

Supplement of

Water enhances the formation of fragmentation products via the cross-reactions of RO₂ and HO₂ in the photooxidation of isoprene

Jiayun Xu et al.

Correspondence to: Zhongming Chen (zmchen@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

1 **Calculation of OH exposure (OH_{exp})**

2 OH_{exp} equals the product of OH concentration and exposure time of reactants in the reaction system. It
3 serves as a characterization of the oxidation process by OH radical. We used the decay of isoprene to
4 calculate OH_{exp} under different exposure times before its concentration decreased below the detection
5 limit (Eq. (S1)) (Lambe et al., 2011). The concentrations of MACR and MVK reached the peak almost at
6 the same time when the concentration of isoprene fell below the detection limit. We define the measured
7 peak concentrations of MACR and MVK as [MACR]_{t0} and [MVK]_{t0}. When the concentration of
8 isoprene was too low to be detected (<5 ppbv), an additional OH_{exp} (OH_{exp,add}, Eq. (S2)) determined
9 from MACR and MVK decay was added to OH_{exp}. The calculation results of OH_{exp} in Exp. 1–4 were
10 shown in Fig. S1. The uncertainty of OH_{exp} is within ± 15 %.

11
$$OH_{exp} = \frac{1}{k_{OH,ISO}} \times -\ln \frac{[ISO]_t}{[ISO]_0} \quad (S1)$$

12
$$OH_{exp,add} = \frac{1}{2} \times \frac{1}{k_{OH,ISO}} \times \left(-\ln \frac{[MACR]_t}{[MACR]_{t0}} + -\ln \frac{[MVK]_t}{[MVK]_{t0}} \right) \quad (S2)$$

13 **Calculation of atmospheric equivalent photochemical age (atmospheric EPA)**

14 Atmospheric EPA refers to the equivalent time scale of photooxidation in a certain experiment to that in
15 the ambient atmosphere, generally in a unit of hours or days. It can be calculated with Eq. (S3). Here we
16 used the average OH concentration in the troposphere measured by Mao et al. (2009), 1.5×10^6 molec
17 cm⁻³, as a surrogate for atmospheric OH concentration ([OH]).

18
$$Atmospheric\ EPA\ (hrs) = \frac{OH_{exp}}{[OH] \times 3600} \quad (S3)$$

19 **Corrections for products molar yields**

20 We made a series of corrections to eliminate the effect of secondary OH oxidation, photolysis, and wall
21 loss of concerning products on the determination of their actual yields. The correction for secondary OH
22 oxidation was achieved by multiplying the correction factor $F_{1\ PRO,i}(t)$ (Eq. (S5)) (Ruppert and Heinz
23 Becker, 2000) to the observed molar yields $Y_{PRO,i}(t)$ (Eq. (S4)). A second correction factor, $F_{2\ PRO,i}(t)$
24 (Eq. (S7)), derived from pseudo first-order reaction kinetic equation was applied to correct wall loss and
25 photolysis loss. First-order wall loss and photolysis rate constants ($k_{WALL,i}$ and $k_{PH,i}$) and second-order
26 OH reaction rate constants ($k_{PRO,i+OH}$) for the concerned products in our experiments were listed in Table
27 S2, S3 and S4.

28 $Y_{PRO,i}(t) = \frac{\Delta M_{PRO,i}(t)}{\Delta M_{ISO}(t)}$ (S4)

29 $F_{1\ PRO,i}(t) = \left(\frac{k_{ISO+OH} - k_{PRO,i+OH}}{k_{ISO+OH}} \right) \left(\frac{1 - C_t}{C_t^{k_{PRO,i+OH}/k_{ISO+OH} - C_t}} \right)$ (S5)

30 $C_t = [ISO]_t / [ISO]_0$ (S6)

31 $F_{2\ PRO,i}(t) = e^{-k_{WALL,i} \times t - k_{PH,i} \times t}$ (S7)

32 $Y'_{PRO,i}(t) = Y_{PRO,i}(t) \times F_{1\ PRO,i}(t) / F_{2\ PRO,i}(t)$ (S8)

33 **Determination of OH and HO₂ concentrations**

34 OH, and HO₂ concentrations are basic inputs in model simulations. In the present study, the
 35 photooxidation process in the OFR was divided into six sampling periods (0–10 s, 11–20 s, 21–30 s,
 36 31–40 s, 41–50 s, 51–61 s). The average OH concentration in each sampling period was obtained by
 37 dividing the increment of OH_{exp} and residence time in this period. HO₂ was constrained by H₂O₂
 38 concentrations measured in the experiments (see Fig. S3). Eq. (S9), derived from the mass balance for
 39 production and loss of H₂O₂, was used to calculate HO₂ concentration in individual sampling periods.
 40 The dominant production pathways for H₂O₂ in the experiments were self-combination of OH and
 41 disproportionation of HO₂, while the major loss pathway was its reaction with OH. $P_{H_2O_2}$, [OH] and
 42 [H₂O₂] in Eq. (S9) refers to the average value of H₂O₂ production rate, OH concentration, and H₂O₂
 43 concentration in each sampling period. The related reaction rate constants are available in Atkinson et al.
 44 (2004).

45 $[HO_2] = \sqrt{\frac{P_{H_2O_2} - k_{OH+OH} [OH]^2 + k_{OH+H_2O_2} [OH][H_2O_2]}{k_{HO_2+HO_2}}}$ (S9)

46 **Distribution of RO₂ reaction pathways**

47 We calculated the distribution of RO₂ reaction pathways in the experiments under four conditions based
 48 on the reaction rates of HO₂, RO₂, and H-shift pathways (units: s⁻¹) following the method in Liu et al.
 49 (2013). Total RO₂ concentrations in the four experiments were simulated employing a box model. The
 50 determination of HO₂ concentrations has been described above. For Exp. 1 and 2 representing first-
 51 generation reactions, RO₂ here refers to β-1,2-ISOPOO and β-4,3-ISOPOO. The reaction rate constants
 52 for HO₂, RO₂, and H-shift pathways are the weighted mean values for the two isomers. For Exp. 3 and 4
 53 representing multi-generation reactions, RO₂ refers to the assembling of a series of RO₂ the sum of whose
 54 concentrations takes more than 90 % of the total concentration of RO₂ (specifically, ISOPBO₂, ISOPDO₂,

55 C59O₂, CH₃O₂, C57O₂, C58AO₂, HMVKBO₂ and CHOMOHCO₃, the names of the above-mentioned
56 RO₂ are consistent with those in MCM v3.3.1). The results are presented in Fig. S2.

57 **Parameterization of the water effect on reaction rate constants**

58 Previous studies have pointed out that water vapor can accelerate the self-reactions of RO₂ via the
59 formation of water complexes (RO₂·H₂O) (Clark et al., 2008; Clark et al., 2010; Kumbhani et al., 2015).
60 We assume this water effect also exists in the HO₂ reactions with RO₂ in that HO₂ can complex with H₂O
61 as well (Kircher and Sander, 1984). Here we referred to an experimental study based on β-hydroxy ethyl
62 peroxy (β-HEP), whose structure and binding energy with H₂O are similar to that of β-ISOPOO, to
63 parameterize this water effect on the RO₂ and HO₂ reactions with β-ISOPOO isomers (Kumbhani et al.,
64 2015). An additional term $k'_{RO_2(HO_2)}$ (Eq. (S10)) was added to their rate constants in MCM v3.3.1.
65 $R_{RO_2(HO_2) \cdot H_2O}$ and $R_{\beta-HEP \cdot H_2O}$ refers to the relative abundance of RO₂- (or HO₂-) water complexes
66 and β-HEP-water complexes, separately, and their values are available in Table S5. The term
67 ($13.2 \times 10^{-44} e^{9538/T} \times [H_2O]$) represents the temperature- and water-dependent calibration for the
68 self-reaction rate constant of β-HEP derived from Kumbhani et al. (2015). For the HO₂ reaction with β-
69 ISOPOO isomers, $R_{RO_2(HO_2) \cdot H_2O}$ in Eq. S10 was replaced by the geometric average of the relative
70 abundance of HO₂·H₂O and β-ISOPOO·H₂O ($\sqrt{R_{HO_2 \cdot H_2O} R_{\beta-ISOPOO \cdot H_2O}}$). Same reaction rate constants
71 were given to β-ISOPOO permutation reactions with all related RO₂ species in isoprene photooxidation
72 for simplification.

73
$$k'_{RO_2(HO_2)} = \frac{R_{RO_2(HO_2) \cdot H_2O}}{R_{\beta-HEP \cdot H_2O}} \times (13.2 \times 10^{-44} e^{9538/T} \times [H_2O]) \quad (S10)$$

74 **Chemicals**

75 The following chemicals were used to prepare standard solutions for instrument calibration without
76 purification: hydrogen peroxide (H₂O₂; Alfa Aesar, 35 wt. %), formaldehyde (HCHO; Sigma-Aldrich, 37
77 wt. %), glyoxal (GLY; Sigma-Aldrich, 40 wt. %), methylglyoxal (MGLY; Sigma-Aldrich, 40 wt. %),
78 hydroxy acetone (HACE; Sigma-Aldrich, 90 %), methacrolein (MACR; Sigma-Aldrich, 96 %), formic
79 acid (FA; Sigma-Aldrich, 98 %), acetic acid (AA; Sigma-Aldrich, 99.7 %).

80 Other chemicals used in the experiments: ammonia solution and ammonium chloride (NH₃·H₂O and
81 NH₄Cl, Beijing Tongguang Fine Chemicals Company, 25.0–28.0 % and ≥ 99.5 %), potassium iodide (KI;

82 Aladdin Chemical Inc., Shanghai, China, 99.99 %), orthophosphoric acid (H₃PO₄; Fluka, 85–90 %),
83 hemin (Sigma-Aldrich, ≥ 98.0 %), 4-hydroxyphenyl acetic acid (Alfa Aesar, 99 %). They were used
84 without purification as well.

85 **Figure captions.**

86 **Figure S1.** The evolution of OH_{exp} with residence time in Exp. 1–4 (a–d).

87 **Figure S2.** Distribution of reaction pathways of major RO₂ in the experiments. Major RO₂ refers to RO₂
88 species which consist of more than 90 % of total RO₂ concentrations. In (a) Exp. 1 and (b) Exp. 2 it refers
89 to β -ISOPOO, while in (c) Exp. 3 and (d) Exp. 4 refers to the assembly of a series of RO₂.

90 **Figure S3.** The observed evolution of H₂O₂ concentration in the experiments. Corrections have been
91 made to eliminate photolysis and wall loss of H₂O₂. The error bars represent \pm standard deviation (\pm SD)
92 based on 6 measurements.

93 **Table captions.**94 **Table S1.** Collection efficiencies for different species by the rinsing solution (5×10^{-3} M H₃PO₄ or
95 ultrapure water) in the coiling tube at 277 K.96 **Table S2.** First-order wall loss rate constants ($k_{WALL,i}$) of the concerned products in the OFR.97 **Table S3.** First-order photolysis rate constants ($k_{PH,i}$) of the concerned products in the OFR.98 **Table S4.** Second-order reaction rate constants of the concerned products with OH radicals at 298 K
99 ($k_{PRO,i+OH}$). The reaction rate constants were abstracted from MCM v3.3.1 website
100 (<http://mcm.york.ac.uk/home.htm>) except for that of HMHP and β -ISOPOOH, which were abstracted from
101 Allen et al. (2018) and St Clair et al. (2016), separately.102 **Table S5.** Relative abundance of RO₂ (HO₂) water complexes ($R_{RO_2(HO_2) \cdot H_2O}$) at 298 K under 30 % and
103 80 % RH.104 **Table S6.** Advanced mechanisms and kinetics of isoprene photooxidation to MCM v3.3.1 in the modeling
105 in this study.

106 **References**

107 Allen, H. M., Crounse, J. D., Bates, K. H., Teng, A. P., Krawiec-Thayer, M. P., Rivera-Rios, J. C., Keutsch, F. N., St Clair, J. M., Hanisco, T. F., Moller, K. H., Kjaergaard, H. G. and Wennberg, P. O.: Kinetics and product yields of the OH initiated oxidation of hydroxymethyl hydroperoxide, *J. Phys. Chem. A*, 122, 6292-6302, doi: 10.1021/acs.jpca.8b04577, 2018.

111 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J. and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O_x , HO_x , NO_x and SO_x species, *Atmos. Chem. Phys.*, 4, 1461-1738, doi: 10.5194/acp-4-1461-2004, 2004.

115 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J. and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, *Atmos. Chem. Phys.*, 6, 3625-4055, doi: 10.5194/acp-6-3625-2006, 2006.

119 Boyd, A. A., Flaud, P. M., Daugey, N. and Lesclaux, R.: Rate constants for $RO_2 + HO_2$ reactions measured under a large excess of HO_2 , *J. Phys. Chem. A*, 107, 818-821, doi: 10.1021/jp026581r, 2003.

121 Clark, J., Call, S. T., Austin, D. E. and Hansen, J. C.: Computational study of isoprene hydroxyalkyl peroxy radical-water complexes ($C_5H_8(OH)O_2\cdot H_2O$), *J. Phys. Chem. A*, 114, 6534-6541, doi: 10.1021/jp102655g, 2010.

124 Clark, J., English, A. M., Hansen, J. C. and Francisco, J. S.: Computational study on the existence of organic peroxy radical-water complexes ($RO_2\cdot H_2O$), *J. Phys. Chem. A*, 112, 1587-1595, doi: 10.1021/jp077266d, 2008.

127 Dovrou, E., Rivera-Rios, J. C., Bates, K. H. and Keutsch, F. N.: Sulfate formation via cloud processing from isoprene hydroxyl hydroperoxides (ISOPOOH), *Environ. Sci. Technol.*, 53, 12476-12484, doi: 10.1021/acs.est.9b04645, 2019.

130 Gong, Y. W. and Chen, Z. M.: Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis, *Atmos. Chem. Phys.*, 21, 813-829, doi: 10.5194/acp-21-813-2021, 2021.

133 Gong, Y. W., Chen, Z. M. and Li, H.: The oxidation regime and SOA composition in limonene ozonolysis: roles of different double bonds, radicals, and water, *Atmos. Chem. Phys.*, 18, 15105-15123, doi: 10.5194/acp-18-15105-2018, 2018.

136 Huang, D., Chen, Z. M., Zhao, Y. and Liang, H.: Newly observed peroxides and the water effect on the

137 formation and removal of hydroxyalkyl hydroperoxides in the ozonolysis of isoprene, *Atmos. Chem.*
138 *Phys.*, 13, 5671-5683, doi: 10.5194/acp-13-5671-2013, 2013.

139 Kircher, C. C. and Sander, S. P.: Kinetics and mechanism of HO₂ and DO₂ disproportionations, *J. Phys.*
140 *Chem.*, 88, 2082-2091, doi: 10.1021/j150654a029, 1984.

141 Kumbhani, S. R., Cline, T. S., Killian, M. C., Clark, J. M., Keeton, W. J., Hansen, L. D., Shirts, R. B.,
142 Robichaud, D. J. and Hansen, J. C.: Water vapor enhancement of rates of peroxy radical reactions, *Int. J.*
143 *Chem. Kinet.*, 47, 395-409, doi: 10.1002/kin.20917, 2015.

144 Lambe, A. T., Ahern, A. T., Williams, L. R., Slowik, J. G., Wong, J. P. S., Abbatt, J. P. D., Brune, W. H.,
145 Ng, N. L., Wright, J. P., Croasdale, D. R., Worsnop, D. R., Davidovits, P. and Onasch, T. B.:
146 Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic
147 aerosol formation and cloud condensation nuclei activity measurements, *Atmos. Meas. Tech.*, 4, 445-
148 461, doi: 10.5194/amt-4-445-2011, 2011.

149 Liu, Y. J., Herdlinger-Blatt, I., McKinney, K. A. and Martin, S. T.: Production of methyl vinyl ketone and
150 methacrolein via the hydroperoxyl pathway of isoprene oxidation, *Atmos. Chem. Phys.*, 13, 5715-
151 5730, doi: 10.5194/acp-13-5715-2013, 2013.

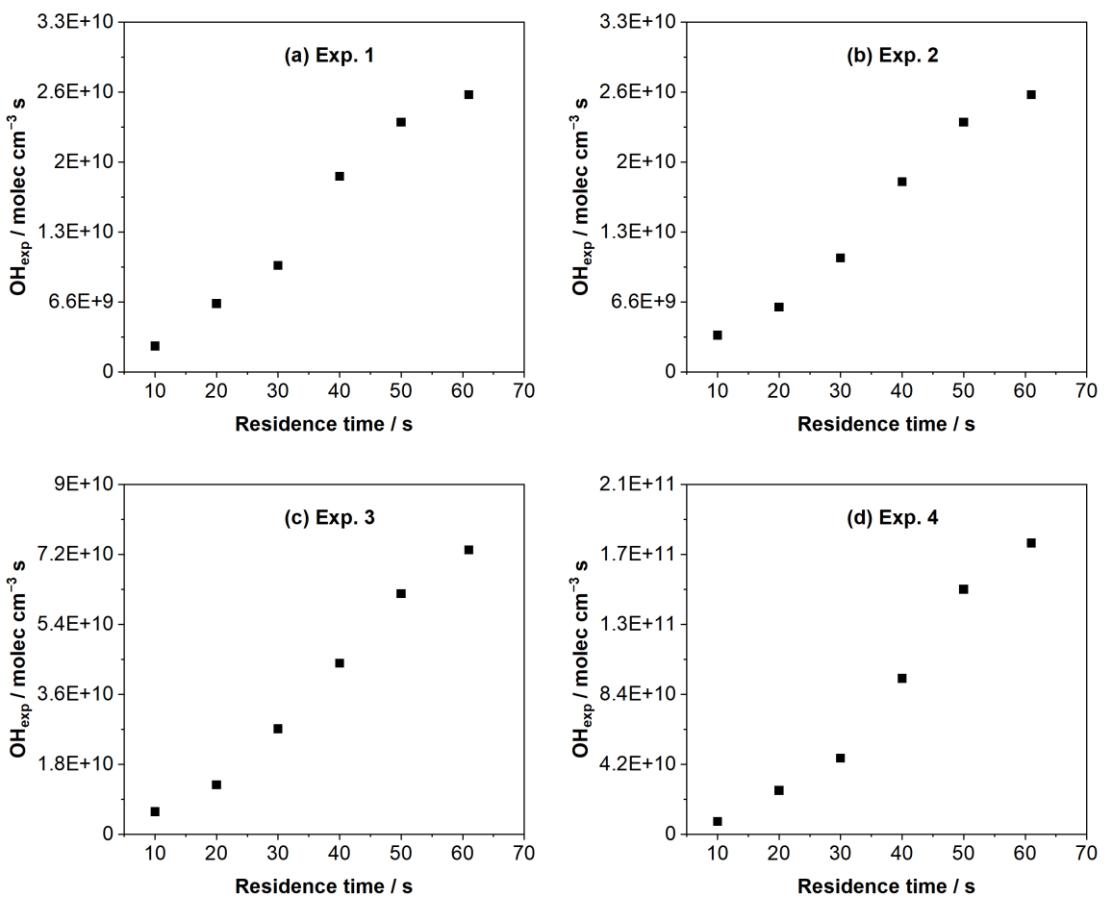
152 Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, A., Huey, L. G., Cohen, R. C., Heikes,
153 B., Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S., Hall, S. R. and Shetter, R. E.: Airborne
154 measurement of OH reactivity during INTEX-B, *Atmos. Chem. Phys.*, 9, 163-173, doi: 10.5194/acp-
155 9-163-2009, 2009.

156 McElroy, W. J. and Waygood, S. J.: Oxidation of formaldehyde by the hydroxyl radical in aqueous-
157 solution, *CS. Faraday trans.*, 87, 1513-1521, doi: 10.1039/ft9918701513, 1991.

158 Monod, A., Chebbi, A., Durand-Jolibois, R. and Carlier, P.: Oxidation of methanol by hydroxyl radicals
159 in aqueous solution under simulated cloud droplet conditions, *Atmos. Environ.*, 34, 5283-5294, doi:
160 10.1016/S1352-2310(00)00191-6, 2000.

161 Ruppert, L. and Heinz Becker, K.: A product study of the OH radical-initiated oxidation of isoprene:
162 formation of C₅-unsaturated diols, *Atmos. Environ.*, 34, 1529-1542, doi:
163 [https://doi.org/10.1016/S1352-2310\(99\)00408-2](https://doi.org/10.1016/S1352-2310(99)00408-2), 2000.

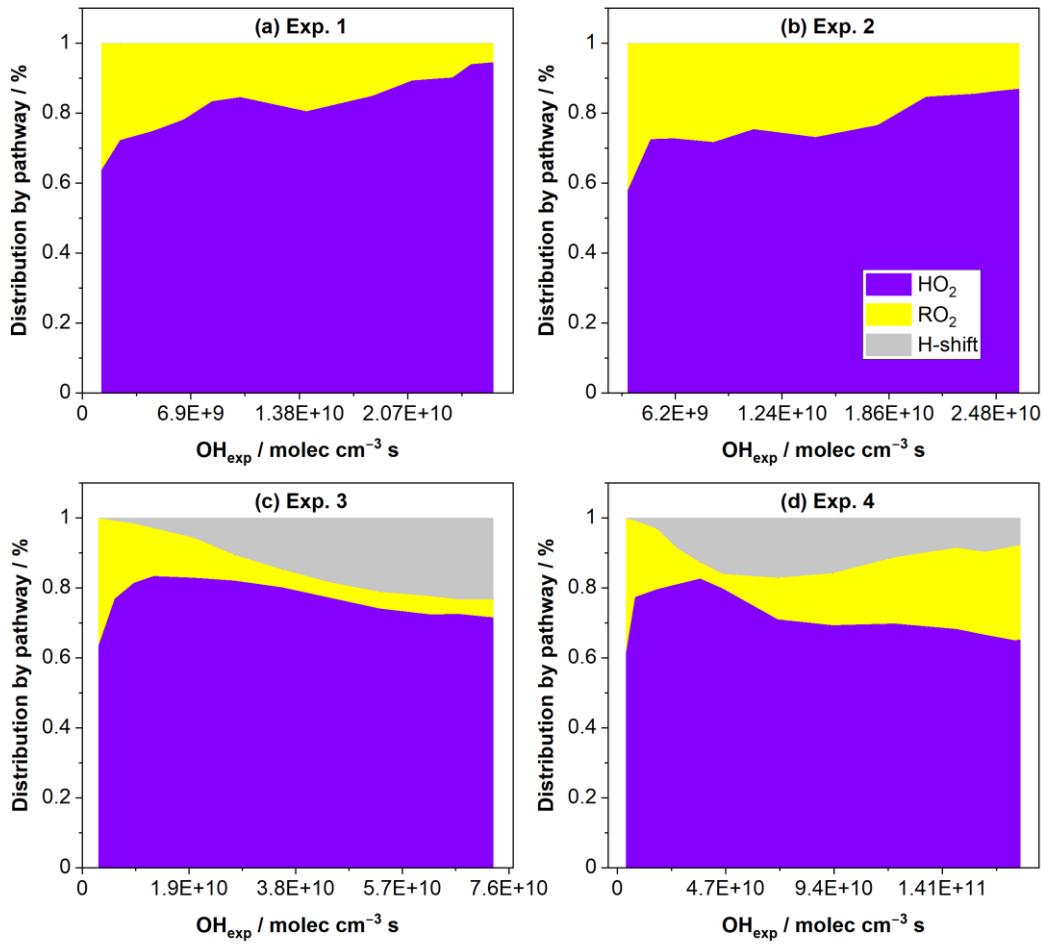
164 Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, *Atmos. Chem. Phys.*,
165 15, 4399-4981, doi: 10.5194/acp-15-4399-2015, 2015.

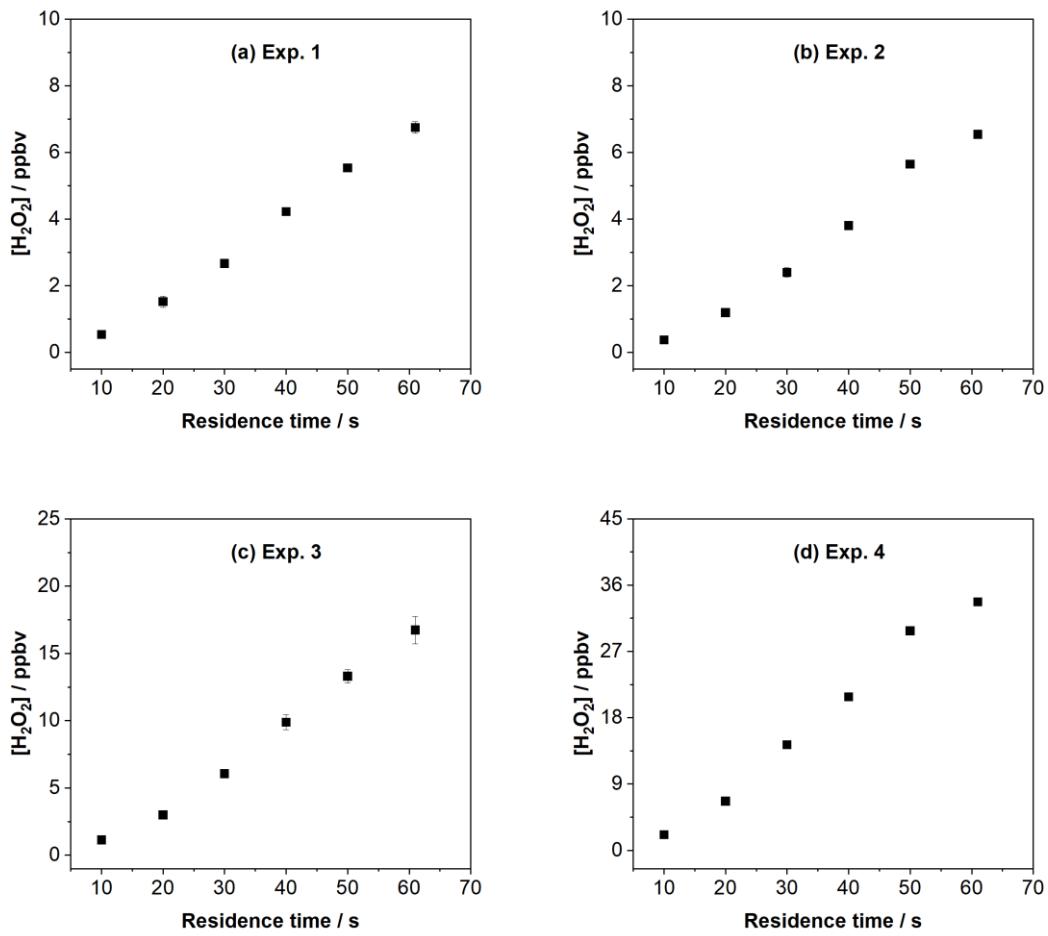

166 St Clair, J. M., Rivera-Rios, J. C., Crounse, J. D., Knap, H. C., Bates, K. H., Teng, A. P., Jorgensen, S.,
167 Kjaergaard, H. G., Keutsch, F. N. and Wennberg, P. O.: Kinetics and products of the reaction of the first-

168 generation isoprene hydroxy hydroperoxide (ISOPOOH) with OH, *J. Phys. Chem. A*, 120, 1441-1451,
169 doi: 10.1021/acs.jpca.5b06532, 2016.

170 Winkelman, J. G. M., Ottens, M. and Beenackers, A. A. C. M.: The kinetics of the dehydration of
171 methylene glycol, *Chem. Eng. Sci.*, 55, 2065-2071, doi: 10.1016/S0009-2509(99)00498-4, 2000.

172 Winkelman, J. G. M., Voorwinde, O. K., Ottens, M., Beenackers, A. A. C. M. and Janssen, L. P. B. M.:
173 Kinetics and chemical equilibrium of the hydration of formaldehyde, *Chem. Eng. Sci.*, 57, 4067-4076,
174 doi: 10.1016/S0009-2509(02)00358-5, 2002.


175


176

177 **Figure S1:** The evolution of OH_{exp} with residence time in Exp. 1–4 (a–d).

178

179
180 **Figure S2:** Distribution of reaction pathways of major RO₂ in the experiments. Major RO₂
181 species which consist of more than 90 % of total RO₂ concentrations. In (a) Exp. 1 and (b) Exp. 2 it refers
182 to β -ISOPOO, while in (c) Exp. 3 and (d) Exp. 4 refers to the assembly of a series of RO₂.
183

184
185 **Figure S3:** The observed evolution of H_2O_2 concentration in the experiments. Corrections have been
186 made to eliminate photolysis and wall loss of H_2O_2 . The error bars represent \pm standard deviation ($\pm \text{SD}$)
187 based on 6 measurements.
188

189 **Table S1:** Collection efficiencies for different species by the rinsing solution (5×10^{-3} M H₃PO₄ or
 190 ultrapure water) in the coiling tube at 277 K.

Species	Henry's law constant at 277 K/M atm ⁻¹	Collection efficiency	References
FA	4.20E+04	99.5 %	
AA	2.00E+04	98.9 %	
H2O2	5.80E+05	100.0 %	
HMHP	2.10E+07	100.0 %	Sander (2015)
PFA	2.90E+03 ^a	92.8 %	
MHP	1.20E+03	84.3 %	
PAA	3.20E+03	93.5 %	
1,2-ISOPOOH	7.00E+05 ^b	100.0 %	
4,3-ISOPOOH	8.00E+04 ^b	99.7 %	Dovrou et al. (2019)

191 Note: Henry's law constant at ^a278 K and ^b298 K.

192

193 **Table S2:** First-order wall loss rate constants ($k_{WALL,i}$) of the concerned products in the OFR.

Rate constants/s ⁻¹	Species	RH = 30 %	RH = 80 %	References
Carbonyls	HCHO	1.70E-04	1.70E-04	Gong et al. (2018)
	HACE	3.02E-04	4.84E-04	
	GLY	3.93E-04	4.99E-04	
	MGL	4.86E-04	6.04E-04	
Peroxides	H2O2	2.97E-04	1.71E-03	Huang et al. (2013)
	PAA	1.71E-03	3.47E-03	
	HMHP	2.39E-03	4.83E-03	
	PFA	2.14E-04	4.01E-04	Gong et al. (2018)
Organic acids	AA	3.47E-04	3.47E-04	Gong and Chen (2021)

194

195

196 **Table S3:** First-order photolysis rate constants ($k_{PH,i}$) of the concerned products in the OFR.

Species	Photon flux at 254 nm/photons cm ⁻² s ⁻¹	Absorption Cross- section/cm ² molec ⁻¹	Quantum Yield	Rate constants/s ⁻¹
O3	1.57E+15	1.14E-17	1	1.80E-02
HCHO	1.57E+15	4.56E-21	0.8	5.74E-06
GLY	1.57E+15	1.6E-20	1	2.52E-05
MGL	1.57E+15	2.859E-20	1	4.50E-05
MACR	1.57E+15	1.78E-21	0.05	1.40E-07
MVK	1.57E+15	2.41E-21	0.69	2.62E-06
H2O2	1.57E+15	6.7E-20	1	1.06E-04
MHP	1.57E+15	3.23E-20	1	5.09E-05

197

198

199 **Table S4:** Second-order reaction rate constants of the concerned products with OH radicals at 298 K
 200 ($k_{PRO,i+OH}$). The reaction rate constants were abstracted from MCM v3.3.1 website
 201 (<http://mcm.york.ac.uk/home.htm>) except for that of HMHP and β -ISOPOOH, which were abstracted from
 202 Allen et al. (2018) and St Clair et al. (2016), separately.

	Species	Rate constants/cm ³ molec ⁻¹ s ⁻¹
Carbonyls	HCHO	8.49E-12
	HACE	4.45E-12
	GLY	9.70E-12
	MGL	1.31E-11
	MACR	2.68E-11
	MVK	2.01E-11
Peroxides	H2O2	1.70E-12
	PAA	3.70E-12
	HMHP	7.10E-12
	MHP	1.00E-11
	β -1,2-ISOPOOH	7.50E-11
Organic acids	β -4,3-ISOPOOH	1.18E-10
	AA	8.00E-13
	FA	4.50E-13

203
 204

205 **Table S5:** Relative abundance of RO₂ (HO₂) water complexes ($R_{RO_2(HO_2) \cdot H_2O}$) at 298 K under 30 % and
206 80 % RH.

	β -1,2-ISOPOO	β -4,3-ISOPOO	β -HEP	HO ₂
RH = 30 %	0.27 %	0.74 %	0.72 %	4.41 %
RH = 80 %	0.71 %	1.96 %	1.91 %	11.0 %

207

Table S6: Advanced mechanisms and kinetics of isoprene photooxidation to MCM v3.3.1 in the modeling in this study.

S/N	Reactions	RH dependent rate constants at 298 K ^a	Reference
1	$\beta\text{-1,2-ISOPOO} + \text{HO}_2 \rightarrow \beta\text{-1,2-ISOPOOH} + \text{O}_2$	$(1.74 \times 10^{-11} + 1.49 \times 13.2 \times 10^{-44} \times e^{9538/T} \times [\text{H}_2\text{O}]) \times (1 - 4.25 \times 10^{-19} \times [\text{H}_2\text{O}] + 7.18 \times 10^{-2})$	Boyd et al. (2003) ^b
2	$\beta\text{-4,3-ISOPOO} + \text{HO}_2 \rightarrow \beta\text{-4,3-ISOPOOH} + \text{O}_2$	$(1.74 \times 10^{-11} + 2.47 \times 13.2 \times 10^{-44} \times e^{9538/T} \times [\text{H}_2\text{O}]) \times (1 - 4.25 \times 10^{-19} \times [\text{H}_2\text{O}] + 7.18 \times 10^{-2})$	This study
3	$\beta\text{-1,2-ISOPOO} + \text{HO}_2 \rightarrow \text{MVK} + \text{O}_2 + \text{OH} + \text{CH}_2\text{OH}$	$(1.74 \times 10^{-11} + 1.49 \times 13.2 \times 10^{-44} \times e^{9538/T} \times [\text{H}_2\text{O}]) \times (4.25 \times 10^{-19} \times [\text{H}_2\text{O}] + 7.18 \times 10^{-2})$	
4	$\beta\text{-4,3-ISOPOO} + \text{HO}_2 \rightarrow \text{MACR} + \text{O}_2 + \text{OH} + \text{CH}_2\text{OH}$	$(1.74 \times 10^{-11} + 2.47 \times 13.2 \times 10^{-44} \times e^{9538/T} \times [\text{H}_2\text{O}]) \times (4.25 \times 10^{-19} \times [\text{H}_2\text{O}] + 7.18 \times 10^{-2})$	
5	$\text{CH}_2\text{OH} + \text{O}_2 \rightarrow \text{HOCH}_2\text{OO}$	1.03×10^{-11}	Grotheer et al. (1985)
6	$\text{CH}_2\text{OH} + \text{CH}_2\text{OH} \rightarrow \text{C}_2\text{H}_6\text{O}_2$	1.50×10^{-11}	Grotheer et al. (1985)
7	$\text{HOCH}_2\text{OO} \rightarrow \text{HCHO} + \text{HO}_2$	1.53×10^2	Atkinson et al. (2006)
8	$\text{HOCH}_2\text{OO} + \text{HO}_2 \rightarrow \text{HOCH}_2\text{OOH} + \text{O}_2$	$1.25 \times 10^{-11} \times 0.6$	
9	$\text{HOCH}_2\text{OO} + \text{HO}_2 \rightarrow \text{HCOOH} + \text{H}_2\text{O} + \text{O}_2$	$1.25 \times 10^{-11} \times 0.4$	
10	$\text{HOCH}_2\text{O}_2 + \text{HOCH}_2\text{O}_2 \rightarrow \text{HCOOH} + \text{CH}_2(\text{OH})_2 + \text{O}_2$	7.05×10^{-13}	
11	$\text{HOCH}_2\text{O}_2 + \text{HOCH}_2\text{O}_2 \rightarrow \text{HOCH}_2\text{O} + \text{HOCH}_2\text{O} + \text{O}_2$	5.54×10^{-12}	
12	$\text{HCHO} + \text{HO}_2 \rightarrow \text{HOCH}_2\text{OO}$	7.90×10^{-14}	Jenkin et al. (2007)
13	$\text{CH}_2(\text{OH})_2 \rightarrow \text{HCHO} + \text{H}_2\text{O}$	8.49×10^{-3}	Winkelman et al. (2000)
14	$\text{HCHO} + \text{H}_2\text{O} \rightarrow \text{CH}_2(\text{OH})_2$	3.23×10^{-22}	Winkelman et al. (2002)
15	$\text{CH}_2(\text{OH})_2 + \text{OH} \rightarrow \text{CH}(\text{OH})_2 + \text{H}_2\text{O}$	1.30×10^{-12}	Monod et al. (2000)
16	$\text{CH}(\text{OH})_2 + \text{O}_2 \rightarrow \text{HCOOH} + \text{HO}_2$	5.81×10^{-12}	McElroy and
17	$\text{CH}(\text{OH})_2 + \text{CH}(\text{OH})_2 \rightarrow \text{HCOOH} + \text{CH}_2(\text{OH})_2$	2.33×10^{-12}	Waygood (1991)
18	$\text{CH}(\text{OH})_2 + \text{OH} \rightarrow \text{HCOOH} + \text{H}_2\text{O}$	5.81×10^{-15}	

^a Units: $\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ for second-order reactions; s^{-1} for first-order reactions.

^b The reaction rate constant of ISOPOO + HO₂ under dry conditions at 298 K, $1.74 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$, was abstracted from Boyd et al. (2003).