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Abstract. More attention has been paid to the air pollution caused by ship emissions; hence the 7 

establishment of accurate emission inventories is an important means to assess the impact on the 8 

environment and human beings. The emission factor is an important parameter in the process of 9 

compiling the ship emission inventory, yet there is some uncertainty in its estimation based on the sniffer 10 

method. In this study, taking the calculation of SO2 emission factors as an example and aiming at the 11 

selection of gas measurement values using the sniffer method, the concept of standard deviation of peak 12 

density was proposed to determine the optimal integral interval length of the measured values of SO2 and 13 

CO2. Then, the improved Manhattan distance was used to characterize the position of the peak points in 14 

the SO2 and CO2 average series. Using the dynamic time warping algorithm, the corresponding 15 

relationship of the peak points in the average series of the measured gases was determined, and the global 16 

optimal peak points were selected from it. To evaluate the credibility of calculated emission factors, 16 17 

evaluation indexes that reflect the characteristics of the measured data were selected. The confidence 18 

interval of 95% of each evaluation index was calculated using self-development sampling of the 19 

measured data, and the evaluation result of the evaluation index for the quality of the measured data was 20 

obtained. Combined with the data quality label, the indexes with high correct rate were screened. Finally, 21 

the evaluation scores were determined according to these selected indexes. We collected a total of 148 22 

sets of "SO2+CO2" measurement data between 2019 and 2021 using the unmanned aerial vehicle sniffing 23 

monitoring system in the Waigaoqiao Port area of Shanghai, China for verification using the method 24 

proposed in this study. The results show that for this data set, 12 s is the most suitable integral length, 25 

with which the algorithm can automatically calculate the emission factor. The screening results of the 26 

global optimal peak points of 129 groups of data are consistent with those of artificial screening, with a 27 

correct rate of 87.16%. The accuracy of the combined evaluation of sample entropy (SO2), information 28 

entropy (SO2), skewness (CO2) and quartile spacing (SO2) is 71%. Previous calculation of the emission 29 
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factor of ships mainly focused on different conditions such as time, region, fuel, engine, ship type, and 30 

navigation status. Our in-depth study proposes a high accuracy ship emission factors calculation method 31 

and an evaluation of the quality of the measurement data that reduces uncertainty in the current sniffer 32 

technique monitoring ship emission research. 33 

1 Introduction 34 

In the past decade, the development of the global shipping industry has accelerated (UNCTAD, 2021), 35 

resulting in increasingly serious emission problems (Chen et al., 2019). Gases and particles emitted by 36 

ships will not only pollute the natural environment, but also have an impact on human health (Liu et al., 37 

2016). SO2 causes frequent acid rain damage to the environment (Matthias et al., 2010) such as the 38 

erosion caused to 50% and 30% of the forests in Germany and Poland and Switzerland, respectively 39 

(Mohajan et al., 2018). Fine particulate matter (PM2.5) can cause lung cancer and other heart and lung 40 

diseases, and results in 2.2 million to 3.3 million deaths worldwide each year (Sofiev et al., 2018). In 41 

2015, a total of 20.1106 tons of NOx, 11.5106 tons of SOx, and 1.54106 tons of PM were emitted by 42 

global shipping operations (Sofiev et al., 2018). In 2017, EU shipping emissions generated 2.6106 tons 43 

of SO2 and 7.7106 tons of NO2 (Jonson et al., 2020). 44 

Accurate ship emission inventory is not only the baseline data for analyzing the law of ship emissions, 45 

but also the scientific basis for controlling and optimizing supervision measures in relevant management 46 

areas (Zhang et al., 2017; Zhang et al., 2017). The calculation of ship emission inventory is carried out 47 

using two approaches: top-down and bottom-up. The top-down method is based on the fuel consumption 48 

of the ship without considering its specific location, and is suitable for the calculation of the long-term 49 

source list on the global scale. Kesgin et al. (2001) used the top-down method to calculate the emissions 50 

of CO, CO2, PM2.5 from ships in the Turkish Strait. Corbett et al. (1997) studied the global emission 51 

inventory using ship fuel. The bottom-up method directly estimates emissions based on the motion state 52 

and attributes of the ship, which is more accurate than the top-down method. In recent years, due to the 53 

rapid development of the Automatic Identification System (AIS), it is more convenient to obtain the real-54 

time operation status of ships, hence this method is widely used in the research of emission inventory. 55 

Papaefthimiou et al. (2016) used a bottom-up approach based on port ship activity to calculate the NOx, 56 

SO2, PM2.5 emitted by international cruise ships in 18 ports in Greece. Tichavska et al. (2015) obtained 57 
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ship activity data through the AIS and studied the monthly relationship between ship emissions and vessel 58 

type in Las Palmas Port. 59 

Parameter information such as ship speed and position, main engine power, auxiliary power, and 60 

emission factors are needed when establishing an emission list. Among them, the static and dynamic 61 

information of the ship can be obtained directly using AIS data and other channels, whereas the emission 62 

factor can only be determined by measurement, thus the accuracy of the measurement directly determines 63 

the accuracy of the emission list (Ekmekçioğlu et al., 2020; Yang et al., 2021; Toscano et al., 2021). 64 

There are two ways to measure emission factors: fuel- and power-based. The former can be calculated 65 

by measuring the concentration of CO2 and other pollutants, while the latter needs to obtain real-time 66 

data of mainframe power, auxiliary power, and operation mode. The two measurements can be converted 67 

to each other when the ship fuel consumption rate is known (Zhang et al., 2016). Sniffer technique is one 68 

of the methods based on the fuel emission factor measurement, which can quickly and accurately 69 

calculate the ship plume. Balzani Lööv et al. (2014) used the sniffer technique among others to compare 70 

the measures of the emission factor and fuel oil sulfur content of ships in the port of Rotterdam. The 71 

mobile sniffer technique was the most convenient and accurate, with an average random error of 6% for 72 

SO2 emission factors. Beecken et al. (2014) used a small aircraft carrying sniffer equipment to monitor 73 

exhaust emissions from 158 ships in the Baltic Sea and North Sea. The average emission factor of SO2 74 

was 18.8 ± 6.5𝑘𝑔𝑓𝑢𝑒𝑙
−1 , and approximately 85% of the monitored ships met the sulfur content limit set 75 

by the International Maritime Organization. Many studies have shown that the emission factor and its 76 

accuracy is an important parameter in the compilation of ship emission inventory (Moreno-Gutiérrez et 77 

al., 2015; Zhang et al., 2017; Ekmekçioğlu et al., 2020). Therefore, many emission factors measurements 78 

have been proposed to obtain accurate results. These experiments focused more on measuring and 79 

obtaining emission factors under different conditions such as time, region, fuel, engine, ship type, and 80 

navigation status (Sinha et al., 2003; Cooper, 2003; Burgard and Bria, 2016; Peng et al., 2016; Betha et 81 

al., 2017; Liu et al., 2018; Bai et al., 2020). However, there is still a lack of in-depth research on how to 82 

accurately calculate the emission factor from measurement data and how to evaluate the quality of the 83 

measured data. 84 

Taking SO2 as an example, the principle of the sniffer technique is based on the 85% and 87% stability 85 

of the carbon content in ship fuel. The concentration ratio of CO2 to SO2 generated by fuel combustion 86 

is equal to the molar ratio of carbon to sulfur in the fuel and will not change due to tail gas dilution, thus 87 

https://doi.org/10.5194/acp-2022-452
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



 4 

the measurement of CO2 and SO2 concentration can be used to calculate the emission factor (Huang et 88 

al., 2021). However, various uncertain factors in the calculation process cause nonnegligible interference 89 

to the emission factor, which mainly exists in three aspects: first, because the response time of different 90 

gas sensors varies, it is difficult to select the measured value of gas at the same time as the calculated 91 

emission factor. Therefore, the general method is to select the gas measurement values for a period for 92 

the cumulative calculation to reduce the error caused by the response time of different gas sensors that 93 

cannot be synchronized. Zhou et al. (2020) proposed to regard the accumulation process as an integral, 94 

and then divide the result by the time interval, so as to convert the gas measurement into an average value 95 

to find a method that selects the global optimal peak point of the gas average value. The problem of 96 

selecting the appropriate integral interval is selecting the global peak point in the average set of measured 97 

data. However, the time interval of the integral interval mainly depends on experience. Second, based on 98 

the first problem, the selection of the global optimal peak point directly determines the accuracy of the 99 

emission factor calculation. However, multiple peaks of SO2 and CO2 will appear in gas measurements 100 

over a period. Therefore, there is a lack of in-depth research on how to establish a matching relationship 101 

between the peak points to determine the global optimal peaks of SO2 and CO2. Third, various 102 

environmental and equipment factors in the process of ship exhaust gas measurement will interfere with 103 

the gas measurement value, hence there is no objective evaluation method for the gas measurement value 104 

at present. 105 

This study makes an in-depth study and analysis of the above three problems. Aiming at the first problem, 106 

the concept of peak density standard deviation is proposed to measure the ability of an integral interval 107 

to represent the changing data. The larger the value of the standard deviation of peak density, the more 108 

obvious the changes of the data processed by the corresponding integral interval, the clearer the peak 109 

trend, and the more accurate the selection of the global optimal peak point. Aiming at the second problem, 110 

to select the optimal peak point from many peak points, it is necessary to establish a matching relationship 111 

between the average series of the two gases and judge the rationality of all the matching relations. The 112 

dynamic time warping (DTW) algorithm was proposed by Itakura (Itakura, 1975), and its function is to 113 

measure the similarity of two time series. Dmytrów et al. (2021) recently used the DTW algorithm to 114 

evaluate the similarity between energy commodity prices and the daily cases time series for the 115 

coronavirus disease (COVID-19). Li et al. (2020) used the DTW algorithm to compare the corresponding 116 

relationship between ship trajectory time series, which improved the performance of navigation trajectory 117 
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modeling. Applying the DTW algorithm to the screening of peak points can obtain the similarity between 118 

CO2 and SO2 sequences and the matching relationship between the average sequences of their peak points. 119 

Further, combining the criteria for selecting the optimal peak points proposed by Zhou et al. (2019) can 120 

select the appropriate gas measurement value for the calculation of emission factors. Aiming at the third 121 

problem, 16 evaluation indexes that reflect the data quality are put forward, in which the evaluation index 122 

for a single gas measurement value is divided into two cases to use the SO2 and CO2 measurement values 123 

for evaluation, respectively. The 95% confidence interval of the evaluation indexes are calculated by 124 

self-developing sampling for a number of measured data, and the evaluation results of these indexes for 125 

the quality of the measured data are given accordingly. Combined with the quality label of the measured 126 

data, the correct rate of the index for data quality evaluation can be obtained, and the evaluation indexes 127 

with higher accuracy can be selected to form a set for joint evaluation, so as to further improve the 128 

accuracy of the gas measurement data evaluation. Finally, using the method proposed in this study, the 129 

ship exhaust data measured in Shanghai Waigaoqiao Port are tested, and it is verified that this method 130 

can find the appropriate global optimal peak point with high accuracy and then calculate the emission 131 

factor, using indexes to jointly evaluate the quality of the measured data. 132 

2 Theory 133 

2.1 Method of calculating ship emission factors 134 

The sniffer method is based on three assumptions: first, the carbon content in different ship fuels is 135 

approximately 87% similar. Second, the combustion of carbon and sulfur in ship fuel produces almost 136 

all CO2 and SO2, while the rest of sulfur and carbon oxides account for only a small part, which can thus 137 

be ignored. Third, when the tail gas generated by marine fuel combustion is diluted in the air, the ratio 138 

of CO2 to SO2 does not change (Hu et al., 2018). Accordingly, the SO2 emission factor can be calculated 139 

by measuring the gas concentration of SO2 and CO2 over a period and accumulating the ratio respectively. 140 

The formula is (Beecken et al., 2014): 141 

𝐸𝐹𝑆𝑂2
[𝑔 𝑘𝑔𝑓𝑢𝑒𝑙

−1 ] =
𝑚(𝑆𝑂2)

𝑚(𝑓𝑢𝑒𝑙)
=

𝑀(𝑆𝑂2)·∑[𝑆𝑂2,𝑝𝑝𝑏]

𝑀(𝐶)/0.87·∑[𝐶𝑂2,𝑝𝑝𝑚]
= 4.64

∑[𝑆𝑂2,𝑝𝑝𝑏]

∑[𝐶𝑂2,𝑝𝑝𝑚]
             (1) 142 

where 𝑚(·) is the mass, 𝑀(𝐶) is the relative atomic mass of carbon, 𝑀(𝑆𝑂2)  is the relative molecular 143 

mass of sulfur dioxide, and ∑[·] is the cumulative summation of the concentration of the gas to be 144 

measured over time. 145 
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Considering that the sensor cannot achieve complete synchronization, the method of accumulating the 146 

measured values over a period can be adopted instead of using one measured value, that is, the calculation 147 

of the emission factor can be more stable by integrating the measured values of gas over a period. In this 148 

study, we calculate the SO2 emission factor by converting gas measurements into average values, as 149 

shown in Eq. (2) (Zhou et al., 2020): 150 

𝐸𝐹𝑆𝑂2
[𝑔 𝑘𝑔𝑓𝑢𝑒𝑙

−1 ] = 4.64
∫(𝑆𝑂2,𝑝𝑒𝑎𝑘−𝑆𝑂2,𝑏𝑘𝑔)𝑑𝑡[𝑝𝑝𝑏]

𝑡
⁄

∫(𝐶𝑂2,𝑝𝑒𝑎𝑘−𝐶𝑂2,𝑏𝑘𝑔)𝑑𝑡[𝑝𝑝𝑚]
𝑡

⁄
= 4.64

𝐴𝑉𝐺(𝑆𝑂2,𝑝𝑒𝑎𝑘)−𝐴𝑉𝐺(𝑆𝑂2,𝑏𝑘𝑔)

𝐴𝑉𝐺(𝐶𝑂2,𝑝𝑒𝑎𝑘)−𝐴𝑉𝐺(𝐶𝑂2,𝑏𝑘𝑔)
    (2) 151 

where 𝑆𝑂2,𝑝𝑒𝑎𝑘 is the peak of SO2 in the measured data, 𝑆𝑂2,𝑏𝑘𝑔 is the background value of SO2 in the 152 

measured data, 𝑡 is the length of the integral interval, ∫(·)𝑑𝑡 is the integral calculation function of the 153 

integral interval of t seconds, and 𝐴𝑉𝐺(·) is the function of calculating the average measured value in t 154 

seconds. 155 

Using the above transformation, the problem of selecting the integral interval of gas using the sniffer 156 

technique is selecting the integral interval and peak point. The empirical value of 10 s was used by Zhou 157 

et al. (2020) in the integration interval, and then by observing and analyzing the changing trend of the 158 

peak point in the average series, the appropriate global optimal peak point was selected for the calculation 159 

of emission factors. Through the above methods, more accurate results can be calculated. However, the 160 

length of the selected integral interval belongs to empirical value, which lacks theoretical demonstration. 161 

In addition, when there are many peak points in a period, there is also uncertainty about how to pair SO2 162 

and CO2. 163 

2.2 Dynamic time warping algorithm 164 

In order to eliminate the inconsistency of response time between SO2 and CO2 sensors, it is necessary to 165 

find the matching relationship between the peak points on the average sequence of SO2 and CO2, so that 166 

the global optimal peaks with corresponding relationship can be screened. According to the distance 167 

relationship between peak points, this study uses the DTW algorithm to establish the matching 168 

relationship between the SO2 and CO2 peak points. The purpose of the DTW algorithm is to find the 169 

difference between each data point in the target and standard time series, calculate the minimum value 170 

after the difference accumulation, and determine the corresponding path, which is used to match the peak 171 

points of SO2 and CO2 in this study. The target time series is marked as 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛). The standard 172 

time series is written as 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑚). In this study, we correspond to the results of peak point 173 

https://doi.org/10.5194/acp-2022-452
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



 7 

extraction from the SO2 and CO2 average series. 𝑓 represents the distance between the points on the 174 

target time series and its corresponding standard time series in an unbiased ideal state: 175 

𝑑(𝑖, 𝑗) = 𝑓(𝑥𝑖 , 𝑦𝑗)                        (3) 176 

The distance matrix D is obtained by calculating the distance between the data points and their 177 

corresponding points in X and Y: 178 

𝐷𝑖𝑗 = 𝑑(𝑖, 𝑗)                         (4) 179 

The shortest distance is to use the cost matrix 𝐷𝑐𝑜𝑠𝑡  iteration to calculate the dynamic programing path 180 

distance between the target and the standard sequences, and the shortest distance path represents all the 181 

matching relations of the data points on the two sequences. 182 

𝐷𝑐𝑜𝑠𝑡(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) + min (𝐷𝑐𝑜𝑠𝑡(𝑖 − 1), 𝐷𝑐𝑜𝑠𝑡(𝑗 − 1), 𝐷𝑐𝑜𝑠𝑡(𝑖 − 1, 𝑗 − 1))    (5) 183 

The path corresponding to the shortest distance matrix between the CO2 and SO2 peak points is obtained 184 

by the DTW algorithm, that is, the matching relationship between the peak points in the SO2 and CO2 185 

average sequence is obtained, which can correct the deviation sequence. 186 

3 Method 187 

The high accuracy calculation of emission factors needs to select the measured values of stable air flow 188 

over a period and eliminate the influence of various uncertain factors as much as possible. In this study, 189 

we first determine the selection method of the optimal integral interval length. Then, use the DTW 190 

algorithm to find the matching relationship between the peak points on the CO2 and SO2 average series, 191 

and select the global optimal peak points. Finally, a quality evaluation method of ship exhaust 192 

measurement data is proposed, which is used to evaluate the reliability of the measurement results. The 193 

specific process is divided into the following four steps: 194 

1. Selection of integral interval length and extraction of peak points. The concept of standard 195 

deviation of peak density is put forward to analyze the distribution law and changing trend of peak points 196 

in the measured value sequence, the larger the value of standard deviation of peak density is, the longer 197 

the corresponding integral interval can make the calculation of emission factors more stable. The 198 

measured value is converted to the average value of the length of the integral interval, and all the peak 199 

points in the average sequence are extracted; 200 

2. DTW-based matching. The DTW algorithm based on the improved Manhattan distance is used 201 
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to correct the average sequence and obtain the matching relationship between SO2 and CO2 peak points; 202 

3. Filtering matching relationships. The matching relationship between the peak points in some 203 

measured data is established, and all the matching relations are taken as samples for k-means mean 204 

clustering. If they can be stably divided into two categories, it shows that the dividing line between the 205 

two categories can distinguish between normal and abnormal changes, thus the threshold of concentration 206 

change is found. Combined with the time span threshold, the results from step 2 are screened and the 207 

abnormal matching results are eliminated. The matching result containing the maximum average value 208 

of SO2 is found among the reserved matching results, and the matching result containing the maximum 209 

average value of CO2 is selected as the global optimal peak point from all the matching results found; 210 

4. Evaluation of measurement data quality. Sixteen evaluation indexes, which can characterize 211 

the data quality are proposed. For several measurement data obtained, the 95% confidence interval of 212 

each index is calculated by self-expansion sampling. If the index value is in the confidence interval, it is 213 

marked as 1, otherwise 0. Combined with the quality label of the measured data, some indexes with 214 

strong representation ability are selected from the 16 indexes to form a set of indexes for joint evaluation. 215 

The distance between the index value of the measured data and overall mean of the central position of 216 

the confidence interval is calculated, and the ratio of the distance to the unilateral length of the confidence 217 

interval is obtained (a ratio greater than 1 is reassigned to 1). In joint evaluation, if the calculated ratio of 218 

all indexes is 1, the quality of the measured data is judged to be poor; otherwise, the average value of all 219 

ratios less than 1 is calculated, and the closer the mean is to 0, the better the quality of the measured data 220 

is. 221 

In Section 3.1, the principle and method of selecting the length of integral interval are introduced in detail, 222 

and the definition of peak point is explained. Section 3.2 introduces the use of the DTW algorithm to 223 

match peak points so as to correct the average sequence of SO2 and CO2. At the same time, a distance 224 

calculation method based on the Manhattan distance is proposed, which can represent the distance 225 

relationship between the peak points in the average sequence. The calculation method of the threshold 226 

used to eliminate abnormal matching relations is described in detail in Section 3.3. Section 3.4 describes 227 

the specific method of selecting indexes from the 16 evaluation indexes to form an index set for joint 228 

evaluation. 229 
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3.1 Selection of integral interval length and extraction of peak points 230 

When sniffer equipment is used to monitor the ship exhaust, because the response time of SO2 and CO2 231 

sensors cannot be completely synchronized, there is a deviation between the time series of CO2 and SO2 232 

measurements. Using the appropriate integral interval length (set to t) to convert the measured value per 233 

second into the average value within t seconds can reduce the deviation between time series to a certain 234 

extent. 235 

However, setting t often adopts an empirical value, which is not supported by theoretical basis generating 236 

great uncertainty. If the selected t value is too small, there will be too many small peaks in the overall 237 

measurement data set, or a peak composed of multiple data points, which causes great difficulties in the 238 

selection of peak values, resulting in great instability in the calculation of emission factors. On the other 239 

hand, if the selected t value is too large, the fluctuation of the whole data set is relatively smooth, which 240 

cannot show a representative peak trend, which will hinder the selection of the peak value and have a 241 

great impact on the calculation of emission factors. 242 

This study proposes a method to determine the optimal integral interval from the point of view of data 243 

mining, to reduce the uncertainty of artificial selection of empirical values. To select a suitable integral 244 

interval for preprocessing, it is necessary to analyze multiple alternative intervals, because the peak points 245 

need to be composed of at least three data points, and very large intervals will excessively smooth the 246 

data change trend. Therefore, we only need to find the corresponding relationship between the data 247 

change trend and interval, thus the selection range of the integral interval length is from 3 s to 30 s. The 248 

sliding window algorithm is used to traverse the measured values, with the window size representing the 249 

length of the alternative integral interval; the window moves one point at a time, and the ratio of the peak 250 

points of each window to the total data points of the window is calculated. The ratio is the peak density 251 

of the window, and the peak density standard deviation of the length of the alternative integral interval 252 

is calculated to reflect its changing trend in the measured value. Comparing the peak density standard 253 

deviation of each alternative integral interval length, the larger the value, the more the length of the 254 

integral interval can reflect the fluctuation of the peak density in the measured value. The specific steps 255 

of this method are as follows: 256 

1. Assuming that there are n measurements in a complete measurement process, the sliding 257 

window algorithm is used to traverse all the measurements. The window size is the length of 258 

the selected integral interval, and the window moves one measured value each time; 259 
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2. If a measurement point is larger than the left and right adjacent measurement points, the point 260 

is defined as the peak point. The number of peak points in each window is calculated, and the 261 

peak density of the window is calculated following Eq. (6).  262 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑗) =
𝑐𝑜𝑢𝑛𝑡𝑝𝑒𝑎𝑘(𝑗)

𝑐𝑜𝑢𝑛𝑡𝑑𝑎𝑡𝑎(𝑗)
                  (6) 263 

where 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑗) represents the peak density of the j window, 𝑐𝑜𝑢𝑛𝑡𝑝𝑒𝑎𝑘(𝑗) represents the 264 

number of peak points of the j window, and 𝑐𝑜𝑢𝑛𝑡𝑑𝑎𝑡𝑎(𝑗)  represents the total number of 265 

measurement points of the j window; 266 

3. The peak density standard deviation of all windows is calculated during this period of 267 

measurement; 268 

𝑠 = √
∑ (𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑗)−𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑𝑒𝑛𝑠𝑖𝑡𝑦)2𝑛

𝑗=1

𝑛−1
                 (7) 269 

4. If there are N segments of complete measurement process, steps 1-3 are performed to get a 270 

total of N peak density standard deviations, and the mean is calculated; 271 

5. The alternative integral interval length of 3–30 s is used to perform steps 1–4 respectively, and 272 

the maximum integral interval length is the optimal integral interval length. 273 

Using the optimal integral interval length, the measured sequence of SO2 and CO2 is transformed into 274 

the average sequence of SO2 and CO2 respectively according to Eq. (2), and all the peak points in the 275 

sequence are extracted for subsequent matching. 276 

3.2 Matching based on DTW 277 

The concentration of SO2 in the ship plume is generally 0–10 ppm. The concentration of CO2 and SO2 278 

are not in the same order of magnitude of 300–10000 ppm. For these to match using the DTW algorithm, 279 

the average sequences of SO2 and CO2 need to be normalized by 0–1 to obtain new SO2 and CO2 280 

sequences (marked Q and C): 281 

 𝑄 = {
𝑆𝑂2𝑑𝑎𝑡𝑎(𝑖)−𝑆𝑂2𝑑𝑎𝑡𝑎(𝑚𝑖𝑛)

𝑆𝑂2𝑑𝑎𝑡𝑎(𝑚𝑎𝑥)−𝑆𝑂2𝑑𝑎𝑡𝑎(𝑚𝑖𝑛)
}     𝑖 = 1,2, … , 𝑛              (8) 282 

 𝐶 = {
𝐶𝑂2𝑑𝑎𝑡𝑎(𝑖)−𝐶𝑂2𝑑𝑎𝑡𝑎(𝑚𝑖𝑛)

𝐶𝑂2𝑑𝑎𝑡𝑎(𝑚𝑎𝑥)−𝐶𝑂2𝑑𝑎𝑡𝑎(𝑚𝑖𝑛)
}     𝑗 = 1,2, … , 𝑛              (9) 283 

The DTW algorithm calculates the similarity based on the Euclidean distance matrix between two 284 

sequences. In the calculation of the Euclidean distance, only one-dimensional numerical value is 285 

considered, whereas the selection of the global optimal peak point needs to consider not only the relative 286 

size of the concentration, and the time span (the response time deviation of different sensors is usually a 287 

few seconds). The matching between two points with a large time span belongs to abnormal matching, 288 

so it is necessary to use two-dimensional the relative position relationship to represent the distance 289 

between two points. The Manhattan distance considers the values on the two axes, which is more suitable 290 
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for the selection of the global optimal peak point than the Euclidean distance. Because the average value 291 

has been normalized, the time span needs to be converted to a value between 0 and 1, so it is replaced by 292 

the ratio of the time span to the total sequence length: 293 

 𝑑(𝑄𝑖 , 𝐶𝑗) =
|𝑖−𝑗|

𝑛
+ |𝑦𝑖 − 𝑦𝑗|                    (10) 294 

In the Manhattan distance calculated following Eq. (10), the proportion of |𝑦𝑖 − 𝑦𝑗| is too large, thus we 295 

add a compensation coefficient to balance the size of the two dimensions: 296 

 𝑑(𝑄𝑖 , 𝐶𝑗) =
|𝑖−𝑗|

𝑛
∗ 9 + |𝑦𝑖 − 𝑦𝑗|                   (11) 297 

Through the improved Manhattan distance, a distance matrix of 𝑘 ∗ 𝑚 is constructed (the number of SO2 298 

and CO2 peak points is k and m, respectively), which is marked as A, in which the point (𝑖, 𝑗) represents 299 

the distance 𝑑(𝑄𝑖 , 𝐶𝑗) between the i point of Q and the j point of C. The smaller the 𝑑(𝑄𝑖 , 𝐶𝑗) value, the 300 

higher the similarity between 𝑄𝑖  and 𝐶𝑗. Finding a warping path in the matrix A starts from the (0,0) 301 

point of the matrix to the end of the (𝑘, 𝑚) point, and the superposition produces the smallest distance. 302 

The warping path is mainly constrained by the following three aspects: monotonicity, continuity, and 303 

boundary conditions. 304 

1. The monotonicity constraint means that the warping path can only extend in the prescribed 305 

direction. For a point (𝑎, 𝑏) on the path and the next point (𝑎′, 𝑏′) on the path, it must satisfy 306 

0 ≤ (𝑎′ − 𝑎) and 0 ≤ (𝑏′ − 𝑏); 307 

2. The constraint of continuity means that any point in sequence Q and sequence C can be 308 

mapped in a warping path, which can only be aligned adjacent to each other and not matched 309 

across points. For a point (𝑎, 𝑏) and the next point (𝑎′, 𝑏′) on the path, it must satisfy 310 

(𝑎′ − 𝑎) ≤ 1 and (𝑏′ − 𝑏) ≤ 1; 311 

3. The constraint of the boundary condition means that the first and last point on the warping 312 

path must be (0,0) and (𝑘, 𝑚). 313 

Starting from (0,0), each point in the sequence Q and C is matched one by one, and the distance is 314 

accumulated. When the final cumulative distance is reached (𝑘, 𝑚), the result is the final distance 315 

measure of the sequence Q and C, that is, the similarity between Q and C. Recursion can be performed 316 

following Eq. (12): 317 

 𝜓(𝑖, 𝑗) = 𝑑(𝑄𝑖 , 𝐶𝑗) + 𝑚𝑖𝑛 {

𝜓(𝑖, 𝑗 − 1)

𝜓(𝑖 − 1, 𝑗 − 1)

𝜓(𝑖 − 1, 𝑗)
                  (12) 318 

Each point on the warping path corresponds to a SO2 and CO2 peak points, with a matching relationship 319 

between the two points. However, some of the peak points extracted from the average series are due to 320 
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small fluctuations caused by the interference of external environmental factors during the measurement, 321 

which will affect the direction of the warping path when participating in the match. Therefore, the 322 

matching results are not all reasonable, and this is what needs to be selected. 323 

3.3 Filter matching relationship 324 

The points of the warping path found by the DTW algorithm in the distance matrix do not have a 325 

reasonable matching relationship. Zhou et al. (2019) previously proposed several criteria to be followed 326 

when selecting the global optimal peak point: one is to eliminate the sharp changes of the peak point, 327 

because these abnormal changes are caused by the uncertainty of the sensor, the monitored gas and its 328 

content in the atmosphere will affect the selection of the global optimal peak point; the other is to 329 

eliminate the peak point with a time span of more than 20 s. 330 

In a completely ideal case, the average sequence of SO2 and CO2 should be in a state of complete 331 

synchronization. When the monitoring equipment slowly approaches the plume of the ship, the average 332 

value of SO2 and CO2 will increase, but when it is far away from the plume, it will be in a decreasing 333 

trend. Because the ideal state will not be disturbed by external environmental factors or the sensor itself, 334 

at any time, the average difference between SO2 and CO2 will remain stable and will not change greatly. 335 

However, in the actual measurement, the complex external environment may make the average difference 336 

at different time points different, hence it cannot be used as the global optimal peak point. Therefore, it 337 

is necessary to find a threshold that can distinguish between normal and abnormal changes, and eliminate 338 

the matching results with a large difference in average. In this study, the K-means clustering algorithm 339 

is used to cluster the difference of the normalized mean of all matching results (marked as D) and obtain 340 

the threshold to distinguish between normal and abnormal changes. The specific process is as follows: 341 

1. The number of initial cluster centers k is 2, that is, the sample set is divided into two categories, 342 

normal and abnormal changes; 343 

2. Two data points in D are randomly selected as the initial cluster centers of the two clusters; 344 

3. The similarity between each sample point and the two cluster centers is calculated, and the 345 

sample points are divided into the clusters corresponding to the cluster centers with the 346 

greatest similarity; 347 

4. The cluster center of each cluster is recalculated based on the samples in the existing cluster; 348 

5. Iteration through steps 3 and 4 is performed until the center of the cluster no longer changes. 349 

After multiple k-means clustering of D, if D can be stably divided into two categories, then the threshold 350 

has been found. If the normalized difference of SO2 and CO2 in the matching result is greater than the 351 
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threshold, it shows that the matching result belongs to abnormal change and should be eliminated. 352 

According to the above two conditions, the reasonable matching results are screened out, and those 353 

containing the maximum average value of SO2 are retained, while the matching results containing the 354 

maximum average value of CO2 are selected as the global optimal peak point from all the matching 355 

results found. 356 

3.4 Evaluation of measurement data quality 357 

Using the above methods, the automatic calculation of emission factors can be realized. However, there 358 

is no suitable method to evaluate the quality of the measured data. Therefore, this study proposes a 359 

method to evaluate the quality of the measured data, according to the index calculation results of the 360 

measured data. In this study, 16 evaluation indexes are proposed, which are sample entropy, information 361 

entropy, third quartile, standard deviation, skewness, standard deviation of peak density, permutation 362 

entropy, fuzzy entropy, approximate entropy, mutual information, first quartile, kurtosis, DTW shortest 363 

distance, quartile spacing, coefficient of variation, and ratio of the number of peak points. Among them, 364 

the shortest distance of DTW, the ratio of the number of peak points, and mutual information are obtained 365 

by calculating SO2 and CO2 measurement data. The rest of the evaluation indexes can be obtained only 366 

by calculating SO2 or CO2. To ensure the accuracy of the evaluation results, for these indexes, we need 367 

to use SO2 and CO2 measurement data, and select the set with higher accuracy to calculate the index. The 368 

role of each evaluation index is shown in Table 1. 369 

Table 1: Sixteen evaluation indexes and their roles in evaluating data quality. 370 

Evaluation index name Role 

Sample entropy 

Evaluating the random degree of the sequence can be 

used to study whether the complexity of the measured 

sequence is related to the selection of peak points. 

Information entropy 

Permutation entropy 

Fuzzy entropy 

Approximate entropy 

DTW shortest distance 

Measure the relationship between multiple sequences. 

Mutual information 

Ratio of the number of peak points Measure the relationship between the difference in the 
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number of peak points in a series and the results of 

global optimal peak point screening. 

Standard deviation of peak density 

Reflect the aggregation trend and data change trend of 

peak points in the series. 

First quartile 

Reflect the distribution law of measured values. Third quartile 

Quartile spacing 

Skewness Measure the asymmetry of the sequence distribution. 

Kurtosis Measure the steepness of the sequence distribution. 

Standard deviation Measure the degree of dispersion of the sequence as a 

whole. Coefficient of variation 

 371 

The uncertainty of the evaluation index can be quantified using the numerical method based on self-372 

expanding sampling, so as to determine its confidence interval (Wu et al., 2020; Zhong et al., 2007). 373 

Therefore, through 10000 self-developing sampling of the existing measured data and calculating the 374 

average value of each sampling, a set composed of several mean values can be obtained, according to 375 

which the confidence interval of the evaluation index can be obtained. If the index value is in the 95% 376 

confidence interval corresponding to the index, it determines the high-quality of the measured data, which 377 

is marked as 1. If the index value is outside the 95% confidence interval, the measured data is judged as 378 

low-quality data by the index, which is marked as 0. At the same time, when the quality of the measured 379 

data is labeled, the peak trend is obvious, and the high synchronization of the SO2 and CO2 average series 380 

is considered as high-quality data, and the quality label is 1; if the two series have large differences and 381 

drastic changes occur frequently, they are considered as low-quality data, and the quality label is 0. 382 

Combined with the evaluation results of indexes and quality labels, the evaluation accuracy of each index 383 

is calculated, and a certain number of indexes with high accuracy are selected to form an index set to 384 

jointly evaluate the data quality. The distance between the index value of the measured data and overall 385 

mean of the central position of the confidence interval is calculated, and the ratio to the unilateral length 386 

of the confidence interval is obtained. The closer the ratio is to 0, the better the quality of the measured 387 

data. On the contrary, the closer to 1 means the worse the quality of the measured data. When the 388 
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numerator in the ratio is greater than the denominator, the ratio is greater than 1, and the index value is 389 

not in the 95% confidence interval. Therefore, the result with a ratio greater than 1 is also reassigned to 390 

1. In joint evaluation, if the calculated ratio of all indexes is 1, the quality of the measured data is judged 391 

to be poor, otherwise the mean value of all ratios less than 1 is closer to 0, indicating a better quality of 392 

the measured data. 393 

4 Experiment 394 

4.1 Data 395 

Our research team designed and developed a sniffer system using an unmanned aerial vehicle (UAV) in 396 

the "Shanghai Free Trade Zone ship exhaust Monitoring" (MISEE) project. Field tests have demonstrated 397 

that it has the advantages of high monitoring accuracy and convenience (Zhou et al., 2019; Zhou et al., 398 

2020). In this study, this system is used to collect SO2 and CO2 data of ship emissions. The monitoring 399 

site is located at Waigaoqiao Port in Shanghai, which is only 20 km from the city center. Exhaust gas 400 

measurement data (SO2+CO2) of 148 ships were collected between 2019 and 2021. Six groups of 401 

measurement data are defined to show the rationality and accuracy of the integral interval length selection, 402 

peak point matching and measurement data quality evaluation method. The six groups of data are 2019-403 

9-27C, 2019-10-17C, 2021-1-13B, 2021-3-10A, 2021-8-18C, and 2021-9-3A. The date in the number is 404 

the date on which the measured data is collected in the field, and the letter indicates the group of data 405 

collected on that date. Among them, the data quality of 2021-1-13B and 2021-3-10A is better, with a 406 

strong synchronization between the two sequences, while the quality of other measured data is poor, 407 

reflecting the peak trend that SO2 and CO2 sequences cannot keep synchronization. 408 

4.2 Selection of integral interval length 409 

The result of calculating the optimal integral interval length of 148 groups of measurement data using 410 

the method discussed in 3.1 is shown in Figure 1. The standard deviation of the peak density 411 

corresponding to 12 s is the maximum, that is, 12 s is the optimal integral interval length. Therefore, the 412 

measured value per second is replaced with the average of 12 s, and the average sequence is obtained. 413 
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 414 

Figure 1. The 3–30 s integral interval length of the peak density standard deviation of the calculated results. 415 

The red point is the result of the calculation corresponding to the length of the 12 s integral interval, taking 416 

the maximum value. 417 

There are differences in the quality of measurement data. High-quality measurement data have a clear 418 

peak trend, low-quality measurement data are mixed with small fluctuations, and the peak trend is not 419 

obvious. In order to verify the effect of using 12 s as the integral interval, the six groups of measurement 420 

data in Figure 2 are taken as an example, which are the measurement data numbered 2019-9-27C, 2019-421 

10-17C, 2021-1-13B, 2021-3-10A, 2021-8-18C, and 2021-9-3A, the abscissa represents the time point, 422 

and the interval between the two points, or sampling rate, is 1 s. In addition, the data quality is indicated 423 

in the chart title, in which 2021-1-13B and 2021-3-10A are high-quality data, 2019-9-27C, 2019-10-17C, 424 

2021-8-18C, and 2021-9-3A are low-quality data, the left side is the original measurement sequence, and 425 

the right side is the average sequence processed with the 12 s integral interval. The changing trends of 426 

SO2 and CO2 in 2021-1-13B and 2021-3-10A measurement data are basically synchronized. When SO2 427 

reaches the peak point, CO2 will also reach the peak point in the subsequent time. The peak points at 175 428 

formed by small fluctuations, then 210 time points in 2021-1-13B measurement data are integrated into 429 

a larger peak trend after being converted into an average series. In the 2021-3-10A measurement data, 430 

there was a sharp mutation at the 150–165, 190–210, and 300–320 time points of the SO2 sequence, 431 

which changed to a moderate upward and downward trend after processing. At the same time, the 432 

platform values at 130, 165, 210, and 265 time points were also converted into peak points that could 433 

establish a matching relationship. There are many abrupt changes in the SO2 sequence of 2019-9-27C 434 

measurement data, in which the peak trend at the 260 time point becomes more obvious after being 435 

replaced by the average, which can be selected as the global optimal peak. There is no obvious 436 

synchronous change in the SO2 and CO2 average series in 2019-10-17C, 2021-8-18C, and 2021-9-3A 437 
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measurement data. The average 2019-10-17C sequence can smooth small fluctuations to some extent, 438 

and it can also transform the steep peak trend formed by drastic changes in 1750–1950 time points into 439 

a relatively gentle trend. The SO2 sequence of 2021-8-18C only has two peak trends at 400, 475 time 440 

points, but because these two peak trends are abrupt, which are converted to average values and flattened 441 

into platform values, and there is almost no synchronization between the two sequences, it is impossible 442 

for this group of low-quality measurement data to select the global optimal peak points. Although 2021-443 

9-3A has undergone a drastic change, the frequency of the change is not high compared with 2019-10-444 

17C, hence the effect of the average sequence is more obvious. There are many platform values in the 445 

original CO2 measurement series, such as those in the 0–45 and 52–90 time points. The average sequence 446 

converts all these platform values into non-platform values, which makes the overall change trend clearer. 447 

  

(a) 

  

(b) 
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(c) 

  

(d) 

  

(e) 
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(f) 

Figure 2. Groups of measurement data of SO2 and CO2. (a) 2019-9-27C; (b) 2019-10-17C; (c) 2021-1-13B; (d) 448 

2021-3-10A; (e) 2021-8-18C; and (f) 2021-9-3A. The time and quality of data measurement are marked in the 449 

title. On the left is the unprocessed sequence of measurements, and on the right is the average sequence 450 

processed with the length of the 12s integral interval. 451 

4.3 Matching of peak points and screening of global optimal peak points 452 

After the measured value series is converted into an average series, and the peak points of SO2 and CO2 453 

are extracted, the corrected time series is transformed into a matching relationship between the peak 454 

points of the two average series, and the corresponding peak point of each peak point in another series is 455 

found. The DTW algorithm based on the improved Manhattan distance is used to match the peak points 456 

of SO2 and CO2. 457 

After the peak point matching is complete, the matching results with a time span of more than 20 s and 458 

drastic changes need to be eliminated. To find the threshold to distinguish between normal and abnormal 459 

changes, calculations are needed. For this reason, we use 148 sets of measurement data for DTW 460 

matching, obtain 911 matching results, calculate the difference between the normalized results of SO2 461 

and CO2 in each matching result, and then use the K-means clustering algorithm for the 911 differences. 462 

The clustering result is shown in Figure 3, the result of multiple clustering is stable, and the threshold is 463 

0.3485. Therefore, after the DTW matching for the peak points of a group of measured data, traversing 464 

all the matching results, if the normalized difference between SO2 and CO2 is more than 0.3485 or the 465 

time span is more than 20 s, cannot be regarded as the global optimal peak point and needs to be 466 

eliminated. The matching result containing the maximum average value of SO2 is found among the 467 

reserved matching results, and the matching result containing the maximum average value of CO2 is 468 

selected as the global optimal peak point from all the matching results found. 469 
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 470 

Figure 3. K-means clustering of 911 normalized differences. The red mark point refers to the normalized 471 

difference of the normal change, the blue mark point refers to the normalized difference of the abnormal 472 

change, and the black line is the threshold to distinguish normal from abnormal changes. 473 

The results of peak point matching show that the improved Manhattan distance can consider the 474 

important time span and concentration difference. Figure 4 shows the results of three groups of 475 

measurement data (2019-9-27C, 2021-1-13B, and 2021-3-10A) screening peak points using Euclidean 476 

distance and improved Manhattan distance in the DTW algorithm. The Abscissa represents the time point, 477 

and the interval between the two points, or sampling rate, is 1 s. The reasonable global optimal peak point 478 

(in the green circle) cannot be found by using the Euclidean distance in 2019-9-27C and 2021-3-10A. 479 

The quality of 2019-9-27C is poor, the variation trend of SO2 and CO2 average series is different, and 480 

the platform value cannot be used as peak point at the 500 time point. The quality of 2021-3-10A data is 481 

good, but the matching relationship between SO2 and CO2 peak point of synchronous change at the 145, 482 

165, and 260 time points are not established, and the normalized concentration of SO2 in the selected 483 

global optimal peak point is lower than that of the 260 time point. The reason is that the Euclidean 484 

distance only uses the concentration difference to represent the distance of the peak point, and the 485 

matching will be given priority when there are other peak points with similar concentration near a peak. 486 

The constraint of the warping path leads to the possibility that it can no longer match the later more 487 

suitable peak points. The improved Manhattan distance can ensure that the peak points are matched 488 

preferentially with similar time span and concentration. The 2019-9-27C and 2021-3-10A groups 489 

successfully establish a correct matching relationship between the above peak points when matching 490 

using the improved Manhattan distance. As a result, the appropriate global optimal peak point is found. 491 

The SO2 and CO2 of the 2021-1-13B measurement data show a trend of almost synchronous change with 492 

a peak, hence both the Euclidean distance and the improved Manhattan distance give the appropriate 493 
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global optimal peak. However, the Euclidean distance does not establish a matching relationship between 494 

the peak points of this group at the 170 time point, whereas the improved Manhattan distance achieves 495 

this.  496 

Figure 5 shows three groups of measurements with typical problems (2019-10-17C, 2021-8-18C, 2021-497 

9-3A). There is almost no synchronous change interval between the two time-series of the 2019-10-17C 498 

measurement data, and the peak trend is not clear. When using the screening algorithm, some peak points 499 

with matching relationship are still retained after the time span is more than 20 s and the concentration 500 

difference is more than 0.3485, but these matching results cannot be used as global optimal peak points. 501 

The SO2 measurement data in 2021-8-18C have two platform-like data (data points in the pink circle), 502 

and there is no peak point of SO2, so the global optimal peak point cannot be selected. There are 20 peak 503 

points in the SO2 sequence in 2021-9-3A and only two peak points in the CO2 sequence. Due to the large 504 

difference between the number of peak points, the warping path is easy to shift to the boundary of the 505 

distance matrix, and the global optimal peak point (the peak point in the green circle) cannot establish a 506 

matching relationship. For 2019-10-17C, the screening algorithm gives the global optimal peak point, 507 

but the result is obviously not a suitable global optimal peak point, which is contrary to the subjective 508 

judgment. For 2021-8-18C, the screening algorithm does not recognize a global optimal peak point, 509 

which is consistent with the subjective judgment. For 2021-9-3A, the screening algorithm also recognizes 510 

no global optimal peak point, but it is contrary to the subjective judgment. 511 

  

  (a) 512 
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  (b) 513 

  

  (c) 514 

Figure 4. Four groups of measurement data of SO2 and CO2. (a) 2019-9-27C; (b) 2021-1-13B; and (c) 2021-3-515 

10A. The left panels are the global optimal peak point screening result using the Euclidean distance, while the 516 

right are the global optimal peak point screening using the improved Manhattan distance. The black line is 517 

the matching relationship between the two points, the small black circle is the global optimal peak point given 518 

by the screening algorithm, the pink circle is the peak points that cannot be regarded as the global optimal 519 

peak points, and the green circle is the appropriate global optimal peak points. 520 

 521 

 (a) 522 
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 (b) 

 

 (c) 

Figure 5. Three groups of SO2 and CO2 measurement data. (a) 2019-10-17C, (b) 2021-8-18C, and (c) 2021-9-523 

3A. Abscissa is the point of time, and the interval between the two points, or sampling rate, is 1 s. The black 524 

line shows that there is a matching relationship between the two connected peak points, the pink circle is the 525 

peak points that cannot be regarded as the global optimal peak points, the green circle is the appropriate 526 

global optimal peak points, and the small black circle is the global optimal peak point given by the screening 527 

algorithm. 528 

Of the 148 groups of measurement data screened, 101 groups, in which the artificial screening results are 529 

consistent with the algorithm screening, demonstrate the global optimal peak points. Among the 530 

remaining data, 19 groups of measurement data show inconsistent results, while 28 groups have poor 531 

quality that neither screening could find the global optimal peak points. Regardless of whether the global 532 

optimal peak point exists or not, the result of the algorithm is defined as correct when the results of the 533 

subjective and algorithm screenings are the same, in this case the correct rate of the screening algorithm 534 

is 87.16%. The results of the screening algorithm are consistent with the subjective screening results, but 535 

the global optimal peak points are not found, or the large deviation of time series leads to no reasonable 536 
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retention of peaks in the screening matching relationship. For this measurement data, the algorithm can 537 

identify and provide the reason. There are mainly two cases of inconsistent measurement data, one is that 538 

the data can artificially screen the global optimal peak, yet the algorithm does not give the optimal result 539 

or directly determines that there is no suitable global optimal peak, the other is that there is no global 540 

optimal peak point in the data, and the result given by the algorithm is only a group of peak points where 541 

the concentration difference and time span do not exceed the threshold. The first case usually occurs in 542 

the measurement data with a large gap in the number of peak points in the average sequence of SO2 and 543 

CO2. When forming a distance matrix, this difference will cause one side of the row or column of the 544 

matrix to be much larger than the other. Limited by the directional constraints of the DTW algorithm, 545 

there is no other choice for the warping path to reach the matrix boundary, but can only extend vertically 546 

or horizontally along the boundary. Therefore, the appropriate global optimal peak point will not be 547 

selected by the warping path. The second situation is more common. Multiple screening conditions are 548 

defined in the screening matching relationship, and the matching relations that do not meet the conditions 549 

will be eliminated. Although the remaining matching relations meet the conditions, they may not 550 

necessarily be the optimal peak points. This situation will occur when the algorithm selects the final 551 

value from the reserved peak value.  552 

Table 2: Algorithm screening for groups of measurement data. "Consistent (found)" means that the result 553 

given by the algorithm is the same as that of artificial selection and can find the global optimal peak point. 554 

"Consistent (not found)" means that the two results are consistent and neither of them has found the global 555 

optimal peak point. "Inconsistent" refers to the difference between the two results. "Correct rate" refers to 556 

the ratio of the 148 groups of measurement data to the 148 groups of data with "Consistent (found)" and 557 

"Consistent (not found)" measurement data. 558 

Consistent (found) Consistent (not found)  Inconsistent  Correct rate 

129 28 19 87.16% 

4.4 Verification of data quality evaluation method 559 

In Section 3.4, 16 indexes are proposed to evaluate the quality of the measured data. The 95% confidence 560 

interval of the evaluation index is calculated by 10000 self-development sampling of the collected data, 561 

and the results are shown in Table 3. 562 

Table 3: Self-development sampling times of 16 evaluation indexes and the upper and lower bounds of the 95% 563 

confidence interval. 564 
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Evaluation index 
Self-development 

sampling times 

Lower bound of 95% 

confidence interval 

Upper bound of 95% 

confidence interval 

Sample entropy (SO2) 10000 0.082153984 0.150936086 

Information entropy (SO2) 10000 3.245317702 3.721704023 

Third quartile (SO2) 10000 0.203210727 0.280760482 

Standard deviation (SO2) 10000 0.211572244 0.22958644 

Skewness (CO2) 10000 1.027746851 1.471870163 

Standard deviation of peak density 

(CO2) 

10000 0.040255915 0.045275922 

Permutation entropy (SO2) 10000 0.694783281 0.752033377 

Fuzzy entropy (CO2) 10000 0.179056426 0.216571182 

Approximate entropy (CO2) 10000 0.140398491 0.167099422 

Mutual information 10000 0.588883766 0.647985481 

First quartile (SO2) 10000 0.042864083 0.089750709 

Kurtosis (CO2) 10000 5.435791486 7.228334146 

DTW shortest distance 10000 14.44706187 26.07445393 

Quartile spacing (SO2) 10000 0.152163801 0.207432999 

Coefficient of variation (SO2) 10000 1.651178674 1.980617162 

Ratio of the number of peak points 10000 1.996089804 6.083568681 

The results of the 16 evaluation indexes for 148 groups of measurement data are shown in Table 4. Some 565 

indexes are selected to form the index set. Skewness (CO2) and information entropy (SO2) with the 566 

highest accuracy of index evaluation are taken as the elements in the initial subset. After comparing the 567 

accuracy of adding other indexes, it is found that when the elements in the index set are skewness (CO2), 568 

information entropy (SO2), sample entropy (SO2), and quartile spacing (SO2), the joint evaluation can 569 

achieve relatively good results, with a correct rate of up to 70.95%. When the index continues to increase, 570 

the correct rate decreases, indicating that these indexes can only represent part of the characteristics of 571 

the measured data and have high coupling. Therefore, these four indexes are selected for joint evaluation. 572 

The six groups of measurements in Figure 6 have all been defined. This section uses the quality 573 

evaluation method to evaluate the quality and verify the rationality of the six groups of data. The groups 574 
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2019-9-27C, 2021-1-13B, and 2021-3-10A are the measurements that can screen out the global optimal 575 

peak points, but the SO2 and CO2 series in 2019-9-27C do not have a synchronous trend, and only the 576 

two series have the same peak trend at 2019-9-27C, thus even if they can be used as global optimal peak 577 

points, the ratio of the four evaluation indexes is 1, and the joint evaluation result is poor quality. There 578 

are four peak trends in 2021-1-13B, where SO2 and CO2 change almost synchronously. The peak trend 579 

at the 200 time point is very clear and higher than other peaks, which belongs to the appropriate global 580 

optimal peak point, and the result of joint evaluation of indexes is very close to 0. The peak trend in 581 

2021-3-10A is slightly more than that of 2021-1-13B, although altogether is basically synchronous; the 582 

peak trend at 145, 160, 260 time points can be observed, while between the global optimal peak point is 583 

the priority to select the maximum value of the average SO2. Finally, the peak point at the 260 time point 584 

is selected as the global optimal peak point, and the joint evaluation result of the index is higher than that 585 

of 2021-1-13B. The SO2 average sequence of 2019-10-17C has frequent small fluctuations and abrupt 586 

changes over time, and there is no obvious synchronous peak trend, while the SO2 sequence of 2021-8-587 

18C has platform values only at 400, 480 time points, thus it cannot be used as the global optimal peak 588 

point. The average series of SO2 and CO2 in 2021-9-3A show a synchronous change trend at 90–110 time 589 

points, hence SO2 fluctuates greatly relative to CO2. Although the peak point at the 110 time point can 590 

be selected as the global optimal peak, and the result of joint evaluation of the index remains 1. To 591 

summarize, the results of the quality evaluation methods for poor and good quality data are in line with 592 

expectations. 593 

Table 4: Sixteen indexes for the evaluation of 148 groups of measurement data statistics. 594 

Index 
Number of correct 

evaluation results 

Number of wrong 

evaluation results 
Correct rate 

Sample entropy (SO2) 86 62 58.11% 

Information entropy (SO2) 90 58 60.81% 

Third quartile (SO2) 87 61 58.78% 

Standard deviation (SO2) 86 62 58.11% 

Skewness (CO2) 91 57 61.49% 

Standard deviation of peak 

density (CO2) 
82 66 55.41% 
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Permutation entropy (SO2) 81 67 54.73% 

Fuzzy entropy (CO2) 82 66 55.41% 

Approximate entropy (CO2) 87 61 58.78% 

Mutual information 76 72 51.35% 

First quartile (SO2) 82 66 55.41% 

Kurtosis (CO2) 85 63 57.43% 

DTW shortest distance 73 75 49.32% 

Quartile spacing (SO2) 88 60 59.46% 

Coefficient of variation (SO2) 87 61 58.78% 

Ratio of the number of peak 

points 
74 74 50.00% 
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Figure 6. Evaluation of the quality of the six groups of SO2 and CO2 measurement data. The Abscissa is the 595 

time point, and the interval between the two points, or sampling rate, is 1s. 596 

Table 5: Algorithm screening of six groups of measurement data (2019-9-27C, 2019-10-17C, 2021-1-13B, 597 

2021-3-10A, 2021-8-18C, and 2021-9-3A). The specific values and evaluation results of information entropy 598 

(SO2), sample entropy (SO2), skewness (CO2), quartile spacing (SO2) and the results of joint evaluation of the 599 

four indexes. 600 

Data ID Algorithm 

Information 

entropy 
Sample entropy Skewness Quartile spacing 

Result of joint 

evaluation 

Value EVAL Value EVAL Value EVAL Value EVAL 

2019-9-27C √ 1.7112 1 0.0307 1 -0.6145 1 0.0060 1 1 

2019-10-17C × 2.6154 1 0.0353 1 -3.8664 1 0.0240 1 1 

2021-1-13B √ 2.6865 1 0.0272 1 1.6976 1 0.1801 0.0116 0.0116 

2021-3-10A √ 5.1502 1 0.1061 0.3050 0.2466 1 0.5737 1 0.3050 

2021-8-18C √ 0.3047 1 0.0076 1 3.1325 1 0 1 1 

2021-9-3A × 5.8638 1 0.7894 1 0.4692 1 0.3711 1 1 

"×" indicates that the screening algorithm is inconsistent with subjective judgment 601 

5 Conclusion  602 

The emission factor is an important parameter for compiling ship emission inventory. Various studies 603 

have measured emission factors under different conditions. However, there is little attention and research 604 

on improving the accuracy, confidence, and automation of the calculation methods. 605 

In this study, we propose a high accuracy calculation of ship emission factors and an evaluation of the 606 
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quality of measurement data based on the sniffer method. Altogether, we optimize the calculation process, 607 

select the appropriate integral interval length to convert the original measurement data into an average 608 

value to make the calculation results more stable, and put forward the concept of peak density standard 609 

deviation selection for the optimal integral interval length, which reduces the uncertainty caused by the 610 

use of empirical values. The average sequence is extracted to find all the peak points, and the matching 611 

relationship with the measured series of SO2 and CO2 is found by using the DTW algorithm based on the 612 

improved Manhattan distance. The unreasonable matching results are eliminated according to the 613 

concentration change and time span thresholds analyzed. The maximum concentration of SO2 and CO2 614 

in the remaining matching relationship is the global optimal peak point. In order to evaluate the quality 615 

of the measured data objectively, 16 evaluation indexes, which can reflect the characteristics of the 616 

measured data are selected, and the 95% confidence interval of each index is calculated by self-expanding 617 

sampling of the measured data, and combined with the quality label of the measured data. Several indexes 618 

with high accuracy of data quality evaluation are selected to jointly evaluate the measured data, further 619 

optimizing the accuracy of the evaluation. 620 

We used 148 groups of sniffer measurements collected between 2019 and 2021 to test the rationality of 621 

the above methods. When the length of the integral interval is 12 s, the standard deviation of peak density 622 

reaches the maximum. Compared with the change trend of several groups of data before and after 623 

preprocessing, the peak trend of the data set after preprocessing is more obvious, and most of the 624 

nonsignificant trends in the series are smoothed out. Comparing the artificial and algorithm screening 625 

results of the global optimal peak points of 148 groups of measured data, 129 groups have the same 626 

results, with a correct rate of 87.16%. After 10000 times of self-development sampling, the 16 evaluation 627 

indexes all reached the 95% confidence interval. When using four evaluation indexes: information 628 

entropy (SO2), sample entropy (SO2), quartile spacing (SO2), and skewness (CO2), 70.95% of the data 629 

quality labels are consistent with the joint evaluation results of the evaluation index set. When using these 630 

four indexes to quantify data quality, it is consistent with expectations, which verifies that the data quality 631 

evaluation method is feasible. 632 

The emission factor calculation and measurement data quality evaluation methods proposed in this study 633 

can reduce the uncertainty in the current sniffer technique monitoring ship emission research, objectively 634 

evaluate the measurement data quality, and provide data support for the accurate establishment of an 635 

emission inventory. Future work is needed to further analyze the characteristics of the measured data so 636 
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as to improve the global optimal peak point screening algorithm. At the same time, it is also necessary 637 

to find other evaluation indexes that can reflect the characteristics of the measured data to reduce the 638 

coupling in the evaluation index set, improve the accuracy of the joint evaluation index set and 639 

quantification of the quality of the data. 640 
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