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Abstract. Homogeneous freezing of solution droplets is an important pathway of ice formation in the tropopause region. The

nucleation rate can be parameterised as a function of water activity, based on empirical fits and some assumptions on the

underlying properties of super-cooled water, although a general theory is missing. It is not clear how nucleation events are

influenced by the exact formulation of the nucleation rate or even their inherent uncertainty. In this study we investigate the

formulation of the nucleation rate of homogeneous freezing of solution droplets (1) to link the formulation to the nucleation5

rate of pure water droplets, (2) to derive a robust and simple formulation of the nucleation rate, and (3) to determine the impact

of variations in the formulation on nucleation events. The nucleation rate can be adjusted and the formulation can be simplified

to a threshold description. We use a state-of-the-art bulk ice microphysics model to investigate nucleation events as driven

by constant cooling rates; the key variables are the final ice crystal number concentration and the maximum supersaturation

during the event. The nucleation events are sensitive to the slope of the nucleation rate but only weakly affected by changes10

in its absolute value. This leads to the conclusion that details of the nucleation rate are less important for simulating ice

nucleation in bulk models as long as the main feature of the nucleation rate (i.e. its slope) is represented sufficiently well.

The weak sensitivity on the absolute values of the nucleation rate suggests that the amount of available solution droplets also

does not crucially affect nucleation events. The use of only one distinct nucleation threshold function for analysis and model

parameterisation should be reinvestigated, since it corresponds to a very high nucleation rate value, which is not reached in15

many nucleation events with low vertical updrafts. In contrast, the maximum supersaturation and thus the nucleation thresholds

reached during an ice nucleation event depend on the vertical updraft velocity or cooling rate. This feature might explain some

high supersaturation values during nucleation events in cloud chambers and suggests a reformulation of ice nucleation schemes

used in coarse models based on a purely temperature-dependent nucleation threshold.

1 Introduction20

Clouds are one of the most important components in the Earth-Atmosphere system. They influence the hydrological cycle and

Earth‘s energy balance via interaction with radiation. Clouds can cool the system by partly scattering and reflecting incoming

solar radiation (albedo effect) but also warm the atmosphere by absorbing and re-emitting thermal radiation as emitted by the
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Earth’s surface (greenhouse effect). While for liquid clouds a net cooling effect can be derived, the radiative effect for clouds

containing ice crystals is still under debate. In particular, for pure ice clouds (so-called cirrus clouds) at high altitudes in the25

low temperature range (T < 235K) albedo effect and greenhouse effect are of the same order of magnitude but admit different

signs, leading to different net-effects (see, e.g., Fusina et al., 2007; Joos et al., 2014; Gasparini et al., 2017). Thus, details

in microphysical properties of ice crystals might decide about a net warming or cooling of cirrus clouds, as can be seen in

former model studies (e.g. Zhang et al., 1999). A key aspect of ice crystals is their size which directly affects the scattering

and absorption of radiation. Smaller crystals scatter incoming solar light more effectively, thus the optical depth τ is directly30

dependent on the size, as can be seen in the usual approximation (cf., e.g., Fu and Liou, 1993)

τ = IWC ·∆z ·
(
a+

b

De

)
, (1)

where De denotes the effective diameter of the crystal, IWC is the ice water content, ∆z represents the vertical extent of the

cloud, and a, b are empirically derived constants. Since the available water vapour is mainly determined by thermodynamic

conditions, the pathway of ice nucleation often decides about the ice crystal number concentration in cirrus clouds and thus35

their effective size (assuming a certain amount of available water vapour).

Ice crystals can be formed by very different nucleation processes, which can be grouped into two major pathways, namely in

situ and liquid origin ice formation (e.g. Krämer et al., 2016; Luebke et al., 2016; Wernli et al., 2016). The overall term in situ

formation refers to ice formation at humidities below water saturation, whereas liquid origin formation subsumes all formation

processes where cloud droplets are present and humidity is close to water saturation (e.g. freezing of cloud droplets), see the40

definition in Wernli et al. (2016). It is well known, that the ice crystal number concentration varies crucially in dependence

on the underlying nucleation process, leading to potentially strong changes in the resulting radiative effect (see, e.g., Krämer

et al., 2020).

Despite of the availability of many observational data and laboratory experiments (e.g. Hoose and Möhler, 2012), and also the

development of new theoretical models (e.g. the soccer ball model, see Niedermeier et al., 2011), the details of ice nucleation45

at the molecular scale are still unknown.

A special situation occurs for the so-called homogeneous freezing of super-cooled solution droplets (also short: homoge-

neous nucleation) at cold temperatures below 235K. This process describes the spontaneous freezing of supercooled aqueous

solution particles containing a small amount of (usually inorganic) substances. Albeit also the details of this freezing process

are not completely understood on a molecular scale, reproducible laboratory experiments allowed the formulation of an em-50

pirical fit for the nucleation rate (Koop et al., 2000). Such a fit bears inherent but maybe also unknown uncertainty, since we

have no generally accepted theory for comparison. Other fits or a change in the fit parameters might also lead to different

formulations of nucleation rates.

A priori, it is not clear how large the impact of the formulation of nucleation rates might be on simulating nucleation

events in models resolving nucleation events in time. This issue is the starting point of our investigation. We want to address55

three different aspects. First, we want to link the former formulation by Koop et al. (2000) to recent findings on pure water

in order to formulate a consistent framework for our models. Second, we want to derive a robust and simple formulation
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of the homogeneous nucleation rates, which can be used for analytical as well as numerical investigations. Third, we want to

investigate the impact of variations of nucleation rates (based on the new formulation) on nucleation events, i.e. on the resulting

ice crystal number concentrations.60

From theory (e.g. Baumgartner and Spichtinger, 2019) and former idealized box model simulations (e.g. Kärcher and

Lohmann, 2002; Ren and Mackenzie, 2005; Spichtinger and Gierens, 2009), we know that ice crystal numbers as produced in

homogeneous nucleation events driven by a constant cooling rate (equivalent to a constant vertical velocity) crucially depend

on several parameters and, thus, affect also the radiative properties of the formed ice cloud (see, e.g., calculations in Krämer

et al., 2020; Joos et al., 2009). Therefore, it is of high importance to understand the impact of the formulation of nucleation65

rates on the resulting ice crystal number concentrations.

We emphasize that all our investigations are meant in a bulk-sense, i.e. only integrated quantities such as the ice crystal

number and (total) ice crystal mass are considered. Using this approach, we consider the case of a newly forming cirrus cloud

and do not focus on the freezing or forming details of single ice crystals.

The study is structured as follows. In the next section, we present the fit by Koop et al. (2000) and its empirical basis, as70

related to water theories. In section 3 we describe the simple model used for idealized simulations for testing the impact of

different formulations of nucleation rates. In section 4 the more compact formulation of the nucleation rate along with several

approximations is discussed. The consequences of using the proposed approximations are explored by idealized numerical

simulations. In section 5 we investigate the impact of a recently proposed formulation of the saturation vapour pressure over

super-cooled liquid water on the nucleation events (Nachbar et al., 2019). In section 6 a new formulation of the nucleation rate75

based on results for freezing of pure super-cooled water (Koop and Murray, 2016) is presented and its impact on the number

concentration of nucleated ice crystals is discussed. In section 7 we investigate thresholds of ice nucleation as well as the peak

values of supersaturation during nucleation events, Finally, we summarize the results and draw some conclusions in section 8.

2 Empirical fit of the nucleation rate

Nucleation events are investigated in the phase space spanned by temperature and water activity of the aqueous solution. The80

latter is defined as the ratio of saturation pressures of water vapour over the solution psol and pure water pliq, as aw := psol
pliq

. In this

representation, the melting curve for different inorganic solutions turns out to be solely temperature dependent, i.e. aiw(T ) :=

aw(Tm) = pice(T )
pliq(T ) (cf. Koop, 2015, his eq.(5) ), where pice denotes the saturation vapour pressure over ice. The important insight

here is that also the freezing/nucleation events collapse to a single line in the diagram (see Koop et al., 2000; Koop, 2004, 2015),

which can be fitted by shifting the melting curve (deviation ∆aw ∼ 0.305). This also means that the nucleation events do not85

depend on the solute, which is at least true for most inorganic substances (see, e.g., Koop, 2004). Thus, the nucleation rate

can be solely parameterized as a function of ∆aw = aw − aiw. For the fitting procedure in Koop et al. (2000), a polynomial of

degree 3 is used and results in the formulation

Jsol(∆aw) = 10p3(∆aw) with p3(x) =

3∑
k=0

akx
k (2)

3



of the homogeneous nucleation rate coefficient Jsol. The nucleation rate coefficient is used to formulate the probability of90

freezing of aqueous solution droplets. The fit was used in the spirit of the representation of the nucleation rate for pure water

as derived by Pruppacher (1995). During this time, three water theories were available, and the nucleation rate (as a cubic

polynomial) was chosen according to the stability limit hypothesis (e.g. Mishima and Stanley, 1998), leading to an unlimited

increase in the rate (see, e.g., Pruppacher, 1995, his figure 3). However, meanwhile this water theory can be ruled out by

experimental evidence, thus only the two other water theories remain (singularity-free hypothesis vs. liquid-liquid critical95

point, cf. Gallo et al., 2019, 2016), which do not admit an unlimited increase in nucleation rates of pure water (see, e.g., Koop

and Murray, 2016). Thus, the heuristic basis for choosing a cubic polynomial as a fit is not valid anymore.

Note that for atmospheric relevant conditions, both remaining water theories produce essentially the same results. Only at

very low temperatures T < 150K, where highly viscous or even glassy states of water occur, a different behaviour is predicted.

Such temperatures are not relevant for investigations of ice clouds in the tropopause region, where homogeneous freezing of so-100

lution droplets takes place. However, these theories provide the basis for the formulation of the saturation vapour pressure over

supercooled water in the no man’s land (Murphy and Koop, 2005), combining heat capacities of liquid water and amorphous

ice.

Finally, using the assumption of solution droplets being in equilibrium with their environment and neglecting size effects,

water activity equals the liquid water saturation ratio Sliq due to105

aw =
psol

pliq

in eq.
=

pv
pliq

= Sliq (3)

where pv denotes the partial water vapour pressure. Using this representation of aw together with the ice saturation ratio

Si = pv
pice

, the computation

∆aw = aw − aiw =
pv

pliq(T )
− pice(T )

pliq(T )
= (Si− 1)

pice(T )

pliq(T )

= (Si− 1)aiw(T )

(4)

shows that ∆aw only depends on the ice saturation ratio and temperature.110

Note, that although recent measurements (Pathak et al., 2021) corroborate the procedure in the study by Murphy and Koop

(2005), in a recent study by Nachbar et al. (2019) the combination of liquid water and amorphous ice is called into question,

leading to a different formulation of the saturation vapour pressure over supercooled water and thus a different water activity. In

the following investigations, we will also use this formulation in order to determine the sensitivity of the nucleation events on

the choice of a saturation vapour pressure formulation. Note, that for each choice the water activity aiw(T ) must be recalculated.115

3 Model description

We begin with the description of the governing equations for the relevant ice processes in a nucleation event, i.e. homogeneous

nucleation and diffusional growth. Both processes are key for determining the properties of the nucleation event, such as the

number of nucleated ice crystals and the evolution of the ice saturation ratio (e.g. its peak value). Of course, other processes
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such as sedimentation and aggregation of ice crystals are important for the evolution of ice clouds, but usually act on longer120

time scales, e.g., when the particles are grown to larger sizes. Thus, we omit these processes and concentrate on nucleation and

growth, as in former studies (e.g. Kärcher and Lohmann, 2002; Baumgartner and Spichtinger, 2019).

We formulate the model in terms of averaged quantities for ice crystal mass and number concentration (qi, ni), i.e. as a

2-moment scheme. Additionally, the saturation ratio with respect to hexagonal ice, Si = pv
pice(T ) , is used, with the partial water

vapour pressure pv and the saturation water vapour pressure over hexagonal ice, pice(T ). Thus, the complete set of equations125

for an adiabatically ascending air parcel can be represented as

ṅi = Nucn (5)

q̇i = Nucq + Depq (6)

Ṡi = Cool + Deps (7)

Ṫ =
dT

dt

∣∣∣
adiabatic

+
dT

dt

∣∣∣
diabatic

=− g

cp
w+

L

cp

dqi
dt

∣∣∣
phase

=− g

cp
w+

L

cp

(
Nucq + Depq

)
(8)130

ṗ =
dp

dt

∣∣∣
adiabatic

=−gρw, (9)

including changes of temperature T and pressure p. In these equations, w denotes the vertical velocity of the air parcel, cp is the

specific heat capacity of dry air (assumed as a constant, see, Baumgartner et al., 2020), L denotes the (constant) latent heat of

sublimation, and ρ is the air density. The assumption of an ideal gas is adopted for air and water vapour. The terms Nucn, Nucq

denote changes due to nucleation, the terms Depq, Deps describe changes due to diffusional growth of ice crystals. The term135

Cool denotes the impact of adiabatic expansion due to upward motion with velocity w, this is also reflected in the change of

temperature and pressure, using adiabatic lapse rate and hydrostatic pressure, respectively. For temperature, we would have to

consider diabatic changes due to latent heat release in phase changes.

Computing the total derivative of the saturation ratio using the representation Si = pqv
ε0psi(T ) , where ε0 denotes the ratio of

molar masses of water and dry air, together with the Clausius-Clapeyron equation yields140

Cool =
∂Si
∂T

dT

dt

∣∣∣
adiabatic

+
∂Si
∂p

dp

dt

∣∣∣
adiabatic

=

[
Lg

cpRvT 2
− g

RaT

]
Siw (10)

and

Deps =
∂Si
∂T

dT

dt

∣∣∣
diabatic

+
∂Si
∂qv

(
Nucq + Depq

)
=−

[
L2

cpRvT 2
+

1

qv

]
Si
(
Nucq + Depq

)
. (11)

To a good approximation, for cold temperatures the first term in the bracket in (11), which describes latent heat release due to

phase changes, can be omitted. In the following, we will omit the evolution equations (8), (9) for temperature and pressure, i.e.145

we assume these as being constant during the nucleation event. Thus, we arrive at

Deps ≈−
p

ε0psi

(
Nucq + Depq

)
(12)

As a result of assuming temperature and pressure as being constant, only the vertical velocity w is an external parameter

for the supersaturation. For the terms Nucx,Depx (x= n,q,s) we have to keep temperature and pressure as fixed parameters
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T = Tenv,p= penv. This approach was also used in former investigations (see, e.g., Spreitzer et al., 2017; Baumgartner and150

Spichtinger, 2019).

The nucleation term can be described as

Nucn = JnucVdna, Nucq =m0Nucn (13)

where, Vd is the mean volume of a supercooled solution droplet, na is the number concentration of solution droplets, and m0 is

the mean mass of a newly frozen solution droplet, which can be set tom0 = 10−16 kg. The nucleation rate for the homogeneous155

freezing of solution droplets is denoted by Jnuc. For comparison with former investigations (Kärcher and Lohmann, 2002;

Spichtinger and Gierens, 2009), we set the number concentration of the background aerosol to a quite large value of naρ=

104 cm−3 = 1010 m−3; since the resulting ice crystal number concentration as produced in nucleation events is usually some

orders of magnitude smaller, we do not have to care about a possible consumption of a major part fraction of solution droplets.

We will later discuss the impact of this value in terms of nucleation events.160

The diffusional growth of ice crystals is determined by the growth rate

Depq = ni · 4πD∗vCGv(Si− 1)fv (14)

with the diffusion constant for water vapour in air D∗v =Dv(p,T )fD as corrected by the factor fD for the kinetic regime, the

capacity of ice crystals, C, assuming columnar shape, the Howell factor Gv(p,T ) describing the impact of latent heat, and the

ventilation correction fv , respectively. Note, that the capacity also depends on the mean mass of the ice crystal ensemble, i.e.165

C = C(m̄) = C(ni, qi). The details of the formulation are given in appendix A.

Combining the expressions from above, the reduced system of equations reads

ṅi = Nucn (15)

q̇i = Nucq + Depq (16)

Ṡi =

[
Lg

cpRvT 2
− g

RaT

]
Siw+

p

ε0psi

(
Nucq + Depq

)
(17)170

Remarks:

1. As shown in Spreitzer et al. (2017), it is possible to determine and characterize the steady states of the reduced system,

which additionally includes sedimentation. This leads to a nonlinear oscillator with a bifurcation diagram, depending on

the updraft velocity w, and on the temperature T .

2. The usefulness of this simple double moment scheme depends on the scales of the scenarios. We generally found good175

agreement with such parcel models and also on an LES scale (and even coarser resolution) with observations, more

sophisticated models, and also theory (see, e.g., Spichtinger and Gierens, 2009; Spichtinger, 2014; Baumgartner et al.,

2022).
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4 Investigations of the nucleation rates

Investigations of ice clouds in the cold temperature regime (T < 235K) need to include the nucleation process of homogeneous180

freezing of aqueous solution droplets. As pointed out in section 1 the formulation by Koop et al. (2000) based on water activity

is a meaningful fit to experimental data. However, for theoretical investigations and the use in reduced order models, a simpler

but still accurate approximation would be helpful. In the following we present a way how to derive such an approximation

based on the original fit through measurements by Koop et al. (2000) in addition to recent observations for pure super-cooled

water.185

4.1 Correction of the nucleation rate

In the study by Koop and Murray (2016) a parametrisation of the nucleation rate of pure supercooled water Jpure liq(T ) was

derived, based on recent measurements. Thus, in the context of homogeneous freezing of solution droplets, the nucleation rate

for pure water particles should coincide with the nucleation rate of solution droplets Jsol at water saturation, i.e. the condition

Jsol(∆a
∗
w)

RH=1≡ Jpure liq(T ) (18)190

should hold for a value ∆a∗w at water saturation
:
,
::
as

:::::::
claimed

::::
and

::::::
already

:::::
used

::
in

:::
the

:::::
study

:::
by

:::::::::::::::
Koop et al. (2000). However,

evaluating these two formulations of the nucleation rates at water saturation shows a similar qualitative behaviour down to

temperatures T ∼ 235K but a quantitative disagreement, see the blue and black curve in Figure 1. A reasonable requirement

is that the values of both formulations should match in the temperature range 235K≤ T ≤ 240K, since this range is relevant

for the freezing of pure water cloud droplets with reasonable sizes. This temperature range at water saturation is equivalent to195

the range of water activity difference 0.27≤∆aw ≤ 0.31. The offset between the curves and can be corrected by shifting the

logarithm of the nucleation rate for solution droplets by a constant value. The value of the shift was calculated by minimizing

the square distance between the curves in the respective temperature range. Thus, the corrected nucleation rate for aqueous

solution droplets reads as

log10(Jsol,new(∆aw)) = log10(Jsol(∆aw)) + δ (19)200

with δ =−1.522. The nucleation rates are given in SI units (as used for all quantities throughout this study), i.e. [J ] = m−3 s−1.

Remarks:

– The nucleation rate of pure water droplets can be used for a direct parametrisation of the nucleation rate of aqueous

solution droplets. This will be carried out in section 6.1.

–
:::
The

::::::
(new)

:::::::::::
disagreement

:::
(or

::::::
small

:::::
shift)

::
of

:::
the

:::::
rates

::::::
solely

:::::
stems

:::::
from

:::
the

:::::::::::
comparison

::::
with

:::
the

::::
new

:::::::::::
formulation205

::
of

:::::::::::::::::::::
Koop and Murray (2016),

:::::
since

::::::::
originally

::::
the

:::::::::
nucleation

:::
rate

:::
for

::::::::
solution

:::::::
droplets

::::
was

::::::
chosen

::
in

:::::::::
agreement

:::::
with

:::::::::::
measurements

:::
of

::::::::
nucleation

:::::
rates

:::
for

::::
pure

:::::
water

::::::
droplets

:::::::::::::::::
(Koop et al., 2000).
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Figure 1. Nucleation rates for pure super-cooled water droplets (Koop and Murray, 2016, red) and aqueous solution droplets (Koop et al.,

2000) at water saturation (i.e. infinitely dissolved); original values by Koop et al. (2000) in blue, shifted values (δ =−1.522) in black (new

reference nucleation rate Jsol,new).
::

For
:::
the

::::::::
calculation,

:::
the

::::::::
saturation

:::::
vapour

:::::::
pressure

::::::
formulae

:::
by

:::::::::::::::::::::
Murphy and Koop (2005) are

::::
used.

– In the following we will refer to the corrected nucleation rate as “reference” nucleation rate, since, to the best of our

knowledge, it provides the best and most recent fit for the homogenous nucleation rate of solution particles, based on the

assumptions that the nucleation rates for pure water and solution droplets should agree at water saturation.
:
.210

4.2 Nucleation rate as a function of T and Si

The general strategy of the study is to represent the exponent of the nucleation rate by low order polynomials in a thermody-

namic variable x, i.e.

J = 10pn(x), pn(x) :=

n∑
k=0

akx
k, degpn = n. (20)

For instance, the formulation of the nucleation rate for aqueous solution droplets by Koop et al. (2000) is based on a polynomial215

of degree three, i.e.

Jsol(∆aw) = 10p3(∆aw), p3(x) =

3∑
k=0

akx
k (21)

using the thermodynamic quantity x= ∆aw = aw − aiw.
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Note, also the nucleation rate Jpure liq for pure water droplets is based on the same structure, i.e. log10(Jpure liq) is a polynomial

of order 6 in the thermodynamic variable T (cf. Koop and Murray, 2016). For analytical investigations of the homogeneous220

nucleation, it is desirable to represent log10(J) by a polynomial with low degree. As will be shown in the following, the

formulation

log10(J)≈ pn(x), n= degpn ≤ 2 (22)

with a polynomial yields sufficient agreement with the reference. For analytical investigations (e.g. using asymptotic analysis) it

is helpful to represent the nucleation rate using a threshold for the humidity to account for the explosive character of nucleation225

events as used in the analysis by Baumgartner and Spichtinger (2019). Thus, for the nucleation rate for super-cooled solution

droplets we make the following ansatz

J = 10pn(x) = exp
(
A(T )(Si−Sc) +B(T )(Si−Sc)2

)
(23)

where Sc = Sc(T ) is the temperature-dependent threshold value for the saturation ratio. Note, that the ansatz is consistent (or

even equivalent) with condition (22). In order to describe J as a function of Si and T we reformulate ∆aw as230

∆aw = (Si− 1)aiw(T ) = (Si−Sc)aiw(T ) + (Sc− 1)aiw(T ) (24)

using a threshold Sc(T ) that corresponds to a fixed value J0 of the nucleation rate, i.e. J(Sc(T ),T ) = J0. Taking the logarithm,

this equality implies pn(x0) = j0 = log10(J0) with x= ∆aw. As in former studies (see, e.g., Koop et al., 2000; Kärcher and

Lohmann, 2002), we choose J0 = 1016 m−3 s−1 = 1010 cm−3 s−1. Note, that this choice for the parameterisation is quite

arbitrary and has no strict physical interpretation, although one can argue with the cooling rates of the underlying experiments235

and thus with the probability of the freezing of droplets with a given volume within a certain predefined time interval (Koop

et al., 2000).

Evaluating eq. (24) at Si = Sc, we arrive at

p−1
n (j0) = x0 = (Si−Sc)aiw(T ) + (Sc− 1)aiw(T )

Si=Sc= (Sc− 1)aiw(T )
(25)

leading to a description of the threshold240

Sc =
1

aiw(T )
p−1
n (j0) + 1 and

∆aw = (Si−Sc)aiw(T ) + p−1
n (j0)

(26)

if the polynomial pn(x) can be inverted in the relevant range 0.26≤∆aw ≤ 0.34 . Combining the equations from above, the

nucleation rate can be represented as

log10J = p(∆aw) = pn
(
(Si−Sc)aiw(T ) + p−1

n (j0)
)

(27)

which is a threshold description using the thermodynamic variables Si, T . This representation amounts to a reformulation of245

the original approximation, if the inverse function p−1
n (x) exists in the relevant range (i.e. pn(x) is strictly monotonic). In the

following we consider the case of linear and quadratic polynomials, as determined by the ansatz (23).
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1. Case of a linear polynomial p1(x) = a0 + a1x

The inverse function of p1(x) = y is given by p−1
1 (y) = y−a0

a1
implying the threshold

Sc(T ) =
1

aiw(T )

j0− a0

a1
+ 1. (28)250

Substituting eq. (28) into the expression (27) yields

log10J(Si,T ) = j(Si,T ) = j0 + a1a
i
w(T )(Si−Sc(T ))

= j0 +A(T )(Si−Sc(T ))
(29)

where A(T ) = a1a
i
w(T ). The coefficients a0,a1 can be determined in different ways, see section 4.3. Furthermore,

approximations to the functions A(T ) and Sc(T ) can be investigated.

2. Case of a quadratic polynomial p2(x) = b0 + b1x+ b2x
2 = a(x− b)2 + c255

Since a quadratic function is not strictly monotonic in general, inverting the quadratic polynomial leads to two functions,

i.e.

p−1
2 (y) = b±

√
y− c
a

. (30)

If one solution can be ruled out (e.g. due to physical constraints) we can formulate

log10J = p2

(
(Si−Sc(T ))aiw(T ) + p−1

2 (j0)
)

(31)260

using the threshold description

Sc(T ) =

(
b±
√
j0− c
a

)
1

aiw(T )
+ 1 (32)

Equivalently, we can derive a formulation

log10J = c0 + q1(T )(Si−Sc(T ))

+ q2(T )(Si−Sc(T ))2
(33)

with appropriate functions q1, q2, which might be useful for analytic investigations.265

Remark: We will again use this quadratic ansatz for a direct approximation of the nucleation rate of pure water droplets

(see section 6.1).

4.3 Linear polynomial fit for the nucleation rate

In this section we investigate approximations of the exponent of the nucleation rate of aqueous solution droplets Jsol and their

impact on nucleation events in an idealised scenario. We concentrate on the reference formulation (Koop et al., 2000). Since270

the polynomial p3(x) in the original formulation

Jsol(∆aw) = 10p3(∆aw), p3(x) =

3∑
k=0

akx
k (34)
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nearly behaves as a linear polynomial in the relevant range 0.26≤∆aw ≤ 0.34, it can be easily approximated by a linear

relation, i.e. p3(x)≈ b0 + b1x. For this we can use two different approaches: (i) using a least square fit to p3 and (ii) a Taylor

expansion at a prescribed value y0. While the first approach is just a fitting procedure in the relevant range 0.26≤∆aw ≤ 0.34,275

the second approach relies on an a priori choice for the evaluation point y0 ∈ [0.26,0.34] and it is not evident from the outset

which value should be used to provide an accurate approximation. For this, we investigate the sensitivity of p3 to a small

perturbation ε= y− y0, i.e. we consider

p3(y) = p3(y0 + ε) = p3(y0) +
dp3

dx

∣∣∣
y0
ε+O

(
ε2
)

(35)

≈ bt0 + bt1 · y = pt,y0(y) (36)280

with the coefficients

bt0 = p3(y0)− dp3

dx

∣∣∣
y0
· y0 and bt1 =

dp3

dx

∣∣∣
y0
. (37)

The Taylor approximation provides a range for the slope of the linear approximation; these values motivate the sensitivity

analysis in section 4.5.2. In the relevant range 0.26≤ y ≤ 0.34 for y = ∆aw we obtain slopes in the range 221≤ bt1 ≤ 453.

This investigation gives us a hint about possible variations in the slope which will be used later for the sensitivity analysis in285

section 4.5.2.

In contrast, using a least square fitting routine for 0.26≤∆aw ≤ 0.34 we obtain a linear function

pls(x) = bls,0 + bls,1 ·x (38)

with bls,0 =−62.19267 and bls,1 = 254.7749. For the further investigations, we only use the linear fit from eq. (38). We observe

that the linear fit pls(x) best approximates p3 close to the inflection point xinfl ≈ 0.30756 (see figure 2, left panel).290

For each linear approximation p(x) = b0+b1·x of p3(x), the exponent of the nucleation rate and the saturation ratio threshold

become, as demonstrated in section 4.2,

j(Si,T ) = j0 + b1a
i
w(T )︸ ︷︷ ︸

:=A(T )

(Si−Sc(T )),

Sc(T ) =
1

aiw(T )

j0− b0
b1

+ 1.

(39)

Since aiw is a rather complicated function of temperature, it is particularly useful in the context of analytical investigations to

have simpler approximations of this quantity. This motivates to approximate aiw and its inverse 1
aiw

in the relevant temperature295

range 190≤ T ≤ 230K by polynomials q(T ) of degree degq ≤ 2. Similarly, we can approximate the nucleation threshold

Sc(T ) by polynomials s(T ) of degree degs≤ 2. For the approximations we use a least square procedure within the temperature

range 190≤ T ≤ 230K.The results are presented in figure 2 (middle and right panels). Note that the thresholds, either exact or

approximate, are quite similar to the former approximations by Ren and Mackenzie (2005), while there is a larger difference

to the approximation by Kärcher and Lohmann (2002).300
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Figure 2. Polynomial approximations of the nucleation rate (left), the ice water activity aiw(T ) = pice(T )
pliq(T )

(middle), and the saturation ratio

threshold Sc(T ) (right panel), respectively. The right panel also includes the approximations by Kärcher and Lohmann (2002) and Ren and

Mackenzie (2005).

Combining the approximations q(T ) and s(T ) yields the formulation

j(Si,T ) = j0 + b1q(T )(Si− s(T ))

≈ j0 +A(T )(Si−Sc(T ))
(40)

of log10(J). As can be seen in Figure 2, the nucleation threshold is accurately approximated by a linear relation (deviation is

smaller than 0.3%). In former studies (e.g. Kärcher and Lohmann, 2002; Ren and Mackenzie, 2005) linear fits were derived for

the nucleation thresholds; however, these fits deviate significantly more from the reference in comparison to ours (see figure 2).305

The deviation depends on the respective formulation (or approximation) of aiw.

Also former studies use (empirical) linear approximation for the saturation threshold. Comparing these linear approximations

with ours in Fig 2 it is evident that they deviate significantly.

4.4 Thresholds for prescribed nucleation rate values

The threshold description in section 4.3 was based on the choice j0 = 16, corresponding to a nucleation rate J = 1016 m−3s−1.310

As already mentioned, the choice of j0 is quite arbitrary, and these high values of J are very often not reached in the numerical

simulations (see section 4.5). For a better diagnostics of the nucleation events and the relative strength of nucleation events, we

introduce a similar concept for nucleation thresholds, based on a prescribed nucleation rate value J ∼ 10x0 . For this purpose

we use eq. (40) of the nucleation threshold based on the linear approximation of the nucleation rate with a fixed but arbitrary

value x0 > 0 for the nucleation rate value; hence, we can write315

x0 = j(S0,T ) = j0 +A(T )(S0−Sc(T ))

⇔ Scx0(T ) = S0 =
x0− j0
A(T )

+Sc(T )
(41)
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where the functionA(T ) = b1a
i
w(T ) depends only on the linear approximation of J as stated in section 4.2. Note that obviously

Scx0(T ) = Sc(T ) for x0 = j0. This leads to the formulation of the nucleation rate

j(Si,T ) = x0 +A(T )(S0−Scx0(T )) . (42)

with a general nucleation value x0 and its associated threshold function Scx0(T ). The threshold function is just shifted by320

the value x0−j0
A(T ) , i.e. the type of the threshold function remains the same. This formulation will be used for the theoretical

investigations using small perturbations (see section 4.6)

4.5 Numerical simulations of nucleation events for different approximations

In the following we investigate the impact of our approximations of log10(J) on nucleation events. The setup is as follows: We

use the simple bulk ice physics model as described by the set of ODEs (15), (16), (17) in section 3. A nucleation event is ensured325

by assuming a constant vertical velocity, which directly translates into a constant adiabatic cooling of the air parcel and, thus,

an initially increasing saturation ratio. Instead of changing the temperature adiabatically, we directly control the supersaturation

as described in sec. 3; this allows us to control the nucleation event without the need to disentangle the different contributions

of temperature and supersaturation.

The nucleation events always admit the same structure: Due to the supersaturation source ∼ wSi with constant updraft w330

the variable Si increases and the nucleation term produces ice crystals, which can grow by water vapour diffusion, constituting

a sink for supersaturation. The peak value of Si is reached once the source and sink of supersaturation balance. Afterwards

the variable Si decreases due to diffusional growth and thus shut off the nucleation term. The peak value depends crucially on

the number of nucleated ice crystals that are needed, to balance the source for Si by the diffusional growth (depending on the

product of number concentration and mean radius of ice crystals). The number concentration of ice crystals produced in the335

nucleation event clearly depends on the vertical velocity w (source term) and the environmental conditions (diffusion depends

on temperature and pressure). For details of the time evolution of nucleation events see appendix B.

4.5.1 Standard approximation

We compare the following four different representations of the nucleation rate using numerical simulations:

1. nucleation rate in the water activity formulation by Koop et al. (2000) with the correction as described in section 4.1340

(reference nucleation rate)

2. water activity approximated by the linear fit as described in section 4.3 (see eq. (38), linear regression)

3. nucleation rate as a function of Si, T as described in section 4.2 based on the formulation

log10J = j0 +A(T )(Si−Sc(T )) (43)

of the exponent of the nucleation rate. We compare the following two sets of approximations for A(T ) and Sc(T ):345
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Figure 3. Different approximations of nucleation rate for different temperatures (left: T = 196K, middle: T = 216K, right: T = 236K).

Black: Reference nucleation rate; red: linear fit to reference nucleation rate; blue: threshold description due to eq 43, using a linear approx-

imation for aiw and a quadratic threshold function Sc; green: threshold description due to eq. (43), using a constant for aiw and a linear

threshold function Sc.

(a) a linear approximation for A(T ) and a quadratic approximation for Sc(T ),

(b) a constant approximation for A(T ) and a linear approximation for Sc(T ).

These are specific cases, however arbitrary combinations of approximations for A(T ) and Sc(T ) might be used.

Figure 3 shows the approximated exponents of the nucleation rate together with the (corrected) reference formulation by

Koop et al. (2000) for the three temperatures T = 196, 216, 236K as functions of ∆aw. These temperatures are chosen for350

direct comparison with former studies (Kärcher and Lohmann, 2002; Spichtinger and Gierens, 2009). Evidently, the linear fit

with respect to water activity is very close to the reference, and the same is true for the case of a linear function A(T ) and

a quadratic approximation Sc(T ). For the simplest approximation (constant function A(T ) and linear approximation Sc(T )),

larger deviations from the reference nucleation rate can be seen. At T = 196K, there is a strong underestimation in the lower

range of ∆aw, whereas for T = 236K the underestimation is most pronounced for higher values of ∆aw (green vs. black355

curves). In both cases, we expect deviations in the number concentrations of nucleated ice crystals during the nucleation event

and the maximum saturation ratio attained.

We investigate standard nucleation events in terms of (i) the resulting ice crystal number concentration at the end of the

simulation as in former studies (e.g. Kärcher and Lohmann, 2002; Spichtinger and Gierens, 2009) and (ii) the maximum (peak)

supersaturation, which was reached during the nucleation event. Although the latter is usually not considered, it is of interest360

for comparisons with real measurements, e.g. in cloud chambers.

Figure 4 shows the results of the numerical simulations, i.e. the number of nucleated ice crystals (left panel) and the max-

imum saturation ratio (right panel) at environmental pressure p= 200hPa (the results are similar for other environmental

conditions).
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Figure 4. Comparison of different approximations of the nucleation rate by Koop et al. (2000) for standard nucleation events driven by a

constant vertical velocity w. Left: ice crystal number concentration; right: maximum supersaturation.

Comparing the number of nucleated ice crystals as well as the maximum saturation ratio it is evident, that the difference365

between the reference calculation, based on the corrected nucleation rate by Koop et al. (2000), and the simulations using the

approximated nucleation rates are rather small.

For almost all nucleation events, the deviation from the reference simulations is not larger than ±15%. To assess these devi-

ations one should keep in mind that measurements of ice crystal number concentrations are quite difficult and the uncertainties

are usually larger than 15%. For instance, for the FSSP instrument, which was used in many flight campaigns (e.g. Voigt et al.,370

2017), the uncertainty is estimated by about ∼ 10% (de Reus et al., 2009). Thus, the deviations in our simulations and the un-

certainties of realistic measurements are roughly of the same order. This fact renders it presumably impossible to decide on the

correctness of any of the different formulations and approximations of the nucleation rate based on the available observations.

Finally, we conclude that a linear approximation of the reference nucleation rate by Koop et al. (2000) is accurate enough to

represent nucleation events in a physically meaningful way. Thus, we can use this description as well as the derived formula-375

tions of the nucleation rate as a function of temperature T and saturation ratio Si in order to investigate which parameters of

the nucleation rates significantly affect the outcome of nucleation events. This will be carried out in the next section.

4.5.2 Impact of the parameters of the linear approximation

Generally, we are interested in the impact of the formulation of the nucleation rate on nucleation events. The original parame-

terisation by Koop et al. (2000) is based on a cubic polynomial, which admits slopes in the range 221≤ b≤ 453, see Sect. 4.3.380

The linear approximation is sufficiently good for representing the “reference” rate; thus, we now use this simple linear repre-
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sentation log10J = b0 + b1 ·∆aw in order to test the sensitivity of nucleation events on the two parameters b0, b1. Parameter

b0 controls the absolute value of the nucleation rate while parameter b1 accounts for its steepness, i.e. the slope.

In a first step, we investigate the impact of the slope of the nucleation rate given by coefficient b1. One should keep in

mind that during the nucleation event the value of ∆aw = (Si−1)aiw(T ) is increasing as Si increases, thus the exponent of the385

nucleation rate basically grows linearly. Consequently, an increase in the saturation ratio immediately translates into an increase

in ∆aw, hence the abscissa in figure 5 may be thought of as representing saturation ratio. If high values of the nucleation rate

are already reached at lower supersaturation values, the nucleation is triggered earlier in comparison to the reference scenario.

However, an earlier onset of ice nucleation implies that the newly nucleated ice crystals already start to grow by diffusion.

Consequently, the growing ice crystals tend to decrease the saturation ratio and, if they are sufficiently numerous, prematurely390

stop the nucleation event. In this case, less ice crystals will nucleate and a smaller maximum saturation ratio will be reached

compared to the reference. The opposite mechanism is expected for smaller values of the nucleation ratio in comparison to the

reference, i.e. higher ice crystals concentrations will occur together with larger maximal saturation ratio.
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Figure 5. Artificial change in the slope of the linear function in the exponent of the nucleation rate. The fit to the reference curve is indicated

by the green line (slope b1 ∼ 250); a reduced slope (b1 ∼ 100) is displayed in red, an enhanced slope (b1 ∼ 500) is displayed in blue.
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In order to illustrate this mechanism more quantitatively, we artificially changed the slope of the linear function. The “refer-

ence” slope b1 ≈ 255 is either reduced to a value of b1 = 100 or enhanced to a value b1 = 500, which is motivated by the values395

of the Taylor approximation, derived in section 4.3. In both cases, the parameter b0 of the linear function is adapted such that

the inflection point of the polynomial p3(∆aw) at ∆aw ∼ 0.311 is met for better comparison with the reference simulations.

The resulting nucleation rates are displayed in figure 5, while the number of nucleated ice crystals and the maximum ice sat-

uration ratio during the nucleation event are summarized in figure 6: The left panel shows the concentrations of nucleated ice

crystals and the right panel the maximum saturation ratio during the nucleation events.400
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Figure 6. Impact of the slope on the idealized nucleation events. Left: ice crystal number concentrations, right: maximum supersaturation

values. The colours are chose as in figure 5, i.e. red squares indicate reduced slope, and blue triangles indicate enhanced slope, respectively.

In case of the enhanced or reduced slope as indicated in figure 5 we exactly see the theoretically proposed behaviour in the

ice crystal number concentration: the values are reduced for reduced slopes, and enhanced for enhanced slopes. The reductions

are by up to a factor of 0.4, the enhancements are by up to a factor of 2.4, and the largest changes can be seen at the highest

temperature T = 236K.

In the right panel of Figure 6, a dependency on temperature and vertical velocity is seen. For very low vertical velocities, the405

maximum supersaturation behaves as expected, i.e. reduced values for the reduced slope and enhanced values for the enhanced

slope. For very high vertical velocities, this behaviour is reversed, i.e. we see reduced values of Si,max for enhanced slopes

and enhanced values of Si,max for reduced slopes. The transition slightly depends on the temperature. This can be explained

as follows: For low vertical velocities, ∆aw (and thus the supersaturation) is always below the inflection point ∆aw ∼ 0.311.

Thus the nucleation rate is always smaller for the enhanced slope in comparison to the reference while it is always larger in410

comparison to the reference for the reduced slope. Therefore, in case of an enhanced slope the nucleation starts later compared

to the reference. This leads to the behaviour as described above. However, beyond the inflection point the behaviour is reversed

and thus the resulting maximum supersaturation is now enhanced for reduced slope and it is reduced for enhanced slope. The
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inflection point is reached at different vertical velocities for different temperatures, i.e. for lower temperatures at lower values

ofw and for higher temperatures at higher values ofw. Note, only the maximum supersaturation is affected upon ∆aw crossing415

the inflection point while no influence on the number concentration of ice crystals is seen.

After having varied the slope of the nucleation rate, we now turn to its absolute values and modify coefficient b0, which trans-

lates into a change of values of J by 10b0 . In order to investigate the sensitivity, we add a constant value ∆b ∈ {−6,−3, 3, 6}
to the coefficient b0, resulting in an increase or decrease in the absolute value of the nucleation rate by a factor of 10∆b. In

figure 7 the results in terms of ice crystal number concentration and maximum supersaturation are displayed.

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0.01 0.1 1 10

T=196K

T=216K

T=236K

p=200hPa

ic
e

 c
ry

s
ta

l 
n

u
m

b
e

r 
c
o

n
c
e

n
tr

a
ti
o

n
 (

m
−

3
)

vertical velocity (m/s)

reference

reference*10
−6

reference*10
−3

reference*10
3

reference*10
6

1.5

1.55

1.6

1.65

1.7

0.01 0.1 1 10

T=196K
p=200hPa

m
a
x
. 
s
u
p
e
rs

a
tu

ra
ti
o
n

 S
i

vertical velocity (m/s)

1.45

1.5

1.55

1.6

0.01 0.1 1 10

T=216K

p=200hPa

m
a
x
. 
s
u
p
e
rs

a
tu

ra
ti
o
n
 S

i

vertical velocity (m/s)

1.35

1.4

1.45

1.5

0.01 0.1 1 10

T=236K

p=200hPa

m
a
x
. 
s
u
p
e
rs

a
tu

ra
ti
o
n
 S

i

vertical velocity (m/s)

reference
reference*10

−6

reference*10
−3

reference*10
3

reference*10
6

1

Figure 7. Comparison of ice crystal number concentrations (left panel) and maximum supersaturation (right panel) for absolute changes in

the nucleation rate by a factor 10∆b with ∆b ∈ {−6,−3, 3, 6}.
420

Maybe surprisingly, the absolute values of the number concentrations of ice crystals in comparison to the reference formu-

lation are not crucially affected (see figure 7, left panel), although some deviations occur (up to a factor of two). The strongest

deviations can be seen for warm temperatures (T = 236K) at very low vertical velocities. Overall, the relative deviations from

the reference events in variables ni and peak values of Si are within the interval [0.4, 2], but for vertical velocities in the range

w ≥ 0.05m s−1 the relative deviation is within the interval [0.8, 1.4].425

Comparing the influence of a scaling of the absolute values of the nucleation rate and the steepness of the rate, we conclude

that the correct steepness of the nucleation rate is much more important than the absolute value of J . Even changes by orders of

magnitude in the values of the nucleation rate has a minor impact on the number of nucleated ice crystals. A similar conclusion

was also drawn in the theoretical study by Baumgartner and Spichtinger (2019). In that study, the authors investigated a slightly

simplified system of equations by means of asymptotic analysis. The simplified system describes the temporal evolution of the430

number concentration of ice crystals and the saturation ratio and an approximate asymptotic solution was constructed. To
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leading order, the approximate solution for the number concentration of ice crystals was completely independent of the precise

values of the nucleation rate, but the steepness contributed directly. The only necessary condition on the values of the nucleation

rate was that it attains large values, i.e. significantly larger than the other coefficients within the equations.

For the maximum supersaturation values, the impact of the absolute value of J is much more pronounced. As expected,435

upon reduction of the nucleation rate by a factor of 10∆b with ∆b ∈ {−6,−3} the supersaturation reaches much higher values

of Si, until the values of the rescaled nucleation rate become large enough to initiate the nucleation of ice crystals. For the

enhancement of the absolute values of the nucleation rate, the results are reversed: The maximum supersaturation is reduced,

since the enhanced nucleation rate attains values that allow the production of ice crystals for smaller saturation ratios. This

behaviour is represented in the right panel of figure 7.440

Remark: This idealized enhancement of the nucleation rate can also be seen in the connection with the aerosol number

concentration na. A change of na by some orders of magnitudes while no changes in J are applied has the same effect as

changing the absolute value of the nucleation rate (or the parameter b0 in the argument of the exponential function). Thus,

a strong reduction or enhancement of the available solution droplets will only slightly change the amount of ice crystals in

a nucleation event. Therefore, we can conclude that for a meaningful approximation of the nucleation rate the exact number445

concentration of available aerosols is also not crucial for the strength of the homogeneous nucleation event, but perhaps for the

starting time of the event. Including size effects of the solution droplets might additionally change the picture quantitatively

(see, e.g., Baumgartner et al., 2020).

4.6 Impact of perturbations in Si and T on the nucleation rate

In this section we investigate the impact of changes in Si and/or T on the nucleation rate by employing a perturbation analysis.450

A short explanation of this technique is given in Appendix D. In the real atmosphere, variations of the temperature due to

dynamical processes will introduce such changes, e.g. such as from a passing or even breaking gravity wave. In numerical

simulations, these variations (also often called fluctuations) are often artificially introduced (e.g. Jensen and Pfister, 2004). In

any case, the impact of such changes is investigated using perturbation analysis (also called asymptotic analysis).

We start with the linear approximation of the nucleation rate as formulated in eq. (40) with A(T ) = b1a
i
w(T ). We can455

estimate the usual values of the function A(T ) in the temperature range 190K≤ T ≤ 230K using 0.51≤ aiw(T )≤ 0.66 such

that 129≤A(T )≤ 169. For a very simple but still sufficiently accurate constant approximation of aiw(T ) we can set aiw0 =

0.574312 (see fig. 2, pink line) such that A(T )≈A0 = b1a
i
w0 = 146.32. Finally we can state A(T ) =O

(
ε−2
)

with the usual

perturbation approach ε∼ 0.1, such that we set A(T ) =A∗ε−2 with A∗ =O(1) as ε→ 0. For the non-dimensionalization of

the threshold function in the linear approximation Sc(T )≈ s0 + s1T we have to estimate the order of the coefficients for the460

relevant temperature range. Using 190K≤ Tref ≤ 230K and the definition T = Trefϑ with the nondimensional temperature ϑ,

we find

Sc(T ) = sc(ϑ) = s0 + s1T = s0 + s1Trefϑ= σ0−σ1ϑ (44)
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with σ1 =−s1Tref. Obviously, s0 = σ0 = 2.27697 =O(1) and 0.66≤ σ1 ≤ 0.8 such that σ1 =O(1). Using the simplest ap-

proximation A(T ) =A0 and Sc(T ) = s0 +s1T for the general formulation of the threshold function Scx0 (cf. eq. (41)) we can465

simplify the expression as

Scx0(T ) =
x0− j0
A0

+ s0 + s1T =

(
x0− j0
A0

+ s0

)
︸ ︷︷ ︸

=:sx0

+s1T

= sx0 + s1T.

(45)

Using non-dimensionalization we end up with the following representation

Scx0(T ) = scx0(ϑ) = sx0 + s1T = σx0−σ1ϑ, (46)

where σx0 = sx0,σ1 =−s1Tref. Finally, we use the estimation A0 =A∗ε−2 to obtain470

σx0 = (A∗)
−1
ε2(x0− j0) +σ0 = δ+σ0. (47)

Since j0 =O
(
ε−1
)

and x0 =O
(
εβ
)

with β ≥−1 we find σx0 = δ+σ0 =O (ε)+O(1) =O(1). After non-dimensionalizing

the argument in the nucleation rate, we can now investigate the response of the nucleation rate upon a perturbation (i) in

saturation ratio (i.e. in the same way as the numerical simulations are set up), (ii) in temperature, and (iii) in adiabatic changes

of temperature driving changes in the saturation ratio simultaneously. In reality, almost exclusively case (iii) is relevant.475

First, we estimate the increase of J due to variations of Si at a constant temperature T = Tref. For this purpose we start

at a given value of the saturation ratio Si which corresponds to a certain threshold x0 via the relation (41). We choose this

value as a reference value Sref = Scx0(Tref) = scx0(1) = σ0−σ1; this corresponds to a reference value of the nucleation rate

J = Jref = Junit · 10x0 (with Junit = 1m−3 s−1). Assuming the expansion

Si = S0 + εS1 + ε2S2 + ε3S3 +O
(
ε4
)

(48)480

for the saturation ratio where S0 = Srefσx0−σ1 we investigate the impact of such a perturbation on the exponent j. Keeping

the temperature fixed as in the numerical simulations we arrive at

j(Si,T ) = j(s, t) = x0 +A0 (Si−Sref)

= x0 +A∗ε−2
(
Sref + εS1 + ε2S2 + ε3S3 +O

(
ε4
)
−Sref

)
= x0 + ε−1A∗S1 +A∗S2 + εA∗S3 +O

(
ε2
)
.

(49)

We are interested in the relative change of the nucleation rates J(Si,T )
Jref

, which translates into j(Si,1)−j(Sref,1). By definition,

we have x0 = j(Sref,1), thus we obtain485

j(Si,1)− j(Sref,1) = ε−1A∗S1 +A∗S2 + εA∗S3 +O
(
ε2
)
. (50)

Inspecting eq. (50) it is evident, that a nonzero perturbation term Sα in eq. (48) is connected with the factor εα−2, hence

a change of order O (εα) in supersaturation translates into a change of order O
(
εα−2

)
in the exponent of J . For instance, a

change by S ∼ 0.01 translates into a change of O(1) in j, thus in a change by a factor of 10 in the nucleation rate J
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Second, we consider perturbations of temperature without changing the saturation ratio, although this might not happen490

in the atmosphere. Using the approach above with a constant reference value of saturation, i.e. Sref = scx0(1) = σ0−σ1 and

temperature perturbations ϑ= 1 + εϑ1 + ε2ϑ2 + ε3ϑ3 +O
(
ε4
)

we find the following expression:

j(sref,ϑ) = x0 +A0 (Sref

−
(
σ0−σ1

(
1 + εϑ1 + ε2ϑ2 + ε3ϑ3 +O

(
ε4
))))

= x0 +A∗ε−2
(
εϑ1 + ε2σ1ϑ2 + ε3σ1ϑ3 +O

(
ε4
))

= x0 + ε−1A∗σ1ϑ1 +A∗σ1ϑ2 + εA∗σ1ϑ3 +O
(
ε2
)
.

(51)

The relative change of the nucleation rate is then given by

j(Sref,ϑ)− j(Sref,1) = x0 + ε−1A∗σ1ϑ1

+A∗σ1ϑ2 +A∗σ1ϑ3ε+O
(
ε2
)
.

(52)495

Thus, a temperature perturbation ϑα of order O (εα) leads to a relative change in j of order O
(
εα−2

)
. Note the sign of the

perturbations, which turns into the opposite sign in the change of j. Because of the strictly monotonic descrease of the threshold

function Scx0(T ), a negative temperature change leads to a higher threshold and in turn to a lower nucleation rate at a given

saturation ratio.

Instead of perturbing the saturation ratio and the temperature individually, these quantities are connected in the real world. To500

a good approximation, their joint variation is through an purely adiabatic change. Therefore, we finally investigate the impact

of adiabatic temperature changes on the saturation ratio and in turn on the nucleation rate. For this purpose we have to consider

the dependence of Si on adiabatic temperature changes. We start with the cooling source term of the saturation ratio

dSi =

(
1

κ
− L

RvT

)
Si

dT

T
. (53)

The term γ(T ) = 1
κ −

L
RvT

within the bracket admits the values −28.8≤ γ(T )≤−23.2 for 190K≤ T ≤ 230K such that505

we find γ(T ) =O
(
ε−1
)

= γ∗ε−1 and γ∗ ∼−2.5< 0. Approximating the total differential in eq. (53) with finite differences

∆Si,∆T , we arrive at

∆Si
Si

= γ∗ε−1 ∆T

T
. (54)

We set as an approximation Si = Sref and T = Tref such that we can set

∆Si
Sref

= εlSl +O
(
εl+1

)
=O

(
εl
)

(55)510

with Sl =O(1). We assume l ≥ 1 since we do not consider changes of the saturation ratio of order O(1). The analoguous

expansion for the temperature reads

∆T

Tref
= εkϑk +O

(
εk+1

)
=O

(
εk
)

with ϑk =O(1) ∀k ≥ 1. (56)
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Combining these expansions, Eq. (53) becomes

∆Si
Sref

= γ∗ε−1 ∆T

Tref
= γ∗ε−1

(
εkϑk +O

(
εk+1

))
= γ∗tkε

k−1 +O
(
εk
) (57)515

or equivalently

εlSl = ∆Si = Srefγ
∗ϑkε

k−1 +O
(
εk
)
. (58)

The only non-trivial balance is achieved for l = k− 1, i.e.

Sk−1 = Srefγ
∗ϑk ⇔ Sk = Srefγ

∗ϑk+1. (59)

Note that l = k− 1≥ 1, i.e. we have to consider k ≥ 2 for the perturbation of temperature. This is a meaningful restriction520

since we are interested in small changes of temperature in the cold temperature regime, i.e. a change in the temperature in the

order of ∼ 1K in physical units. Hence, we would not expect adiabatic temperature changes of order O (ε), corresponding to

changes of order ∼ 10K. Thus, we assume an asymptotic expansion

ϑ= 1 + ε2ϑ2 + ε3ϑ3 +O
(
ε4
)

(60)

for the temperature perturbation. We are generally interested in adiabatic expansions due to vertical upward motion, which525

in turn leads to decreasing temperatures, hence we conclude ϑk < 0 for k ≥ 2. Since γ∗ < 0, equation (59) leads to positive

changes in the saturation ratio sk > 0 for ϑk < 0. Generally, warming due to adiabatic compression can be studied in the same

way by setting ϑk > 0.

Now we consider the nucleation rate in the formulation for arbitrary thresholds x0 in the nucleation rate using Sref = σx0−
σ1 = scx0(1):530

j(Si,T ) = j(Si, t) = x0 +A∗ε−2 (Si− scx0(ϑ))

= x0 +A∗ε−2
(
Sref + εS1 + ε2S2 + ε3S3

−
(
σx0−σ1

(
1 + ε2ϑ2 + ε3ϑ3

))
+O

(
ε4
))

= x0 +A∗ε−2
(
εS1 + ε2S2 + ε3S3 + ε2σ1ϑ2

+ε3σ1ϑ3 +O
(
ε4
))

= x0 +A∗ε−2
(
εSrefγ

∗ϑ2 + ε2Srefγ
∗ϑ3 + ε3Srefγ

∗ϑ4

+ε2σ1ϑ2 + ε3σ1ϑ3 +O
(
ε4
))

= x0 +A∗ε−2
(
εSrefγ

∗ϑ2 + ε2 (Srefγ
∗ϑ3 +σ1ϑ2)

+ε3 (Srefγ
∗ϑ4 +σ1ϑ3) +O

(
ε4
))

= x0 +A∗Srefγ
∗ϑ2ε

−1 +A∗ (Srefγ
∗ϑ3 +σ1ϑ2)

+A∗ (srefγ
∗ϑ4 +σ1ϑ3)ε+O

(
ε2
)
.

(61)
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Thus, for k ≥ 2 we find terms of the form A∗ (srefγ
∗ϑk+1 +σ1ϑk)εk−2 of orderO

(
εk−2

)
. Comparing the nucleation rates we

find for the relative change

j(Si,T )− j(Sref,Tref) = j(Si, t)− j(Sref,1)

=A∗Srefγ
∗ϑ2ε

−1 +A∗ (Srefγ
∗ϑ3 +σ1ϑ2)

+A∗ (Srefγ
∗ϑ4 +σ1t3)ε+O

(
ε2
)
.

(62)

For the relative impact of these terms we use the estimations γ∗ <−2.3 and σ1 ≤ 0.8. We have to distinguish two scenarios535

for perturbations ϑk < 0:

1. ϑk < 0 for all k ≥ 2. In this case we can assume

Srefγ
∗ϑk+1 +σ1ϑk > 0. (63)

Therefore, an adiabatic temperature perturbation ϑk of order O
(
εk
)

(k ≥ 2) leads to relative changes in j of order

O
(
εk−3

)
. Note, that the changes in saturation ratio are always dominant and larger than the changes in the threshold,540

which changes j by order O
(
εk−2

)
in the opposite direction.

2. ϑk < 0 and ϑk+1 = 0 for a distinct k ≥ 2. In this case, the previously discussed temperature effect can be seen, i.e. the

nucleation threshold is changed, leading to a reduction of the nucleation rate exponent. This effect is merely academic,

since we have to switch off higher perturbations in temperature, which is quite unlikely.

One should keep in mind that we investigated the relative increase in the exponent of the nucleation rate. A relative change of545

order O
(
εk
)

in the exponent translates into a relative change of order O
(
exp

(
εk
))

in the nucleation rate J , thus ranging over

several orders of magnitudes. For instance, in the first scenario changes of temperature of order ∼ 1K lead to changes in j of

about ∼ 10, which in turn translate into a change of the nucleation rate J by a factor of exp10∼ 105.

Overall, we can state that changes in Si are most important for changing j, either stemming from adiabatic temperature

changes or driven directly as in our numerical studies.550

5 Impact of saturation vapour pressure formulation

Since the formulation of the nucleation rate by Koop et al. (2000) relies on the water activity, and thus on the function aiw(T ) =
pice(T )
pliq(T ) , the saturation vapour pressure over liquid water (i.e. in the no man’s land) plays an important role. In this section we

investigate the impact of choosing another formulation for pliq(T ) on the nucleation rate and thus the nucleation events.

5.1 New representation of saturation water vapour555

In the formulation by Murphy and Koop (2005) the extrapolation of the saturation vapour pressure into the no man’s land of

water’s phase diagram is based on the assumption that the state of amorphous ice is thermodynamically equivalent to super-

cooled liquid water. Therefore, the specific heat of liquid water can be extended in the super-cooled regime using measurements

of amorphous ice. This leads to the established formulation in Murphy and Koop (2005).
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Recently, a new representation of the saturation vapour pressure over super-cooled liquid water was proposed by Nachbar560

et al. (2019). In this study, the authors consider different states of water in the low temperature range. They conclude that

amorphous ice is thermodynamically different from super-cooled water, thus they provide a different extrapolation for the

saturation vapour pressure (Nachbar et al., 2019).

Although the deviation between the two curves is very small – even in the low temperature range less than 10% – its impact

on saturation ratios as well as on the nucleation thresholds is quite large, as can be seen in figure 8.565
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Figure 8. Water saturation (Si =
pliq
pice

) and nucleation threshold (for J = 1016 m−3 s−1) for different formulations of saturation vapour

pressure over super-cooled water, Murphy and Koop (2005) vs. Nachbar et al. (2019)

The curves of water saturation as well as the nucleation thresholds are systematically shifted to higher values. In addition,

the new curves have a more linear shape than the curves resulting from Murphy and Koop (2005). The ratio of the saturation

pressures over ice and liquid (i.e. the functions aiw(T ) and 1
aiw(T ) behave differently: aiw(T ) is much closer to a quadratic curve

as can be seen in the left panel of figure 9. These new fits were used for the formulation of the approximated nucleation rate.

Thus, we do not change the general approach for approximating the nucleation rate etc., we only use a different representation570

of the function aiw(T ).
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Nucleation threshold Sc(T ) (black line) and polynomial approximations(red: quadratic, blue: linear). Note that the former approximation

by Kärcher and Lohmann (2002) (dark green) are now very close to the new formulation, whereas the fit by Ren and Mackenzie (2005)

(turquoise) deviates significantly.

5.2 Numerical simulations of nucleation events

In figure 10 the results of the nucleation events using the new representation of the saturation vapour pressure due to Nach-

bar et al. (2019) are shown. As for former experiments, the ice crystal number concentration (left panel) and the maximum

supersaturation values (right panel) are shown.575

For the ice crystal number concentration, the impact of the new formulation of pliq is small; the relative deviation from the

reference simulations using the original vapour pressure formulation by Murphy and Koop (2005) is always smaller than 15%.

The deviation increases with decreasing temperature and is most prominent for lower vertical updrafts (w < 1m s−1).

For the maximum saturation ratio the change as compared to the reference simulations is much more prominent. As can

be seen in figure 8 the nucleation thresholds for a value of J = 1016m−3 s−1 are increasing with decreasing temperature580

with a larger slope compared to the reference case. This behaviour can clearly be seen in the maximum supersaturation; for

decreasing temperature the maximum supersaturation is increasing to higher values in comparison to the reference simulations.

The increase does not depend on the vertical velocities.

Remark: At the moment it is not clear, which thermodynamic hypothesis and thus which resulting approximation for the

saturation vapour pressure over liquid water is physically correct, although the formulation by Murphy and Koop (2005) seems585

to agree with recent measurements (Pathak et al., 2021). In particular, it is not clear if the formulation of Nachbar et al. (2019)

can be extrapolated to values T < 200K. Thus, we cannot recommend to use a certain formulation.
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Figure 10. Impact of the formulation of the saturation vapour pressure by Nachbar et al. (2019) on the idealized nucleation events. Left: ice

crystal number concentrations, right: maximum supersaturation values. The relative differences in number concentrations are always smaller

than 15%

6 Another approach to formulate the nucleation rate

Up to now we always employed the “reference” nucleation rate in our computations, i.e. the formulation as in Koop et al.

(2000) but corrected by a constant offset, see Section 4.1, in order to match the nucleation rate for pure water droplets by Koop590

and Murray (2016) in a certain temperature range. In this section we take a different point of view assuming that we can just

directly adopt the formulation by Koop and Murray (2016) for the nucleation rate of aqueous solution droplets, providing an

exact match of both curves by definition. In the following we discuss the consequences of using such a direct approach in terms

of nucleation events.

6.1 Direct fit to nucleation rate of pure water595

In order to arrive at a direct fit, we assume that at water saturation, the freezing of pure water droplets should behave as

the freezing of solution droplets at super-cooled states. To avoid a complicated reformulation of the formula from Koop and

Murray (2016) in terms of the water activity ∆aw, we use a quadratic polynomial fit to the original formulation Jhom(T ) at

water saturation, see Appendix C for details. Figure 11 presents the original data (black curve) together with the quadratic fit

(red curve) and the corrected formulation of Koop et al. (2000) (blue curve) from section 4.1. In contrast to the (corrected)600

formulation by Koop et al. (2000) the nucleation rate reaches a maximum at ∆aw ∼ 0.345 and decreases afterwards. As a

result, there is a significant deviation between the two nucleation rates (JK2000 > JKM2016) for the range ∆aw > 0.32. Thus,

we can expect that for cold temperatures and/or high upward motions there will be large deviations in the produced ice crystal

number concentrations within nucleation events.
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(Koop et al., 2000, corrected, blue), all depending on ∆aw.

It should be kept in mind that the range of the parameterisation of the nucleation rate as given in Koop et al. (2000) is605

restricted to the interval 0.26≤∆aw ≤ 0.34. As a result, it is not clear if the parameterisation works well for values ∆aw >

0.34. However, there are measurements (see Laksmono et al., 2015) for the freezing of pure water droplets that also show a

kind of plateau at cold temperatures (corresponding to high values of ∆aw). Thus, for higher values ∆aw > 0.34 we use the

value JKM2016(∆aw) = JKM2016(0.34) to (a) mimick the plateau in the measurements, and (b) avoid numerical issues in the

simulations. Assuming that the nucleation rate does not depend on other quantities than water activity, it may now be used in610

numerical simulations of homogeneous nucleation events.

6.2 Numerical simulations of nucleation events

After having obtained the direct formulation of the nucleation rate of (Koop and Murray, 2016), we now investigate its impact

on nucleation events using numerical simulations as before. For completeness, two different types of simulations are done: (1)

Simulations using the standard formulation of pliq by Murphy and Koop (2005) and (2) simulations using the new formulation615

of pliq by Nachbar et al. (2019). The results of the simulations are shown in figure 12.

First we consider the ice crystal number concentrations (left panel). For low vertical updrafts, the values of ni are only

slightly affected in case of using the adapted nucleation rate. For higher vertical velocities, there is a reduction in the produced

ice crystal number concentrations; this reduction increases with increasing vertical updrafts. This effect can be explained as
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Figure 12. Impact of the direct formulation of the nucleation rate based on Koop and Murray (2016) on the idealized nucleation events. Black

triangles and lines indicate the reference simulation, red squares and lines denote the use of the nucleation rate based on Koop and Murray

(2016), and blue squares and lines represent the use of the nucleation rate based on Koop and Murray (2016) together with the saturation

vapour pressure due to Nachbar et al. (2019). Left: ice crystal number concentrations, right: maximum supersaturation values.

follows. The nucleation rates differ significantly for higher values ∆aw ≥ 0.31, i.e. the slope of the adapted rate is (much)620

smaller than the original nucleation rate by Koop et al. (2000). For higher updrafts, the supersaturation reaches higher values,

which is equivalent to higher values of ∆aw. Thus, the nucleation rates differ for these high updraft events, and less ice crystals

are produced for using the adapted nucleation rate. Apart from the influence at high vertical velocities, there is almost no

difference in the ice crystal number concentrations between the nucleation events using the different formulations.

Considering the values of maximum supersaturation (right panel), there is a similar behaviour as for ni. At low vertical625

velocities there is almost no difference between the reference nucleation rate and the newly adapted rate. In case of using the

saturation vapour pressure according to Nachbar et al. (2019), the observed shift in the maximum supersaturation values stems

from the increased difference between the values of the saturation vapor pressures at low temperatures, see Section 5. At higher

updrafts (w > 0.5m s−1), the maximum supersaturation values increase nonlinearly. For the coldest temperature (T = 196K)

we note a dramatic increase up to very high values (Si,max ∼ 1.8). However, note that in all cases the values of the maximum630

supersaturation stays below water saturation, hence no liquid origin ice formation would occur.

7 Thresholds of ice nucleation

For the evaluation of measurements of ice clouds, the possible range of supersaturation is often estimated using the so-

called Koop-line, i.e. the supersaturation threshold Sc(T ) which corresponds to a nucleation rate value J = 1016m−3 s−1 =

1010cm−3 s−1. In many investigations (see, e.g., Krämer et al., 2009) this function is used as an upper bound for possible635

28



values of Si inside and also outside of ice clouds. However, from our investigations in this study so far, we have to carefully

consider two different aspects from a purely theoretical point of view:

1. The nucleation threshold assigned to the frequently used value j0 = 16 is arbitrary chosen; there is no convincing physical

justification for using this particular value. In Koop et al. (2000) different values J = 10j0 m−3 s−1 with j0 ∈ [1, 17] are

used, but for testing the impact of droplet sizes, they used the value j0 = 16. Nucleation of ice crystals is not a switching640

process, it occurs gradually and smooth, although the nucleation rates are very steep functions of the supersaturation.

The size or strength of the nucleation event cannot be determined just by the maximum of the supersaturation; the

amount of ice crystals as formed in the nucleation event is determined by the integral over the supersaturation curve

(see, e.g., the discussion in Dinh et al., 2016). Thus, it is possible to form many crystals in lower updrafts even if the

high nucleation threshold is not reached. From our simulations we observe that the peak supersaturation for nucleation645

events depends crucially on the vertical velocity, i.e. on the temperature rate, which is prescribed during the event. This

is quite obvious from the differential equation determining the change of Si: The peak value is given by dSi

dt = 0, i.e.

when source and sink terms balance each other. Since the source includes the vertical velocity linearly, the dependence

of the peak supersaturation on w is obvious, although not linear.

2. As described above in section 5, it is still not clear which formulation of the saturation vapor pressure is physically650

correct. However, the use of the formulation by Nachbar et al. (2019) leads to a higher saturation vapour pressure and

thus to a higher nucleation threshold, even for arbitrary values j0 and its associated nucleation threshold Scx0(T ).

Taking these two aspects into account, we can observe the following behaviour. In figure 13 (left panel) we compare the

nucleation thresholds for the saturation vapour pressure according to Murphy and Koop (2005) for j0 = 10 (red curve) and

j0 = 16 (dark blue curve) with the range of peak supersaturations for vertical velocities 0.01m s−1 ≤ w ≤ 2m s−1 (black655

vertical bar) and the maximum value for a very unrealistic value w = 10m s−1 (black crosses) . For comparison, the well

known Koop-line as fit and proposed by Kärcher and Lohmann (2002) is plotted (light blue curve). It is quite obvious, that for

typical vertical velocity values the “classical” Koop-line is not reached, i.e. the peak supersaturation is below the threshold.

Nevertheless, for strong cooling rates (very high vertical velocities), as are used in experiments in cloud chambers, high

supersaturations are reached, which still partly remain below the Koop-line. If we change the saturation vapour pressure to the660

formulation by Nachbar et al. (2019), the qualitative picture remains the same (right panel in fig 13): Even for high vertical

updrafts the high nucleation rates are reached; for moderate and small updrafts, the peak supersaturation stays well below the

classical nucleation threshold. However, the nucleation thresholds are generally shifted to higher values of supersaturation due

to the different saturation vapour pressure formulation. It seems that these values fit better to the experiments in the AIDA

cloud chamber as reported in Baumgartner et al. (2022) and Schneider et al. (2021). This might be interpreted as a hint that the665

formulation by Nachbar et al. (2019) might be the more appropriate formulation for the saturation vapour pressure, although

the formulation by Murphy and Koop (2005) agrees well with recent measurements (Pathak et al., 2021). In any case, one has to

consider the impact of the cooling rate on the peak supersaturation in a nucleation event. Therefore, the use of the “Koop-line”

in the currently applied way is misleading and does not correspond to the actual physics of nucleation events. Note, that the
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temperature dependent threshold is used in some parameterisations of ice clouds in climate and numerical weather prediction670

models (see, e.g., Kärcher et al., 2006; Köhler and Seifert, 2015). A simple but albeit more realistic extension of such schemes

would be a threshold depending on both, vertical velocity w and temperature T ; a 2D fit to the maximum supersaturation data

from our simulations might be a first attempt into this direction.
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Figure 13. Comparison of nucleation thresholds (red curve: x0 = 10, blue curve x0 = 16) and the classical “Koop-line” (light blue curve).

The black vertical bars indicate the range of peak supersaturation ratios within the nucleation events computed using vertical velocities

ranging from 0.01m s−1 to 2m s−1. The black cross corresponds to the peak supersaturation ratio for the vertical velocity of 10m s−1. Left

panel: Curves based on the water activity using the saturation vapour pressure formulation by Murphy and Koop (2005); right panel: the

same for the saturation vapour pressure formulation by Nachbar et al. (2019).

Finally, we can also investigate the peak supersaturation values for the new empirical nucleation rate formulation, as derived

in section 6.1. Generally, we see the same behaviour as for the reference simulations with a monotonic increase of peak675

supersaturation values with increasing vertical velocity (cf. figure 14). The use of the saturation vapour pressure formulation

by Nachbar et al. (2019) additionally enhances the peak values as seen before. However, the peak values for cold temperatures

and very high vertical velocities are strongly enhanced in comparison with the reference simulations. Also these high values

are still in line with the measurements in the AIDA chamber as reported by Baumgartner et al. (2022) and Schneider et al.

(2021).680

8 Summary and outlook

We have investigated the impact of the representation of nucleation rates and diffusional growth on idealized nucleation events,

as driven by a constant vertical updraft (i.e. a constant cooling rate). In a first step, we have investigated the original formulation
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Figure 14. Same as in figure 13, but using the nucleation rate as empirically derived in section 6.1.

of the nucleation rate for homogeneous freezing of aqueous solution droplets in the formulation by Koop et al. (2000); for a

better agreement with the nucleation rate of pure water droplets a simple shift could be applied. For analytical purposes and685

simple model calculations, a less complicated formulation is desired. We showed that a linear fit to the original formulation

depending on the difference in water activity ∆aw = aw−aiw is accurate enough to reproduce the ice crystal number concentra-

tions quantitatively. Based on this linearization approach, we derived a threshold formulation of the nucleation rate, which can

be used for analytical investigations as already presented in Baumgartner and Spichtinger (2019). Again, the new formulations

are good enough to represent nucleation events quantitatively as compared to the reference nucleation formulation.690

Using the linear approximation as a starting point, we investigated the impact of different formulations on idealized nu-

cleation events, changing the two relevant parameters (slope and constant offset). These investigations led to the first major

results:

– The absolute values of the nucleation rate has only marginal impact on the resulting ice crystal number concentrations

in a nucleation event. Even a scaling by up to six orders of magnitudes did not severely affect the resulting number695

concentrations. However, the maximum supersaturations changed, and the resulting deviations range up to few percent

relative humidity. In addition, the time of nucleation onset is slightly shifted.

– The slope of the nucleation rate (or more precisely in the argument of the exponential function) has a much larger impact

on the resulting nucleation event, and the ice crystal number concentration. Variations in the slope change the number

concentrations in the nucleation events by up to a factor 2.5 (in both directions). Also, the maximum supersaturation is700

affected by a deviation of a few percent of relative humidity.
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As a final conclusion of this part of our work, we can state that the shape of the nucleation rate is of high importance for the

representation of the nucleation process, whereas the absolute strength of the rate is almost negligible, if the values are high

enough. This shows that the nucleation process (homogeneous freezing of solution droplets) itself is a quite robust process,

thus the accurate formulation is maybe less critical as we thought. Also the amount of available solution droplets as controlled705

by the background aerosol does not affect the nucleation events itself; it can be seen as a scaling factor of the nucleation rate,

in the same sense as in the sensitivity analysis of changing the absolute values of nucleation rates. As long as the amount of

aerosol particles is some orders of magnitude larger than the ice crystal number concentration as predicted for a nucleation

event, this does not play a role for the nucleation events, and we do not have to care about exhausting the reservoir of solution

droplets.710

We also investigated the impact of a recently published formulation of the water saturation pressure based on a thermody-

namic assumption of different phases of water in the very low temperature range (Nachbar et al., 2019). This new formulation

leads to changes in the function aiw, which directly affected the nucleation rate based on ∆aw. Following the derivations of

the threshold description, approximations were constructed. The new resulting functions aiw(T ) and Sc(T ) can be accurately

approximated with polynomials of smaller degrees, as compared to the standard formulation. The new formulation of pliq only715

marginally changed the resulting ice crystal number concentrations. However, the impact on the maximum supersaturations

increased with decreasing temperature up to few percent of relative humidity. Overall, the two different representations of the

saturation vapour pressure over liquid water produced very similar, even almost identical, results. Thus, a decision about the

validity of a certain formulation must be left to extensive experimental measurements.

In a more speculative part of the study we adapted the nucleation rate of homogeneous freezing of pure water droplets (Koop720

and Murray, 2016) as a new parameterisation for homogeneous freezing of aqueous solution droplets. This representation

is quite similar for low values of ∆aw to the original formulation by Koop et al. (2000) and its approximations. However,

for very high water activities (i.e. high supersaturations as driven by large vertical updrafts), there is a significant deviation

from the reference nucleation rate. Thus, for some cases in the parameter space (high updrafts and low temperatures) there

is a significant deviation in the number concentrations, and, more obvious, in the maximum supersaturations, which reach725

almost water saturation in some cases. This approach showed that the shape of the nucleation rate is important for the resulting

nucleation events; strong deviations of the shape from its reference affect the results of the nucleation event significantly. If

this representation of the nucleation rate is more close to the physics of ice nucleation remains open, and might be an objective

for experimental investigations.

Finally, we investigated the commonly used threshold for homogeneous nucleation (“Koop-line”) in the light of peak super-730

saturation values during nucleation events. This threshold corresponds to a nucleation rate of 1016m−3 s−1, but is only rarely

reached during nucleation events. Nucleation itself starts usually at much lower values of Si corresponding to lower values

of the nucleation rate. The peak supersaturation during a nucleation event, characterised as an equilibrium between sources

and sinks of supersaturation depends on temperature and vertical velocity. The peak supersaturation is a much more physical

quantity to investigate the strength of a nucleation event. The peak supersaturation as diagnosed from the numerical simulations735
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might be a more physical representation of ice nucleation in coarse resolution models in comparison to the frequently used

nucleation threshold.

It should be emphasized that all the results and conclusions are meant in a bulk-sense, i.e. for a large collection of ice crystals

such as a newly forming cirrus cloud. If one is interested in the details of ice formation for a single or only a small number of

particles then all details of the nucleation rate might be equally important. In that respect, our study shows that homogeneous740

cirrus formation is a robust physical process.

Appendix A: Model description - details

In this appendix, we present the details of the model as used for the numerical simulations of the nucleation events. Note, that

we use the mathematical (and also programming) notation of logarithms, i.e. log denotes the natural logarithm (to base e).

Background aerosol745

We assume for the aqueous solution droplets in the tropopause region a size distribution of lognormal type:

fsol(r) =
na√

2π logσr
exp

(
−1

2

(
log(r/rsol)

logσr

)2
)

1

r
(A1)

with a modal radius rsol = 75 · 10−9 m, and a geometric standard deviation σr = 1.5. These values are adapted from the more

complex model by Spichtinger and Gierens (2009), using the fact that the dry aerosol population, as used in Spichtinger and

Gierens (2009), has grown to larger sizes by water vapour uptake (i.e. assuming Köhler theory, see, e.g. Köhler, 1936). The750

mean volume of the solution droplets

Vd = Vsol =
4

3
πr3

sol · exp

(
9

2
(logσr)

2

)
(A2)

is calculated from the third moment of the lognormal distribution.

Mass distribution for ice crystals

For the ice crystals, we assume a mass distribution of lognormal type755

f(m) =
ni√

2π logσm
exp

(
−1

2

(
log(m/mm)

logσm

))
1

m
(A3)

with a parameter

r0 = exp
(
(logσm)2

)
, m=mm

√
r0 = 3 (A4)

representing the width of the distribution as described in Spichtinger and Gierens (2009). This distribution is used for the

derivation of the rates in the ODE system for the mean quantities of ice mass and number concentration. The integration of760

33



weighting functions of the type mk,k ∈ R+ leads to general moments, which can be computed analytically:

µ[m]k :=

∞∫
0

mkf(m)dm= ni ·mk
m exp

(
1

2
(k logσm)

2

)

= ni ·mkr
k(k−1)

2
0

(A5)

Note, that for the averaged quantities we obtain ni = µ[m]0, qi = µ[m]1, respectively. Thus, we use a double moment scheme

in our model.

Diffusion constant765

For the diffusion of water vapour in dry air, we use the following expression

Dv =Dv0

(
T

T0

)1.94(
p0

p

)
(A6)

which is an empirical fit to measurement data (Hall and Pruppacher, 1976). Note, that the valid temperature range is different

in the book Pruppacher and Klett (2010) and in the original article Hall and Pruppacher (1976). For analytical investigations,

a representation using a quadratic temperature dependence constitute a good approximation for a restricted temperature range.770

For the kinetic correction we use the function

fD(r,a,b) =
1

r
r+a + b

r

=
r2 + ar

r2 + br+ ab
(A7)

whereas r denotes the radius of the ice crystal (using a bulk density of ice ρb = 0.81kg m−3), and the parameters are given by

a= λ ·Ccunn, b=
4Dv

αmc̄v
(A8)

using the mean free path of water molecules in air λ (acc. to Pruppacher and Klett, 2010), the Cunningham correction factor775

Ccunn = 0.7, and the mean velocity of water molecules c̄v . We set the accomodation coefficient αm = 0.5 for comparison with

former investigations (Kärcher and Lohmann, 2002); this value is also within the range as recommended in recent work by

Skrotzki et al. (2013).

For representing the growth rates for the ensemble of ice crystals, by comparison with numerical integration we find that

using a shifted mean mass m1 = c1 · m̄, c1 ≈ 0.819 in the kinetic correction function f(r1,a,b) is a good approximation.780

Howell factor

Latent heat release due to phase changes during diffusional growth changes the surface temperature of the ice crystal. For

taking this into account, we use the Howell factor

Gv =

[(
L

RvT
− 1

)
L

T

D∗v
K∗T

+
RvT

psi

]−1

≈
[(

L

RvT
− 1

)
L

T

Dv

KT
+
RvT

psi

]−1

.

(A9)

In the approximation, we neglect the kinetic corrections for diffusion coefficient Dv and heat conductivity of air KT .785
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Capacity of ice crystals

For ice crystals we assume spherical shape for small crystals and columnar shape for large crystals as in Spichtinger and Gierens

(2009); thus the shape factor, or capacity, can be determined exactly using the electrostatic analogy (McDonald, 1963), using

a prolate spheroid with semi axes a,b; the capacity can be analytically expressed by

C =
Lε′

log( 1+ε′

1−ε′ )
(A10)790

using the eccentricity ε′ =
√

1−
(
b
a

)2
and the length L of the crystal, which in turn is a function of the crystal mass. Note,

that the eccentricity changes with crystal growth since the aspect ratio is changing (see Spichtinger and Gierens, 2009, their

eq. (17)) We find a very good approximation to the piece-wise definition of the capacity by Spichtinger and Gierens (2009)

depending on the ice crystal mass

C(m)≈ a1 ·mb1 + a2 ·mb2 (A11)795

with constants

a1 = 0.015755m kg
1
b1 , b1 = 0.3,

a2 = 0.33565m kg
1
b2 , b2 = 0.43.

(A12)

The representation of the capacity in the ice crystal ensemble is given by the integration, leading to general moments µ[m]bi .

Ventilation correction

The empirical ventilation corrections usually depend on the use of two dimensionless numbers, i.e. the Schmidt number NSc800

and the Reynolds number NRe

NSc =
µ

Dvρ
,NRe =

ρ

µ
vtL (A13)

using the dynamic viscosity of air µ (e.g. Dixon, 2007). Thus, the size of the ice crystal L is influencing the Reynolds number

via the product vt(m)L, using the terminal velocity vt for an ice crystal of mass m. The effect of ventilation, i.e. the additional

uptake of water vapour by the airflow around the particle crucially depends on the shape of the particles. For columnar shaped805

ice crystals, we adapt the empirical quadratic fit by Liu et al. (2003) to the simulation data (Ji and Wang, 1999) as follows

fv = 1 + cχ ·χ2, cχ = 0.14856, χ=N
1
3

ScN
1
2

Re (A14)

For the formulation of the terminal velocity of columnar shaped ice crystals, vt(m), we use the formulation by Spichtinger

and Gierens (2009), including also the correction for temperature and pressure, respectively. For representing the ensemble of

ice crystals, by comparison with the numerical integration we find that using a shifted mean mass m2 = c2 ·m,c2 = 1.5 in the810

formulation of the Reynolds number leads to a very good agreement.
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Appendix B: Reference simulation results

In this section we report on the results of the reference simulations, using the corrected formulation of the nucleation rate for

super-cooled aqueous solution droplets by Koop et al. (2000). For evaluating the quality of the simplified model, we compare

the number concentration of ice crystals as obtained from standard nucleation events with results from literature, i.e. with a815

model using sophisticated particle physics (Kärcher and Lohmann, 2002) and a complex bulk physics scheme (Spichtinger and

Gierens, 2009). In figure B1 the results are represented for the temperatures T = 196, 216, 236K at pressure p= 200hPa, as

prescribed in Kärcher and Lohmann (2002).
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Figure B1. Comparison of ice crystal number concentrations as obtained for typical nucleation events from different models. Red squares:

Particle model by Kärcher and Lohmann (2002), blue circles: complex two moment bulk scheme by Spichtinger and Gierens (2009), black

line & triangles: simpler bulk model from this study, indicated as new reference

In comparison we see an overall good agreement of our simple model with the more sophisticated models (Kärcher and

Lohmann, 2002; Spichtinger and Gierens, 2009). However, we have to remark here that the deviation in the results for temper-820

ature T = 236K at low vertical velocities is the result of the neglegtance of the ventilation correction in the model by Kärcher

and Lohmann (2002). In summary, our simplified approach compares very well with the results of the other studies.

In figure B2 a typical nucleation event is shown. Here, two different nucleation parameterizations are used, the reference by

Koop et al. (2000) (black line) and the linear fit (red line). There are small differences in the time evolution of the variables
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saturation ratio Si (left panel), number concentration ni (middle panel) and mean mass m (right panel), but in general there is825

the same behaviour in both cases.
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Figure B2. Representative example for a typical nucleation event for temperature T = 216K and pressure p= 200hPa with a forcing of

w = 1m s−1. Red line: reference nucleation rate after Koop et al. (2000), black line: nucleation rate approximated by linear function as given

in eq. (38).

The source of supersaturation (i.e. cooling by vertical updraft and adiabatic expansion) leads to an increase in Si until

nucleation starts at about tstart ∼ 40s, i.e. at very low values of the nucleation rate. Si is still increasing since the sink of

depositional growth is not strong enough to reduce water vapour efficiently; thus, the ice crystal number concentration is

further increasing due to permanent ice nucleation. At the peak supersaturation, source and sink of supersaturation are balanced830

(tpeak ∼ 110s); after this time, Si is decreasing due to the dominant growth term. The number concentration does not change

much from this time on but as long as the values of Si are large enough, still ice nucleation takes place. At about t∼ 125s the

nucleation event is complete, no further nucleation takes place, since the nucleation rate is too small. Note that during the time

interval [tstart, tpeak] the mean mass m is almost constant (this feature is more prominent in the linear fit case), whereas for t >

tpeak the mass increases. For t < tpeak the nucleation is dominant, thus diffusional growth just compensates the number increase835

by mass, whereas afterwards crystal growth is dominant over nucleation. This feature was already seen in former investigations,

which leads to a model reduction for analytical investigations (Baumgartner and Spichtinger, 2019). The different nucleation

parameterisations agree qualitatively for a nucleation event; however, the nonlinear reference rate leads to some variations.

While for the linear fit case, the increase in ni is approximately an exponential growth ni(t)∼ exp(αt), and in turn the mean

mass is almost constant in the relevant time interval, for the reference case the change deviates slightly from exponential840

growth.

Note, that the thresholds of constant nucleation rates in figure B2 (left panel) can be calculated from eq. (39) using the

respective values for j0 (i.e. j0 ∈ {10,12,14,16}) in the formulation of the supersaturation threshold.
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Appendix C: Simple fit for nucleation rate of pure water droplets

In Koop and Murray (2016) a polynomial of degree 6 is used for fitting the experimental values of the nucleation rate for pure845

super-cooled water. Since polynomials of high degree are difficult to evaluate numerically, we present fits with polynomials of

lower degrees, which are still accurate in the relevant temperature range. The original formulation of the nucleation rate is

Jhom(T ) = 10pn(x), pn(x) =

n∑
i=0

ci ·xi, x= T −Tm. (C1)

with a polynomial pn(x) of degree n= 6 using the melting temperature of pure water Tm = 273.15K. The coefficients ci

are reported in Koop and Murray (2016, table VII), where the nucleation rate is given in units cm−3 s−1. We reformulate850

the nucleation rate in SI units (i.e. [J ] = m−3 s−1) by a factor of 106 and approximate the logarithmic values log10(J) by

polynomials of degree 2 and 4, respectively, i.e.

p2(T ) = a0 + a1 ·T + a2 ·T 2,

p4(T ) = a0 + a1 ·T + a2 ·T 2 + a3 ·T 3 + a4 ·T 4
(C2)

the coefficients are given in table C1. For this purpose we use a least square fit for the temperature range 225≤ T ≤ 245K,

for which supercooled water droplets can still exist (see, e.g., figure 4 in Koop and Murray, 2016). In figure C1 (left panel) the855

approximations are shown in comparison with the original fit, while the ratio r = pi(T )
p(x) is shown in the right panel.
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Figure C1. Polynomial fits of low degrees for the nucleation rate as given by Koop and Murray (2016). Left: Reference and fits p2(T ),

p4(T ), right: ratio of reference and fits p2(T ), p4(T )

As can be seen the relative error for the polynomial fit p4(T ) is less than 0.25%, while even for the quadratic fit p2(T ) the

error is smaller than 2%. For practical applications in the relevant temperature range 225≤ T ≤ 240K the quadratic fit might
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be sufficient. If the original polynomial is used, a sophisticated evaluation of the polynomial is recommended (e.g. Horner

scheme).860

fit a0 a1 a2 a3 a4

p2(T ) −5369.61 46.96750 −0.10236 − −

p4(T ) −848143.02 14534.5767 −93.481032 0.26745460 −0.0002872

Table C1. Coefficients for the polynomial fits of the nucleation rate by Koop and Murray (2016) as given in equation (C2).

Appendix D: Perturbation Analysis

The perturbation analysis or asymptotic analysis as applied in Section 4.6 is a well-known technique to investigate the impact

of perturbations on a mathematical object such as a mathematical expression or the solution of an equation. A good general

introduction is given in Holmes (2013) and an application in meteorology is explained in Klein (2010).

The basic idea is to introduce a small parameter ε, to expand the quantity of interest in powers of ε, i.e. ε, ε2, . . . and to865

substitute this expansion into the mathematical object of interest (see Eq. (48) for such an expansion). Since the resulting

expression should hold for any value of ε and even in the limit ε→ 0, all the contributions from the various powers of εmay be

considered individually. Given that the parameter ε is assumed as being small, effects that stem from terms with higher powers

of ε will only have a small impact whereas effects with a lower power of ε will be dominant.

For practical applications it is common to also scale coefficients and parameters of the mathematical expression in powers870

of ε. This step ensures that the mutual magnitudes of the parameters stay consistent, even in the limit ε→ 0. This task involves

usually some free choices, and is known as distinguished limit.

In the spirit of the works of Klein and Majda, the scaling of the parameters is often done by assuming ε∼ 0.1, i.e. substituting

this value of ε into the scaling of the parameters yields a realistic value of the parameters (see, e.g., Hittmeir and Klein, 2017;

Baumgartner and Spichtinger, 2019; Klein and Majda, 2006). As an example, the parameter A(T )≈A0 = b1a
i
w0 ≈ 149.32 is875

written as A0 =A∗ε−2 with A∗ =O(1) where the latter may be understood as A∗ is independent of ε. With A∗ ≈ 1.4932 the

value ε∼ 0.1 restores the original value of A0.

In essence, the goal is to determine the nonzero-parts of the expansion of the mathematical expression and the respective

power of ε indicates how strong this contribution is. As an example, if the final expansion is found to be ε−1ω−1 +ω0 +εω1 +

O(ε2) then the term ω−1 will be dominant since this term is associated with the lowest power of ε. If the result would be the880

expansion ω0 + εω1 +O(ε2) then we may conclude that ω0 is the dominant part and all ωk for k ≥ 1 only contribute small

corrections (since ε is small).

Another fruitful use of perturbation analysis is to allow an equation to determine the possible matching powers of ε, i.e. to

answer the question: Which powers of ε are needed to achieve a balance in the equation at hand? As an example, from physical
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considerations we know that equation (59) holds. As a consequence, after having expanded both sides of the equation in powers885

of ε, the expansions on both sides must agree (otherwise the equation would not hold). This is only possible if the powers of ε

match, hence the appropriate powers for ε may be inferred.
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