Supplementary information

Low contributions of dimethyl sulfide (DMS) chemistry to atmospheric aerosols over the high Arctic Ocean

Miming Zhang^{1,2}, Jinpei Yan^{*1,2}, Qi Lin^{1,2}, Hongguo Zheng³, Keyhong Park⁴, Suqing Xu^{1,2}, Meina Ruan^{1,2}, Shuhui Zhao^{1,2}, Shanshan Wang^{1,2}, Xinlin Zhong³, Suli Zhao³

1 Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361005, China;

2 Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; 3.Thermo Fisher Scientific Co. Ltd., Shanghai, 610000, China.

4 Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea;

Supplementary figures:

Fig. S1. The cruise tracks of the observation in the Arctic Ocean.

Fig. S2. Gases and aerosols monitoring system. An underway aerosols monitoring system were deployed on the R/V "Xuelong" to carried out the observation in the Arctic Ocean (AO). An ambient Ion Monitor-Ion Chromatograph (AIM-IC, URG9000D, Thermo Fisher Scientific Co. Ltd) was used to determine the gaseous and aerosol water soluble ions.

Fig. S3. Time series of MSAg, MSAp, nss-SO₄²⁻ and major metrological parameters during the observation period, (a) time series of MSAp and nss-SO₄²⁻; (b) time series of MSAg; (c) time series of temperature and RH; (d) time series of wind speed and wind directions.

Fig. S4. Latitudinal distributions of MSA⁻ to Na⁺ ratios in different regions.

Fig. S5. Latitudinal distributions of MSA and DMS concentrations.

Fig.S6 Chlorophyll-a concentrations during the observation periods, (a) Average chlorophyll-a concentrations in July; (b) Average chlorophyll-a concentrations in August; (a) Average chlorophyll-a concentrations in September.

Fig.S7 Sea ice concentrations during the observation periods, (a) Average sea ice concentrations in July; (b) Average sea ice concentrations in August; (a) Average sea ice concentrations in September.

Supplementary tables:

Peak	Peak Name		Evel Tures	Coeff. of	<u> </u>	C1
		Cal. Type	Eval. Type	Determination	CU	
No.				(r²)	(Offset)	(Slope)
1	F-	Lin, With Offset	Area	0.99982	0.1096	306.9753
2	$C_2H_3O_2^-$	Lin, With Offset	Area	0.99918	0.0051	77.396
3	$C_3H_5O_2^-$	Lin, With Offset	Area	0.99982	-0.0171	32.505
4	HCO ₂ -	Lin, With Offset	Area	0.99933	-0.0215	113.7341
5	MSA-	Lin, With Offset	Area	0.99987	-0.0028	63.5009
6	$C_4H_7O_2^-$	Lin, With Offset	Area	0.99931	0.0058	38.6108
7	$C_5H_9O_2^-$	Lin, With Offset	Area	0.99935	-0.0015	33.9728
8	Cl⁻	Lin, With Offset	Area	0.99994	0.0323	184.942
9	NO₂ ⁻	Lin, With Offset	Area	0.99937	0.004	143.8679
11	Br⁻	Lin, With Offset	Area	0.99993	-0.0035	74.9207
1 2	NO ₃ -	Lin, With Offset	Area	0.99914	-0.0253	113.7953
1 5	SO4 ²⁻	Lin, With Offset	Area	0.99919	0.042	130.6983
17	C ₂ HO ₄ -	Lin, With Offset	Area	0.99986	0.0052	111.7235

Table S1 Calibration of anion for online aerosol monitoring system

Table S2 Calibration of cation for online aerosol monitoring system

Peak	Peak Name	Cal Turna	Fuel Turne	Coeff. of	<u> </u>	C1
		Cal. Type	сул. туре	Determination	CU	
No.				(r ²)	(Offset)	(Slope)
2	Li+	Lin, With Offset	Area	0.99977	-0.0574	669.4003
3	Na ⁺	Lin, With Offset	Area	0.99979	0.0433	199.8333
4	NH_4^+	Lin, With Offset	Area	0.99938	0.0720	210.4199
5	K+	Lin, With Offset	Area	0.99908	-0.0184	114.8985
6	MMA ⁺	Lin, With Offset	Area	0.99950	-0.0311	148.0498
7	DMA ⁺	Lin, With Offset	Area	0.99978	0.0026	79.8318
8	TMA⁺	Lin, With Offset	Area	0.99935	-0.0033	62.5532
9	DEA ⁺	Lin, With Offset	Area	0.99941	0.0010	53.3213
10	TEA ⁺	Lin, With Offset	Area	0.99921	-0.0018	36.4090
11	Mg ²⁺	Lin, With Offset	Area	0.99991	-0.0189	369.8892
12	Ca ²⁺	Lin, With Offset	Area	0.99933	0.0428	236.5497

Table. S3 Gaseous and particulate MSA levels in different regions

Region	Longitude	Latitude	$MSA_{g(min)} \\$	MSAg(max)	MSAg(Avg.)	MSA _{p(min)}	MSA _{p(max)}	MSA _{p(Avg.)}
	(0)	(°N)	(ng•m ⁻³)					
Leg I	$121.6 \: E - 150 \: W$	31.3 - 85	1.5	63.5	9.4±7.1	-	692.4	41.9±90.4
Leg II	$143 \ E-155 \ W$	45 - 85	-	268.9	17.0±34.3	-	236.4	31.5±35.4
LL-leg I	121.6 E – 139.7 E	31.3 - 45	12.2	31.6	21.0±12.3	12.2	192.7	57.9±38.5
LL-leg II	-	-	-	-	-	-	-	-
ML-leg I	139.9 E – 179.7 E	45 - 60	4.3	63.5	10.0±5.9	7.6	692.4	168.6±167.6
ML-leg II	$143.8 \: E - 178.8 \: W$	44.9 - 60	-	92.0	13.9±15.2	1.6	185.2	29.3±32.0
SL-leg I	158.2 W – 179.9 W	60 - 75	1.7	22.9	5.5±3.5	-	165.4	29.4±39.7
SL-leg II	163 – 177	60 - 75	-	228.4	24.2±46.8	6.7	236.4	68.3±44.2
HL-leg I	134.6 W – 172.3 W	75 - 85	1.5	23.3	8.5±3.6	-	36.7	6.0±6.4
HL-leg II	155.8 W - 173.8 W	75 - 85	-	81.3	8.4±11.2	-	39.4	13.4±7.2