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Abstract. Homogeneous freezing of solution droplets is an important pathway of ice formation in the
tropopause region. The nucleation rate can be parameterised as a function of water activity, based on empiri-
cal fits and some assumptions on the underlying properties of super-cooled water, although a general theory is
missing. It is not clear how nucleation events are influenced by the exact formulation of the nucleation rate or
even their inherent uncertainty. In this study we investigate the formulation of the nucleation rate of homoge-
neous freezing of solution droplets (1) to link the formulation to the nucleation rate of pure water droplets, (2)
to derive a robust and simple formulation of the nucleation rate, and (3) to determine the impact of variations in
the formulation on nucleation events. The nucleation rate can be adjusted and the formulation can be simplified
to a threshold description. We use a state-of-the-art bulk ice microphysics model to investigate nucleation events
as driven by constant cooling rates; the key variables are the final ice crystal number concentration and the max-
imum supersaturation during the event. The nucleation events are sensitive to the slope of the nucleation rate but
only weakly affected by changes in its absolute value. This leads to the conclusion that details of the nucleation
rate are less important for simulating ice nucleation in bulk models as long as the main feature of the nucleation
rate (i.e. its slope) is represented sufficiently well. The weak sensitivity on the absolute values of the nucleation
rate suggests that the amount of available solution droplets also does not crucially affect nucleation events. The
use of only one distinct nucleation threshold function for analysis and model parameterisation should be reinves-
tigated, since it corresponds to a very high nucleation rate value, which is not reached in many nucleation events
with low vertical updrafts. In contrast, the maximum supersaturation and thus the nucleation thresholds reached
during an ice nucleation event depend on the vertical updraft velocity or cooling rate. This feature might explain
some high supersaturation values during nucleation events in cloud chambers and suggests a reformulation of
ice nucleation schemes used in coarse models based on a purely temperature-dependent nucleation threshold.

1 Introduction

Clouds are one of the most important components in the
Earth-Atmosphere system. They influence the hydrological
cycle and Earth‘s energy balance via interaction with radi-
ation. Clouds can cool the system by partly scattering and5

reflecting incoming solar radiation (albedo effect) but also
warm the atmosphere by absorbing and re-emitting thermal
radiation as emitted by the Earth’s surface (greenhouse ef-
fect). While for liquid clouds a net cooling effect can be de-
rived, the radiative effect for clouds containing ice crystals is10

still under debate. In particular, for pure ice clouds (so-called
cirrus clouds) at high altitudes in the low temperature range
(T < 235K) albedo effect and greenhouse effect are of the
same order of magnitude but admit different signs, leading to
different net-effects (see, e.g., Fusina et al., 2007; Joos et al., 15

2014; Gasparini et al., 2017). Thus, details in microphysical
properties of ice crystals might decide about a net warming
or cooling of cirrus clouds, as can be seen in former model
studies (e.g. Zhang et al., 1999). A key aspect of ice crystals
is their size which directly affects the scattering and absorp- 20

tion of radiation. Smaller crystals scatter incoming solar light
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more effectively, thus the optical depth τ is directly depen-
dent on the size, as can be seen in the usual approximation
(cf., e.g., Fu and Liou, 1993)

τ = IWC ·∆z ·
(
a+

b

De

)
, (1)

where De denotes the effective diameter of the crystal, IWC5

is the ice water content, ∆z represents the vertical extent of
the cloud, and a, b are empirically derived constants. Since
the available water vapour is mainly determined by ther-
modynamic conditions, the pathway of ice nucleation often
decides about the ice crystal number concentration in cir-10

rus clouds and thus their effective size (assuming a certain
amount of available water vapour).

Ice crystals can be formed by very different nucleation
processes, which can be grouped into two major pathways,
namely in situ and liquid origin ice formation (e.g. Krämer15

et al., 2016; Luebke et al., 2016; Wernli et al., 2016). The
overall term in situ formation refers to ice formation at hu-
midities below water saturation, whereas liquid origin forma-
tion subsumes all formation processes where cloud droplets
are present and humidity is close to water saturation (e.g.20

freezing of cloud droplets), see the definition in Wernli et al.
(2016). It is well known, that the ice crystal number con-
centration varies crucially in dependence on the underlying
nucleation process, leading to potentially strong changes in
the resulting radiative effect (see, e.g., Krämer et al., 2020).25

Despite of the availability of many observational data and
laboratory experiments (e.g. Hoose and Möhler, 2012), and
also the development of new theoretical models (e.g. the soc-
cer ball model, see Niedermeier et al., 2011), the details of
ice nucleation at the molecular scale are still unknown.30

A special situation occurs for the so-called homogeneous
freezing of super-cooled solution droplets (also short: homo-
geneous nucleation) at cold temperatures below 235K. This
process describes the spontaneous freezing of supercooled
aqueous solution particles containing a small amount of (usu-35

ally inorganic) substances. Albeit also the details of this
freezing process are not completely understood on a molec-
ular scale, reproducible laboratory experiments allowed the
formulation of an empirical fit for the nucleation rate (Koop
et al., 2000). Such a fit bears inherent but maybe also un-40

known uncertainty, since we have no generally accepted the-
ory for comparison. Other fits or a change in the fit param-
eters might also lead to different formulations of nucleation
rates.

A priori, it is not clear how large the impact of the formu-45

lation of nucleation rates might be on simulating nucleation
events in models resolving nucleation events in time. This
issue is the starting point of our investigation. We want to ad-
dress three different aspects. First, we want to link the former
formulation by Koop et al. (2000) to recent findings on pure50

water in order to formulate a consistent framework for our
models. Second, we want to derive a robust and simple for-
mulation of the homogeneous nucleation rates, which can be

used for analytical as well as numerical investigations. Third,
we want to investigate the impact of variations of nucleation 55

rates (based on the new formulation) on nucleation events,
i.e. on the resulting ice crystal number concentrations.

From theory (e.g. Baumgartner and Spichtinger, 2019) and
former idealized box model simulations (e.g. Kärcher and
Lohmann, 2002; Ren and Mackenzie, 2005; Spichtinger and 60

Gierens, 2009), we know that ice crystal numbers as pro-
duced in homogeneous nucleation events driven by a con-
stant cooling rate (equivalent to a constant vertical velocity)
crucially depend on several parameters and, thus, affect also
the radiative properties of the formed ice cloud (see, e.g., cal- 65

culations in Krämer et al., 2020; Joos et al., 2009). Therefore,
it is of high importance to understand the impact of the for-
mulation of nucleation rates on the resulting ice crystal num-
ber concentrations.

We emphasize that all our investigations are meant in a 70

bulk-sense, i.e. only integrated quantities such as the ice crys-
tal number and (total) ice crystal mass are considered. Using
this approach, we consider the case of a newly forming cirrus
cloud and do not focus on the freezing or forming details of
single ice crystals. 75

The study is structured as follows. In the next section, we
present the fit by Koop et al. (2000) and its empirical ba-
sis, as related to water theories. In section 3 we describe the
simple model used for idealized simulations for testing the
impact of different formulations of nucleation rates. In sec- 80

tion 4 the more compact formulation of the nucleation rate
along with several approximations is discussed. The conse-
quences of using the proposed approximations are explored
by idealized numerical simulations. In section 5 we investi-
gate the impact of a recently proposed formulation of the sat- 85

uration vapour pressure over super-cooled liquid water on the
nucleation events (Nachbar et al., 2019). In section 6 a new
formulation of the nucleation rate based on results for freez-
ing of pure super-cooled water (Koop and Murray, 2016) is
presented and its impact on the number concentration of nu- 90

cleated ice crystals is discussed. In section 7 we investigate
thresholds of ice nucleation as well as the peak values of su-
persaturation during nucleation events, Finally, we summa-
rize the results and draw some conclusions in section 8.

2 Empirical fit of the nucleation rate 95

Nucleation events are investigated in the phase space
spanned by temperature and water activity of the aqueous so-
lution. The latter is defined as the ratio of saturation pressures
of water vapour over the solution psol and pure water pliq, as
aw := psol

pliq
. In this representation, the melting curve for dif- 100

ferent inorganic solutions turns out to be solely temperature
dependent, i.e. aiw(T ) := aw(Tm) = pice(T )

pliq(T ) (cf. Koop, 2015,
his eq.(5) ), where pice denotes the saturation vapour pressure
over ice. The important insight here is that also the freez-
ing/nucleation events collapse to a single line in the diagram 105
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(see Koop et al., 2000; Koop, 2004, 2015), which can be fit-
ted by shifting the melting curve (deviation ∆aw ∼ 0.305).
This also means that the nucleation events do not depend
on the solute, which is at least true for most inorganic sub-
stances (see, e.g., Koop, 2004). Thus, the nucleation rate can5

be solely parameterized as a function of ∆aw = aw−aiw. For
the fitting procedure in Koop et al. (2000), a polynomial of
degree 3 is used and results in the formulation

Jsol(∆aw) = 10p3(∆aw) with p3(x) =

3∑
k=0

akx
k (2)

of the homogeneous nucleation rate coefficient Jsol. The nu-10

cleation rate coefficient is used to formulate the probability of
freezing of aqueous solution droplets. The fit was used in the
spirit of the representation of the nucleation rate for pure wa-
ter as derived by Pruppacher (1995). During this time, three
water theories were available, and the nucleation rate (as a15

cubic polynomial) was chosen according to the stability limit
hypothesis (e.g. Mishima and Stanley, 1998), leading to an
unlimited increase in the rate (see, e.g., Pruppacher, 1995,
his figure 3). However, meanwhile this water theory can be
ruled out by experimental evidence, thus only the two other20

water theories remain (singularity-free hypothesis vs. liquid-
liquid critical point, cf. Gallo et al., 2019, 2016), which do
not admit an unlimited increase in nucleation rates of pure
water (see, e.g., Koop and Murray, 2016). Thus, the heuris-
tic basis for choosing a cubic polynomial as a fit is not valid25

anymore.
Note that for atmospheric relevant conditions, both re-

maining water theories produce essentially the same results.
Only at very low temperatures T < 150K, where highly vis-
cous or even glassy states of water occur, a different be-30

haviour is predicted. Such temperatures are not relevant for
investigations of ice clouds in the tropopause region, where
homogeneous freezing of solution droplets takes place. How-
ever, these theories provide the basis for the formulation of
the saturation vapour pressure over supercooled water in the35

no man’s land (Murphy and Koop, 2005), combining heat
capacities of liquid water and amorphous ice.

Finally, using the assumption of solution droplets being in
equilibrium with their environment and neglecting size ef-
fects, water activity equals the liquid water saturation ratio40

Sliq due to

aw =
psol

pliq

in eq.
=

pv
pliq

= Sliq (3)

where pv denotes the partial water vapour pressure. Using
this representation of aw together with the ice saturation ratio
Si = pv

pice
, the computation45

∆aw = aw − aiw =
pv

pliq(T )
− pice(T )

pliq(T )
= (Si− 1)

pice(T )

pliq(T )

= (Si− 1)aiw(T ) (4)

shows that ∆aw only depends on the ice saturation ratio and
temperature.

Note, that although recent measurements (Pathak et al., 50

2021) corroborate the procedure in the study by Murphy and
Koop (2005), in a recent study by Nachbar et al. (2019) the
combination of liquid water and amorphous ice is called into
question, leading to a different formulation of the saturation
vapour pressure over supercooled water and thus a different 55

water activity. In the following investigations, we will also
use this formulation in order to determine the sensitivity of
the nucleation events on the choice of a saturation vapour
pressure formulation. Note, that for each choice the water
activity aiw(T ) must be recalculated. 60

3 Model description

We begin with the description of the governing equations for
the relevant ice processes in a nucleation event, i.e. homoge-
neous nucleation and diffusional growth. Both processes are
key for determining the properties of the nucleation event, 65

such as the number of nucleated ice crystals and the evolu-
tion of the ice saturation ratio (e.g. its peak value). Of course,
other processes such as sedimentation and aggregation of ice
crystals are important for the evolution of ice clouds, but usu-
ally act on longer time scales, e.g., when the particles are 70

grown to larger sizes. Thus, we omit these processes and con-
centrate on nucleation and growth, as in former studies (e.g.
Kärcher and Lohmann, 2002; Baumgartner and Spichtinger,
2019).

We formulate the model in terms of averaged quantities 75

for ice crystal mass and number concentration (qi, ni), i.e. as
a 2-moment scheme. Additionally, the saturation ratio with
respect to hexagonal ice, Si = pv

pice(T ) , is used, with the par-
tial water vapour pressure pv and the saturation water vapour
pressure over hexagonal ice, pice(T ). Thus, the complete set 80

of equations for an adiabatically ascending air parcel can be
represented as

ṅi = Nucn (5)
q̇i = Nucq + Depq (6)

Ṡi = Cool + Deps (7) 85

Ṫ =
dT

dt

∣∣∣
adiabatic

+
dT

dt

∣∣∣
diabatic

=− g

cp
w+

L

cp

dqi
dt

∣∣∣
phase

= − g

cp
w+

L

cp

(
Nucq + Depq

)
(8)

ṗ =
dp

dt

∣∣∣
adiabatic

=−gρw, (9)

including changes of temperature T and pressure p. In these
equations, w denotes the vertical velocity of the air parcel, 90

cp is the specific heat capacity of dry air (assumed as a con-
stant, see, Baumgartner et al., 2020),L denotes the (constant)
latent heat of sublimation, and ρ is the air density. The as-
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sumption of an ideal gas is adopted for air and water vapour.
The terms Nucn, Nucq denote changes due to nucleation, the
terms Depq, Deps describe changes due to diffusional growth
of ice crystals. The term Cool denotes the impact of adia-
batic expansion due to upward motion with velocity w, this5

is also reflected in the change of temperature and pressure,
using adiabatic lapse rate and hydrostatic pressure, respec-
tively. For temperature, we would have to consider diabatic
changes due to latent heat release in phase changes.

Computing the total derivative of the saturation ratio us-10

ing the representation Si = pqv
ε0psi(T ) , where ε0 denotes the

ratio of molar masses of water and dry air, together with the
Clausius-Clapeyron equation yields

Cool =
∂Si
∂T

dT

dt

∣∣∣
adiabatic

+
∂Si
∂p

dp

dt

∣∣∣
adiabatic

=

[
Lg

cpRvT 2
− g

RaT

]
Siw (10)15

and

Deps =
∂Si
∂T

dT

dt

∣∣∣
diabatic

+
∂Si
∂qv

(
Nucq + Depq

)
= −

[
L2

cpRvT 2
+

1

qv

]
Si
(
Nucq + Depq

)
. (11)

To a good approximation, for cold temperatures the first term
in the bracket in (11), which describes latent heat release20

due to phase changes, can be omitted. In the following, we
will omit the evolution equations (8), (9) for temperature and
pressure, i.e. we assume these as being constant during the
nucleation event. Thus, we arrive at

Deps ≈−
p

ε0psi

(
Nucq + Depq

)
. (12)25

As a result of assuming temperature and pressure as be-
ing constant, only the vertical velocity w is an external pa-
rameter for the supersaturation. For the terms Nucx,Depx
(x= n,q,s) we have to keep temperature and pressure as
fixed parameters T = Tenv,p= penv. This approach was also30

used in former investigations (see, e.g., Spreitzer et al., 2017;
Baumgartner and Spichtinger, 2019).

The nucleation term can be described as

Nucn = JnucVdna, Nucq =m0Nucn (13)

where, Vd is the mean volume of a supercooled solution35

droplet, na is the number concentration of solution droplets,
and m0 is the mean mass of a newly frozen solution droplet,
which can be set to m0 = 10−16 kg. The nucleation rate for
the homogeneous freezing of solution droplets is denoted
by Jnuc. For comparison with former investigations (Kärcher40

and Lohmann, 2002; Spichtinger and Gierens, 2009), we set
the number concentration of the background aerosol to a
quite large value of naρ= 104 cm−3 = 1010 m−3; since the
resulting ice crystal number concentration as produced in nu-
cleation events is usually some orders of magnitude smaller,45

we do not have to care about a possible consumption of a
major part fraction of solution droplets. We will later discuss
the impact of this value in terms of nucleation events.

The diffusional growth of ice crystals is determined by the
growth rate 50

Depq = ni · 4πD∗vCGv(Si− 1)fv (14)

with the diffusion constant for water vapour in air D∗v =
Dv(p,T )fD as corrected by the factor fD for the kinetic
regime, the capacity of ice crystals, C, assuming columnar
shape, the Howell factor Gv(p,T ) describing the impact of 55

latent heat, and the ventilation correction fv , respectively.
Note, that the capacity also depends on the mean mass of the
ice crystal ensemble, i.e. C = C(m̄) = C(ni, qi). The details
of the formulation are given in appendix A.

Combining the expressions from above, the reduced sys- 60

tem of equations reads

ṅi = Nucn (15)
q̇i = Nucq + Depq (16)

Ṡi =

[
Lg

cpRvT 2
− g

RaT

]
Siw+

p

ε0psi

(
Nucq + Depq

)
(17)

Remarks: 65

1. As shown in Spreitzer et al. (2017), it is possible to de-
termine and characterize the steady states of the reduced
system, which additionally includes sedimentation. This
leads to a nonlinear oscillator with a bifurcation dia-
gram, depending on the updraft velocity w, and on the 70

temperature T .

2. The usefulness of this simple double moment scheme
depends on the scales of the scenarios. We generally
found good agreement with such parcel models and also
on an LES scale (and even coarser resolution) with ob- 75

servations, more sophisticated models, and also theory
(see, e.g., Spichtinger and Gierens, 2009; Spichtinger,
2014; Baumgartner et al., 2022).

4 Investigations of the nucleation rates

Investigations of ice clouds in the cold temperature regime 80

(T < 235K) need to include the nucleation process of ho-
mogeneous freezing of aqueous solution droplets. As pointed
out in section 1 the formulation by Koop et al. (2000) based
on water activity is a meaningful fit to experimental data.
However, for theoretical investigations and the use in re- 85

duced order models, a simpler but still accurate approxima-
tion would be helpful. In the following we present a way
how to derive such an approximation based on the original
fit through measurements by Koop et al. (2000) in addition
to recent observations for pure super-cooled water. 90
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4.1 Correction of the nucleation rate

In the study by Koop and Murray (2016) a parametrisation of
the nucleation rate of pure supercooled water Jpure liq(T ) was
derived, based on recent measurements. Thus, in the context
of homogeneous freezing of solution droplets, the nucleation5

rate for pure water particles should coincide with the nucle-
ation rate of solution droplets Jsol at water saturation, i.e. the
condition

Jsol(∆a
∗
w)

RH=1≡ Jpure liq(T ) (18)

should hold for a value ∆a∗w at water saturation, as claimed10

and already used in the study by Koop et al. (2000). How-
ever, evaluating these two formulations of the nucleation
rates at water saturation shows a similar qualitative behaviour
down to temperatures T ∼ 235K but a quantitative disagree-
ment, see the blue and black curve in Figure 1. A reasonable15

requirement is that the values of both formulations should
match in the temperature range 235K≤ T ≤ 240K, since
this range is relevant for the freezing of pure water cloud
droplets with reasonable sizes. This temperature range at wa-
ter saturation is equivalent to the range of water activity dif-20

ference 0.27≤∆aw ≤ 0.31. The offset between the curves
and can be corrected by shifting the logarithm of the nucle-
ation rate for solution droplets by a constant value. The value
of the shift was calculated by minimizing the square distance
between the curves in the respective temperature range. Thus,

-10

-5

 0

 5

 10

 15

 20

 25

 230  235  240  245

δ=-1.522

lo
g 1

0(
J)

temperature (K)

Koop & Murray (2016)
Koop et al. (2000)

Koop et al. (2000), corrected

Figure 1. Nucleation rates for pure super-cooled water droplets
(Koop and Murray, 2016, red) and aqueous solution droplets (Koop
et al., 2000) at water saturation (i.e. infinitely dissolved); original
values by Koop et al. (2000) in blue, shifted values (δ =−1.522)
in black (new reference nucleation rate Jsol,new). For the calcula-
tion, the saturation vapour pressure formulae by Murphy and Koop
(2005) are used.

25

the corrected nucleation rate for aqueous solution droplets
reads as

log10(Jsol,new(∆aw)) = log10(Jsol(∆aw)) + δ (19)

with δ =−1.522. The nucleation rates are given in SI units
(as used for all quantities throughout this study), i.e. [J ] = 30

m−3 s−1.
Remarks:

– The nucleation rate of pure water droplets can be used
for a direct parametrisation of the nucleation rate of
aqueous solution droplets. This will be carried out in 35

section 6.1.

– The (new) disagreement (or small shift) of the rates
solely stems from the comparison with the new formula-
tion of Koop and Murray (2016), since originally the nu-
cleation rate for solution droplets was chosen in agree- 40

ment with measurements of nucleation rates for pure
water droplets (Koop et al., 2000).

– In the following we will refer to the corrected nucle-
ation rate as “reference” nucleation rate, since, to the
best of our knowledge, it provides the best and most re- 45

cent fit for the homogenous nucleation rate of solution
particles.

4.2 Nucleation rate as a function of T and Si

The general strategy of the study is to represent the exponent
of the nucleation rate by low order polynomials in a thermo- 50

dynamic variable x, i.e.

J = 10pn(x), pn(x) :=

n∑
k=0

akx
k, degpn = n. (20)

For instance, the formulation of the nucleation rate for aque-
ous solution droplets by Koop et al. (2000) is based on a poly-
nomial of degree three, i.e. 55

Jsol(∆aw) = 10p3(∆aw), p3(x) =

3∑
k=0

akx
k (21)

using the thermodynamic quantity x= ∆aw = aw − aiw.
Note, also the nucleation rate Jpure liq for pure water

droplets is based on the same structure, i.e. log10(Jpure liq)
is a polynomial of order 6 in the thermodynamic variable T 60

(cf. Koop and Murray, 2016). For analytical investigations
of the homogeneous nucleation, it is desirable to represent
log10(J) by a polynomial with low degree. As will be shown
in the following, the formulation

log10(J)≈ pn(x), n= degpn ≤ 2 (22) 65

with a polynomial yields sufficient agreement with the ref-
erence. For analytical investigations (e.g. using asymptotic
analysis) it is helpful to represent the nucleation rate using a
threshold for the humidity to account for the explosive char-
acter of nucleation events as used in the analysis by Baum- 70

gartner and Spichtinger (2019). Thus, for the nucleation rate
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for super-cooled solution droplets we make the following
ansatz

J = 10pn(x) = exp
(
A(T )(Si−Sc) +B(T )(Si−Sc)2

)
(23)

where Sc = Sc(T ) is the temperature-dependent threshold
value for the saturation ratio. Note, that the ansatz is con-5

sistent (or even equivalent) with condition (22). In order to
describe J as a function of Si and T we reformulate ∆aw as

∆aw = (Si− 1)aiw(T ) = (Si−Sc)aiw(T ) + (Sc− 1)aiw(T )

(24)

using a threshold Sc(T ) that corresponds to a fixed value
J0 of the nucleation rate, i.e. J(Sc(T ),T ) = J0. Taking10

the logarithm, this equality implies pn(x0) = j0 = log10(J0)
with x= ∆aw. As in former studies (see, e.g., Koop
et al., 2000; Kärcher and Lohmann, 2002), we choose J0 =
1016 m−3 s−1 = 1010 cm−3 s−1. Note, that this choice for
the parameterisation is quite arbitrary and has no strict phys-15

ical interpretation, although one can argue with the cooling
rates of the underlying experiments and thus with the proba-
bility of the freezing of droplets with a given volume within
a certain predefined time interval (Koop et al., 2000).

Evaluating eq. (24) at Si = Sc, we arrive at20

p−1
n (j0) = x0 = (Si−Sc)aiw(T ) + (Sc− 1)aiw(T )

Si=Sc= (Sc− 1)aiw(T )
(25)

leading to a description of the threshold

Sc =
1

aiw(T )
p−1
n (j0) + 1 and

∆aw = (Si−Sc)aiw(T ) + p−1
n (j0)

(26)

if the polynomial pn(x) can be inverted in the relevant range
0.26≤∆aw ≤ 0.34 . Combining the equations from above,25

the nucleation rate can be represented as

log10J = p(∆aw) = pn
(
(Si−Sc)aiw(T ) + p−1

n (j0)
)

(27)

which is a threshold description using the thermodynamic
variables Si, T . This representation amounts to a reformu-
lation of the original approximation, if the inverse function30

p−1
n (x) exists in the relevant range (i.e. pn(x) is strictly

monotonic). In the following we consider the case of linear
and quadratic polynomials, as determined by the ansatz (23).

1. Case of a linear polynomial p1(x) = a0 + a1x

The inverse function of p1(x) = y is given by p−1
1 (y) =35

y−a0
a1

implying the threshold

Sc(T ) =
1

aiw(T )

j0− a0

a1
+ 1. (28)

Substituting eq. (28) into the expression (27) yields

log10J(Si,T ) = j(Si,T )

= j0 + a1a
i
w(T )(Si−Sc(T )) 40

= j0 +A(T )(Si−Sc(T )) (29)

where A(T ) = a1a
i
w(T ). The coefficients a0,a1 can be

determined in different ways, see section 4.3. Further-
more, approximations to the functions A(T ) and Sc(T )
can be investigated. 45

2. Case of a quadratic polynomial
p2(x) = b0 + b1x+ b2x

2 = a(x− b)2 + c

Since a quadratic function is not strictly monotonic in
general, inverting the quadratic polynomial leads to two
functions, i.e. 50

p−1
2 (y) = b±

√
y− c
a

. (30)

If one solution can be ruled out (e.g. due to physical
constraints) we can formulate

log10J = p2

(
(Si−Sc(T ))aiw(T ) + p−1

2 (j0)
)

(31)

using the threshold description 55

Sc(T ) =

(
b±
√
j0− c
a

)
1

aiw(T )
+ 1 (32)

Equivalently, we can derive a formulation

log10J = c0 + q1(T )(Si−Sc(T ))

+ q2(T )(Si−Sc(T ))2
(33)

with appropriate functions q1, q2, which might be useful
for analytic investigations. 60

Remark: We will again use this quadratic ansatz for a
direct approximation of the nucleation rate of pure water
droplets (see section 6.1).

4.3 Linear polynomial fit for the nucleation rate

In this section we investigate approximations of the exponent 65

of the nucleation rate of aqueous solution droplets Jsol and
their impact on nucleation events in an idealised scenario. We
concentrate on the reference formulation (Koop et al., 2000).
Since the polynomial p3(x) in the original formulation

Jsol(∆aw) = 10p3(∆aw), p3(x) =

3∑
k=0

akx
k (34) 70

nearly behaves as a linear polynomial in the relevant range
0.26≤∆aw ≤ 0.34, it can be easily approximated by a lin-
ear relation, i.e. p3(x)≈ b0 + b1x. For this we can use two
different approaches: (i) using a least square fit to p3 and
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(ii) a Taylor expansion at a prescribed value y0. While the
first approach is just a fitting procedure in the relevant range
0.26≤∆aw ≤ 0.34, the second approach relies on an a pri-
ori choice for the evaluation point y0 ∈ [0.26,0.34] and it is
not evident from the outset which value should be used to5

provide an accurate approximation. For this, we investigate
the sensitivity of p3 to a small perturbation ε= y− y0, i.e.
we consider

p3(y) = p3(y0 + ε) = p3(y0) +
dp3

dx

∣∣∣
y0
ε+O

(
ε2
)

(35)

≈ bt0 + bt1 · y = pt,y0(y) (36)10

with the coefficients

bt0 = p3(y0)− dp3

dx

∣∣∣
y0
· y0 and bt1 =

dp3

dx

∣∣∣
y0
. (37)

The Taylor approximation provides a range for the slope
of the linear approximation; these values motivate the sen-
sitivity analysis in section 4.5.2. In the relevant range15

0.26≤ y ≤ 0.34 for y = ∆aw we obtain slopes in the range
221≤ bt1 ≤ 453. This investigation gives us a hint about pos-
sible variations in the slope which will be used later for the
sensitivity analysis in section 4.5.2.

In contrast, using a least square fitting routine for20

0.26≤∆aw ≤ 0.34 we obtain a linear function

pls(x) = bls,0 + bls,1 ·x (38)

with bls,0 =−62.19267 and bls,1 = 254.7749. For the further
investigations, we only use the linear fit from eq. (38). We
observe that the linear fit pls(x) best approximates p3 close to25

the inflection point xinfl ≈ 0.30756 (see figure 2, left panel).
For each linear approximation p(x) = b0 + b1 ·x of p3(x),

the exponent of the nucleation rate and the saturation ratio
threshold become, as demonstrated in section 4.2,

j(Si,T ) = j0 + b1a
i
w(T )︸ ︷︷ ︸

:=A(T )

(Si−Sc(T )),

Sc(T ) =
1

aiw(T )

j0− b0
b1

+ 1.

(39)30

Since aiw is a rather complicated function of temperature, it
is particularly useful in the context of analytical investiga-
tions to have simpler approximations of this quantity. This
motivates to approximate aiw and its inverse 1

aiw
in the rel-

evant temperature range 190≤ T ≤ 230K by polynomials35

q(T ) of degree degq ≤ 2. Similarly, we can approximate the
nucleation threshold Sc(T ) by polynomials s(T ) of degree
degs≤ 2. For the approximations we use a least square pro-
cedure within the temperature range 190≤ T ≤ 230K.The
results are presented in figure 2 (middle and right panels).40

Combining the approximations q(T ) and s(T ) yields the
formulation

j(Si,T ) = j0 + b1q(T )(Si− s(T ))

≈ j0 +A(T )(Si−Sc(T )) (40)

of log10(J). As can be seen in Figure 2, the nucleation 45

threshold is accurately approximated by a linear relation (de-
viation is smaller than 0.3%). In former studies (e.g. Kärcher
and Lohmann, 2002; Ren and Mackenzie, 2005) linear fits
were derived for the nucleation thresholds; however, these
fits deviate significantly more from the reference in compar- 50

ison to ours (see figure 2). The deviation depends on the re-
spective formulation (or approximation) of aiw.

4.4 Thresholds for prescribed nucleation rate values

The threshold description in section 4.3 was based on the
choice j0 = 16, corresponding to a nucleation rate J = 55

1016 m−3s−1. As already mentioned, the choice of j0 is
quite arbitrary, and these high values of J are very often not
reached in the numerical simulations (see section 4.5). For
a better diagnostics of the nucleation events and the relative
strength of nucleation events, we introduce a similar concept 60

for nucleation thresholds, based on a prescribed nucleation
rate value J ∼ 10x0 . For this purpose we use eq. (40) of the
nucleation threshold based on the linear approximation of the
nucleation rate with a fixed but arbitrary value x0 > 0 for the
nucleation rate value; hence, we can write 65

x0 = j(S0,T ) = j0 +A(T )(S0−Sc(T ))

⇔ Scx0(T ) = S0 =
x0− j0
A(T )

+Sc(T )
(41)

where the function A(T ) = b1a
i
w(T ) depends only on the

linear approximation of J as stated in section 4.2. Note that
obviously Scx0(T ) = Sc(T ) for x0 = j0. This leads to the
formulation of the nucleation rate 70

j(Si,T ) = x0 +A(T )(Si−Scx0(T )) . (42)

with a general nucleation value x0 and its associated thresh-
old function Scx0(T ). The threshold function is just shifted
by the value x0−j0

A(T ) , i.e. the type of the threshold function re-
mains the same. This formulation will be used for the theoret- 75

ical investigations using small perturbations (see section 4.6)

4.5 Numerical simulations of nucleation events for
different approximations

In the following we investigate the impact of our approxima-
tions of log10(J) on nucleation events. The setup is as fol- 80

lows: We use the simple bulk ice physics model as described
by the set of ODEs (15), (16), (17) in section 3. A nucle-
ation event is ensured by assuming a constant vertical veloc-
ity, which directly translates into a constant adiabatic cooling
of the air parcel and, thus, an initially increasing saturation 85

ratio. Instead of changing the temperature adiabatically, we
directly control the supersaturation as described in sec. 3; this
allows us to control the nucleation event without the need to
disentangle the different contributions of temperature and su-
persaturation. 90
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Figure 2. Polynomial approximations of the nucleation rate (left), the ice water activity aiw(T ) = pice(T )
pliq(T )

(middle), and the saturation ratio
threshold Sc(T ) (right panel), respectively. The right panel also includes the approximations by Kärcher and Lohmann (2002) and Ren and
Mackenzie (2005).

The nucleation events always admit the same structure:
Due to the supersaturation source ∼ wSi with constant up-
draft w the variable Si increases and the nucleation term pro-
duces ice crystals, which can grow by water vapour diffusion,
constituting a sink for supersaturation. The peak value of Si5

is reached once the source and sink of supersaturation bal-
ance. Afterwards the variable Si decreases due to diffusional
growth and thus shut off the nucleation term. The peak value
depends crucially on the number of nucleated ice crystals
that are needed, to balance the source for Si by the diffu-10

sional growth (depending on the product of number concen-
tration and mean radius of ice crystals). The number con-
centration of ice crystals produced in the nucleation event
clearly depends on the vertical velocity w (source term) and
the environmental conditions (diffusion depends on temper-15

ature and pressure). For details of the time evolution of nu-
cleation events see appendix B.

4.5.1 Standard approximation

We compare the following four different representations of
the nucleation rate using numerical simulations:20

1. nucleation rate in the water activity formulation by
Koop et al. (2000) with the correction as described in
section 4.1 (reference nucleation rate)

2. water activity approximated by the linear fit as de-
scribed in section 4.3 (see eq. (38), linear regression)25

3. nucleation rate as a function of Si, T as described in
section 4.2 based on the formulation

log10J = j0 +A(T )(Si−Sc(T )) (43)

of the exponent of the nucleation rate. We compare
the following two sets of approximations for A(T ) and30

Sc(T ):

(a) a linear approximation forA(T ) and a quadratic ap-
proximation for Sc(T ),

(b) a constant approximation for A(T ) and a linear ap-
proximation for Sc(T ). 35

These are specific cases, however arbitrary combinations of
approximations for A(T ) and Sc(T ) might be used.

Figure 3 shows the approximated exponents of the nu-
cleation rate together with the (corrected) reference for-
mulation by Koop et al. (2000) for the three temperatures 40

T = 196, 216, 236K as functions of ∆aw. These tempera-
tures are chosen for direct comparison with former stud-
ies (Kärcher and Lohmann, 2002; Spichtinger and Gierens,
2009). Evidently, the linear fit with respect to water activity is
very close to the reference, and the same is true for the case of 45

a linear functionA(T ) and a quadratic approximation Sc(T ).
For the simplest approximation (constant function A(T ) and
linear approximation Sc(T )), larger deviations from the ref-
erence nucleation rate can be seen. At T = 196K, there is a
strong underestimation in the lower range of ∆aw, whereas 50

for T = 236K the underestimation is most pronounced for
higher values of ∆aw (green vs. black curves). In both cases,
we expect deviations in the number concentrations of nucle-
ated ice crystals during the nucleation event and the maxi-
mum saturation ratio attained. 55

We investigate standard nucleation events in terms of (i)
the resulting ice crystal number concentration at the end
of the simulation as in former studies (e.g. Kärcher and
Lohmann, 2002; Spichtinger and Gierens, 2009) and (ii) the
maximum (peak) supersaturation, which was reached during 60

the nucleation event. Although the latter is usually not con-
sidered, it is of interest for comparisons with real measure-
ments, e.g. in cloud chambers.

Figure 4 shows the results of the numerical simulations,
i.e. the number of nucleated ice crystals (top panel) and the 65

maximum saturation ratio (bottom panel) at environmental
pressure p= 200hPa (the results are similar for other envi-
ronmental conditions).

Comparing the number of nucleated ice crystals as well as
the maximum saturation ratio it is evident, that the difference 70
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Figure 3. Different approximations of nucleation rate for different temperatures (left: T = 196K, middle: T = 216K, right: T = 236K).
Black: Reference nucleation rate; red: linear fit to reference nucleation rate; blue: threshold description due to eq 43, using a linear approx-
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Figure 4. Comparison of different approximations of the nucleation
rate by Koop et al. (2000) for standard nucleation events driven by a
constant vertical velocity w. Top: ice crystal number concentration;
bottom: maximum supersaturation.

between the reference calculation, based on the corrected nu-
cleation rate by Koop et al. (2000), and the simulations using
the approximated nucleation rates are rather small.

For almost all nucleation events, the deviation from the
reference simulations is not larger than ±15%. To assess 5

these deviations one should keep in mind that measurements
of ice crystal number concentrations are quite difficult and
the uncertainties are usually larger than 15%. For instance,
for the FSSP instrument, which was used in many flight cam-
paigns (e.g. Voigt et al., 2017), the uncertainty is estimated 10

by about ∼ 10% (de Reus et al., 2009). Thus, the deviations
in our simulations and the uncertainties of realistic measure-
ments are roughly of the same order. This fact renders it pre-
sumably impossible to decide on the correctness of any of the
different formulations and approximations of the nucleation 15

rate based on the available observations.
Finally, we conclude that a linear approximation of the

reference nucleation rate by Koop et al. (2000) is accurate
enough to represent nucleation events in a physically mean-
ingful way. Thus, we can use this description as well as the 20

derived formulations of the nucleation rate as a function of
temperature T and saturation ratio Si in order to investigate
which parameters of the nucleation rates significantly affect
the outcome of nucleation events. This will be carried out in
the next section. 25

4.5.2 Impact of the parameters of the linear
approximation

Generally, we are interested in the impact of the formulation
of the nucleation rate on nucleation events. The original pa-
rameterisation by Koop et al. (2000) is based on a cubic poly- 30

nomial, which admits slopes in the range 221≤ b≤ 453, see
Sect. 4.3. The linear approximation is sufficiently good for
representing the “reference” rate; thus, we now use this sim-
ple linear representation log10J = b0 + b1 ·∆aw in order to
test the sensitivity of nucleation events on the two parameters 35
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b0, b1. Parameter b0 controls the absolute value of the nucle-
ation rate while parameter b1 accounts for its steepness, i.e.
the slope.

In a first step, we investigate the impact of the slope
of the nucleation rate given by coefficient b1. One should5

keep in mind that during the nucleation event the value of
∆aw = (Si− 1)aiw(T ) is increasing as Si increases, thus the
exponent of the nucleation rate basically grows linearly. Con-
sequently, an increase in the saturation ratio immediately
translates into an increase in ∆aw, hence the abscissa in fig-10

ure 5 may be thought of as representing saturation ratio. If
high values of the nucleation rate are already reached at lower
supersaturation values, the nucleation is triggered earlier in
comparison to the reference scenario.
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Figure 5. Artificial change in the slope of the linear function in
the exponent of the nucleation rate. The fit to the reference curve is
indicated by the green line (slope b1 ∼ 250); a reduced slope (b1 ∼
100) is displayed in red, an enhanced slope (b1 ∼ 500) is displayed
in blue.

However, an earlier onset of ice nucleation implies that the15

newly nucleated ice crystals already start to grow by diffu-
sion. Consequently, the growing ice crystals tend to decrease
the saturation ratio and, if they are sufficiently numerous,
prematurely stop the nucleation event. In this case, less ice
crystals will nucleate and a smaller maximum saturation ra-20

tio will be reached compared to the reference. The opposite
mechanism is expected for smaller values of the nucleation
ratio in comparison to the reference, i.e. higher ice crystals
concentrations will occur together with larger maximal satu-
ration ratio.25

In order to illustrate this mechanism more quantitatively,
we artificially changed the slope of the linear function. The
“reference” slope b1 ≈ 255 is either reduced to a value of
b1 = 100 or enhanced to a value b1 = 500, which is moti-
vated by the values of the Taylor approximation, derived in30

section 4.3. In both cases, the parameter b0 of the linear func-
tion is adapted such that the inflection point of the polyno-
mial p3(∆aw) at ∆aw ∼ 0.311 is met for better compari-
son with the reference simulations. The resulting nucleation

rates are displayed in figure 5, while the number of nucleated 35

ice crystals and the maximum ice saturation ratio during the
nucleation event are summarized in figure 6: The top panel
shows the concentrations of nucleated ice crystals and the
bottom panel shows the maximum saturation ratio during the
nucleation events. 40

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0.01 0.1 1 10

T=196K

T=216K

T=236K

p=200hPa

ic
e
 c

ry
s
ta

l 
n
u
m

b
e
r 

c
o
n
c
e
n
tr

a
ti
o
n
 (

m
−

3
)

vertical velocity (m/s)

reference
reduced slope

enhanced slope

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

0.01 0.1 1 10

T=196K

T=216K

T=236K

m
a
x
. 
s
u
p
e
rs

a
tu

ra
ti
o
n
 S

i

vertical velocity (m/s)

reference
reduced slope

enhanced slope

Figure 6. Impact of the slope on the idealized nucleation events.
Top: ice crystal number concentrations, bottom: maximum super-
saturation values. The colours are chose as in figure 5, i.e. red
squares indicate reduced slope, and blue triangles indicate enhanced
slope, respectively.

In case of the enhanced or reduced slope as indicated in
figure 5 we exactly see the theoretically proposed behaviour
in the ice crystal number concentration: the values are re-
duced for reduced slopes, and enhanced for enhanced slopes.
The reductions are by up to a factor of 0.4, the enhancements 45

are by up to a factor of 2.4, and the largest changes can be
seen at the highest temperature T = 236K.

In the bottom panel of Figure 6, a dependency on tempera-
ture and vertical velocity is seen. For very low vertical veloc-
ities, the maximum supersaturation behaves as expected, i.e. 50

reduced values for the reduced slope and enhanced values for
the enhanced slope. For very high vertical velocities, this be-
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haviour is reversed, i.e. we see reduced values of Si,max for
enhanced slopes and enhanced values of Si,max for reduced
slopes. The transition slightly depends on the temperature.
This can be explained as follows: For low vertical veloci-
ties, ∆aw (and thus the supersaturation) is always below the5

inflection point ∆aw ∼ 0.311. Thus the nucleation rate is al-
ways smaller for the enhanced slope in comparison to the
reference while it is always larger in comparison to the refer-
ence for the reduced slope. Therefore, in case of an enhanced
slope the nucleation starts later compared to the reference.10

This leads to the behaviour as described above. However, be-
yond the inflection point the behaviour is reversed and thus
the resulting maximum supersaturation is now enhanced for
reduced slope and it is reduced for enhanced slope. The in-
flection point is reached at different vertical velocities for15

different temperatures, i.e. for lower temperatures at lower
values of w and for higher temperatures at higher values of
w. Note, only the maximum supersaturation is affected upon
∆aw crossing the inflection point while no influence on the
number concentration of ice crystals is seen.20

After having varied the slope of the nucleation rate, we
now turn to its absolute values and modify coefficient b0,
which translates into a change of values of J by 10b0 . In
order to investigate the sensitivity, we add a constant value
∆b ∈ {−6,−3, 3, 6} to the coefficient b0, resulting in an in-25

crease or decrease in the absolute value of the nucleation rate
by a factor of 10∆b. In figure 7 the results in terms of ice
crystal number concentration and maximum supersaturation
are displayed.

Maybe surprisingly, the absolute values of the number30

concentrations of ice crystals in comparison to the refer-
ence formulation are not crucially affected (see figure 7, top
panel), although some deviations occur (up to a factor of
two). The strongest deviations can be seen for warm temper-
atures (T = 236K) at very low vertical velocities. Overall,35

the relative deviations from the reference events in variables
ni and peak values of Si are within the interval [0.4, 2], but
for vertical velocities in the range w ≥ 0.05m s−1 the rela-
tive deviation is within the interval [0.8, 1.4].

Comparing the influence of a scaling of the absolute values40

of the nucleation rate and the steepness of the rate, we con-
clude that the correct steepness of the nucleation rate is much
more important than the absolute value of J . Even changes
by orders of magnitude in the values of the nucleation rate
has a minor impact on the number of nucleated ice crystals.45

A similar conclusion was also drawn in the theoretical study
by Baumgartner and Spichtinger (2019). In that study, the
authors investigated a slightly simplified system of equations
by means of asymptotic analysis. The simplified system de-
scribes the temporal evolution of the number concentration50

of ice crystals and the saturation ratio and an approximate
asymptotic solution was constructed. To leading order, the
approximate solution for the number concentration of ice
crystals was completely independent of the precise values
of the nucleation rate, but the steepness contributed directly.55
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Figure 7. Comparison of ice crystal number concentrations (top
panel) and maximum supersaturation (bottom panels, temperature
T = 196/216/236K) for absolute changes in the nucleation rate by
a factor 10∆b with ∆b ∈ {−6,−3, 3, 6}.

The only necessary condition on the values of the nucleation
rate was that it attains large values, i.e. significantly larger
than the other coefficients within the equations.

For the maximum supersaturation values, the impact of
the absolute value of J is much more pronounced. As ex- 60

pected, upon reduction of the nucleation rate by a factor of
10∆b with ∆b ∈ {−6,−3} the supersaturation reaches much
higher values of Si, until the values of the rescaled nucleation
rate become large enough to initiate the nucleation of ice
crystals. For the enhancement of the absolute values of the 65

nucleation rate, the results are reversed: The maximum su-
persaturation is reduced, since the enhanced nucleation rate
attains values that allow the production of ice crystals for
smaller saturation ratios. This behaviour is represented in the
bottom panels of figure 7. 70
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Remark: This idealized enhancement of the nucleation
rate can also be seen in the connection with the aerosol num-
ber concentration na. A change of na by some orders of mag-
nitudes while no changes in J are applied has the same effect
as changing the absolute value of the nucleation rate (or the5

parameter b0 in the argument of the exponential function).
Thus, a strong reduction or enhancement of the available so-
lution droplets will only slightly change the amount of ice
crystals in a nucleation event. Therefore, we can conclude
that for a meaningful approximation of the nucleation rate the10

exact number concentration of available aerosols is also not
crucial for the strength of the homogeneous nucleation event,
but perhaps for the starting time of the event. Including size
effects of the solution droplets might additionally change the
picture quantitatively (see, e.g., Baumgartner et al., 2020).15

4.6 Impact of perturbations in Si and T on the
nucleation rate

In this section we investigate the impact of changes in Si
and/or T on the nucleation rate by employing a perturbation
analysis. A short explanation of this technique is given in Ap-20

pendix D. In the real atmosphere, variations of the tempera-
ture due to dynamical processes will introduce such changes,
e.g. such as from a passing or even breaking gravity wave.
In numerical simulations, these variations (also often called
fluctuations) are often artificially introduced (e.g. Jensen and25

Pfister, 2004). In any case, the impact of such changes is in-
vestigated using perturbation analysis (also called asymptotic
analysis).

We start with the linear approximation of the nucle-
ation rate as formulated in eq. (40) with A(T ) = b1a

i
w(T ).30

We can estimate the usual values of the function A(T )
in the temperature range 190K≤ T ≤ 230K using 0.51≤
aiw(T )≤ 0.66 such that 129≤A(T )≤ 169. For a very sim-
ple but still sufficiently accurate constant approximation of
aiw(T ) we can set aiw0 = 0.574312 (see fig. 2, pink line)35

such that A(T )≈A0 = b1a
i
w0 = 146.32. Finally we can

state A(T ) =O
(
ε−2
)

with the usual perturbation approach
ε∼ 0.1, such that we set A(T ) =A∗ε−2 with A∗ =O(1) as
ε→ 0. For the non-dimensionalization of the threshold func-
tion in the linear approximation Sc(T )≈ s0+s1T we have to40

estimate the order of the coefficients for the relevant temper-
ature range. Using 190K≤ Tref ≤ 230K and the definition
T = Trefϑ with the nondimensional temperature ϑ, we find

Sc(T ) = sc(ϑ) = s0 + s1T = s0 + s1Trefϑ= σ0−σ1ϑ (44)

with σ1 =−s1Tref. Obviously, s0 = σ0 = 2.27697 =O(1)45

and 0.66≤ σ1 ≤ 0.8 such that σ1 =O(1). Using the sim-
plest approximation A(T ) =A0 and Sc(T ) = s0 + s1T for
the general formulation of the threshold function Scx0 (cf.

eq. (41)) we can simplify the expression as

Scx0(T ) =
x0− j0
A0

+ s0 + s1T =

(
x0− j0
A0

+ s0

)
︸ ︷︷ ︸

=:sx0

+s1T 50

= sx0 + s1T. (45)

Using non-dimensionalization we end up with the following
representation

Scx0(T ) = scx0(ϑ) = sx0 + s1T = σx0−σ1ϑ, (46)

where σx0 = sx0,σ1 =−s1Tref. Finally, we use the estima- 55

tion A0 =A∗ε−2 to obtain

σx0 = (A∗)
−1
ε2(x0− j0) +σ0 = δ+σ0. (47)

Since j0 =O
(
ε−1
)

and x0 =O
(
εβ
)

with β ≥−1 we
find σx0 = δ+σ0 =O (ε) +O(1) =O(1). After non-
dimensionalizing the argument in the nucleation rate, we 60

can now investigate the response of the nucleation rate upon
a perturbation (i) in saturation ratio (i.e. in the same way as
the numerical simulations are set up), (ii) in temperature,
and (iii) in adiabatic changes of temperature driving changes
in the saturation ratio simultaneously. In reality, almost 65

exclusively case (iii) is relevant.
First, we estimate the increase of J due to variations

of Si at a constant temperature T = Tref. For this pur-
pose we start at a given value of the saturation ratio Si
which corresponds to a certain threshold x0 via the re- 70

lation (41). We choose this value as a reference value
Sref = Scx0(Tref) = scx0(1) = σ0−σ1; this corresponds to a
reference value of the nucleation rate J = Jref = Junit · 10x0

(with Junit = 1m−3 s−1). Assuming the expansion

Si = S0 + εS1 + ε2S2 + ε3S3 +O
(
ε4
)

(48) 75

for the saturation ratio where S0 = Srefσx0−σ1 we inves-
tigate the impact of such a perturbation on the exponent j.
Keeping the temperature fixed as in the numerical simula-
tions we arrive at

j(Si,T ) = j(s, t) = x0 +A0 (Si−Sref) 80

= x0 +A∗ε−2 (Sref

+εS1 + ε2S2 + ε3S3 +O
(
ε4
)
−Sref

)
= x0 + ε−1A∗S1 +A∗S2 + εA∗S3 +O

(
ε2
)
.(49)

We are interested in the relative change of the nucleation
rates J(Si,T )

Jref
, which translates into j(Si,1)− j(Sref,1). By 85

definition, we have x0 = j(Sref,1), thus we obtain

j(Si,1)− j(Sref,1) = ε−1A∗S1 +A∗S2 + εA∗S3 +O
(
ε2
)
.

(50)

Inspecting eq. (50) it is evident, that a nonzero perturbation
term Sα in eq. (48) is connected with the factor εα−2, hence
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a change of order O (εα) in supersaturation translates into a
change of orderO

(
εα−2

)
in the exponent of J . For instance,

a change by S ∼ 0.01 translates into a change of O(1) in j,
thus in a change by a factor of 10 in the nucleation rate J

Second, we consider perturbations of temperature with-5

out changing the saturation ratio, although this might
not happen in the atmosphere. Using the approach
above with a constant reference value of saturation,
i.e. Sref = scx0(1) = σ0−σ1 and temperature perturbations
ϑ= 1 + εϑ1 + ε2ϑ2 + ε3ϑ3 +O

(
ε4
)

we find the following10

expression:

j(sref,ϑ) = x0 +A0 (Sref

−
(
σ0−σ1

(
1 + εϑ1 + ε2ϑ2 + ε3ϑ3 +O

(
ε4
))))

= x0 +A∗ε−2
(
εϑ1 + ε2σ1ϑ2 + ε3σ1ϑ3 +O

(
ε4
))

= x0 + ε−1A∗σ1ϑ1 +A∗σ1ϑ2 + εA∗σ1ϑ3 +O
(
ε2
)
.

(51)

The relative change of the nucleation rate is then given by

j(Sref,ϑ)− j(Sref,1) = x0 + ε−1A∗σ1ϑ1 +A∗σ1ϑ2

+A∗σ1ϑ3ε+O
(
ε2
)
.

(52)

Thus, a temperature perturbation ϑα of order O (εα) leads15

to a relative change in j of order O
(
εα−2

)
. Note the sign

of the perturbations, which turns into the opposite sign in
the change of j. Because of the strictly monotonic descrease
of the threshold function Scx0(T ), a negative temperature
change leads to a higher threshold and in turn to a lower nu-20

cleation rate at a given saturation ratio.
Instead of perturbing the saturation ratio and the tem-

perature individually, these quantities are connected in the
real world. To a good approximation, their joint variation is
through an purely adiabatic change. Therefore, we finally in-25

vestigate the impact of adiabatic temperature changes on the
saturation ratio and in turn on the nucleation rate. For this
purpose we have to consider the dependence of Si on adia-
batic temperature changes. We start with the cooling source
term of the saturation ratio30

dSi =

(
1

κ
− L

RvT

)
Si

dT

T
. (53)

The term γ(T ) = 1
κ −

L
RvT

within the bracket admits the
values −28.8≤ γ(T )≤−23.2 for 190K≤ T ≤ 230K such
that we find γ(T ) =O

(
ε−1
)

= γ∗ε−1 and γ∗ ∼−2.5< 0.
Approximating the total differential in eq. (53) with finite35

differences ∆Si,∆T , we arrive at

∆Si
Si

= γ∗ε−1 ∆T

T
. (54)

We set as an approximation Si = Sref and T = Tref such that
we can set

∆Si
Sref

= εlSl +O
(
εl+1

)
=O

(
εl
)

(55)40

with Sl =O(1). We assume l ≥ 1 since we do not consider
changes of the saturation ratio of orderO(1). The analoguous
expansion for the temperature reads

∆T

Tref
= εkϑk+O

(
εk+1

)
=O

(
εk
)

with ϑk =O(1) ∀k ≥ 1.

(56)

Combining these expansions, Eq. (53) becomes 45

∆Si
Sref

= γ∗ε−1 ∆T

Tref
= γ∗ε−1

(
εkϑk +O

(
εk+1

))
= γ∗tkε

k−1 +O
(
εk
) (57)

or equivalently

εlSl = ∆Si = Srefγ
∗ϑkε

k−1 +O
(
εk
)
. (58)

The only non-trivial balance is achieved for l = k− 1, i.e.

Sk−1 = Srefγ
∗ϑk ⇔ Sk = Srefγ

∗ϑk+1. (59) 50

Note that l = k−1≥ 1, i.e. we have to consider k ≥ 2 for the
perturbation of temperature. This is a meaningful restriction
since we are interested in small changes of temperature in
the cold temperature regime, i.e. a change in the temperature
in the order of ∼ 1K in physical units. Hence, we would not 55

expect adiabatic temperature changes of order O (ε), corre-
sponding to changes of order ∼ 10K. Thus, we assume an
asymptotic expansion

ϑ= 1 + ε2ϑ2 + ε3ϑ3 +O
(
ε4
)

(60)

for the temperature perturbation. We are generally interested 60

in adiabatic expansions due to vertical upward motion, which
in turn leads to decreasing temperatures, hence we conclude
ϑk < 0 for k ≥ 2. Since γ∗ < 0, equation (59) leads to pos-
itive changes in the saturation ratio sk > 0 for ϑk < 0. Gen-
erally, warming due to adiabatic compression can be studied 65

in the same way by setting ϑk > 0.
Now we consider the nucleation rate in the formula-

tion for arbitrary thresholds x0 in the nucleation rate using
Sref = σx0−σ1 = scx0(1):

j(Si,T ) = j(Si, t) = x0 +A∗ε−2 (Si− scx0(ϑ))

= x0 +A∗ε−2
(
Sref + εS1 + ε2S2 + ε3S3

−
(
σx0−σ1

(
1 + ε2ϑ2 + ε3ϑ3

))
+O

(
ε4
))

= x0 +A∗ε−2
(
εS1 + ε2S2 + ε3S3 + ε2σ1ϑ2

+ε3σ1ϑ3 +O
(
ε4
))

= x0 +A∗ε−2
(
εSrefγ

∗ϑ2 + ε2Srefγ
∗ϑ3 + ε3Srefγ

∗ϑ4

+ε2σ1ϑ2 + ε3σ1ϑ3 +O
(
ε4
))

= x0 +A∗ε−2
(
εSrefγ

∗ϑ2 + ε2 (Srefγ
∗ϑ3 +σ1ϑ2)

+ε3 (Srefγ
∗ϑ4 +σ1ϑ3) +O

(
ε4
))

= x0 +A∗Srefγ
∗ϑ2ε

−1 +A∗ (Srefγ
∗ϑ3 +σ1ϑ2)

+A∗ (srefγ
∗ϑ4 +σ1ϑ3)ε+O

(
ε2
)
.
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(61)

Thus, for k ≥ 2 we find terms of the form
A∗ (srefγ

∗ϑk+1 +σ1ϑk)εk−2 of order O
(
εk−2

)
. Com-

paring the nucleation rates we find for the relative change
5

j(Si,T )− j(Sref,Tref) = j(Si, t)− j(Sref,1)

=A∗Srefγ
∗ϑ2ε

−1 +A∗ (Srefγ
∗ϑ3 +σ1ϑ2)

+A∗ (Srefγ
∗ϑ4 +σ1t3)ε+O

(
ε2
)
.

(62)

For the relative impact of these terms we use the estimations
γ∗ <−2.3 and σ1 ≤ 0.8. We have to distinguish two scenar-
ios for perturbations ϑk < 0:

1. ϑk < 0 for all k ≥ 2. In this case we can assume10

Srefγ
∗ϑk+1 +σ1ϑk > 0. (63)

Therefore, an adiabatic temperature perturbation ϑk of
order O

(
εk
)

(k ≥ 2) leads to relative changes in j of
order O

(
εk−3

)
. Note, that the changes in saturation ra-

tio are always dominant and larger than the changes in15

the threshold, which changes j by orderO
(
εk−2

)
in the

opposite direction.

2. ϑk < 0 and ϑk+1 = 0 for a distinct k ≥ 2. In this case,
the previously discussed temperature effect can be seen,
i.e. the nucleation threshold is changed, leading to a re-20

duction of the nucleation rate exponent. This effect is
merely academic, since we have to switch off higher
perturbations in temperature, which is quite unlikely.

One should keep in mind that we investigated the relative
increase in the exponent of the nucleation rate. A relative25

change of order O
(
εk
)

in the exponent translates into a rel-
ative change of order O

(
exp

(
εk
))

in the nucleation rate J ,
thus ranging over several orders of magnitudes. For instance,
in the first scenario changes of temperature of order ∼ 1K
lead to changes in j of about ∼ 10, which in turn trans-30

late into a change of the nucleation rate J by a factor of
exp(10)∼ 105.

Overall, we can state that changes in Si are most important
for changing j, either stemming from adiabatic temperature
changes or driven directly as in our numerical studies.35

5 Impact of saturation vapour pressure formulation

Since the formulation of the nucleation rate by Koop et al.
(2000) relies on the water activity, and thus on the function
aiw(T ) = pice(T )

pliq(T ) , the saturation vapour pressure over liquid
water (i.e. in the no man’s land) plays an important role. In40

this section we investigate the impact of choosing another
formulation for pliq(T ) on the nucleation rate and thus the
nucleation events.

5.1 New representation of saturation water vapour

In the formulation by Murphy and Koop (2005) the extrap- 45

olation of the saturation vapour pressure into the no man’s
land of water’s phase diagram is based on the assumption
that the state of amorphous ice is thermodynamically equiva-
lent to super-cooled liquid water. Therefore, the specific heat
of liquid water can be extended in the super-cooled regime 50

using measurements of amorphous ice. This leads to the es-
tablished formulation in Murphy and Koop (2005).

Recently, a new representation of the saturation vapour
pressure over super-cooled liquid water was proposed by
Nachbar et al. (2019). In this study, the authors consider dif- 55

ferent states of water in the low temperature range. They
conclude that amorphous ice is thermodynamically different
from super-cooled water, thus they provide a different ex-
trapolation for the saturation vapour pressure (Nachbar et al.,
2019). 60

Although the deviation between the two curves is very
small – even in the low temperature range less than 10% –
its impact on saturation ratios as well as on the nucleation
thresholds is quite large, as can be seen in figure 8.
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Figure 8. Water saturation (Si =
pliq
pice

) and nucleation threshold (for
J = 1016 m−3 s−1) for different formulations of saturation vapour
pressure over super-cooled water, Murphy and Koop (2005) vs.
Nachbar et al. (2019)

The curves of water saturation as well as the nucleation 65

thresholds are systematically shifted to higher values. In ad-
dition, the new curves have a more linear shape than the
curves resulting from Murphy and Koop (2005). The ratio
of the saturation pressures over ice and liquid (i.e. the func-
tions aiw(T ) and 1

aiw(T ) behave differently: aiw(T ) is much 70

closer to a quadratic curve as can be seen in the top panel of
figure 9. These new fits were used for the formulation of the
approximated nucleation rate. Thus, we do not change the
general approach for approximating the nucleation rate etc.,
we only use a different representation of the function aiw(T ). 75
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Figure 9. Top: Function aiw(T ) = pice(T )
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(black line) and polyno-
mial approximations (red: quadratic, blue: linear, pink: constant).
Bottom: Nucleation threshold Sc(T ) (black line) and polynomial
approximations(red: quadratic, blue: linear). Note that the former
approximation by Kärcher and Lohmann (2002) (dark green) are
now very close to the new formulation, whereas the fit by Ren and
Mackenzie (2005) (turquoise) deviates significantly.

5.2 Numerical simulations of nucleation events

In figure 10 the results of the nucleation events using the new
representation of the saturation vapour pressure due to Nach-
bar et al. (2019) are shown. As for former experiments, the
ice crystal number concentration (top panel) and the maxi-5

mum supersaturation values (bottom panel) are shown.
For the ice crystal number concentration, the impact of

the new formulation of pliq is small; the relative deviation
from the reference simulations using the original vapour
pressure formulation by Murphy and Koop (2005) is always10

smaller than 15%. The deviation increases with decreasing
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Figure 10. Impact of the formulation of the saturation vapour pres-
sure by Nachbar et al. (2019) on the idealized nucleation events.
Top: ice crystal number concentrations, bottom: maximum super-
saturation values. The relative differences in number concentrations
are always smaller than 15%

temperature and is most prominent for lower vertical updrafts
(w < 1m s−1).

For the maximum saturation ratio the change as compared
to the reference simulations is much more prominent. As can 15

be seen in figure 8 the nucleation thresholds for a value of
J = 1016m−3 s−1 are increasing with decreasing tempera-
ture with a larger slope compared to the reference case. This
behaviour can clearly be seen in the maximum supersatura-
tion; for decreasing temperature the maximum supersatura- 20

tion is increasing to higher values in comparison to the ref-
erence simulations (figure 10, bottom panel). The increase
does not depend on the vertical velocities.
Remark: At the moment it is not clear, which thermody-
namic hypothesis and thus which resulting approximation 25

for the saturation vapour pressure over liquid water is physi-
cally correct, although the formulation by Murphy and Koop
(2005) seems to agree with recent measurements (Pathak
et al., 2021). In particular, it is not clear if the formula-
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tion of Nachbar et al. (2019) can be extrapolated to values
T < 200K. Thus, we cannot recommend to use a certain for-
mulation.

6 Another approach to formulate the nucleation rate

Up to now we always employed the “reference” nucleation5

rate in our computations, i.e. the formulation as in Koop et al.
(2000) but corrected by a constant offset, see Section 4.1, in
order to match the nucleation rate for pure water droplets
by Koop and Murray (2016) in a certain temperature range.
In this section we take a different point of view assuming10

that we can just directly adopt the formulation by Koop and
Murray (2016) for the nucleation rate of aqueous solution
droplets, providing an exact match of both curves by defini-
tion. In the following we discuss the consequences of using
such a direct approach in terms of nucleation events.15

6.1 Direct fit to nucleation rate of pure water

In order to arrive at a direct fit, we assume that at water sat-
uration, the freezing of pure water droplets should behave
as the freezing of solution droplets at super-cooled states.
To avoid a complicated reformulation of the formula from20

Koop and Murray (2016) in terms of the water activity ∆aw,
we use a quadratic polynomial fit to the original formula-
tion Jhom(T ) at water saturation, see Appendix C for details.
Figure 11 presents the original data (black curve) together
with the quadratic fit (red curve) and the corrected formula-25

tion of Koop et al. (2000) (blue curve) from section 4.1. In
contrast to the (corrected) formulation by Koop et al. (2000)
the nucleation rate reaches a maximum at ∆aw ∼ 0.345 and
decreases afterwards. As a result, there is a significant de-
viation between the two nucleation rates (JK2000 > JKM2016)30

for the range ∆aw > 0.32. Thus, we can expect that for cold
temperatures and/or high upward motions there will be large
deviations in the produced ice crystal number concentrations
within nucleation events.

It should be kept in mind that the range of the param-35

eterisation of the nucleation rate as given in Koop et al.
(2000) is restricted to the interval 0.26≤∆aw ≤ 0.34. As
a result, it is not clear if the parameterisation works well
for values ∆aw > 0.34. However, there are measurements
(see Laksmono et al., 2015) for the freezing of pure water40

droplets that also show a kind of plateau at cold temperatures
(corresponding to high values of ∆aw). Thus, for higher
values ∆aw > 0.34 we use the value JKM2016(∆aw) =
JKM2016(0.34) to (a) mimick the plateau in the measure-
ments, and (b) avoid numerical issues in the simulations.45

Assuming that the nucleation rate does not depend on other
quantities than water activity, it may now be used in numeri-
cal simulations of homogeneous nucleation events.
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Figure 11. Freezing rate of water droplets (Koop and Murray, 2016,
black), a polynomial fit (red), and the nucleation rate of solution
droplets (Koop et al., 2000, corrected, blue), all depending on ∆aw.

6.2 Numerical simulations of nucleation events

After having obtained the direct formulation of the nucle- 50

ation rate of (Koop and Murray, 2016), we now investigate
its impact on nucleation events using numerical simulations
as before. For completeness, two different types of simula-
tions are done: (1) Simulations using the standard formula-
tion of pliq by Murphy and Koop (2005) and (2) simulations 55

using the new formulation of pliq by Nachbar et al. (2019).
The results of the simulations are shown in figure 12.

First we consider the ice crystal number concentrations
(top panel). For low vertical updrafts, the values of ni are
only slightly affected in case of using the adapted nucleation 60

rate. For higher vertical velocities, there is a reduction in the
produced ice crystal number concentrations; this reduction
increases with increasing vertical updrafts. This effect can be
explained as follows. The nucleation rates differ significantly
for higher values ∆aw ≥ 0.31, i.e. the slope of the adapted 65

rate is (much) smaller than the original nucleation rate by
Koop et al. (2000). For higher updrafts, the supersaturation
reaches higher values, which is equivalent to higher values
of ∆aw. Thus, the nucleation rates differ for these high up-
draft events, and less ice crystals are produced for using the 70

adapted nucleation rate. Apart from the influence at high ver-
tical velocities, there is almost no difference in the ice crystal
number concentrations between the nucleation events using
the different formulations.

Considering the values of maximum supersaturation (bot- 75

tom panel), there is a similar behaviour as for ni. At low
vertical velocities there is almost no difference between the
reference nucleation rate and the newly adapted rate. In case
of using the saturation vapour pressure according to Nachbar
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Figure 12. Impact of the direct formulation of the nucleation rate
based on Koop and Murray (2016) on the idealized nucleation
events. Black triangles and lines indicate the reference simulation,
red squares and lines denote the use of the nucleation rate based
on Koop and Murray (2016), and blue squares and lines represent
the use of the nucleation rate based on Koop and Murray (2016)
together with the saturation vapour pressure due to Nachbar et al.
(2019). Top: ice crystal number concentrations, bottom: maximum
supersaturation values.

et al. (2019), the observed shift in the maximum supersat-
uration values stems from the increased difference between
the values of the saturation vapor pressures at low tempera-
tures, see Section 5. At higher updrafts (w > 0.5m s−1), the
maximum supersaturation values increase nonlinearly. For5

the coldest temperature (T = 196K) we note a dramatic in-
crease up to very high values (Si,max ∼ 1.8). However, note
that in all cases the values of the maximum supersaturation
stays below water saturation, hence no liquid origin ice for-
mation would occur.10

7 Thresholds of ice nucleation

For the evaluation of measurements of ice clouds, the
possible range of supersaturation is often estimated us-
ing the so-called Koop-line, i.e. the supersaturation thresh-
old Sc(T ) which corresponds to a nucleation rate value 15

J = 1016m−3 s−1 = 1010cm−3 s−1. In many investigations
(see, e.g., Krämer et al., 2009) this function is used as an up-
per bound for possible values of Si inside and also outside of
ice clouds. However, from our investigations in this study so
far, we have to carefully consider two different aspects from 20

a purely theoretical point of view:

1. The nucleation threshold assigned to the frequently used
value j0 = 16 is arbitrary chosen; there is no convincing
physical justification for using this particular value. In
Koop et al. (2000) different values J = 10j0 m−3 s−1

25

with j0 ∈ [1, 17] are used, but for testing the impact
of droplet sizes, they used the value j0 = 16. Nucle-
ation of ice crystals is not a switching process, it occurs
gradually and smooth, although the nucleation rates are
very steep functions of the supersaturation. The size or 30

strength of the nucleation event cannot be determined
just by the maximum of the supersaturation; the amount
of ice crystals as formed in the nucleation event is de-
termined by the integral over the supersaturation curve
(see, e.g., the discussion in Dinh et al., 2016). Thus, it is 35

possible to form many crystals in lower updrafts even
if the high nucleation threshold is not reached. From
our simulations we observe that the peak supersatura-
tion for nucleation events depends crucially on the ver-
tical velocity, i.e. on the temperature rate, which is pre- 40

scribed during the event. This is quite obvious from the
differential equation determining the change of Si: The
peak value is given by dSi

dt = 0, i.e. when source and
sink terms balance each other. Since the source includes
the vertical velocity linearly, the dependence of the peak 45

supersaturation on w is obvious, although not linear.

2. As described above in section 5, it is still not clear
which formulation of the saturation vapor pressure is
physically correct. However, the use of the formulation
by Nachbar et al. (2019) leads to a higher saturation 50

vapour pressure and thus to a higher nucleation thresh-
old, even for arbitrary values j0 and its associated nu-
cleation threshold Scx0(T ).

Taking these two aspects into account, we can observe the
following behaviour. In figure 13 (top panel) we compare the 55

nucleation thresholds for the saturation vapour pressure ac-
cording to Murphy and Koop (2005) for j0 = 10 (red curve)
and j0 = 16 (dark blue curve) with the range of peak super-
saturations for vertical velocities 0.01m s−1 ≤ w ≤ 2m s−1

(black vertical bar) and the maximum value for a very unre- 60

alistic value w = 10m s−1 (black crosses) . For comparison,
the well known Koop-line as fit and proposed by Kärcher
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and Lohmann (2002) is plotted (light blue curve). It is quite
obvious, that for typical vertical velocity values the “clas-
sical” Koop-line is not reached, i.e. the peak supersatura-
tion is below the threshold. Nevertheless, for strong cooling
rates (very high vertical velocities), as are used in experi-5

ments in cloud chambers, high supersaturations are reached,
which still partly remain below the Koop-line. If we change
the saturation vapour pressure to the formulation by Nach-
bar et al. (2019), the qualitative picture remains the same
(bottom panel in fig 13): Even for high vertical updrafts the10

high nucleation rates are reached; for moderate and small up-
drafts, the peak supersaturation stays well below the classical
nucleation threshold. However, the nucleation thresholds are
generally shifted to higher values of supersaturation due to
the different saturation vapour pressure formulation. It seems15

that these values fit better to the experiments in the AIDA
cloud chamber as reported in Baumgartner et al. (2022) and
Schneider et al. (2021). This might be interpreted as a hint
that the formulation by Nachbar et al. (2019) might be the
more appropriate formulation for the saturation vapour pres-20

sure, although the formulation by Murphy and Koop (2005)
agrees well with recent measurements (Pathak et al., 2021).
In any case, one has to consider the impact of the cooling
rate on the peak supersaturation in a nucleation event. There-
fore, the use of the “Koop-line” in the currently applied way25

is misleading and does not correspond to the actual physics
of nucleation events. Note, that the temperature dependent
threshold is used in some parameterisations of ice clouds in
climate and numerical weather prediction models (see, e.g.,
Kärcher et al., 2006; Köhler and Seifert, 2015). A simple but30

albeit more realistic extension of such schemes would be a
threshold depending on both, vertical velocity w and temper-
ature T ; a 2D fit to the maximum supersaturation data from
our simulations might be a first attempt into this direction.

Finally, we can also investigate the peak supersaturation35

values for the new empirical nucleation rate formulation, as
derived in section 6.1. Generally, we see the same behaviour
as for the reference simulations with a monotonic increase of
peak supersaturation values with increasing vertical velocity
(cf. figure 14). The use of the saturation vapour pressure for-40

mulation by Nachbar et al. (2019) additionally enhances the
peak values as seen before. However, the peak values for cold
temperatures and very high vertical velocities are strongly
enhanced in comparison with the reference simulations. Also
these high values are still in line with the measurements in45

the AIDA chamber as reported by Baumgartner et al. (2022)
and Schneider et al. (2021).

8 Summary and outlook

We have investigated the impact of the representation of nu-
cleation rates and diffusional growth on idealized nucleation50

events, as driven by a constant vertical updraft (i.e. a con-
stant cooling rate). In a first step, we have investigated the
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Figure 13. Comparison of nucleation thresholds (red curve: x0 =
10, blue curve x0 = 16) and the classical “Koop-line” (light blue
curve). The black vertical bars indicate the range of peak supersat-
uration ratios within the nucleation events computed using vertical
velocities ranging from 0.01m s−1 to 2m s−1. The black cross cor-
responds to the peak supersaturation ratio for the vertical velocity
of 10m s−1. Top panel: Curves based on the water activity using
the saturation vapour pressure formulation by Murphy and Koop
(2005); bottom panel: the same for the saturation vapour pressure
formulation by Nachbar et al. (2019).

original formulation of the nucleation rate for homogeneous
freezing of aqueous solution droplets in the formulation by
Koop et al. (2000); for a better agreement with the nucleation 55

rate of pure water droplets a simple shift could be applied.
For analytical purposes and simple model calculations, a less
complicated formulation is desired. We showed that a linear
fit to the original formulation depending on the difference
in water activity ∆aw = aw − aiw is accurate enough to re- 60

produce the ice crystal number concentrations quantitatively.
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Figure 14. Same as in figure 13, but using the nucleation rate as
empirically derived in section 6.1. Top panel: Curves based on the
water activity using the saturation vapour pressure formulation by
Murphy and Koop (2005); bottom panel: the same for the saturation
vapour pressure formulation by Nachbar et al. (2019).

Based on this linearization approach, we derived a thresh-
old formulation of the nucleation rate, which can be used for
analytical investigations as already presented in Baumgart-
ner and Spichtinger (2019). Again, the new formulations are
good enough to represent nucleation events quantitatively as5

compared to the reference nucleation formulation.
Using the linear approximation as a starting point, we

investigated the impact of different formulations on ideal-
ized nucleation events, changing the two relevant parameters
(slope and constant offset). These investigations led to the10

first major results:

– The absolute values of the nucleation rate has only
marginal impact on the resulting ice crystal number con-

centrations in a nucleation event. Even a scaling by up to
six orders of magnitudes did not severely affect the re- 15

sulting number concentrations. However, the maximum
supersaturations changed, and the resulting deviations
range up to few percent relative humidity. In addition,
the time of nucleation onset is slightly shifted.

– The slope of the nucleation rate (or more precisely in 20

the argument of the exponential function) has a much
larger impact on the resulting nucleation event, and
the ice crystal number concentration. Variations in the
slope change the number concentrations in the nucle-
ation events by up to a factor 2.5 (in both directions). 25

Also, the maximum supersaturation is affected by a de-
viation of a few percent of relative humidity.

As a final conclusion of this part of our work, we can state
that the shape of the nucleation rate is of high importance
for the representation of the nucleation process, whereas the 30

absolute strength of the rate is almost negligible, if the val-
ues are high enough. This shows that the nucleation process
(homogeneous freezing of solution droplets) itself is a quite
robust process, thus the accurate formulation is maybe less
critical as we thought. Also the amount of available solution 35

droplets as controlled by the background aerosol does not
affect the nucleation events itself; it can be seen as a scal-
ing factor of the nucleation rate, in the same sense as in the
sensitivity analysis of changing the absolute values of nucle-
ation rates. As long as the amount of aerosol particles is some 40

orders of magnitude larger than the ice crystal number con-
centration as predicted for a nucleation event, this does not
play a role for the nucleation events, and we do not have to
care about exhausting the reservoir of solution droplets.

We also investigated the impact of a recently published 45

formulation of the water saturation pressure based on a ther-
modynamic assumption of different phases of water in the
very low temperature range (Nachbar et al., 2019). This new
formulation leads to changes in the function aiw, which di-
rectly affected the nucleation rate based on ∆aw. Follow- 50

ing the derivations of the threshold description, approxima-
tions were constructed. The new resulting functions aiw(T )
and Sc(T ) can be accurately approximated with polynomi-
als of smaller degrees, as compared to the standard formu-
lation. The new formulation of pliq only marginally changed 55

the resulting ice crystal number concentrations. However, the
impact on the maximum supersaturations increased with de-
creasing temperature up to few percent of relative humid-
ity. Overall, the two different representations of the satura-
tion vapour pressure over liquid water produced very simi- 60

lar, even almost identical, results. Thus, a decision about the
validity of a certain formulation must be left to extensive ex-
perimental measurements.

In a more speculative part of the study we adapted the nu-
cleation rate of homogeneous freezing of pure water droplets 65

(Koop and Murray, 2016) as a new parameterisation for ho-
mogeneous freezing of aqueous solution droplets. This repre-
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sentation is quite similar for low values of ∆aw to the origi-
nal formulation by Koop et al. (2000) and its approximations.
However, for very high water activities (i.e. high supersatu-
rations as driven by large vertical updrafts), there is a sig-
nificant deviation from the reference nucleation rate. Thus,5

for some cases in the parameter space (high updrafts and
low temperatures) there is a significant deviation in the num-
ber concentrations, and, more obvious, in the maximum su-
persaturations, which reach almost water saturation in some
cases. This approach showed that the shape of the nucleation10

rate is important for the resulting nucleation events; strong
deviations of the shape from its reference affect the results of
the nucleation event significantly. If this representation of the
nucleation rate is more close to the physics of ice nucleation
remains open, and might be an objective for experimental in-15

vestigations.
Finally, we investigated the commonly used threshold for

homogeneous nucleation (“Koop-line”) in the light of peak
supersaturation values during nucleation events. This thresh-
old corresponds to a nucleation rate of J = 1016m−3 s−1,20

but is only rarely reached during nucleation events. Nucle-
ation itself starts usually at much lower values of Si corre-
sponding to lower values of the nucleation rate. The peak
supersaturation during a nucleation event, characterised as
an equilibrium between sources and sinks of supersaturation25

depends on temperature and vertical velocity. The peak su-
persaturation is a much more physical quantity to investi-
gate the strength of a nucleation event. The peak supersat-
uration as diagnosed from the numerical simulations might
be a more physical representation of ice nucleation in coarse30

resolution models in comparison to the frequently used nu-
cleation threshold.

It should be emphasized that all the results and conclu-
sions are meant in a bulk-sense, i.e. for a large collection of
ice crystals such as a newly forming cirrus cloud. If one is35

interested in the details of ice formation for a single or only
a small number of particles then all details of the nucleation
rate might be equally important. In that respect, our study
shows that homogeneous cirrus formation is a robust physi-
cal process.40

Appendix A: Model description - details

In this appendix, we present the details of the model as used
for the numerical simulations of the nucleation events. Note,
that we use the mathematical (and also programming) nota-
tion of logarithms, i.e. log denotes the natural logarithm (to45

base e).

Background aerosol

We assume for the aqueous solution droplets in the
tropopause region a size distribution of lognormal type:

fsol(r) =
na√

2π logσr
exp

(
−1

2

(
log(r/rsol)

logσr

)2
)

1

r
(A1) 50

with a modal radius rsol = 75 ·10−9 m, and a geometric stan-
dard deviation σr = 1.5. These values are adapted from the
more complex model by Spichtinger and Gierens (2009),
using the fact that the dry aerosol population, as used in
Spichtinger and Gierens (2009), has grown to larger sizes by 55

water vapour uptake (i.e. assuming Köhler theory, see, e.g.
Köhler, 1936). The mean volume of the solution droplets

Vd = Vsol =
4

3
πr3

sol · exp

(
9

2
(logσr)

2

)
(A2)

is calculated from the third moment of the lognormal distri-
bution. 60

Mass distribution for ice crystals

For the ice crystals, we assume a mass distribution of lognor-
mal type

f(m) =
ni√

2π logσm
exp

(
−1

2

(
log(m/mm)

logσm

))
1

m
(A3)

with a parameter 65

r0 = exp
(
(logσm)2

)
, m=mm

√
r0 = 3 (A4)

representing the width of the distribution as described in
Spichtinger and Gierens (2009). This distribution is used for
the derivation of the rates in the ODE system for the mean
quantities of ice mass and number concentration. The inte- 70

gration of weighting functions of the type mk,k ∈ R+ leads
to general moments, which can be computed analytically:

µ[m]k :=

∞∫
0

mkf(m)dm= ni ·mk
m exp

(
1

2
(k logσm)

2

)

= ni ·mkr
k(k−1)

2
0 (A5)

Note, that for the averaged quantities we obtain ni = 75

µ[m]0, qi = µ[m]1, respectively. Thus, we use a double mo-
ment scheme in our model.

Diffusion constant

For the diffusion of water vapour in dry air, we use the fol-
lowing expression 80

Dv =Dv0

(
T

T0

)1.94(
p0

p

)
(A6)
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which is an empirical fit to measurement data (Hall and Prup-
pacher, 1976). Note, that the valid temperature range is dif-
ferent in the book Pruppacher and Klett (2010) and in the
original article Hall and Pruppacher (1976). For analytical
investigations, a representation using a quadratic temperature5

dependence constitute a good approximation for a restricted
temperature range. For the kinetic correction we use the func-
tion

fD(r,a,b) =
1

r
r+a + b

r

=
r2 + ar

r2 + br+ ab
(A7)

whereas r denotes the radius of the ice crystal (using a bulk10

density of ice ρb = 0.81kg m−3), and the parameters are
given by

a= λ ·Ccunn, b=
4Dv

αmc̄v
(A8)

using the mean free path of water molecules in air λ (acc.
to Pruppacher and Klett, 2010), the Cunningham correction15

factor Ccunn = 0.7, and the mean velocity of water molecules
c̄v . We set the accomodation coefficient αm = 0.5 for com-
parison with former investigations (Kärcher and Lohmann,
2002); this value is also within the range as recommended in
recent work by Skrotzki et al. (2013).20

For representing the growth rates for the ensemble of ice
crystals, by comparison with numerical integration we find
that using a shifted mean mass m1 = c1 · m̄, c1 ≈ 0.819 in
the kinetic correction function f(r1,a,b) is a good approxi-
mation.25

Howell factor

Latent heat release due to phase changes during diffusional
growth changes the surface temperature of the ice crystal. For
taking this into account, we use the Howell factor

Gv =

[(
L

RvT
− 1

)
L

T

D∗v
K∗T

+
RvT

psi

]−1

30

≈
[(

L

RvT
− 1

)
L

T

Dv

KT
+
RvT

psi

]−1

. (A9)

In the approximation, we neglect the kinetic corrections for
diffusion coefficient Dv and heat conductivity of air KT .

Capacity of ice crystals

For ice crystals we assume spherical shape for small crys-35

tals and columnar shape for large crystals as in Spichtinger
and Gierens (2009); thus the shape factor, or capacity, can be
determined exactly using the electrostatic analogy (McDon-
ald, 1963), using a prolate spheroid with semi axes a,b; the
capacity can be analytically expressed by40

C =
Lε′

log( 1+ε′

1−ε′ )
(A10)

using the eccentricity ε′ =
√

1−
(
b
a

)2
and the length L of

the crystal, which in turn is a function of the crystal mass.
Note, that the eccentricity changes with crystal growth since
the aspect ratio is changing (see Spichtinger and Gierens, 45

2009, their eq. (17)) We find a very good approximation to
the piece-wise definition of the capacity by Spichtinger and
Gierens (2009) depending on the ice crystal mass

C(m)≈ a1 ·mb1 + a2 ·mb2 (A11)

with constants 50

a1 = 0.015755m kg
1
b1 , b1 = 0.3,

a2 = 0.33565m kg
1
b2 , b2 = 0.43.

(A12)

The representation of the capacity in the ice crystal ensem-
ble is given by the integration, leading to general moments
µ[m]bi .

Ventilation correction 55

The empirical ventilation corrections usually depend on the
use of two dimensionless numbers, i.e. the Schmidt number
NSc and the Reynolds number NRe

NSc =
µ

Dvρ
,NRe =

ρ

µ
vtL (A13)

using the dynamic viscosity of air µ (e.g. Dixon, 2007). Thus, 60

the size of the ice crystal L is influencing the Reynolds num-
ber via the product vt(m)L, using the terminal velocity vt
for an ice crystal of mass m. The effect of ventilation, i.e.
the additional uptake of water vapour by the airflow around
the particle crucially depends on the shape of the particles. 65

For columnar shaped ice crystals, we adapt the empirical
quadratic fit by Liu et al. (2003) to the simulation data (Ji
and Wang, 1999) as follows

fv = 1 + cχ ·χ2, cχ = 0.14856, χ=N
1
3

ScN
1
2

Re (A14)

For the formulation of the terminal velocity of colum- 70

nar shaped ice crystals, vt(m), we use the formulation by
Spichtinger and Gierens (2009), including also the correction
for temperature and pressure, respectively. For representing
the ensemble of ice crystals, by comparison with the nu-
merical integration we find that using a shifted mean mass 75

m2 = c2 ·m,c2 = 1.5 in the formulation of the Reynolds
number leads to a very good agreement.

Appendix B: Reference simulation results

In this section we report on the results of the reference sim-
ulations, using the corrected formulation of the nucleation 80

rate for super-cooled aqueous solution droplets by Koop
et al. (2000). For evaluating the quality of the simplified
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model, we compare the number concentration of ice crys-
tals as obtained from standard nucleation events with re-
sults from literature, i.e. with a model using sophisticated
particle physics (Kärcher and Lohmann, 2002) and a com-
plex bulk physics scheme (Spichtinger and Gierens, 2009).5

In figure B1 the results are represented for the temperatures
T = 196, 216, 236K at pressure p= 200hPa, as prescribed
in Kärcher and Lohmann (2002).
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Figure B1. Comparison of ice crystal number concentrations as
obtained for typical nucleation events from different models. Red
squares: Particle model by Kärcher and Lohmann (2002), blue cir-
cles: complex two moment bulk scheme by Spichtinger and Gierens
(2009), black line & triangles: simpler bulk model from this study,
indicated as new reference

In comparison we see an overall good agreement of our
simple model with the more sophisticated models (Kärcher10

and Lohmann, 2002; Spichtinger and Gierens, 2009). How-
ever, we have to remark here that the deviation in the results
for temperature T = 236K at low vertical velocities is the
result of the neglegtance of the ventilation correction in the
model by Kärcher and Lohmann (2002). In summary, our15

simplified approach compares very well with the results of
the other studies.

In figure B2 a typical nucleation event is shown. Here, two
different nucleation parameterizations are used, the reference
by Koop et al. (2000) (black line) and the linear fit (red line).20

There are small differences in the time evolution of the vari-
ables saturation ratio Si (left panel), number concentration ni
(middle panel) and mean massm (right panel), but in general
there is the same behaviour in both cases.

The source of supersaturation (i.e. cooling by vertical up-25

draft and adiabatic expansion) leads to an increase in Si until
nucleation starts at about tstart ∼ 40s, i.e. at very low values
of the nucleation rate. Si is still increasing since the sink
of depositional growth is not strong enough to reduce wa-
ter vapour efficiently; thus, the ice crystal number concentra-30

tion is further increasing due to permanent ice nucleation. At

the peak supersaturation, source and sink of supersaturation
are balanced (tpeak ∼ 110s); after this time, Si is decreasing
due to the dominant growth term. The number concentra-
tion does not change much from this time on but as long as 35

the values of Si are large enough, still ice nucleation takes
place. At about t∼ 125s the nucleation event is complete,
no further nucleation takes place, since the nucleation rate is
too small. Note that during the time interval [tstart, tpeak] the
mean mass m is almost constant (this feature is more promi- 40

nent in the linear fit case), whereas for t > tpeak the mass in-
creases. For t < tpeak the nucleation is dominant, thus diffu-
sional growth just compensates the number increase by mass,
whereas afterwards crystal growth is dominant over nucle-
ation. This feature was already seen in former investigations, 45

which leads to a model reduction for analytical investigations
(Baumgartner and Spichtinger, 2019). The different nucle-
ation parameterisations agree qualitatively for a nucleation
event; however, the nonlinear reference rate leads to some
variations. While for the linear fit case, the increase in ni is 50

approximately an exponential growth ni(t)∼ exp(αt), and
in turn the mean mass is almost constant in the relevant time
interval, for the reference case the change deviates slightly
from exponential growth.

Note, that the thresholds of constant nucleation rates in 55

figure B2 (left panel) can be calculated from eq. (39) using
the respective values for j0 (i.e. j0 ∈ {10,12,14,16}) in the
formulation of the supersaturation threshold.

Appendix C: Simple fit for nucleation rate of pure
water droplets 60

In Koop and Murray (2016) a polynomial of degree 6 is
used for fitting the experimental values of the nucleation rate
for pure super-cooled water. Since polynomials of high de-
gree are difficult to evaluate numerically, we present fits with
polynomials of lower degrees, which are still accurate in the 65

relevant temperature range. The original formulation of the
nucleation rate is

Jhom(T ) = 10pn(x), pn(x) =

n∑
i=0

ci ·xi, x= T −Tm. (C1)

with a polynomial pn(x) of degree n= 6 using the melt-
ing temperature of pure water Tm = 273.15K. The coeffi- 70

cients ci are reported in Koop and Murray (2016, table VII),
where the nucleation rate is given in units cm−3 s−1. We re-
formulate the nucleation rate in SI units (i.e. [J ] = m−3 s−1)
by a factor of 106 and approximate the logarithmic values
log10(J) by polynomials of degree 2 and 4, respectively, i.e. 75

p2(T ) = a0 + a1 ·T + a2 ·T 2,

p4(T ) = a0 + a1 ·T + a2 ·T 2 + a3 ·T 3 + a4 ·T 4
(C2)

the coefficients are given in table C1. For this purpose we use
a least square fit for the temperature range 225≤ T ≤ 245K,
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Figure B2. Representative example for a typical nucleation event for temperature T = 216K and pressure p= 200hPa with a forcing of
w = 1m s−1. Red line: reference nucleation rate after Koop et al. (2000), black line: nucleation rate approximated by linear function as given
in eq. (38). Left panel: saturation ratio, middle panel: ice crystal number concentration, right panel: mean mass.

for which supercooled water droplets can still exist (see, e.g.,
figure 4 in Koop and Murray, 2016). In figure C1 (top panel)
the approximations are shown in comparison with the origi-
nal fit, while the ratio r = pi(T )

p(x) is shown in the bottom panel.
As can be seen the relative error for the polynomial fit5

p4(T ) is less than 0.25%, while even for the quadratic fit
p2(T ) the error is smaller than 2%. For practical applica-
tions in the relevant temperature range 225≤ T ≤ 240K the
quadratic fit might be sufficient. If the original polynomial is
used, a sophisticated evaluation of the polynomial is recom-10

mended (e.g. Horner scheme).

Appendix D: Perturbation Analysis

The perturbation analysis or asymptotic analysis as applied
in Section 4.6 is a well-known technique to investigate the
impact of perturbations on a mathematical object such as a15

mathematical expression or the solution of an equation. A
good general introduction is given in Holmes (2013) and an
application in meteorology is explained in Klein (2010).

The basic idea is to introduce a small parameter ε, to ex-
pand the quantity of interest in powers of ε, i.e. ε, ε2, . . . and20

to substitute this expansion into the mathematical object of
interest (see Eq. (48) for such an expansion). Since the result-
ing expression should hold for any value of ε and even in the
limit ε→ 0, all the contributions from the various powers of
ε may be considered individually. Given that the parameter ε25

is assumed as being small, effects that stem from terms with
higher powers of ε will only have a small impact whereas
effects with a lower power of ε will be dominant.

For practical applications it is common to also scale co-
efficients and parameters of the mathematical expression in30

powers of ε. This step ensures that the mutual magnitudes of
the parameters stay consistent, even in the limit ε→ 0. This
task involves usually some free choices, and is known as dis-
tinguished limit.

In the spirit of the works of Klein and Majda, the scal-35

ing of the parameters is often done by assuming ε∼ 0.1,
i.e. substituting this value of ε into the scaling of the pa-
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Figure C1. Polynomial fits of low degrees for the nucleation rate as
given by Koop and Murray (2016). Top: Reference and fits p2(T ),
p4(T ), bottom: ratio of reference and fits p2(T ), p4(T )

rameters yields a realistic value of the parameters (see, e.g.,
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fit a0 a1 a2 a3 a4

p2(T ) −5369.61 46.96750 −0.10236 − −
p4(T ) −848143.02 14534.5767 −93.481032 0.26745460 −0.0002872

Table C1. Coefficients for the polynomial fits of the nucleation rate by Koop and Murray (2016) as given in equation (C2).

Hittmeir and Klein, 2017; Baumgartner and Spichtinger,
2019; Klein and Majda, 2006). As an example, the parame-
ter A(T )≈A0 = b1a

i
w0 ≈ 149.32 is written as A0 =A∗ε−2

with A∗ =O(1) where the latter may be understood as A∗

is independent of ε. With A∗ ≈ 1.4932 the value ε∼ 0.1 re-5

stores the original value of A0.
In essence, the goal is to determine the nonzero-parts of

the expansion of the mathematical expression and the re-
spective power of ε indicates how strong this contribution
is. As an example, if the final expansion is found to be10

ε−1ω−1 +ω0 +εω1 +O(ε2) then the term ω−1 will be domi-
nant since this term is associated with the lowest power of ε.
If the result would be the expansion ω0 + εω1 +O(ε2) then
we may conclude that ω0 is the dominant part and all ωk for
k ≥ 1 only contribute small corrections (since ε is small).15

Another fruitful use of perturbation analysis is to allow
an equation to determine the possible matching powers of ε,
i.e. to answer the question: Which powers of ε are needed
to achieve a balance in the equation at hand? As an exam-
ple, from physical considerations we know that equation (59)20

holds. As a consequence, after having expanded both sides
of the equation in powers of ε, the expansions on both sides
must agree (otherwise the equation would not hold). This is
only possible if the powers of ε match, hence the appropriate
powers for ε may be inferred.25
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