eastwards across North 

America in several episodes. It was observed at many Aeronet sites (not shown) and led at times to severely degraded air 

quality as far away as the north-eastern US coast, with haze clearly apparent in New York City. Satellite images, Aeronet 

observations and CAMS forecasts showed that smoke from some of the North American fires was transported further across 5 

the North Atlantic Ocean, passing Greenland, and reaching Europe. A concern with such high amounts of smoke crossing 

Greenland is the potential deposition of black carbon to the ice sheet, and previous studies have shown smoke particles from 

Canadian wildfires in the snowpack (Thomas et al., 2017). A very high number of wildfires also burned in eastern Russia 

through July and early August with the worst affected area the Sakha Republic. In terms of the total estimated wildfire carbon 

emissions for June-August in the Sakha Republic, a new record in the GFAS period was set in early August 2021, when the 10 

cumulative daily total emissions for 2021 were already larger than annual total of the previous record year 2020. CO from 

these fires was transported north across the Arctic Ocean as far as the North Pole. Figure 20 shows maps of daily TCCO from 

ASSIM from 4 to 23 August 2021, depicting CO from the strong fires in Eastern Russia, the North American fires, and several 

of the episodes of CO transport from North America eastwards over the Atlantic and from Siberia over the North Pole. Note 

that on 6 August 2021 some of the highest CO columns globally were found over the normally clean North Pole. 15 

 
Figure 19: GFAS v1.2 daily total CO emissions in Mt/day for Canada (left), the USA (middle) and Eastern Russia (right) in July and 
August 2021 (red bars show 2021, grey bars show 2003-2020 mean). 

 

 20 
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Figure 20: TCCO fields in 1018 molec/cm2 from ASSIM for the period 4 to 23 August 2021.  

The August 2021 average TCCO field from TROPOMI and IASI-C showed the highest CO columns over Siberia as well as 

elevated values over North America, the North Pacific, North Atlantic and Arctic Ocean (Fig. 21). The same was seen for 

IASI-B (not shown). These high values are better captured in ASSIM than in CTRL, as seen by the smaller IASI-C analysis 5 
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departures in ASSIM, in the area north of 65°N where IASI data are not assimilated. This better agreement was already shown 

in Section 4.2.2 in the timeseries of departures averaged over the Arctic latitudes (Fig. 13).  

 
Figure 21: August 2021 monthly mean (a) TROPOMI TCCO field, (b) IASI-C TCCO field, (c) IASI-C analysis departures from 
ASSIM and (d) IASI-C analysis departures from CTRL in 1018 molec/cm2. 5 

Some IAGOS flights in August 2021 intersected parts of the CO plumes that were transported eastwards over North America 

and further over the Atlantic. Figure 22 shows CO profiles at Boston and New York airports on 6 August which crossed such 

a plume, visible in the CO values greater than 150 ppb above 500 hPa. The subsequent profile at New York (Fig. 22c) on 7 

August still showed the remnants of the plume with values greater than 100 ppb between 450 and 350 hPa. Both ASSIM and 

CTRL have elevated CO values above 500 hPa at both airports on 6 August, but do not quite reach the values seen in the 10 

observations. The vertical structure of the CO profile is reproduced better in ASSIM than in CTRL, but the largest improvement 

is found in the lower troposphere in all 3 cases, and the actual impact at the plume altitude is smaller. 

 

 

 15 
Figure 22: CO profiles in ppb from IAGOS (black), ASSIM (red) and CTRL (blue) at (a) Boston on 6 August, (b) New York on 6 
August and (c) New York on 7 August 2021 in ppb. 

Figure 23 shows CO profiles at Frankfurt airport when plumes of smoke from the North American wildfires reached Europe 

on 7, 9 and 11 August 2021. These plumes led to elevated CO values above 500 hPa on 7 and 9 August, with maximum values 

located around 400 hPa and exceeding 300 ppb and 250 ppb, respectively. On 11 August the plume was located at lower 20 
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altitude (between 600 and 500 hPa) and only had values of about 180 ppb. ASSIM and CTRL show elevated CO values above 

500 hPa on 7 August, but maximum CO values remain below 200 ppb. On 9 August, the plume is located at higher altitude in 

ASSIM and CTRL than in the observations. The weaker plume on 11 August is captured to some extent in ASSIM but does 

again not reach the values seen in the observations. As at the North American airports (Fig. 22) the largest improvement in 

ASSIM compared to CTRL is found in the lower and free troposphere, i.e., below the altitude of the plumes. The final example 5 

is given in Fig. 24 when elevated CO values are again observed over Frankfurt airport between 19-21 August 2021. ASSIM 

and CTRL both show elevated CO values in the upper troposphere, with larger values in ASSIM on 19 and 21 August, but the 

maximum values of about 180 ppb seen in the observations above 300 hPa are not quite reached. On 20 August both ASSIM 

and CTRL still show the plume, while the observations do not show it anymore. This might be because of a horizontal mismatch 

of the plume location in model and observations. Figure 24 again illustrates that the largest improvement from the assimilation 10 

of TROPOMI CO data in ASSIM is found in the lower and mid-troposphere. In the upper troposphere the CAMS analysis is 

already constrained by the assimilated TIR MOPITT and IASI data, and the additional impact from the TROPOMI data is 

smaller. 

 

Considering that only total column CO data are assimilated in the CAMS system, the improvements in the CO profiles in 15 

ASSIM seen in Fig. 22-24 can be considered a success. Figure 25 depicts weekly average CO profiles at Frankfurt airport 

between 26 July and 29 August 2021 and shows clearly the improved fit to the IAGOS profiles below about 500 hPa in ASSIM. 

Figure 25 also shows that the high CO values seen in IAGOS profiles between 500-400 hPa in the week 2-8 August are not 

quite captured in either model run. 

 20 

 
Figure 23: Like Fig. 22 but at Frankfurt on (a) 7 August, (b) 9 August and (c) 11 August 2021. 
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Figure 24: Like Fig. 22 but at Frankfurt on (a) 19 August, (b) 20 August and (c) 21 August 2021. 

 

 
Figure 25: Weekly mean CO profiles in ppb from IAGOS (black), ASSIM (red) and CTRL (blue) at Frankfurt for the weeks 5 
commencing (a) 26 July, (b) 2 August, (c) 9 August, (d) 16 August and (e) 23 August 2021. 

5 Conclusions 

Operational near-real time TROPOMI total column CO data have been monitored passively in the CAMS global data 

assimilation system, which assimilates IASI and MOPITT TIR TCCO data, since November 2018. The TROPOMI data 

successfully capture the global TCCO distribution with high values in the NH, lower values in the SH, high values in areas of 10 

anthropogenic pollution in SE Asia, North America and Europe, as well as in the biomass burning areas in the Tropics and 

boreal fire regions. In the global mean, CAMS TCCO analysis values are about 10% lower than TROPOMI TCCO (averaged 

over the period November 2018 to Dec 2021), with the smallest relative differences found for clear-sky data in the Tropics 
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(6.6 %) and the largest relative differences (11-14%) found in the polar latitude bands, i.e., the areas where no satellite CO 

retrievals are assimilated in the global CAMS system.  

 

Timeseries of TROPOMI observation values and analysis departures show differences between clear and cloudy TROPOMI 

TCCO data over land, as well as differences between cloudy data over land and oceans, both in terms of seasonality of the 5 

observations as well as seasonality and magnitude of TROPOMI analysis departures. The reason for this is not fully understood 

yet. These timeseries also capture the impact of upgrades to the CAMS model or the TROPOMI retrieval algorithm, with the 

largest change resulting from the CAMS model upgrade to CY46R1 in July 2019. This upgrade included a change of emission 

inventories and led to an increased negative CO bias of the CAMS model and hence increased positive TROPOMI departures 

(from departures of 5-10% to 10-15% when averaged over all ‘good’ TROPOMI data globally). Reduced departures are seen 10 

after the TROPOMI algorithm update to version 02.02.00 in early July 2021 and the CAMS model upgrade to CY47R3 in 

October 2021, after which the departures averaged globally for all good TROPOMI TCCO data were around 8%. 

 

The monitoring timeseries show pronounced differences between clear and cloudy TROPOMI data over land. The TROPOMI 

SWIR CO retrieval under clear-sky atmospheric condition shows a good sensitivity throughout the atmosphere, including 15 

contributions from near surface CO. Retrievals from cloudy measurements exhibit a reduced sensitivity in the lower 

troposphere caused by shielding of the clouds in the observation geometry of the satellite. Therefore, the retrieved TROPOMI 

TCCO values have contributions from different parts of the CO profile to the total column for clear and cloudy data, and it is 

important to take the TROPOMI averaging kernels into account when comparing CAMS and TROPOMI data. By doing this, 

the CAMS CO column smoothed by the TROPOMI total averaging kernels can be compared with the TROPOMI TCCO 20 

values in a like-with-like manner. The CAMS system applies the TROPOMI averaging kernels in the observation operator 

when assimilating the data. Single observation experiments show that the assimilation of clear-sky TROPOMI data has a larger 

impact in the lower troposphere and at the surface, while cloudy data have a larger impact on changing the CAMS field in the 

free and upper troposphere, because of the different vertical sensitivities of the clear-sky and cloudy observations as given by 

their averaging kernels. 25 

 

The assimilation of TROPOMI CO improves the fit to the also assimilated IASI-BC TCCO data but degrades the fit to 

MOPITT TCCO. The NRT MOPITT CO columns have lower values than IASI and TROPOMI data, and by adding TROPOMI 

to the assimilation system the impact of the MOPITT data is reduced and the analysis draws less strongly to those data. When 

TROPOMI data are assimilated in the CAMS system, they lead to increased CO analysis values and an improved fit to 30 

independent observations. The impact of the TROPOMI assimilation is large, with TCCO changes of over 50% in the CAMS 

analysis at high northern latitudes during July and August 2021 when unusually strong boreal wildfires led to unprecedented 

amounts of CO being released into the atmosphere. The TROPOMI CO assimilation also has a large impact on the vertical 

distribution of CO in the CAMS analysis and leads to increased CO analysis values at the surface and in the troposphere in the 

NH, and in the upper troposphere in the Tropics. It improves the fit to IAGOS aircraft data, with the largest absolute and 35 

relative CO increase found in the lower and the free troposphere, where the global CAMS NRT system is known to have a 

negative bias.  Here, the assimilation of TROPOMI CO data improves the fit to IAGOS aircraft profiles in Europe (Frankfurt 

airport), at North American, West African, and Middle Eastern airports. Furthermore, comparison with NDACC FTIR data 

tropospheric and total column CO data, and with surface air quality CO data in North America (AirNow), Europe (AirBase) 

and China (Marco Polo) also show reduced negative biases when TROPOMI CO data are assimilated. 40 

 

TROPOMI monitoring timeseries also show increased CO columns due to boreal wildfires during NH summers and due to the 

2019/2020 Australian bushfires in the SH. In particular, the NH summer of 2021 saw strong wildfires in North America and 
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Russia that released record amounts of CO into the atmosphere (46 Tg in Siberia, 17 Tg in Canada and 9 Tg in the US according 

to GFAS v1.2 data). Plumes of smoke from the Siberian fires were transported to polar latitudes, leading to some of the highest 

CO columns globally on 6 August at the normally clean North Pole, and from North America eastwards over the North Atlantic, 

reaching as far as Europe. These transport events were clearly visible in the CAMS CO analysis fields. The assimilation of 

TROPOMI CO improved the fit to IASI CO data in the Arctic during the period of intense burning in July and August 2021, 5 

by increasing the CAMS TCCO analysis values. Some of the plumes of high CO in the upper troposphere were intersected by 

IAGOS aircraft at Boston, New York, and Frankfurt airport. These plumes were also captured in the CAMS CO analysis, but 

the magnitude of the upper-level CO maxima was usually lower than in the observations. At these altitudes, the assimilation 

of TROPOMI did not change the CAMS CO field much, compared to a model run that already assimilated MOPITT and IASI 

TCCO. 10 

 

The results of this paper illustrate that the use of TROPOMI TCCO data in the global CAMS system is beneficial, and 

consequently the TROPOMI CO assimilation will be activated in the next operational upgrade (CY48R1) of the CAMS global 

system which is scheduled for Q1/2023. The TROPOMI CO data, retrieved from the SWIR part of the solar spectrum, are 

sensitive to CO throughout the troposphere, including contributions from the surface, while the TCCO data that are already 15 

assimilated by CAMS (i.e. TIR MOPITT and IASI TCCO) have the largest sensitivity in the mid-troposphere. TROPOMI 

therefore brings additional information on the vertical CO distribution into the CAMS analysis in parts of the column where 

CO is not already well constrained by the assimilation of TIR MOPITT and IASI TCCO retrievals. The largest contribution 

from near-surface CO is found for clear-sky TROPOMI CO retrievals, while the impact in the lower troposphere is reduced 

for cloudy scenes.  20 
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