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Abstract. The Tropospheric Monitoring Instrument (TROPOMI) on the Copernicus Sentinel 5 Precursor (S5P) satellite, 

launched in October 2017, provides a wealth of atmospheric composition data, including total columns of carbon monoxide 

(TCCO) at high horizontal resolution (5.5 km x 7 km). Near-real time TROPOMI TCCO data have been monitored in the 

global data assimilation system of the Copernicus Atmospheric Monitoring Service (CAMS) since November 2018 to assess 15 

the quality of the data. The CAMS system already routinely assimilates TCCO data from the Measurement of Pollution in the 

Troposphere (MOPITT) instrument and the Infrared Atmospheric Sounding Interferometer (IASI) outside the polar regions.  

 

The assimilation of TROPOMI TCCO data in the CAMS system was tested for the period 2021-07-06 to 2021-12-31, i.e., 

after the TROPOMI algorithm update to version 02.02.00 in July 2021. By assimilating TROPOMI TCCO observations, the 20 

CAMS CO columns increase by on average 8%, resulting in an improved fit to independent observations (IAGOS aircraft 

profiles, NDACC FTIR tropospheric and total column CO data) compared to a version of the CAMS system where only TCCO 

from MOPITT and IASI is assimilated. The largest absolute and relative changes from the assimilation of TROPOMI CO are 

found in the lower and mid troposphere, i.e., that part of the atmosphere that is not already well constrained by the assimilated 

TIR MOPITT and IASI data. The largest impact near the surface comes from clear-sky TROPOMI data over land, and 25 

additional vertical information comes from the retrievals of measurements in cloudy conditions. 

 

July and August 2021 saw record numbers of boreal wildfires over North America and Russia leading to large amounts of CO 

being released into the atmosphere. The paper assesses more closely the impact of TROPOMI CO assimilation on selected CO 

plumes. While the CO column can be well constrained by the assimilation of TROPOMI CO data, and the fit to individual 30 

IAGOS CO profiles in the lower and mid troposphere is considerably improved, the TROPOMI CO columns do not provide 

further constraints on individual plumes that are transported across continents and oceans at altitudes above 500 hPa. 

 

1 Introduction 

The Copernicus Atmosphere Monitoring Service (CAMS; Peuch et al., 2022), implemented by the European Centre for 35 

Medium Range Weather Forecasts (ECMWF) as part of the European Union’s Copernicus Programme, produces daily global 

near-real time (NRT) forecasts of atmospheric composition up to five days ahead. To improve the quality of the CAMS 

forecasts the initial conditions for some of the chemical species, including Carbon Monoxide (CO), Nitrogen Dioxide (NO2), 

Ozone (O3), Sulphur Dioxide (SO2) and for aerosols are provided by assimilating satellite retrievals of atmospheric 

composition using ECMWF’s 4-dimensional variations (4D-Var) data assimilation system (Remy et al., 2019; Inness et al., 40 
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2019a, 2019b, 2015a; Benedetti et al., 2009). The CAMS global NRT system is constantly advanced and improved through 

updates to the chemical scheme, the NWP model, and by including additional satellite retrievals from new satellite instruments 

as they become available, as documented in Inness et al. (2019b). 

 

A wealth of new atmospheric composition data became available with the launch of the Sentinel 5-Precursor (S5P) satellite in 5 

October 2017. S5P carries the TROPOspheric Monitoring Instrument (TROPOMI) which provides high-resolution spectral 

measurements in the ultraviolet (UV), visible (VIS), near infrared (NIR) and shortwave-infrared (SWIR) part of the spectrum. 

This wide spectral range allows the retrieval of several atmospheric pollutants species, including O3, NO2, SO2 and 

Formaldehyde (HCHO) from the UVVIS, and CO and Methane (CH4) from the SWIR part of the spectrum (Veefkind et al, 

2012). These species are all forecast by the CAMS global system, making TROPOMI the perfect instrument to provide 10 

observations for the CAMS NRT analysis at unprecedented horizontal resolution of about 5.5 km x 3.5 km for the species 

retrieved in the UV/VIS and 5.5 km x 7 km for CO and CH4 retrieved from the SWIR. TROPOMI S5P has been operational 

since April 2018, and TROPOMI NRT CO data have been routinely monitored in the CAMS global NRT system since 

November 2018. 

 15 

Carbon monoxide has natural and anthropogenic sources (Seinfeld and Pandis, 2006; Kanakidou and Crutzen, 1999). Its main 

sources are incomplete fossil fuel and biomass burning (Worden et al., 2013), which lead to enhanced surface concentrations, 

and in-situ production via the oxidation of CH4, isoprene and other organic trace gases. Combustion and chemical in-situ 

sources can produce similar amounts of CO on the global scale (Gaubert et al., 2016) but vary in space and time because of 

the changing distribution of anthropogenic and wildfire CO emissions as well as of the biogenic isoprene emissions. In seasonal 20 

means, the largest CO concentrations are found over the industrial regions of Asia, North America and Europe, and over the 

tropical biomass burning areas. However, in areas with large biogenic emissions (e.g., tropical forests), oxidation of biogenic 

volatile organic compounds (VOCs) contributes strongly to the production of CO (Griffin et al. 2007). Hudman et al. (2008) 

found that over the Eastern US during summer the biogenic sources of CO were higher than the anthropogenic ones. Boreal 

and Austral wildfires can also lead to increased CO abundances outside the tropics. Tropical and extratropical wildfires show 25 

large inter annual variability leading to pronounced CO anomalies in certain years (Flemming and Inness, 2021; Inness et al., 

2015b). The main loss process for CO is the reaction with the hydroxyl radical (OH). CO surface concentrations are higher 

during local winter than during the summer months because of the shorter CO lifetime in summer due to higher OH 

concentrations and more intense mixing processes. Tropical biomass burning is most intense during the dry season (December-

April in the Northern Hemisphere (NH) tropics, July-October in the Southern Hemisphere (SH) tropics). CO has a lifetime of 30 

several weeks and can serve as a tracer for regional and inter-continental transport of polluted air. CO is an indirect short-lived 

climate forcer because it is an important precursor for tropospheric ozone (Szopa et al., 2021, section 6.3.3.2), and because it 

impacts OH, which controls the lifetime of CH4. 

 

Before new data can be assimilated in the CAMS NRT analysis, the quality of the data in relation to the current system must 35 

be established. This is usually done by including the data passively in the data assimilation system, so that statistics of the 

differences between the observations and collocated model fields can be calculated without the data influencing the analysis 

and subsequent forecast (Inness et al., 2019b, Garrigues et al., 2022). We call this ‘monitoring’ of the observations. The model 

fields are interpolated in time and space to the location of the observations, and the model equivalents of the observations are 

calculated, e.g., by applying the averaging kernels of the observations to the model fields. Temporal and spatial statistics of 40 

the differences between the model fields and the observations can then be analysed.  
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The differences between the observations and the model equivalents are called departures. We distinguish between first-guess 

departures (observations minus model first-guess field) and analysis departures (observations minus analysed field). The first-

guess field is the model forecast from the previous analysis, i.e., before the fields are changed by the analysis increments. 

Long-term monitoring of the departures can disclose errors and biases in the satellite data products, as well as errors or biases 

in the model. Because the departures are usually small, they show up changes more clearly than when looking at the absolute 5 

model fields or observation values. A sudden jump on a global scale, which is larger than the instrument noise, can be an 

indication of problems in the observations or the model. The advantage of using an assimilation system to monitor satellite 

data is that it provides continuous global coverage and allows us to build up global and regional statistics quickly.  If the 

monitoring results show the data to be of good quality, i.e., departures are stable, there are no sudden jumps, the biases with 

respect to the model are not too large, assimilation tests with the data begin, followed by the operational use of the data in the 10 

CAMS global NRT system. 

 

Initial work about the use of early TROPOMI CO data in the CAMS system was reported in an ECMWF technical 

memorandum (Inness et al., 2019c). The current work makes use of a longer timeseries and more mature retrieval version of 

TROPOMI CO data. It documents the preparation of the global CAMS NRT system for the routine NRT assimilation of 15 

TROPOMI total columns CO (TCCO) data, by presenting results from assimilation tests with the NRT TROPOMI TCCO data 

for the period 6 July to 31 December 2021. The paper is structured in the following way. Section 2 describes the CAMS model 

and data assimilation system as well as the NRT TROPOMI TCCO data product and how the data are included in the global 

CAMS system. Section 3 shows results from assimilation tests with the TROPOMI TCCO data and validation with independent 

observations. Section 4 gives the conclusions. Results from long-term monitoring of TROPOMI CO data with the CAMS 20 

system are given in a supplement. 

 

2 Model and Observations 

2.1 CAMS system and CO analysis 

2.1.1 CAMS model and data assimilation system 25 

The CAMS model and data assimilation system is a specific configuration based on ECMWF’s integrated Forecast System 

(IFS). The chemical mechanism of the IFS versions used between 2018 and 2021 is an extended version of the Carbon Bond 

Mechanism 5 (CB05, Huijnen et al. 2010) as implemented in Chemical Transport Model (CTM) Transport Model 5 (TM5). It 

is documented in Flemming et al. (2015, 2017) and more recent updates in Inness et al. (2019a) and Huijnen et al. (2019). 

CB05 is a tropospheric chemistry scheme with 57 species and 131 reactions. The horizontal resolution of the CAMS model is 30 

approximately 40 km (T511 linear spectral truncation and 0.35° by 0.35° grid), i.e., coarser than the resolution of the 

TROPOMI data. 

 

The NRT global CAMS system has used CAMS_GLOB_ANT anthropogenic emissions (Granier et al., 2019) since July 2019 

and used MACCity anthropogenic emissions (Granier et al., 2011) before then.  Biomass burning emissions have come from 35 

the Global Fire Assimilation System V1.4 (GFAS, Kaiser et al., 2012) since October 2020 and were GFAS V1.2 before. 

Biogenic emissions are from CAMS_GLOB_BIO since July 2019, based on the Model of Emissions of Gases and Aerosols 

from Nature (MEGAN, Guenther et al., 2006), and from MEGAN_MACC, a different application of the MEGAN model, 

before then (see also Table S1 in the supplement for CAMS model changes). 

 40 
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The IFS uses an incremental four-dimensional variational (4D-Var) data assimilation system going back to Courtier et al. 

(1994). In the current CAMS 4D-Var setup, a cost function that measures the differences between the model fields and the 

observations is minimized to obtain the best possible forecast through the length of the assimilation window by adjusting the 

initial conditions. Several atmospheric composition fields, including CO, are included in the control vector and minimized 

together with the meteorological control variables. The data assimilation methodology for the atmospheric composition fields 5 

remains unchanged to the one described in Inness et al. (2015a) but the background errors for CO were updated in July 2019 

(Figure 1).  CAMS uses 12-hour assimilation windows from 03 UTC to 15 UTC and 15 UTC to 3 UTC, and two minimisations 

at spectral truncations T95 (~ 210 km) and T159 (~ 110 km). 

 

TCCO products from IASI and MOPITT instruments are routinely assimilated in the CAMS NRT system (see Table 1). The 10 

MOPITT data used by CAMS are the NRT thermal infrared (TIR) MOPITT retrievals from the 4.7 µm band (Deeter et al., 

2017, 2019, 2022). IASI TCCO is retrieved from the same band (spectral range 2143-2181.25 cm-1), and the data used during 

the period covered in this paper are produced by Eumetsat using LATMOS/ULB’s Fast Optimal Retrievals on Layers for IASI 

(FORLI, v20151001) algorithm, documented in George et al. (2009) and Clerbaux et al. (2009).  The TIR retrievals have the 

largest sensitivity to CO in the mid troposphere (Deeter et al., 2013; George et al., 2015). In the CAMS system IASI and 15 

MOPITT TCCO data are thinned to a horizontal resolution of 0.5° x 0.5° by randomly selecting one observation in each grid 

cell. 

 
Table 1: Satellite TCCO data products used or monitored in the global CAMS NRT system since November 2018. VarBC stands for 
variational bias correction, LAT denotes latitude, SOE solar elevation, QF the overall quality flags given by the data providers 20 
(QF=0 for good data) and qa_value a quality assurance flag given in the TROPOMI data. 

Instrument/ Satellite Data provider/ version Blacklist criteria / 

thinning 

VarBC 

Predictors for CO 

Reference 

IASI/ 

Metop-A (until 20191031) 

Metop-B 

Metop-C (since 20191101) 

Eumetsat,  

NRT 

QF>0 

Abs(LAT)<65⁰ 

SOE<5⁰ 

Thinned to 0.5⁰x0.5⁰ 

Global constant,  

1000-300 hPa thickness,  

thermal contrast (over 

land) 

George et al. (2009), 

Clerbaux et al. (2009) 

MOPITT/Terra (TIR) NASA,   

V7 NRT (until 20190630) 

V8 NRT (until 20211009) 

V9 NRT (since 20211010) 

QF>0 

Abs(LAT)<65⁰ 

Night-time data over Greenland 

Thinned to 0.5⁰x0.5⁰ 

Not applied  

Deeter et al. (2017) 

Deeter et al. (2019) 

Deeter et al. (2022) 

TROPOMI/ 

Sentinel-5P 

ESA/ SRON 

NRT (see Table S2) 

qa_value<0.5 

LAT<60⁰S 

Clear data over ocean 

Super-obbed to T511 (see 

section 2.3) 

Not applied Landgraf et al. (2016) 

 

The observation operator for TCCO in the CAMS system applies the averaging kernels of the observations to the model fields 

and calculates the model equivalent at the observation location and time, giving departures between the observations and the 

model as: 25 

𝑑 = 𝑦 − 𝐻&(𝑥!)          (1) 

Here, d is the departure between observation and model equivalent in observation space, y the TCCO retrieval, 𝐻& the 

observation operator to calculate the model equivalent of the observations from the 137 model level fields (xm). The TCCO 

retrievals can be written using the averaging kernel A, that relates the true vertical CO profile xt to the retrieved total 

columns 30 

𝑦 = 𝑥"# + 𝐴,𝑥$ − 𝑥"#	. + 	𝜖                                                                                                         (2) 
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where xap is an a-priori profile used in the retrieval of y and ε an error term for measurement errors and errors in the forward 

model. In the observation operator we apply the averaging kernels A to the model profiles, xm, to smooth the model profiles 

according to the sensitivity of the retrievals. This means Equation (1) can be written as 

𝑑 = 𝑥"# + 𝐴,𝑥$ − 𝑥"#	. −	0𝑥"# + 𝐴,𝐻(𝑥!) 	− 𝑥"#	.1 + 	𝜀 = 𝐴(𝑥$ −𝐻(𝑥!)) + 	𝜀       .                (3) 

where H is an operator to calculate CO layers from the model profiles on the vertical grid of the a-priori. Using this observation 5 

operator, we remove the explicit influence of the a-priori profile in the calculation of the departures, but knowledge of the a-

priori profile is still needed in the observation operator calculations for IASI and MOPITT TCCO retrievals. Also, the impact 

of the a-priori remains implicitly through the dependence of the retrieval y and the retrieval error on the a-priori, since a badly 

chosen a-priori will generally lead to larger retrieval errors and larger departures. 

 10 

A variational bias correction (VarBC) scheme (Dee and Uppala, 2009), where biases are estimated during the analysis by 

including bias parameters in the control vector, is used for the TCCO IASI data. In this scheme, the bias corrections are 

continuously adjusted to optimize the consistency with all information used in the analysis. VarBC is applied to the IASI 

TCCO data, with three predictors: (1) the thickness of the 1000-300 hPa layer, (2) the thermal contrast between the surface 

temperature and the temperature of the lowest model level over land, and (3) a global constant. The thickness parameter was 15 

chosen to allow latitudinal variations of the bias correction. MOPITT TCCO data are used to ‘anchor’ the bias correction, i.e., 

are assimilated without bias correction. Experience has shown that it is important to anchor the variational bias correction 

scheme, to avoid drifts in the model fields (Inness et al., 2013). MOPITT is used as the anchor because it was the first 

instrument assimilated in the early CAMS system, and the assimilation of IASI CO was added later. To prepare the CAMS 

system for the eventual loss of the MOPITT instrument, and because IASI and CAMS CO show good agreement (see Figures 20 

7 and 8 below) in the next CAMS model upgrade (planned for Q2/2023), the VarBC settings will be changed to use IASI-C 

as anchor and to bias correct MOPITT and IASI-B CO. 

 

The CAMS NRT model and data assimilation system is continually improved as the NWP model and the chemical scheme are 

further developed and new satellite data are added. Table S1 in the supplement lists the model upgrades that were implemented 25 

since the monitoring of TROPOMI CO data began in the CAMS NRT system in November 2018. The change to model 

CY46R1 on 2019-07-09 had a big impact on the CO analysis field and led to increased negative biases (see Fig. 3 below), 

likely to be linked to a change of the emission inventories. 

 

In the CAMS 4D-var data assimilation system, the background error covariance matrix is given in a wavelet formulation 30 

(Fisher, 2004, 2006). This allows both spatial and spectral variations of the background error covariances. The background 

errors for CO used in model cycles CY46R1-CY47R2 (OLDBGE) were calculated using the National Meteorological Center 

(NMC) method (Parrish and Derber, 1992). For this, 150 days of 2-day IFS forecasts (using a 137L configuration of CY45R1) 

were run, and differences between pairs of 24- and 48-hour forecast fields were calculated whose statistical characteristics 

serve as proxy for the background errors. For model CY47R3 new CO background errors were calculated (NEWBGE), again 35 

with the NMC method, but with a newer model configuration (CY47R1), again using 150 days of 2-day forecasts. By updating 

the background errors, we remain consistent with the model as it evolves. The 150 days covered the end of NH winter, spring 

and the beginning of NH summer and thus account for some seasonal differences in CO distributions. For future re-calculation 

of the background errors, it is planned to use a sample composed of a NH summer and winter period to better account for the 

seasonal differences in CO, including its lifetime and changes in CO emissions, that might affect the background errors. 40 

 

Figure 1 shows the globally averaged vertical CO background error standard deviation profiles and the horizontal correlation 

profiles from NEWBGE and OLDBGE. NEWBGE standard deviation values are smaller than OLDBGE ones in the 



6 
 

troposphere below model level 80 (about 260 hPa) and larger between model levels 80 and 65 (about 260 - 130  hPa). This 

means that tropospheric CO increments will be smaller with NEWBGE (assuming the data and all other model settings are the 

same), as the background is penalized less in the 4D-var analysis with NEWBGE than with OLDBGE. The global mean 

horizontal correlations are longer for NEWBGE than OLDBGE in the boundary layer (below model level 120, about 920 hPa), 

but shorter above. The horizontal correlations are longest over the continents at the surface, in the Tropics in the free 5 

troposphere, and in mid-latitudes around 200 hPa (not shown). The CO background errors are univariate, i.e., the error 

covariance matrix between CO and other chemical species or dynamical fields is diagonal. They are also constant in time, and 

globally averaged vertical background error standard deviation profiles are used in the 4D-var procedure.  Work is on-going 

to allow the use of seasonally and geographically varying background standard deviation profiles for the CAMS atmospheric 

composition fields. This should improve the characterization of background errors that are likely to vary with season and 10 

region due to factors such as CO emissions, lifetime and tropopause height. 

  

 

 
Figure 1: Profiles of globally averaged CO (a) background error standard deviation and (b) horizontal background error correlation 15 
profiles used from CY46R1 to CY47R2 (black, OLDBGE) and in CY47R3 (red, NEWBGE Model level 137 is the surface, model 
level 1 the top of the atmosphere and model 60 around 100 hPa. 

2.1.2 Quality of CAMS CO analysis fields 

CAMS NRT data are routinely validated, and validation reports are produced every three months 

(https://atmosphere.copernicus.eu/global-services, e.g., Errera et al., 2021). These reports show that the seasonality of the CO 20 

field is reproduced well by the global CAMS NRT system, i.e., currently still without the assimilation of TROPOMI data, 

when compared with independent data. However, the CAMS CO data generally have a negative bias. Compared to IAGOS 

(In-service Aircraft for a Global Observing System, www.iagos.org) aircraft CO data (Nedelec et al., 2015) the NRT CAMS 

data show the largest underestimations in the lower troposphere, while upper layers show a better agreement. On average, the 

modified normalised mean biases (MNMB) with respect to IAGOS CO range between -10% and 5% while correlations are 25 

mostly between 40 and 60% (e.g., Errera et al., 2021). Figure 2 shows profiles of seasonal mean relative differences between 

CAMS profiles and IAGOS (calibrated level 2) CO profiles at Frankfurt airport and averaged over airports in the Eastern 



7 
 

United States. These airports were chosen because they had the best data coverage for the period discussed here. Figure 2 

shows that the largest relative errors are found in the lower troposphere, with negative biases between -15% and -25% in all 

seasons. Differences above 700 hPa vary between -5% and -15%. Comparisons with IAGOS cruise level data given in the 

CAMS validation reports showed mostly negative biases for CAMS data in September, October, November (SON) and March, 

April, May (MAM) 2021, and no systematic biases in June, July, August (JJA) 2021 and December, January, February (DJF) 5 

2020/2021 when positive and negative biases within ±20% were found in most regions (Errera et al., 2021).  

 

Errera et al. (2021) documents that biases against GAW CO surface observations are within -8% for European GAW stations 

and Asian stations, and around -16% for stations located in the Southern Hemisphere. Their comparisons with EEA Airbase 

surface observations in Europe shows high temporal correlations, small biases over Belgium, Germany, Austria, Switzerland, 10 

and larger negative biases Spain (-30%), Estonia (-30%), Poland (-50%), the Czech Republic (-60%) and Bulgaria (-65%).   

 

Compared to NDACC FTIR tropospheric column CO data (Figure 3) the CAMS NRT system underestimates the tropospheric 

CO column in the Northern Hemisphere (NH). This negative bias increased in July 2019 after the CAMS model upgrade to 

CY46R1 to between -3 to -15 % for most stations and is larger than the reported 3% measurement uncertainty. Compared with 15 

MOPITT and IASI TCCO data, the CAMS validation reports (e.g., Errera et al., 2021) find negative biases of up to -20% and 

-30% respectively. These also increased after the CAMS model upgrade to CY46R1 in July 2019. The negative CO bias of the 

CAMS model is even more pronounced in experiments without CO data assimilation (Errera et al., 2021). 

 

 20 
Figure 2: Seasonal mean relative CO biases (%) from the CAMS NRT analysis against IAGOS aircraft data at (a) Frankfurt airport 
and (b) averaged over North American airports. Shown are (model - observation)/observation*100 for December, January, 
February (DJF), March, April, May (MAM), June, July, August (JJA) and September, October, November (SON) during the period 
2018-12-01 to 2021-11-30. The shaded areas denote ± 1 standard deviation. 
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Figure 3: Timeseries of monthly mean relative bias (%) for CAMS CO against NDACC FTIR tropospheric columns. The overall 
uncertainty for NDACC tropospheric columns is approximately 3%. The stations are sorted by latitude (northern to southern 
hemisphere). Periods without data are shaded in grey. The FTIR averaging kernels were applied in the comparisons. 

2.2 TROPOMI TCCO data 5 

The monitoring of TROPOMI TCCO data in the global CAMS NRT system began on 19 November 2018. TROPOMI has a 

local overpass time of 13:30 UTC, a spatial resolution of 5.5 km x 7 km in nadir (7 km x 7 km before 6 August 2019) for data 

retrieved from the SWIR band, a swath of 2600 km and provides daily global coverage with 14 orbits per day. For the work in 

this paper, we use NRT TROPOMI TCCO data produced with a retrieval algorithm developed by SRON, the Netherlands 

Institute for Space Research, and provided by ESA/ Eumetsat for the period 19 November 2018 to 31 December 2021. These 10 

NRT data are usually available with 3 hours of the observations being taken. Information about updates to the TROPOMI CO 

retrieval algorithm since November 2018 is given in Table S2 in the supplement. 

 

The TROPOMI TCCO retrieval is documented in Landgraf et al. (2016). The retrieval works in the 2.3 μm spectral range of 

the SWIR part of the solar spectrum (2315-2338 nm) and retrieves the TCCO values for clear-sky and cloudy conditions over 15 

land, and for cloudy conditions over ocean. Under clear-sky conditions over oceans, the SWIR signal is too low due to the 

dark sea surface to give a meaningful retrieval. While TIR measurements like MOPITT and IASI are mostly sensitive to CO 

in the mid troposphere (Deeter et al., 2013), TROPOMI SWIR measurements are sensitive to the integrated amount of CO 

along the light path (Landgraf et al., 2016), including the contribution of the planetary boundary layer, making them 

particularly suitable for detecting surface sources of CO. Martinez-Alonso et al. (2020, their Figure 1) show examples of 20 

TROPOMI and MOPITT averaging kernels that illustrate the different sensitivities of the TROPOMI and MOPITT retrievals. 

Since the update to v01.03.02 on 2019-07-03 the NRT TROPOMI data are of the same quality as the offline retrieval. 

 

The operational TROPOMI CO retrieval deploys a profile scaling approach described in detail by Borsdorff et al. (2014) where 

a CO reference profile is scaled to fit the TROPOMI reflectance measurements. For this, global, monthly averaged (3˚ × 2˚) 25 

vertical CO a-priori profiles from the chemical transport model TM5 (Krol et al., 2005) are used. The forward calculation of 

the measurement is accounting for light scattering by clouds and aerosols in the atmosphere and thus simultaneously retrieves 

trace gas columns and effective parameters describing the cloud contamination of the measurements (height scattering layer, 

scattering optical thickness) as demonstrated by Vidot et al. (2012). The TROPOMI TCCO datasets contain total column 

averaging kernels for individual measurements that describe the vertical sensitivity of the retrieved CO columns. The CO 30 

retrieval under clear-sky atmospheric condition shows a good sensitivity throughout the atmosphere with minor variations due 

to the observation geometry of the satellite. Retrievals from cloudy measurements exhibit a reduced vertical sensitivity caused 

by shielding of the cloud in the observation geometry of the satellite. Figure 4 shows examples of TROPOMI averaging kernels 
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for clear-sky and cloudy data over land as well as for cloudy data over sea for the NH, Tropics and SH averaged over the 

period 2018-11-19 to 2021-12-31 and illustrates the different vertical sensitivities.  

 

Because the TROPOMI CO retrieval is based on the profile scaling inversion (Borsdorff et al., 2014) the total column averaging 

kernel AS5p cannot smooth the vertical CO a-priori profile that is used for scaling within the inversion, and the validation 5 

equation (Eq. 2) simplifies to y = AS5p xtrue +  ε, where xtrue is the true CO profile. This means that the CAMS model equivalent 

of the TROPOMI observations can be calculated as  

 

𝑥%&' = 𝐴%&'		𝑥!() + 	𝜀 = 𝐴%&'	𝐻(𝑥!) + 	𝜀	                                                  (4) 

where xmod is the CAMS model profile on the vertical grid of the TROPOMI a-priori, AS5P the TROPOMI total column 10 

averaging kernel and xS5P the resulting CAMS CO column smoothed by the TROPOMI total averaging kernel AS5P.  

 

 
Figure 4: TROPOMI averaging kernels (means for period 2018-11-19 to 2021-12-31) averaged over (a) NH, (b) Tropics and (c) SH 
for clear data over land (red), cloudy data over land (blue) and cloudy data over sea (black). 15 

 

As recommended in the TROPOMI readme file (https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-

Carbon-Monoxide-Level-2-Product-Readme-File, last access 2/3/2022), we only use data with quality assurance values 

(qa_values) >0.5. This filters out the two most westward pixels (because of unresolved calibration issues) and observations 

with SZA < 80⁰ (where the retrieval is most sensitive to radiometric and retrieval errors due to the long light path through the 20 

atmosphere). Furthermore, we separate the data into clear-sky (i.e., clear-sky and clear-sky equivalent) and cloudy pixels. 

Clear-sky and cloudy data are used over land, while only cloudy data are used over oceans, as in the SWIR clear-sky 

observations over water have too low signal intensities to be meaningful. 

 

First TROPOMI total column CO (TCCO) data produced with the operational algorithm by SRON showed good agreement 25 

with the CAMS NRT CO analysis (Borsdorff et al., 2018) with a mean difference between TROPOMI and CAMS of 3.2±5.5 

% and a correlation coefficient of 0.97 for a period in November 2017. Martinez-Alonso (2020) compared TROPOMI TCCO 
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(offline and reprocessed) data for the period November 2017 to March 2019 with MOPITT data and with data from the airborne 

ATom (Atmospheric Tomography mission) campaign and found that over land TROPOMI CO had a small negative bias 

compared to MOPITT TIR data (-3.73% ± 11.51%) while they were biased slightly high over water (2.98% ± 15.71%). 

Compared to ATom data (over water) there was also a positive bias of 3.25% ± 11.46%. Sha et al. (2021) reported a bias of 

2.45±3.38% against unscaled XCO from the Total Carbon Column Observing Network (TCCON) for the period from the start 5 

of the TROPOMI mission to 2020-09-30 using the latest offline and reprocessed versions available at the time. While most 

stations showed positive biases, negative biases were found for urban stations (e.g., Xianghe, JPL and Pasadena). Sha et al. 

(2021) found differences of on average 6.5±3.54% against NDACC CO columns. All these differences are within the 

TROPOMI mission requirements on accuracy (< 15%) and precision (<10%). 

 10 

The routine quarterly TROPOMI validation reports available from https://mpc-vdaf.tropomi.eu/ (last access 22/8/2022; 

Lambert et al., 2022) show that the S5P L2_CO (NRT or RPRO concatenated with OFFL) carbon monoxide total column data 

is in good overall agreement with co-located measurements from the NDACC, TCCON and Collaborative Carbon Column 

Observing Network (COCCON) FTIR monitoring networks. They find on average a positive bias of approximately +10 % 

(NRT, before July 2019) or +6.5 % (OFFL and NRTI after July 2019). The validation reports found no latitudinal dependence 15 

of the bias and a slight increase of the bias during local winter. Biases at most individual NDACC stations were well below 

10%, but slightly larger at mountain stations and also at Eureka (Arctic) and Arrival Height (Antarctica). The biases increased 

with solar zenith angle by about 10% between 10˚ and 80˚. The processor update to version 02.02.00 on in July 2021 included 

a change in spectroscopic parameters, and preliminary results using rapid delivery NDACC data indicate that the bias is 

reduced to 2.9 % (Lambert et al., 2022).  An upper boundary of the random uncertainty of the TROPOMI offline CO data is 20 

5%, according to the validation reports. Individual TROPOMI CO data show stripes of erroneous CO values < 5% in flight 

direction, probably associated with calibration issues. A de-striping algorithm has been included for offline TROPOMI data 

with the upgrade to v02.02.02 in July 2021, but this is not applied to the NRT data. TROPOMI also suffers from instrumental 

effects in the area of the South Atlantic Anomaly (SAA). 

 25 

 According to the TROPOMI product readme file (https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-

Carbon-Monoxide-Level-2-Product-Readme-File.pdf/f8942626-ffb6-4951-90fc-a16b6589e39e?t=1639982223246, last 

access 27/4/2022) and the validation reports, the TROPOMI NRT CO product (which is used in the global CAMS system and 

in this paper) had an additional positive bias of 3-4 % before July 2019, but since processor version 01.03.02, the same 

configuration settings are used for the NRT and offline data processing streams, and therefore the data products are of the same 30 

quality. However, there is no noticeable change in CAMS TROPOMI monitoring timeseries (Figure S4 in the supplement ) 

related to the switch to the offline algorithm for NRT data, and in the timeseries of analysis departures this change is masked 

by the CAMS model change to CY46R1 that happened a few days afterwards.  

 

2.3 TROPOMI super-observations for use in CAMS system and monitoring of TROPOMI CO in the NRT CAMS 35 
system 

Because the horizontal resolution of the TROPOMI TCCO data (5.5 km x 7 km) is higher than the model resolution of T511 

(about 40 km x 40 km) the TROPOMI data are not spatially representative for the model grid boxes. To overcome this 

representativeness error, the data are converted into so called ‘super-observations’ before they are included in the CAMS 

system. For this, the data are averaged to the T511 resolution of the model. Our method to create super-observations simply 40 

calculates the averages of the observations in a grid-box and hence differs from a method described by Miyazaki et al. (2012) 

who also weigh the individual observations depending on the data coverage and take error correlations among the data into 
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account. We average the data separately for different surface types (e.g., land, ocean, ice etc.) and for clear and cloudy data, 

and the observation errors and averaging kernels of the data are averaged in the same way as the observations.  This averaging 

reduces the random errors in the data and also the representativeness errors due to unresolved small-scale features that are seen 

in TROPOMI data but not resolved in the model.  

 5 

TROPOMI CO data have been monitored passively in the CAMS system since November 2018 and results are shown in the 

supplement (Figures S1 to S4). In the global mean, CAMS TCCO analysis values are about 10% lower than TROPOMI TCCO 

when only IASI and MOPITT TIR TCCO data are assimilated (averaged over the period November 2018 to Dec 2021), with 

the largest relative differences (11-14%) found in the polar latitude bands, i.e., the areas where no satellite CO retrievals are 

assimilated in the global CAMS system. Differences between TROPOMI and CAMS are reduced, but not eliminated, after the 10 

upgrade of the TROPOMI retrieval to v02.02.00 in July 2021 (Figure S4 in the supplement) in line with the smaller positive 

TROPOMI bias reported in validation reports against NDACC observations (Lambert et al., 2022). 

3 Results of TROPOMI CO assimilation test  

3.1 Results from single observation experiments 

Before carrying out longer assimilation experiments with the TROPOMI TCCO data, we look at the results of single 15 

observation experiments with the data to illustrate the different impact clear and cloudy data have in the analysis, and to 

highlight the importance of using the averaging kernels in the observation operators. We carry out three single observation 

experiments. In each one, we place a single TROPOMI observation with a prescribed TCCO value of 4.3x1018 molec/cm2 and 

observation error of 10% at (50˚N, 10˚E) but vary the averaging kernels of the observations, so they are representative of mid-

level cloudy conditions, clear-sky conditions and clear-sky equivalent conditions (i.e., low thin clouds) over land (see Fig. 5). 20 

The resulting analysis increment profiles show that the clear-sky and clear-sky equivalent observations have a large impact in 

the troposphere below 550 hPa, including in the boundary layer. The impact of the cloudy data is reduced in the lower 

troposphere, i.e., below the clouds, where the averaging kernel values are smaller, and are larger above 500 hPa. If the 

averaging kernels were not used in the observation operator, e.g., the model equivalents of the observations were calculated as 

simple vertical integrals, all three experiments would give the same analysis profiles. This illustrates the importance of taking 25 

the averaging kernels into account when comparing model data with satellite retrievals. 

 
Figure 5: (a) TROPOMI total column averaging kernels representative of cloudy (red), clear-sky (cyan) and clear-sky equivalent 
(i.e., low thin clouds) conditions (blue) over land. (b) Analysis increments obtained in single observation experiments with the CAMS 
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system using observations with these averaging kernels and prescribed TCCO value of 4.3x1018 molec/cm2 and observation error of 
10% located at (50˚N, 10˚E).  

3.2 Results from assimilation experiments for the period 2021-07-06 to 2021-12-31 

Assimilation tests with the CAMS system were carried out with the TROPOMI TCCO data for the period 2021-07-06 to 2021-

12-31, i.e., after the TROPOMI algorithm upgrade to v02.02.00 (see Table S2 in the supplement) which reduced the positive 5 

TROPOMI CO bias against independent observations and led to smaller differences between TROPOMI and CAMS (see Fig. 

S4 in the supplement). In the assimilation experiment (ASSIM, see Table 2) TROPOMI data were used if they had 

qa_values>0.5 between 90˚N and 60˚S, i.e., not over Antarctica where comparison with NDACC data showed larger biases in 

the TROPOMI validation reports (https://mpc-vdaf.tropomi.eu/). Over oceans, only cloudy data were used. We also produced 

a control experiment (CTRL, see Table 2) where TROPOMI data were included passively and not assimilated. The differences 10 

between ASSIM and CTRL allow us to assess the impact of the TROPOMI TCCO data on the CAMS CO analysis. The model 

cycle used for the experiments was CY47R3, meaning that the CTRL setup corresponds to the operational CAMS NRT 

configuration that was operational from October 2021. The TROPOMI data in both experiments were super-obbed to the 

model resolution of T511, as described in Section 2.3. In ASSIM TROPOMI TCCO was used without bias correction, because 

the TROPOMI SWIR retrieval has different sensitivity to CO in the atmosphere than the IASI and MOPITT TIR retrievals, 15 

and it would not make sense to anchor a bias correction for TROPOMI to MOPITT or IASI.  

 

 
Table 2: Experiments used for the TROPOMI assimilation tests for the period 2021-07-06 to 2021-12-31. 

Experiment 

name  

Expver/  

model cycle/ DOI 
Assimilated data Bias correction 

ASSIM 

hmib (Inness, 2022a) 

CY47R3 

https://doi.org/10.21957/ax0c-fm72 
 

TROPOMI, MOPITT (day & night), 

IASI-BC (day) 

VarBC applied to IASI-BC 

(see Table 1) 

CTRL 

hlxm (Inness, 2022b) 

CY47R3 

https://doi.org/10.21957/mwqe-vs95 
 

MOPITT (day & night), IASI-BC (day) 
VarBC applied to IASI-BC 

(see Table 1) 

 20 

 

3.2.1 Differences between assimilation and control experiments 

Figure 6a shows a map of the relative differences between TCCO fields from ASSIM and CTRL averaged over the period 

2021-08-01 to 2021-12-30 and illustrates that the assimilation of TROPOMI TCCO data leads to increased CO columns in the 

analysis. The largest relative increase is found at high latitudes north of 70˚N (25-30%), over North America (10-20%) and 25 

over oceans (10-20%) in the Tropics. Such increases are expected if the CAMS analysis is drawing to the TROPOMI data, 

considering the positive TROPOMI analysis departures seen in the monitoring plot (Fig. S2 in the supplement) and the 

generally negative bias of the CAMS CO fields reported in comparison with independent observations. The large differences 

north of 70˚N are in the area where no IASI or MOPITT TCCO data are assimilated, i.e., no TCCO at all are assimilated here 

in CTRL. Figure 6b shows a cross section of the zonal mean absolute differences between ASSIM and CTRL for the same 30 

period and illustrates that CO is increased most at the surface and in the lower troposphere in the NH, with differences north 

of 60˚N extending throughout the troposphere, as well as in the upper troposphere in the Tropics. Cross sections and maps of 

analysis increments (not shown) illustrate that the increased CO in the upper troposphere is a direct result of the TROPOMI 
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assimilation, rather than a result of convective transport redistributing CO in the vertical, with the largest impact over Africa, 

South America and the Maritime Continent. Figure 6c shows the time evolution of the zonal mean relative differences between 

ASSIM and CTRL and illustrates that the largest differences are found in July and August, i.e., at a time when large boreal 

wildfires burned in Siberia and North America (see also section 3.2.4 below). 

 5 

 
Figure 6: (a) Relative TCCO difference in 1018 molec/cm2, (b) zonal mean cross section of CO difference in ppb from ASSIM minus 
CTRL averaged over the period August to December 2021 and (c) timeseries of daily zonal mean TCCO relative differences [%] for 
the period 2021-07-06 to 2021-12-30. 
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3.2.2 Instrument-specific analysis departures 

Next, we look at the fit of the CO analysis to the assimilated CO data in ASSIM and CTRL. Figure 7 shows boxplots of 

averaged global mean analysis departures from CTRL and ASSIM. In CTRL, TROPOMI analysis departures vary between 

7.3% to 9.1%, for the different data types. Analysis departures for MOPITT (0.6 %), IASI-B (1.5%) and IASI-C (1.3%) are 

much smaller because these data are assimilated, and the analysis is drawing to the data. MOPITT has the smallest analysis 5 

departures because the data are assimilated without bias correction. In ASSIM, the analysis is drawing to the TROPOMI data 

in addition to MOPITT and IASI-BC, so that TROPOMI analysis departures are much reduced and now lie between 0.3 and 

0.8 % for the various data types. IASI-BC analysis departures are also reduced slightly, illustrating that the assimilation of 

TROPOMI CO improves the fit of the CAMS analysis to the IASI-BC data globally. MOPITT departures are increased in 

ASSIM, because MOPITT TCCO values are generally lower than TROPOMI and IASI values, and by assimilating TROPOMI 10 

(without bias correction) in addition to the other data products the TCCO analysis values are increased (Fig. 6) and the fit to 

MOPITT is degraded. 

 

 
Figure 7: Global mean analysis departures for TROPOMI data (Good, LandClear, LandCloud, SeaCloud) and daytime MOPITT 15 
and IASI-BC data averaged over the period 2021-07-06 to 2021-12-31 for (a) CTRL and (b) ASSIM. 

Figure 8 shows timeseries of daily mean analysis departures from the four instruments averaged over the area between 60˚N 

and 60˚S, i.e., excluding the polar regions where the NRT MOPITT product does not provide data. The analysis in ASSIM is 

drawing strongly to the TROPOMI data (Fig. 8a), and TROPOMI analysis and first-guess departures are much reduced in 

ASSIM compared to CTRL. IASI-BC analysis departures are also reduced in ASSIM during July and August, and of similar 20 

size to the ones in CTRL for the rest of the timeseries. MOPITT departures in ASSIM are more negative than in CTRL (as 

already seen in Fig. 7b).   

 

The increased MOPITT departures in ASSIM (Fig. 7 and 8) do not imply that there are problems with the MOPITT dataset. 

MOPITT data have been extensively validated (e.g. Deeter et al., 2019 show that MOPITT V8 products generally have biases 25 

of less than about 5%) and are used with good results in the CAMS reanalysis where their assimilation leads to a CO analysis 

that agrees well with independent observations (Inness et al., 2019; Wagner et al., 2021). The underlying problem is the current 

negative CO bias of the CAMS model, which increased with the implementation of model cycle CY46R1 in July 2019. The 

CAMS CO analysis in ASSIM is improved when TROPOMI data are assimilated as TROPOMI has a small positive bias with 

respect to observations (see Section 2.2) which compensates for the negative bias of the underlying CAMS model and gives 30 

an analysis that agrees better with independent observations than if MOPITT is used as the main instrument. There are 

differences between the CO retrievals from TROPOMI, MOPITT and IASI whose investigation is beyond the scope of this 

paper. A study by George et al. (2015) using older versions of the MOPITT and IASI retrievals showed that that using the 
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same a-priori in the MOPITT and IASI retrievals led to better agreement between the datasets in source regions and during 

periods of low sensitivity, but that differences between the retrievals remained. They attributed these to differences in time 

and location of the observations, differences in the vertical sensitivity of the instruments and differences in auxiliary parameters 

used in the retrievals (such as temperature, humidity and cloud cover). MOPITT is likely still to be the instrument of choice 

for a future CAMS2 reanalysis because of the long data set going back to 2000 and the long-term stability (Deeter et al., 2019). 5 

 

Figure 9 takes a closer look at the analysis departures in the Arctic from IASI-B and IASI-C. Here we see a much-improved 

fit in July and August when the high CO columns retrieved by IASI-BC, which are the result of strong boreal wildfires in 

Siberia and North America, are not well captured in CTRL (see also Section 3.2.4). The improved fit against IASI-BC in 

ASSIM continues throughout September and October, i.e., while TROPOMI data are available for assimilation north of 60˚N. 10 

They are more similar in both experiments after November, when no TROPOMI data are available for assimilation in this 

latitude band. Examples of the impact of boreal wildfires in August 2021 on the CAMS TCCO analysis are discussed in Section 

3.2.4 below. 

 

Figure 8: Timeseries from 2021-07-06 to 2021-12-31 of daily mean TCCO first-guess and analysis departures from ASSIM and 15 
CTRL for (a) TROPOMI, (b) IASI-B, (c) IASI-C and (d) MOPITT for all ‘good data’ averaged over between 60⁰N-60⁰S in 1018 
molec/cm2. Analysis departures (abbreviated as AnDep) from ASSIM are in red, for CTRL in magenta. First-guess departures 
(abbreviated as FgDep) from ASSIM are in blue, for CTRL in black. 
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Figure 9: Timeseries from 2021-07-06 to 2021-12-31 of daily mean TCCO first-guess and analysis departures from (a) IASI-B and 
(b) IASI-C, and TCCO values from observations, analysis and first-guess for (c) IASI-B and (d) IASI-C in 1018 molec/cm2 for all 
‘good data’ averaged over the area between 90-60⁰N. Analysis departures (abbreviated AnDep)/ values from ASSIM are in red, for 
CTRL in magenta. First-guess departures (abbreviated FgDep)/ values from ASSIM are in blue, for CTRL in black. IASI TCCO 5 
values are in green. IASI data are not assimilated north of 65°N. 

3.2.3 Evaluation against independent observations 

To assess the quality of the TROPOMI analysis we compare the TCCO fields from ASSIM and CTRL with independent 

observations, i.e., observations that were not used in the analysis. Figure 10 shows comparison against NDACC FTIR data at 

all available stations. The negative CO total column and tropospheric column biases seen in CTRL are much reduced in ASSIM 10 

everywhere, except at the Antarctic station of Arrivals Heights where ASSIM shows a larger positive bias which increases 

with time. As no TROPOMI CO data are assimilated south of 60˚S in ASSIM, but the assimilation leads to increased CO 

values elsewhere, this increase over Antarctica must be the result of transport into the Antarctic region. Stratospheric CO in 

ASSIM has a reduced bias in the SH, but larger positive biases in the NH and Tropics than in CTR. As the CAMS system only 

uses a tropospheric chemistry scheme, we do not assess the changes to stratospheric CO any further. Figure 11 shows the mean 15 

biases and standard deviation values at each NDACC station for the period 2021-07-06 to 2021-12-31 and confirms the strong 

reduction of the total and tropospheric column CO biases in ASSIM. This suggests that large parts of the TROPOMI TCCO 

analysis departures shown in Fig. S3 and S4 are the result of a low bias of the CAMS model, rather than a high bias of the 

TROPOMI TCCO product. 

 20 
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Figure 10: Timeseries of relative mean bias for total column CO (row 1), tropospheric CO columns (row 2) and stratospheric column 
(row 3) in % from ASSIM (left column) and CTRL (right column) against NDACC FTIR data for the period 2021-07-06 to 2021-
12-31. The overall uncertainty for NDACC tropospheric columns is approximately 3%. The stations are sorted by latitude (northern 
to southern hemisphere). Periods without data are shaded in grey. 5 

 
Figure 11: Histogram plot of relative differences in % against NDACC FTIR data tropospheric column CO from ASSIM (red) and 
CTRL (blue) for the period 2021-07-06 to 2021-12-31. Note that St. Petersburg only had one profile on 2021-07-07. 

Figure 12 shows comparisons of tropospheric CO profiles from ASSIM and CTRL with IAGOS aircraft data at various airports 

averaged over the period July to December 2021, and Figure 13 shows timeseries of the monthly mean MNMB against IAGOS 10 

CO for layers in the upper troposphere, mid-troposphere and lower troposphere. We see a clear improvement in ASSIM with 

reduced biases, particularly in the lower and mid-troposphere at Frankfurt, North American and Middle Eastern airports. Here, 

the assimilation of the SWIR TROPOMI TCCO retrievals provides additional information to the CAMS system that is already 

constrained by the TIR MOPITT and IASI TCCO data in CTRL. At the West African airports, the improvement is largest 

above 800 hPa. Here, the number of clear data is smaller than in the other areas, reducing the sensitivity of TROPOMI to near 15 

surface CO. The reduced bias at the West African airports in the upper troposphere confirms that the increase in CO seen in in 

ASSIM in the upper tropical troposphere in Fig. 6b is a good result. 
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Figure 12: Relative difference in % of CO profiles from ASSIM (red) and CTRL (blue) against IAGOS aircraft data at (a) Frankfurt 
airport and averaged over (b) North American, (c) Middle Eastern and (d) West African airports averaged over the period July to 
December 2021. The shaded areas denote ± 1 standard deviation. 

 5 

 
Figure 13: Time series of monthly mean modified normalised mean bias (MNMB) against IAGOS data for the period July to 
December 2021 at (a) Frankfurt airport, (b) North American, (c) Middle Eastern and (d) West African airports for the layers (1) 
1000-850 hPa, (2) 850-400 hPa  and (3) 400-150 hPa. Only one profile of calibrated IAGOS data was available at Middle Eastern 
airports in December 2021.  10 
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The comparisons against independent CO observations in this section show that the assimilation of NRT TROPOMI CO data 

in the CAMS global system reduces the negative bias of the CAMS CO analysis in the troposphere and has the largest impact 

in the lower and free troposphere. This is because the SWIR TROPOMI CO retrieval is sensitive to the CO column, including 

contributions from the boundary layer, especially for clear data. It therefore provides additional information for the CAMS CO 

analysis which is already constrained by the assimilation of TIR MOPITT and IASI CO retrievals that are most sensitive to 5 

CO in the mid-troposphere. 

 

3.2.4 Boreal wildfires July and August 2021 

Increased flammability and wildfire risk, due to high temperatures and drought conditions, were manifested by the 

development of large-scale and persistent wildfires between June and August 2021 in the boreal regions of North America, 10 

particularly in the western United States and Canada, and Eurasia, particularly in the Sakha Republic of Russia. To illustrate 

the increased emissions from these fires, Fig. 15 shows that daily total biomass burning emissions of CO for Canada, the US 

and Siberia in July and August 2021 from the Global Fire Assimilation System (GFAS; Kaiser et al., 2012) were persistently 

above the typical daily values based on the 2003-2020 data in July and August 2021. The annual total biomass burning CO 

emissions for 2021 of 46 Tg (Siberia), 17 Tg (Canada) and 9 Tg (US) were considerably larger than the multi-year mean (2003-15 

2020). GFAS uses fire radiative power observations from the two Moderate Resolution Imaging Spectrometer (MODIS) 

instruments on the NASA Terra and Aqua satellites to produce daily global estimates of emissions from biomass burning, with 

a spatial resolution of 10 km x 10km, and is one of the emission input datasets for the CAMS system (see Section 2.1). GFAS 

emission estimates are likely to be an underestimation of the real biomass burning emissions, and uncertainties (which are also 

valid for other biomass burning emission datasets) arise from (1) the detection limit of the sensors for observing smaller fires, 20 

or low temperature fires (such as in peatlands) and (2) the knowledge of fuel types (i.e. vegetation types and peat) and 

associated emission factors – particularly in Eurasia/Siberia.  

 

The CAMS global NRT forecasts captured the transport of smoke from the persistent large-scale Siberian and North American 

wildfires. In July and August 2021, thick smoke from the North American wildfires was transported eastwards across North 25 

America in several episodes. It was observed at many Aeronet sites (not shown) and led at times to severely degraded air 

quality as far away as the north-eastern US coast, with haze clearly apparent in New York City. Satellite images, Aeronet 

observations and CAMS forecasts showed that smoke from some of the North American fires was transported further across 

the North Atlantic Ocean, passing Greenland, and reaching Europe. A concern with such high amounts of smoke crossing 

Greenland is the potential deposition of black carbon to the ice sheet, and previous studies have shown smoke particles from 30 

Canadian wildfires in the snowpack (Thomas et al., 2017). A very high number of wildfires also burned in eastern Russia 

through July and early August with the worst affected area the Sakha Republic. In terms of the total estimated wildfire carbon 

emissions for June-August in the Sakha Republic, a new record in the GFAS period was set in early August 2021, when the 

cumulative daily total emissions for 2021 were already larger than annual total of the previous record year 2020. CO from 

these fires was transported north across the Arctic Ocean as far as the North Pole. Figure S5 in the supplement shows maps of 35 

daily TCCO from ASSIM from 4 to 23 August 2021, depicting CO from the strong fires in Eastern Russia, the North American 

fires, and several of the episodes of CO transport from North America eastwards over the Atlantic and from Siberia over the 

North Pole. Note that on 6 August 2021 some of the highest CO columns globally were found over the normally clean North 

Pole. 
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Figure 14: GFAS v1.2 daily total CO biomass burning emissions in Mt/day for Canada (left), the USA (middle) and Eastern Russia 
(right) in July and August 2021 (red bars show 2021, grey bars show 2003-2020 mean). 

 

We assess in how far the TROPOMI CO assimilation can improve the representation of such plumes in the CAMS system. 5 

Total column CO values are clearly improved in the Arctic in August 2021 in ASSIM as can be seen in Fig. 15 which shows 

average TCCO field from TROPOMI and IASI-C. The highest CO columns are found over Siberia as well as over North 

America, the North Pacific, North Atlantic and Arctic Ocean. The same was seen for IASI-B (not shown). These high values 

are better captured in ASSIM than in CTRL, as seen by the smaller IASI-C analysis departures in ASSIM in Fig. 15, in the 

area north of 65°N where IASI data are not assimilated. This better agreement was also seen in Section 3.2.2 in the timeseries 10 

of departures averaged over the Arctic latitudes (Fig. 9). 

 

The differences between CAMS CO fields in CTRL and the satellite observations can have many reasons and cannot purely 

be traced back to shortcomings in the biomass burning emissions. Underestimation of CO is a common problem with many 

atmospheric chemistry models (e.g. Gaubert elt al., 2020) and not just the IFS. Other studies have related it to possible 15 

overestimation of the hydroxyl radical OH (Strode et al. (2015) as reaction with OH is the main removal of CO, 

underestimation of anthropogenic emissions and of non-methane volatile organic compounds (NMVOCs) from traffic 

emissions (Stein et al., 2014) or underestimation of secondary CO sources from the oxidation of methane and NMVOCs 

(Gaubert et al., 2016). Problems with the deposition fluxes could also play a role. Further work is needed to investigate the 

reason for the negative CO bias in the CAMS model, not only for the Arctic in this case but also in general.  20 

  

 
Figure 15: August 2021 monthly mean (a) TROPOMI TCCO field, (b) IASI-C TCCO field, (c) IASI-C analysis departures from 
ASSIM and (d) IASI-C analysis departures from CTRL in 1018 molec/cm2. 

Some IAGOS flights in August 2021 intersected parts of the CO plumes that were transported eastwards over North America 25 

and further over the Atlantic. Figure 16 shows CO profiles at Boston and New York airports on 6 August which crossed such 

a plume, visible in the CO values greater than 150 ppb above 500 hPa. The subsequent profile at New York (Fig. 16c) on 7 

August still showed the remnants of the plume with values greater than 100 ppb between 450 and 350 hPa. Both ASSIM and 
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CTRL have elevated CO values above 500 hPa at both airports on 6 August, but do not quite reach the values seen in the 

observations. The vertical structure of the CO profile is reproduced better in ASSIM than in CTRL, but the largest improvement 

is found in the lower troposphere in all 3 cases, and the actual impact at the plume altitude is smaller. 

 

 5 

 
Figure 16: CO profiles in ppb from IAGOS data (black), ASSIM (red) and CTRL (blue) at (a) Boston on 6 August, (b) New York 
on 6 August and (c) New York on 7 August 2021 in ppb. 

Smoke plumes from the North American wildfires reached Europe on 7, 9 and 11 August 2021 and again between 19 and 21 

August and were visible in IAGOS aircraft CO profiles at Frankfurt airport (Fig. S6 and S7 in the supplement). Figure 17 10 

shows weekly averaged CO profiles at Frankfurt airport between 26 July and 29 August 2021 and illustrates clearly the 

improved fit to the IAGOS profiles below about 500 hPa in ASSIM. The figure also shows that the high CO values seen in 

IAGOS profiles between 500-400 hPa in the week 2-8 August are not quite captured in either model run, while the weekly 

mean profile of ASSIM for the week 16-22 August agrees well with the IAGOS profiles at all altitudes. A closer look at the 

daily IASI CO profiles in Fig. S6 and S7 and shows elevated CO values above 500 hPa on 7 and 9 August, with maximum 15 

values located around 400 hPa and exceeding 300 ppb and 250 ppb, respectively. On 11 August the plume was located at lower 

altitude (between 600 and 500 hPa) and only had values of about 180 ppb. ASSIM and CTRL show elevated CO values above 

500 hPa on 7 August, but maximum CO values remain below 200 ppb. On 9 August, the plume is located at higher altitude in 

ASSIM and CTRL than in the observations. The weaker plume on 11 August is captured to some extent in ASSIM but does 

again not reach the values seen in the observations. On 19-21 August 2021 ASSIM and CTRL both show elevated CO values 20 

in the upper troposphere, with larger values in ASSIM, but the maximum values of about 180 ppb seen in the observations 

above 300 hPa are not quite reached. On 20 August both ASSIM and CTRL still show the plume, while the observations do 

not show it anymore. This might be because of a horizontal or temporal mismatch of the plume location in model and 

observations.. 

 25 

The comparison with IAGOS data for these case studies shows that the largest improvement from the assimilation of 

TROPOMI CO data in ASSIM is found in the lower and mid-troposphere, i.e. below the altitude of the smoke plumes. In the 
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upper troposphere the CAMS analysis is already constrained by the assimilated TIR MOPITT and IASI data, and the additional 

impact from the TROPOMI data is smaller. While TROPOMI is very successful in correcting the total CO column it cannot 

completely correct such deficiencies in the CAMS vertical CO profiles, suggesting that modelling aspects such as transport 

and accurate emission estimates remain essential to capture such events in the absence of vertically higher-resolved satellite 

data for use in the assimilation. 5 

 

 

 
Figure 17: Weekly mean CO profiles in ppb from IAGOS data (black), ASSIM (red) and CTRL (blue) at Frankfurt for the weeks 
commencing (a) 26 July, (b) 2 August, (c) 9 August, (d) 16 August and (e) 23 August 2021. 10 

4 Conclusions 

Operational near-real time TROPOMI total column CO data have been monitored passively in the CAMS global data 

assimilation system, which assimilates IASI and MOPITT TIR TCCO data, since November 2018. In the global mean, CAMS 

TCCO analysis values are about 10% lower than TROPOMI TCCO (averaged over the period November 2018 to Dec 2021), 

with the smallest relative differences found for clear-sky data in the Tropics (6.6 %) and the largest relative differences (11-15 

14%) found in the polar latitude bands, i.e., the areas where no satellite CO retrievals are assimilated in the global CAMS 

system. Differences between TROPOMI and CAMS are reduced after the TROPOMI algorithm upgrade to v02.02.00 in July 

2021 making assimilation tests with the TROPOMI CO data possible. 

 

The TROPOMI SWIR CO retrieval under clear-sky atmospheric condition shows a good sensitivity throughout the 20 

atmosphere, including contributions from near surface CO. Retrievals from cloudy measurements exhibit a reduced sensitivity 

in the lower troposphere caused by shielding of the clouds in the observation geometry of the satellite. Therefore, the retrieved 

TROPOMI TCCO values have contributions from different parts of the CO profile to the total column for clear and cloudy 

data, and it is important to take the TROPOMI averaging kernels into account when comparing CAMS and TROPOMI data. 

By doing this, the CAMS CO column smoothed by the TROPOMI total averaging kernels can be compared with the TROPOMI 25 

TCCO values in a like-with-like manner. The CAMS system applies the TROPOMI averaging kernels in the observation 

operator when assimilating the data. Single observation experiments show that the assimilation of clear-sky TROPOMI data 

has a larger impact in the lower troposphere and at the surface, while cloudy data have a larger impact on changing the CAMS 

field in the free and upper troposphere, because of the different vertical sensitivities of the clear-sky and cloudy observations 

as given by their averaging kernels. 30 
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The assimilation of TROPOMI CO improves the fit to the also assimilated IASI-BC TCCO data but degrades the fit to 

MOPITT TCCO. The NRT MOPITT CO columns have lower values than IASI and TROPOMI data, and by adding TROPOMI 

to the assimilation system the impact of the MOPITT data is reduced and the analysis draws less strongly to those data. This 

does not imply that there is a problem with the NRT MOPITT CO data, but rather illustrates that there are differences between 5 

the assimilated satellite retrievals (possibly due to differences in a-priori profiles, vertical sensitivity of the instruments or 

auxiliary parameters used in the retrievals). The underlying problem is a negative CO bias of the CAMS model which is seen 

in comparison with independent observations (e.g. NDACC FTIR and IAGOS) and which is better corrected when TROPOMI 

data are used in addition to MOPITT and IASI.  

 10 

When TROPOMI data are assimilated in the CAMS system, they lead to increased CO analysis values and an improved fit to 

independent observations. The impact of the TROPOMI assimilation is large, with TCCO changes of over 50% in the CAMS 

analysis at high northern latitudes during July and August 2021 when exceptionally strong boreal wildfires led to 

unprecedented amounts of CO being released into the atmosphere. The TROPOMI CO assimilation also has a large impact on 

the vertical distribution of CO in the CAMS analysis and leads to increased CO analysis values at the surface and in the 15 

troposphere in the NH, and in the upper troposphere in the Tropics. It improves the fit to IAGOS aircraft data, with the largest 

absolute and relative CO increase found in the lower and the free troposphere, where the global CAMS NRT system is known 

to have a negative bias.  Here, the assimilation of TROPOMI CO data improves the fit to IAGOS aircraft profiles in Europe 

(Frankfurt airport), at North American, West African, and Middle Eastern airports. Furthermore, comparison with NDACC 

FTIR data tropospheric and total column CO data also show reduced negative biases when TROPOMI CO data are assimilated. 20 

 

TROPOMI monitoring timeseries show increased CO columns due to boreal wildfires during NH summers 2019, 2020 and 

2021 and due to the 2019/2020 Australian bushfires in the SH. In particular, the NH summer of 2021 saw strong wildfires in 

North America and Russia that released record amounts of CO into the atmosphere. Plumes of smoke from the Siberian fires 

were transported to polar latitudes, leading to some of the highest CO columns globally on 6 August at the normally clean 25 

North Pole, and from North America eastwards over the North Atlantic, reaching as far as Europe. These transport events were 

clearly visible in the CAMS CO analysis fields. The assimilation of TROPOMI CO improved the fit to IASI TCCO data in the 

Arctic during the period of intense burning in July and August 2021, by increasing the CAMS TCCO analysis values. Some 

plumes of high CO in the upper troposphere were intersected by IAGOS aircraft at Boston, New York, and Frankfurt airport. 

These plumes were also captured in the CAMS CO analysis, but the upper-level CO maxima were usually smaller than in the 30 

IAGOS observations. At these altitudes, the assimilation of TROPOMI did not change the CAMS CO field much, compared 

to a model run that already assimilated MOPITT and IASI TCCO. While the CO column can be well constrained, TROPOMI 

CO data do not provide further constraints on individual plumes that are transported across continents or oceans at altitudes 

above 500 hPa. Modelling aspects such as transport and accurate emission estimates remain essential to succesfully capture 

such events. Furthermore, the total column TROPOMI data do not have the vertical resolution to introduce such fine-scale 35 

structures in the CAMS analysis. For this, data with higher vertical resolution would be needed.  

 

One shortcoming of the current CAMS system is a low CO bias in the free troposphere. This is a common problem with many 

atmospheric chemistry models (e.g. Gaubert elt al., 2020) and not just the IFS. Further work is needed to understand the reason 

for this bias and to improve the model. While the negative bias increased with the change to model version CY46R1 and the 40 

change to the CAMS_GLOB emission inventory in July 2019, negative biases were seen before then and might not purely be 

a result of underestimated anthropogenic emissions. Factors such as the distribution of the hydroxyl radical OH, secondary CO 

sources from the oxidation of methane and NMVOCs, and deposition processes might also be important. CAMS is in the 
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process of developing an inversion prototype using ECMWF’s 4D-Var system (McNorton et al., 2022), which should help to 

address shortcomings in emission inventories, but work on modelling aspects is also needed. 

 

The results of this paper illustrate that the use of TROPOMI TCCO data in the global CAMS system is beneficial, and 

consequently the TROPOMI CO assimilation will be activated in the next operational upgrade (CY48R1) of the CAMS global 5 

system which is scheduled for Q2/2023. The TROPOMI CO data, retrieved from the SWIR part of the solar spectrum, are 

sensitive to CO throughout the troposphere, including contributions from the surface, while the TCCO data that are already 

assimilated by CAMS (i.e. TIR MOPITT and IASI TCCO) have the largest sensitivity in the mid-troposphere. TROPOMI 

therefore brings additional information on the vertical CO distribution into the CAMS analysis in parts of the column where 

CO is not already well constrained by the assimilation of TIR MOPITT and IASI TCCO retrievals. The largest contribution 10 

from near-surface CO is found for clear-sky TROPOMI CO retrievals, while the impact in the lower troposphere is reduced 

for cloudy scenes.  
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