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Abstract. Homogeneous freezing of solution droplets is an important pathway of ice formation in the tropopause region. The
nucleation rate can be parameterised as a function of water activity, based on empirical fits and some assumptions on the
underlying properties of super-cooled water, although a general theory is missing. It is not clear how nucleation events are
influenced by the exact formulation of the nucleation rate or even their inherent uncertainty. In this study we investigate the
formulation of the nucleation rate of homogeneous freezing of solution droplets (1) to link the formulation to the nucleation
rate of pure water droplets, (2) to derive a robust and simple formulation of the nucleation rate, and (3) to determine the impact
of variations in the formulation on nucleation events. The nucleation rate can be adjusted and the formulation can be simplified
to a threshold description. We use a state-of-the-art bulk ice microphysics model to investigate nucleation events as driven
by constant cooling rates; the key variables are the final ice crystal number concentration and the maximum supersaturation
during the event. The nucleation events are sensitive to the slope of the nucleation rate but only weakly affected by changes
in its absolute value. This leads to the conclusion that details of the nucleation rate are less important for simulating ice
nucleation in bulk models as long as the main feature of the nucleation rate (i.e. its slope) is represented sufficiently well.
The weak sensitivity on the absolute values of the nucleation rate suggests that the amount of available solution droplets also
does not crucially affect nucleation events. The use of only one distinct nucleation threshold function for analysis and model
parameterisation should be reinvestigated, since it corresponds to a very high nucleation rate value, which is not reached in
many nucleation events with low vertical updrafts. In contrast, the maximum supersaturation and thus the nucleation thresholds
reached during an ice nucleation event depend on the vertical updraft velocity or cooling rate. This feature might explain some
high supersaturation values during nucleation events in cloud chambers and suggests a reformulation of ice nucleation schemes

used in coarse models based on a purely temperature-dependent nucleation threshold.

1 Introduction

Clouds are one of the most important components in the Earth-Atmosphere system. They influence the hydrological cycle and
Earth‘s energy balance via interaction with radiation. Clouds can cool the system by partly scattering and reflecting incoming

solar radiation (albedo effect) but also warm the atmosphere by absorbing and re-emitting thermal radiation as emitted by the
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Earth’s surface (greenhouse effect). While for liquid clouds a net cooling effect can be derived, the radiative effect for clouds
containing ice crystals is still under debate. In particular, for pure ice clouds (so-called cirrus clouds) at high altitudes in the
low temperature range (7' < 235K) albedo effect and greenhouse effect are of the same order of magnitude but admit different
signs, leading to different net-effects (see, e.g., Fusina et al., 2007; Joos et al., 2014; Gasparini et al., 2017). Thus, details
in microphysical properties of ice crystals might decide about a net warming or cooling of cirrus clouds, as can be seen in
former model studies (e.g. Zhang et al., 1999). A key aspect of ice crystals is their size which directly affects the scattering
and absorption of radiation. Smaller crystals scatter incoming solar light more effectively, thus the optical depth 7 is directly
dependent on the size, as can be seen in the usual approximation (cf., e.g., Fu and Liou, 1993)

b
—IWC-Az- [0+ — 1
T C-Az <a+De>, (D

where D, denotes the effective diameter of the crystal, IWC is the ice water content, Az represents the vertical extent of the
cloud, and a, b are empirically derived constants. Since the available water vapour is mainly determined by thermodynamic
conditions, the pathway of ice nucleation often decides about the ice crystal number concentration in cirrus clouds and thus
their effective size (assuming a certain amount of available water vapour).

Ice crystals can be formed by very different nucleation processes, which can be grouped into two major pathways, namely in
situ and liquid origin ice formation (e.g. Krdmer et al., 2016; Luebke et al., 2016; Wernli et al., 2016). The overall term in situ
Sformation refers to ice formation at humidities below water saturation, whereas liquid origin formation subsumes all formation
processes where cloud droplets are present and humidity is close to water saturation (e.g. freezing of cloud droplets), see the
definition in Wernli et al. (2016). It is well known, that the ice crystal number concentration varies crucially in dependence
on the underlying nucleation process, leading to potentially strong changes in the resulting radiative effect (see, e.g., Krdmer
et al., 2020).

Despite of the availability of many observational data and laboratory experiments (e.g. Hoose and Mohler, 2012), and also the
development of new theoretical models (e.g. the soccer ball model, see Niedermeier et al., 2011), the details of ice nucleation
at the molecular scale are still unknown.

A special situation occurs for the so-called homogeneous freezing of super-cooled solution droplets (also short: homoge-
neous nucleation) at cold temperatures below 235 K. This process describes the spontaneous freezing of supercooled aqueous
solution particles containing a small amount of (usually inorganic) substances. Albeit also the details of this freezing process
are not completely understood on a molecular scale, reproducible laboratory experiments allowed the formulation of an em-
pirical fit for the nucleation rate (Koop et al., 2000). Such a fit bears inherent but maybe also unknown uncertainty, since we
have no generally accepted theory for comparison. Other fits or a change in the fit parameters might also lead to different
formulations of nucleation rates.

A priori, it is not clear how large the impact of the formulation of nucleation rates might be on simulating nucleation
events in models resolving nucleation events in time. This issue is the starting point of our investigation. We want to address
three different aspects. First, we want to link the former formulation by Koop et al. (2000) to recent findings on pure water

in order to formulate a consistent framework for our models. Second, we want to derive a robust and simple formulation
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of the homogeneous nucleation rates, which can be used for analytical as well as numerical investigations. Third, we want to
investigate the impact of variations of nucleation rates (based on the new formulation) on nucleation events, i.e. on the resulting
ice crystal number concentrations.

From theory (e.g. Baumgartner and Spichtinger, 2019) and former idealized box model simulations (e.g. Kércher and
Lohmann, 2002; Ren and Mackenzie, 2005; Spichtinger and Gierens, 2009), we know that ice crystal numbers as produced in
homogeneous nucleation events driven by a constant cooling rate (equivalent to a constant vertical velocity) crucially depend
on several parameters and, thus, affect also the radiative properties of the formed ice cloud (see, e.g., calculations in Krimer
et al., 2020; Joos et al., 2009). Therefore, it is of high importance to understand the impact of the formulation of nucleation
rates on the resulting ice crystal number concentrations.

We emphasize that all our investigations are meant in a bulk-sense, i.e. only integrated quantities such as the ice crystal
number and (total) ice crystal mass are considered. Using this approach, we consider the case of a newly forming cirrus cloud
and do not focus on the freezing or forming details of single ice crystals.

The study is structured as follows. In the next section, we present the fit by Koop et al. (2000) and its empirical basis, as
related to water theories. In section 3 we describe the simple model used for idealized simulations for testing the impact of
different formulations of nucleation rates. In section 4 the more compact formulation of the nucleation rate along with several
approximations is discussed. The consequences of using the proposed approximations are explored by idealized numerical
simulations. In section 5 we investigate the impact of a recently proposed formulation of the saturation vapour pressure over
super-cooled liquid water on the nucleation events (Nachbar et al., 2019). In section 6 a new formulation of the nucleation rate
based on results for freezing of pure super-cooled water (Koop and Murray, 2016) is presented and its impact on the number
concentration of nucleated ice crystals is discussed. In section 7 we investigate thresholds of ice nucleation as well as the peak

values of supersaturation during nucleation events, Finally, we summarize the results and draw some conclusions in section 8.

2 Empirical fit of the nucleation rate

Nucleation events are investigated in the phase space spanned by temperature and water activity of the aqueous solution. The
latter is defined as the ratio of saturation pressures of water vapour over the solution py, and pure water piig, as @, := %‘:. In this
representation, the melting curve for different inorganic solutions turns out to be solely temperature dependent, i.e. a’, (T :=
o (T) = % (cf. Koop, 2015, his eq.(5) ), where pj.. denotes the saturation vapour pressure over ice. The important insight
here is that also the freezing/nucleation events collapse to a single line in the diagram (see Koop et al., 2000; Koop, 2004, 2015),
which can be fitted by shifting the melting curve (deviation Aa,, ~ 0.305). This also means that the nucleation events do not
depend on the solute, which is at least true for most inorganic substances (see, e.g., Koop, 2004). Thus, the nucleation rate

can be solely parameterized as a function of Aa,, = a,, — a’,. For the fitting procedure in Koop et al. (2000), a polynomial of

degree 3 is used and results in the formulation

3
Jool(Aay) = 1073%)  with  ps(z) =) agpa 2)
k=0
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of the homogeneous nucleation rate coefficient Jy,. The nucleation rate coefficient is used to formulate the probability of
freezing of aqueous solution droplets. The fit was used in the spirit of the representation of the nucleation rate for pure water
as derived by Pruppacher (1995). During this time, three water theories were available, and the nucleation rate (as a cubic
polynomial) was chosen according to the stability limit hypothesis (e.g. Mishima and Stanley, 1998), leading to an unlimited
increase in the rate (see, e.g., Pruppacher, 1995, his figure 3). However, meanwhile this water theory can be ruled out by
experimental evidence, thus only the two other water theories remain (singularity-free hypothesis vs. liquid-liquid critical
point, cf. Gallo et al., 2019, 2016), which do not admit an unlimited increase in nucleation rates of pure water (see, e.g., Koop
and Murray, 2016). Thus, the heuristic basis for choosing a cubic polynomial as a fit is not valid anymore.

Note that for atmospheric relevant conditions, both remaining water theories produce essentially the same results. Only at
very low temperatures T' < 150K, where highly viscous or even glassy states of water occur, a different behaviour is predicted.
Such temperatures are not relevant for investigations of ice clouds in the tropopause region, where homogeneous freezing of so-
lution droplets takes place. However, these theories provide the basis for the formulation of the saturation vapour pressure over
supercooled water in the no man’s land (Murphy and Koop, 2005), combining heat capacities of liquid water and amorphous
ice.

Finally, using the assumption of solution droplets being in equilibrium with their environment and neglecting size effects,

water activity equals the liquid water saturation ratio Sy due to

. Dsol inj‘l- Pov _ Sliq (3)

Aoy = =

Piiq Piig
where p, denotes the partial water vapour pressure. Using this representation of a,, together with the ice saturation ratio

; = £~ the computation
Pice

i b pieeT) o\ Piee(T)
Y pig(T) pig(T) (5 1)pliq(T) 4)

= (S —1)a,,(T)

Aay, =ay —a

shows that Aa,, only depends on the ice saturation ratio and temperature.

Note, that although recent measurements (Pathak et al., 2021) corroborate the procedure in the study by Murphy and Koop
(2005), in a recent study by Nachbar et al. (2019) the combination of liquid water and amorphous ice is called into question,
leading to a different formulation of the saturation vapour pressure over supercooled water and thus a different water activity. In
the following investigations, we will also use this formulation in order to determine the sensitivity of the nucleation events on

i
w

the choice of a saturation vapour pressure formulation. Note, that for each choice the water activity a’,(7") must be recalculated.

3 Model description

We begin with the description of the governing equations for the relevant ice processes in a nucleation event, i.e. homogeneous
nucleation and diffusional growth. Both processes are key for determining the properties of the nucleation event, such as the

number of nucleated ice crystals and the evolution of the ice saturation ratio (e.g. its peak value). Of course, other processes
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such as sedimentation and aggregation of ice crystals are important for the evolution of ice clouds, but usually act on longer
time scales, e.g., when the particles are grown to larger sizes. Thus, we omit these processes and concentrate on nucleation and
growth, as in former studies (e.g. Kircher and Lohmann, 2002; Baumgartner and Spichtinger, 2019).

We formulate the model in terms of averaged quantities for ice crystal mass and number concentration (g;, n;), i.e. as a
2-moment scheme. Additionally, the saturation ratio with respect to hexagonal ice, S; = p;fiEJT)’ is used, with the partial water
vapour pressure p,, and the saturation water vapour pressure over hexagonal ice, pice(7"). Thus, the complete set of equations

for an adiabatically ascending air parcel can be represented as

ni = Nuc, ®)
¢i = Nucg+Dep, ©
S; = Cool + Dep, @
: aT ar g L dg g L
T = = — =2 = =-= — (N D 8
dt adiabatic dt diabatic Cp Wt Cp dt phase Cp wt Cp ( ucq + epq) ( )
dp
y = = = — 9
p dt ladiabatic 9o, ( )

including changes of temperature 7" and pressure p. In these equations, w denotes the vertical velocity of the air parcel, ¢, is the
specific heat capacity of dry air (assumed as a constant, see, Baumgartner et al., 2020), L denotes the (constant) latent heat of
sublimation, and p is the air density. The assumption of an ideal gas is adopted for air and water vapour. The terms Nuc,,, Nuc,
denote changes due to nucleation, the terms Dep,, Dep, describe changes due to diffusional growth of ice crystals. The term
Cool denotes the impact of adiabatic expansion due to upward motion with velocity w, this is also reflected in the change of
temperature and pressure, using adiabatic lapse rate and hydrostatic pressure, respectively. For temperature, we would have to
consider diabatic changes due to latent heat release in phase changes.

Computing the total derivative of the saturation ratio using the representation S; = #%, where g denotes the ratio of

molar masses of water and dry air, together with the Clausius-Clapeyron equation yields

8SZ drT BSZ dp Lg g
o0 OT dt ladiabatic 81) dt ladiabatic |:CI,RUT2 RaT v ( )
and
05; dT a5; L? 1
Dep, = —— — (N D =—|———+—| 5 (N D . 11
“Ps OT dt ldiabatic + Iqy ( ucq + epq) |:CpRUT2 + qv] ( ucq + epq) (11)

To a good approximation, for cold temperatures the first term in the bracket in (11), which describes latent heat release due to
phase changes, can be omitted. In the following, we will omit the evolution equations (8), (9) for temperature and pressure, i.e.

we assume these as being constant during the nucleation event. Thus, we arrive at

p

Dep, ~ —
P €0Psi

(Nuc, + Dep,) (12)

As a result of assuming temperature and pressure as being constant, only the vertical velocity w is an external parameter

for the supersaturation. For the terms Nuc,,Dep,, (x =n,q, s) we have to keep temperature and pressure as fixed parameters
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T = Teny, P = DPenv- This approach was also used in former investigations (see, e.g., Spreitzer et al., 2017; Baumgartner and
Spichtinger, 2019).

The nucleation term can be described as
Nuc,, = JnuecVana, Nuc, =moNuc, 13)

where, V; is the mean volume of a supercooled solution droplet, n, is the number concentration of solution droplets, and my is
the mean mass of a newly frozen solution droplet, which can be set to my = 10~ 6 kg. The nucleation rate for the homogeneous
freezing of solution droplets is denoted by Jy,.. For comparison with former investigations (Kircher and Lohmann, 2002;
Spichtinger and Gierens, 2009), we set the number concentration of the background aerosol to a quite large value of n,p =
10*cm— = 10 m~3; since the resulting ice crystal number concentration as produced in nucleation events is usually some
orders of magnitude smaller, we do not have to care about a possible consumption of a major part fraction of solution droplets.
We will later discuss the impact of this value in terms of nucleation events.

The diffusional growth of ice crystals is determined by the growth rate
Dep, =n; - 4nD;CG,(S; — 1) fy (14)

with the diffusion constant for water vapour in air D} = D, (p,T) fp as corrected by the factor fp for the kinetic regime, the
capacity of ice crystals, C, assuming columnar shape, the Howell factor G,,(p, T') describing the impact of latent heat, and the
ventilation correction f,,, respectively. Note, that the capacity also depends on the mean mass of the ice crystal ensemble, i.e.
C = C(m) = C(n;,q;). The details of the formulation are given in appendix A.

Combining the expressions from above, the reduced system of equations reads

n; = Nuc, (15)
gi = Nucy+ Depq (16)
- Lg g p

= - P N D 17
5 |:CpRuT2 RaT:| Siw+ E0Psi ( Ueq epq) 17
Remarks:

1. As shown in Spreitzer et al. (2017), it is possible to determine and characterize the steady states of the reduced system,
which additionally includes sedimentation. This leads to a nonlinear oscillator with a bifurcation diagram, depending on

the updraft velocity w, and on the temperature 7'.

2. The usefulness of this simple double moment scheme depends on the scales of the scenarios. We generally found good
agreement with such parcel models and also on an LES scale (and even coarser resolution) with observations, more
sophisticated models, and also theory (see, e.g., Spichtinger and Gierens, 2009; Spichtinger, 2014; Baumgartner et al.,
2022).
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4 Investigations of the nucleation rates

Investigations of ice clouds in the cold temperature regime (1" < 235K) need to include the nucleation process of homogeneous
freezing of aqueous solution droplets. As pointed out in section 1 the formulation by Koop et al. (2000) based on water activity
is a meaningful fit to experimental data. However, for theoretical investigations and the use in reduced order models, a simpler
but still accurate approximation would be helpful. In the following we present a way how to derive such an approximation
based on the original fit through measurements by Koop et al. (2000) in addition to recent observations for pure super-cooled

water.
4.1 Correction of the nucleation rate

In the study by Koop and Murray (2016) a parametrisation of the nucleation rate of pure supercooled water Jpure 1iq(7") Was
derived, based on recent measurements. Thus, in the context of homogeneous freezing of solution droplets, the nucleation rate

for pure water particles should coincide with the nucleation rate of solution droplets Jy, at water saturation, i.e. the condition

RH=1
Jsol (Aa*w) = qure liq (T) (18)

should hold for a value Aa at water saturation, as claimed and already used in the study by Koop et al. (2000). However,

evaluating these two formulations of the nucleation rates at water saturation shows a similar qualitative behaviour down to
temperatures 1" ~ 235K but a quantitative disagreement, see the blue and black curve in Figure 1. A reasonable requirement
is that the values of both formulations should match in the temperature range 235 K < T' < 240K, since this range is relevant
for the freezing of pure water cloud droplets with reasonable sizes. This temperature range at water saturation is equivalent to
the range of water activity difference 0.27 < Aa,, < 0.31. The offset between the curves and can be corrected by shifting the
logarithm of the nucleation rate for solution droplets by a constant value. The value of the shift was calculated by minimizing
the square distance between the curves in the respective temperature range. Thus, the corrected nucleation rate for aqueous

solution droplets reads as

1og1o(solnew (Aay)) = log ;o (Jsol(Aay)) + 6 (19)
with § = —1.522. The nucleation rates are given in SI units (as used for all quantities throughout this study), i.e. [J] = m~3s~ 1.
Remarks:

— The nucleation rate of pure water droplets can be used for a direct parametrisation of the nucleation rate of aqueous

solution droplets. This will be carried out in section 6.1.

— The (new) disagreement (or small shift) of the rates solely stems from the comparison with the new formulation
of Koop and Murray (2016), since originally the nucleation rate for solution droplets was chosen in agreement with
measurements of nucleation rates for pure water droplets (Koop et al., 2000).
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Figure 1. Nucleation rates for pure super-cooled water droplets (Koop and Murray, 2016, red) and aqueous solution droplets (Koop et al.,

2000) at water saturation (i.e. infinitely dissolved); original values by Koop et al. (2000) in blue, shifted values (6 = —1.522) in black (new

reference nucleation rate Jyonew). For the calculation, the saturation vapour pressure formulae by Murphy and Koop (2005) are used.

— In the following we will refer to the corrected nucleation rate as “reference” nucleation rate, since, to the best of our

knowledge, it provides the best and most recent fit for the homogenous nucleation rate of solution particles;based-en-the

4.2 Nucleation rate as a function of 7" and S;

The general strategy of the study is to represent the exponent of the nucleation rate by low order polynomials in a thermody-

namic variable z, i.e.
J = 10P ) pn(x) := Zakxk, degp, =n. (20)
k=0

For instance, the formulation of the nucleation rate for aqueous solution droplets by Koop et al. (2000) is based on a polynomial

of degree three, i.e.

3
Jool(Aay) = 107(340) - py(z) = " apa® @1
k=0

%

using the thermodynamic quantity © = Aa,, = @, — a,,.



220

225

230

235

240

245

Note, also the nucleation rate Jpur 1iq for pure water droplets is based on the same structure, i.e. 10g; ¢ (Jpure 1iq) is @ polynomial
of order 6 in the thermodynamic variable T' (cf. Koop and Murray, 2016). For analytical investigations of the homogeneous
nucleation, it is desirable to represent log;,(J) by a polynomial with low degree. As will be shown in the following, the

formulation
IOgIO(J) ~ Pn (JZ), n= degpn S 2 (22)

with a polynomial yields sufficient agreement with the reference. For analytical investigations (e.g. using asymptotic analysis) it
is helpful to represent the nucleation rate using a threshold for the humidity to account for the explosive character of nucleation
events as used in the analysis by Baumgartner and Spichtinger (2019). Thus, for the nucleation rate for super-cooled solution

droplets we make the following ansatz
J =107 = exp (A(T)(S; — Se) + B(T)(S; — S¢)?) (23)

where S, = S.(T') is the temperature-dependent threshold value for the saturation ratio. Note, that the ansatz is consistent (or

even equivalent) with condition (22). In order to describe J as a function of .S; and T' we reformulate Aa,, as

Aay, = (S; —1)a (T) = (S; — S.)a’,(T) + (S. — 1)a’, (T) (24)

w

using a threshold S, (T') that corresponds to a fixed value .Jy of the nucleation rate, i.e. J(S.(T),T") = Jo. Taking the logarithm,
this equality implies p,, (xo) = jo = log,o(Jo) with © = Aa,,. As in former studies (see, e.g., Koop et al., 2000; Kircher and
Lohmann, 2002), we choose Jp = 108m 3571 =109cm=3s~!. Note, that this choice for the parameterisation is quite
arbitrary and has no strict physical interpretation, although one can argue with the cooling rates of the underlying experiments
and thus with the probability of the freezing of droplets with a given volume within a certain predefined time interval (Koop
et al., 2000).

Evaluating eq. (24) at S; = S, we arrive at
Pr (o) = 20 = (Si = Se)ag, (T) + (Se — 1)ag,(T) 25)
2 (S~ 1)ay, (T)

leading to a description of the threshold

1
Sc: Zipgl(jo)—‘rl and
ai,(T) (26)
Aay = (Si = Se)ay, (T) +py " (jo)
if the polynomial p,,(z) can be inverted in the relevant range 0.26 < Aa,, < 0.34. Combining the equations from above, the

nucleation rate can be represented as

logygJ = p(Aaw) = pn ((Si — Se)al, (T) + py, ' (jo)) 27)

which is a threshold description using the thermodynamic variables S;, T'. This representation amounts to a reformulation of
the original approximation, if the inverse function p;, ! () exists in the relevant range (i.e. p,, (z) is strictly monotonic). In the

following we consider the case of linear and quadratic polynomials, as determined by the ansatz (23).



1. Case of a linear polynomial p1 (z) = ag + a1

The inverse function of p; () = y is given by p; * (y) = =22 implying the threshold

ay

1 jo—a
250 Se(T) = ai,(T) - aq :

Substituting eq. (28) into the expression (27) yields

+ 1. (28)

log1J (i, T) = j(S5i,T) = jo + arai,(T)(S; — S¢(T))
=Jjo+A(T)(S; — Sc(T))

(29)
where A(T) = aja’,(T). The coefficients ag,a; can be determined in different ways, see section 4.3. Furthermore,
approximations to the functions A(T") and S.(T") can be investigated.

255 2. Case of a quadratic polynomial ps(z) = by + by & + baz? = a(z — b)* + ¢

Since a quadratic function is not strictly monotonic in general, inverting the quadratic polynomial leads to two functions,

ie.
_ —c
Py (y) =bxy /. (30)
If one solution can be ruled out (e.g. due to physical constraints) we can formulate
260 logyo.J = pa ((Si = Se(T))ay, (T) + 13" (7o) (31)
using the threshold description
STy = by /=) L4y (32)
o a at (T)
Equivalently, we can derive a formulation
log J = co+q1 (T)(Sl — SL(T))
10 (33)

+q2(T)(Si = Se(T))?
265 with appropriate functions q1, g2, which might be useful for analytic investigations.
Remark: We will again use this quadratic ansatz for a direct approximation of the nucleation rate of pure water droplets

(see section 6.1).
4.3 Linear polynomial fit for the nucleation rate

In this section we investigate approximations of the exponent of the nucleation rate of aqueous solution droplets Jy, and their
270 impact on nucleation events in an idealised scenario. We concentrate on the reference formulation (Koop et al., 2000). Since

the polynomial p3(x) in the original formulation

3
Jool(Aay,) = 1078%) - pa(z) = " apa® (34)
k=0

10
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nearly behaves as a linear polynomial in the relevant range 0.26 < Aa,, < 0.34, it can be easily approximated by a linear
relation, i.e. p3(x) & by + by z. For this we can use two different approaches: (i) using a least square fit to p3 and (ii) a Taylor
expansion at a prescribed value yo. While the first approach is just a fitting procedure in the relevant range 0.26 < Aa,, < 0.34,
the second approach relies on an a priori choice for the evaluation point yo € [0.26,0.34] and it is not evident from the outset
which value should be used to provide an accurate approximation. For this, we investigate the sensitivity of p3 to a small

perturbation € = y — ¥, i.e. we consider

d
p3(y) =ps(yo+e) = p3(yo)+£ ; e+0(e?) (35)
0

R b+ by = Dry, (Y) (36)

with the coefficients

dps dps

b = _ B d b, =23 . 37
t0 = P3 (yo) az |y, Yo an t1 az lyo 37)

The Taylor approximation provides a range for the slope of the linear approximation; these values motivate the sensitivity
analysis in section 4.5.2. In the relevant range 0.26 <y < 0.34 for y = Aa,, we obtain slopes in the range 221 < b;; < 453.
This investigation gives us a hint about possible variations in the slope which will be used later for the sensitivity analysis in
section 4.5.2.

In contrast, using a least square fitting routine for 0.26 < Aa,, < 0.34 we obtain a linear function
pis(®) = biso +bis.1 - (38)

with b9 = —62.19267 and bys; = 254.7749. For the further investigations, we only use the linear fit from eq. (38). We observe
that the linear fit pi;(x) best approximates ps close to the inflection point x;,q = 0.30756 (see figure 2, left panel).
For each linear approximation p(z) = byo+b; -z of p3(z), the exponent of the nucleation rate and the saturation ratio threshold

become, as demonstrated in section 4.2,

3(8i,T) = jo + bral, (T)(S; — Se(T)),
——

=A(T) (39)
1 jo—bo

> =agm

+1.

Since a’, is a rather complicated function of temperature, it is particularly useful in the context of analytical investigations to
1

7
a w

have simpler approximations of this quantity. This motivates to approximate a’, and its inverse — in the relevant temperature
range 190 < T < 230K by polynomials ¢(T') of degree degq < 2. Similarly, we can approximate the nucleation threshold
S¢(T') by polynomials s(T") of degree deg s < 2. For the approximations we use a least square procedure within the temperature
range 190 < T < 230K.The results are presented in figure 2 (middle and right panels). Note that the thresholds, either exact or
approximate, are quite similar to the former approximations by Ren and Mackenzie (2005), while there is a larger difference

to the approximation by Kércher and Lohmann (2002).

11
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Figure 2. Polynomial approximations of the nucleation rate (left), the ice water activity a’,(T) = %
iq

threshold S.(7T') (right panel), respectively. The right panel also includes the approximations by Kircher and Lohmann (2002) and Ren and
Mackenzie (2005).

(middle), and the saturation ratio

Combining the approximations ¢(7') and s(T") yields the formulation

J(8i,T) = jo+b1q(T)(S; — s(T))
~ jo+ A(T)(Si — Se(T))

(40)

of logy(J). As can be seen in Figure 2, the nucleation threshold is accurately approximated by a linear relation (deviation is
smaller than 0.3%). In former studies (e.g. Kircher and Lohmann, 2002; Ren and Mackenzie, 2005) linear fits were derived for
the nucleation thresholds; however, these fits deviate significantly more from the reference in comparison to ours (see figure 2).
The deviation depends on the respective formulation (or approximation) of a’,.

Also former studies use (empirical) linear approximation for the saturation threshold. Comparing these linear approximations

with ours in Fig 2 it is evident that they deviate significantly.

4.4 Thresholds for prescribed nucleation rate values

The threshold description in section 4.3 was based on the choice jo = 16, corresponding to a nucleation rate J = 1016m =351,
As already mentioned, the choice of j is quite arbitrary, and these high values of J are very often not reached in the numerical
simulations (see section 4.5). For a better diagnostics of the nucleation events and the relative strength of nucleation events, we
introduce a similar concept for nucleation thresholds, based on a prescribed nucleation rate value J ~ 10*°. For this purpose
we use eq. (40) of the nucleation threshold based on the linear approximation of the nucleation rate with a fixed but arbitrary

value xg > 0 for the nucleation rate value; hence, we can write

xo = j(S0,T) = jo + A(T) (So — S.(T))

= Sch (T) = SO = ‘WZ(_T,;O

(41)

+S.(T)
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where the function A(T") = bya’,(T') depends only on the linear approximation of .J as stated in section 4.2. Note that obviously

Sez0(T) = S.(T) for 29 = jo. This leads to the formulation of the nucleation rate

with a general nucleation value z( and its associated threshold function S..o(7). The threshold function is just shifted by

the value mX(_Tj)O, i.e. the type of the threshold function remains the same. This formulation will be used for the theoretical

investigations using small perturbations (see section 4.6)
4.5 Numerical simulations of nucleation events for different approximations

In the following we investigate the impact of our approximations of log,,(.J) on nucleation events. The setup is as follows: We
use the simple bulk ice physics model as described by the set of ODEs (15), (16), (17) in section 3. A nucleation event is ensured
by assuming a constant vertical velocity, which directly translates into a constant adiabatic cooling of the air parcel and, thus,
an initially increasing saturation ratio. Instead of changing the temperature adiabatically, we directly control the supersaturation
as described in sec. 3; this allows us to control the nucleation event without the need to disentangle the different contributions
of temperature and supersaturation.

The nucleation events always admit the same structure: Due to the supersaturation source ~ w.S; with constant updraft w
the variable S; increases and the nucleation term produces ice crystals, which can grow by water vapour diffusion, constituting
a sink for supersaturation. The peak value of S; is reached once the source and sink of supersaturation balance. Afterwards
the variable .S; decreases due to diffusional growth and thus shut off the nucleation term. The peak value depends crucially on
the number of nucleated ice crystals that are needed, to balance the source for S; by the diffusional growth (depending on the
product of number concentration and mean radius of ice crystals). The number concentration of ice crystals produced in the
nucleation event clearly depends on the vertical velocity w (source term) and the environmental conditions (diffusion depends

on temperature and pressure). For details of the time evolution of nucleation events see appendix B.
4.5.1 Standard approximation
We compare the following four different representations of the nucleation rate using numerical simulations:

1. nucleation rate in the water activity formulation by Koop et al. (2000) with the correction as described in section 4.1

(reference nucleation rate)
2. water activity approximated by the linear fit as described in section 4.3 (see eq. (38), linear regression)

3. nucleation rate as a function of .S;, T" as described in section 4.2 based on the formulation
logygJ = jo + A(T)(Si — 5c(T)) (43)

of the exponent of the nucleation rate. We compare the following two sets of approximations for A(T") and S.(T):

13



350

355

360

25 T T 25 T T 25 T T
reference reference reference
linear fit —— linear fit —— linear fit ——
20 | threshold, S quadratic, a,, linear 20 |- threshold, S; quadratic, a, linear 20 |- threshold, S quadratic, a, linear
threshold, S; linear, a,, constant threshold, S linear, a,, constant threshold, S; linear, a,, constant
hreshold, S, li W hreshold, S, i a, hreshold, S, | W

d e

15 15 15
2 v 2 vd 2 ya
> > / >
° o °
10 10 10
T=196 K T=216 K T=236 K
5 5 5
0 0 0
026 027 028 029 03 031 032 033 034 026 027 028 029 03 031 032 033 034 026 027 028 029 03 031 032 033 034
water activity difference Aa,, water activity difference Aa,, water activity difference Aa,,

Figure 3. Different approximations of nucleation rate for different temperatures (left: 7" = 196 K, middle: 7' = 216 K, right: T' = 236 K).
Black: Reference nucleation rate; red: linear fit to reference nucleation rate; blue: threshold description due to eq 43, using a linear approx-
imation for a, and a quadratic threshold function S.; green: threshold description due to eq. (43), using a constant for a’, and a linear

threshold function S..

(a) alinear approximation for A(7T") and a quadratic approximation for S..(7'),

(b) a constant approximation for A(T") and a linear approximation for S.(T').

These are specific cases, however arbitrary combinations of approximations for A(T") and S.(7") might be used.

Figure 3 shows the approximated exponents of the nucleation rate together with the (corrected) reference formulation by
Koop et al. (2000) for the three temperatures 7" = 196, 216, 236 K as functions of Aa,,. These temperatures are chosen for
direct comparison with former studies (Kércher and Lohmann, 2002; Spichtinger and Gierens, 2009). Evidently, the linear fit
with respect to water activity is very close to the reference, and the same is true for the case of a linear function A(T') and
a quadratic approximation S. (7). For the simplest approximation (constant function A(7T') and linear approximation S..(7T')),
larger deviations from the reference nucleation rate can be seen. At 7'= 196 K, there is a strong underestimation in the lower
range of Aa,,, whereas for "= 236 K the underestimation is most pronounced for higher values of Aa,, (green vs. black
curves). In both cases, we expect deviations in the number concentrations of nucleated ice crystals during the nucleation event
and the maximum saturation ratio attained.

We investigate standard nucleation events in terms of (i) the resulting ice crystal number concentration at the end of the
simulation as in former studies (e.g. Kdrcher and Lohmann, 2002; Spichtinger and Gierens, 2009) and (ii) the maximum (peak)
supersaturation, which was reached during the nucleation event. Although the latter is usually not considered, it is of interest
for comparisons with real measurements, e.g. in cloud chambers.

Figure 4 shows the results of the numerical simulations, i.e. the number of nucleated ice crystals (left panel) and the max-
imum saturation ratio (right panel) at environmental pressure p = 200hPa (the results are similar for other environmental

conditions).

14



365

370

375

380

1e+10 —— 17 — e
relf.erenc}fet —— o198k re:erencfe; —— ]
16409 | inearfit = . =] inear fit =
threshold, S, quadratic, a,, linear o A TeR1eK 165 [ threshold, S; quadratic, a,,' linear ]
1es08 L threshoid, S linear, a,, constant - e 7'T 236K ' threshold, S, linear, a,,' constant

/E/E/E/uiT=196K

(2]

<

o

g

=}

© ]
5 # T=216K
5 ]
o 4
£ 4
>

£

x

©

S

1e+07
1e+06

100000

10000 s
p=200hPa

{ p=200hPa
1000 B ¥ T-236K

ice crystal number concentration (m‘s)

: : 1 1.45
L
10 : . : 1.4 : .
0.01 0.1 1 10 0.01 0.1 1 10
vertical velocity (m/s) vertical velocity (m/s)

Figure 4. Comparison of different approximations of the nucleation rate by Koop et al. (2000) for standard nucleation events driven by a

constant vertical velocity w. Left: ice crystal number concentration; right: maximum supersaturation.

Comparing the number of nucleated ice crystals as well as the maximum saturation ratio it is evident, that the difference
between the reference calculation, based on the corrected nucleation rate by Koop et al. (2000), and the simulations using the
approximated nucleation rates are rather small.

For almost all nucleation events, the deviation from the reference simulations is not larger than +15%. To assess these devi-
ations one should keep in mind that measurements of ice crystal number concentrations are quite difficult and the uncertainties
are usually larger than 15%. For instance, for the FSSP instrument, which was used in many flight campaigns (e.g. Voigt et al.,
2017), the uncertainty is estimated by about ~ 10% (de Reus et al., 2009). Thus, the deviations in our simulations and the un-
certainties of realistic measurements are roughly of the same order. This fact renders it presumably impossible to decide on the
correctness of any of the different formulations and approximations of the nucleation rate based on the available observations.

Finally, we conclude that a linear approximation of the reference nucleation rate by Koop et al. (2000) is accurate enough to
represent nucleation events in a physically meaningful way. Thus, we can use this description as well as the derived formula-
tions of the nucleation rate as a function of temperature 7" and saturation ratio .5; in order to investigate which parameters of

the nucleation rates significantly affect the outcome of nucleation events. This will be carried out in the next section.
4.5.2 TImpact of the parameters of the linear approximation

Generally, we are interested in the impact of the formulation of the nucleation rate on nucleation events. The original parame-
terisation by Koop et al. (2000) is based on a cubic polynomial, which admits slopes in the range 221 < b < 453, see Sect. 4.3.

The linear approximation is sufficiently good for representing the “reference” rate; thus, we now use this simple linear repre-
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sentation log,, J = by + b1 - Aa,, in order to test the sensitivity of nucleation events on the two parameters by, b;. Parameter
by controls the absolute value of the nucleation rate while parameter b; accounts for its steepness, i.e. the slope.

In a first step, we investigate the impact of the slope of the nucleation rate given by coefficient ;. One should keep in
mind that during the nucleation event the value of Aa,, = (S; —1)a’,(T) is increasing as S; increases, thus the exponent of the
nucleation rate basically grows linearly. Consequently, an increase in the saturation ratio immediately translates into an increase
in Aa,,, hence the abscissa in figure 5 may be thought of as representing saturation ratio. If high values of the nucleation rate
are already reached at lower supersaturation values, the nucleation is triggered earlier in comparison to the reference scenario.

However, an earlier onset of ice nucleation implies that the newly nucleated ice crystals already start to grow by diffusion.
Consequently, the growing ice crystals tend to decrease the saturation ratio and, if they are sufficiently numerous, prematurely
stop the nucleation event. In this case, less ice crystals will nucleate and a smaller maximum saturation ratio will be reached
compared to the reference. The opposite mechanism is expected for smaller values of the nucleation ratio in comparison to the

reference, i.e. higher ice crystals concentrations will occur together with larger maximal saturation ratio.

S A S A A
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Figure 5. Artificial change in the slope of the linear function in the exponent of the nucleation rate. The fit to the reference curve is indicated

by the green line (slope b1 ~ 250); a reduced slope (b1 ~ 100) is displayed in red, an enhanced slope (b1 ~ 500) is displayed in blue.
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In order to illustrate this mechanism more quantitatively, we artificially changed the slope of the linear function. The “refer-
ence” slope by ~ 255 is either reduced to a value of b; = 100 or enhanced to a value b; = 500, which is motivated by the values
of the Taylor approximation, derived in section 4.3. In both cases, the parameter b, of the linear function is adapted such that
the inflection point of the polynomial p3(Aa,,) at Aa,, ~ 0.311 is met for better comparison with the reference simulations.
The resulting nucleation rates are displayed in figure 5, while the number of nucleated ice crystals and the maximum ice sat-
uration ratio during the nucleation event are summarized in figure 6: The left panel shows the concentrations of nucleated ice

crystals and the right panel the maximum saturation ratio during the nucleation events.
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Figure 6. Impact of the slope on the idealized nucleation events. Left: ice crystal number concentrations, right: maximum supersaturation

values. The colours are chose as in figure 5, i.e. red squares indicate reduced slope, and blue triangles indicate enhanced slope, respectively.

In case of the enhanced or reduced slope as indicated in figure 5 we exactly see the theoretically proposed behaviour in the
ice crystal number concentration: the values are reduced for reduced slopes, and enhanced for enhanced slopes. The reductions
are by up to a factor of 0.4, the enhancements are by up to a factor of 2.4, and the largest changes can be seen at the highest
temperature 7' = 236 K.

In the right panel of Figure 6, a dependency on temperature and vertical velocity is seen. For very low vertical velocities, the
maximum supersaturation behaves as expected, i.e. reduced values for the reduced slope and enhanced values for the enhanced
slope. For very high vertical velocities, this behaviour is reversed, i.e. we see reduced values of \S; max for enhanced slopes
and enhanced values of S; max for reduced slopes. The transition slightly depends on the temperature. This can be explained
as follows: For low vertical velocities, Aa,, (and thus the supersaturation) is always below the inflection point Aa,, ~ 0.311.
Thus the nucleation rate is always smaller for the enhanced slope in comparison to the reference while it is always larger in
comparison to the reference for the reduced slope. Therefore, in case of an enhanced slope the nucleation starts later compared
to the reference. This leads to the behaviour as described above. However, beyond the inflection point the behaviour is reversed

and thus the resulting maximum supersaturation is now enhanced for reduced slope and it is reduced for enhanced slope. The
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inflection point is reached at different vertical velocities for different temperatures, i.e. for lower temperatures at lower values
of w and for higher temperatures at higher values of w. Note, only the maximum supersaturation is affected upon Aa,, crossing
the inflection point while no influence on the number concentration of ice crystals is seen.

After having varied the slope of the nucleation rate, we now turn to its absolute values and modify coefficient by, which trans-
lates into a change of values of .J by 10%. In order to investigate the sensitivity, we add a constant value Ab € {—6, —3, 3, 6}
to the coefficient by, resulting in an increase or decrease in the absolute value of the nucleation rate by a factor of 102°. In

figure 7 the results in terms of ice crystal number concentration and maximum supersaturation are displayed.

1e+10 g — — 3 g LR
S reference —— E S p=200hPa
10409 L reference*10™® = T=196K é e %/’:){/Hj
@ F reference*107 T=216K e 16 // .
£ 10408 Lom reference*10° ] T-236K S iss] . e ]
c 3 reference*10° 1 1= % e
.8 [ : ' : ’ ] E 15 I
© 0.01 0.1 1 10
=) 1e+07 3 ; : E » 16 .
% F s T=216K /k/x***
e I = -200hP
o E . © ///
N F @
2 100000 ry g 15 S
; i j i /M,/
= 10000 por g “0.01 0.1 1 10
4 s 3 &S T=236K T !
= ' ‘ 2 =
5] 1000 g 2 p=200hPa
3 5 P
F 1 1.45
8 ol | | f § e ]
: : & 14 et reteranog 08—
F : ] a reference*10°;
L H . reference*10;
10 L ] L N ol L T g 135 reference*10° —e—
0.01 0.1 1 10 .01 0.1 1 10
vertical velocity (m/s) vertical velocity (m/s)

Figure 7. Comparison of ice crystal number concentrations (left panel) and maximum supersaturation (right panel) for absolute changes in

the nucleation rate by a factor 102 with Ab € {—6, —3, 3, 6}.

Maybe surprisingly, the absolute values of the number concentrations of ice crystals in comparison to the reference formu-
lation are not crucially affected (see figure 7, left panel), although some deviations occur (up to a factor of two). The strongest
deviations can be seen for warm temperatures (1" = 236 K) at very low vertical velocities. Overall, the relative deviations from
the reference events in variables n; and peak values of \S; are within the interval [0.4, 2], but for vertical velocities in the range
w > 0.05ms™! the relative deviation is within the interval [0.8, 1.4].

Comparing the influence of a scaling of the absolute values of the nucleation rate and the steepness of the rate, we conclude
that the correct steepness of the nucleation rate is much more important than the absolute value of J. Even changes by orders of
magnitude in the values of the nucleation rate has a minor impact on the number of nucleated ice crystals. A similar conclusion
was also drawn in the theoretical study by Baumgartner and Spichtinger (2019). In that study, the authors investigated a slightly
simplified system of equations by means of asymptotic analysis. The simplified system describes the temporal evolution of the

number concentration of ice crystals and the saturation ratio and an approximate asymptotic solution was constructed. To
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leading order, the approximate solution for the number concentration of ice crystals was completely independent of the precise
values of the nucleation rate, but the steepness contributed directly. The only necessary condition on the values of the nucleation
rate was that it attains large values, i.e. significantly larger than the other coefficients within the equations.

For the maximum supersaturation values, the impact of the absolute value of .JJ is much more pronounced. As expected,
upon reduction of the nucleation rate by a factor of 104 with Ab € {—6, —3} the supersaturation reaches much higher values
of .S;, until the values of the rescaled nucleation rate become large enough to initiate the nucleation of ice crystals. For the
enhancement of the absolute values of the nucleation rate, the results are reversed: The maximum supersaturation is reduced,
since the enhanced nucleation rate attains values that allow the production of ice crystals for smaller saturation ratios. This
behaviour is represented in the right panel of figure 7.

Remark: This idealized enhancement of the nucleation rate can also be seen in the connection with the aerosol number
concentration n,. A change of n, by some orders of magnitudes while no changes in J are applied has the same effect as
changing the absolute value of the nucleation rate (or the parameter by in the argument of the exponential function). Thus,
a strong reduction or enhancement of the available solution droplets will only slightly change the amount of ice crystals in
a nucleation event. Therefore, we can conclude that for a meaningful approximation of the nucleation rate the exact number
concentration of available aerosols is also not crucial for the strength of the homogeneous nucleation event, but perhaps for the
starting time of the event. Including size effects of the solution droplets might additionally change the picture quantitatively

(see, e.g., Baumgartner et al., 2020).
4.6 Impact of perturbations in .S; and 7 on the nucleation rate

In this section we investigate the impact of changes in \S; and/or T on the nucleation rate by employing a perturbation analysis.
A short explanation of this technique is given in Appendix D. In the real atmosphere, variations of the temperature due to
dynamical processes will introduce such changes, e.g. such as from a passing or even breaking gravity wave. In numerical
simulations, these variations (also often called fluctuations) are often artificially introduced (e.g. Jensen and Pfister, 2004). In
any case, the impact of such changes is investigated using perturbation analysis (also called asymptotic analysis).

We start with the linear approximation of the nucleation rate as formulated in eq. (40) with A(T) = byai,(T). We can
estimate the usual values of the function A(T") in the temperature range 190K < 7' < 230K using 0.51 < afﬂ(T) < 0.66 such
that 129 < A(T) < 169. For a very simple but still sufficiently accurate constant approximation of a!,(T) we can set al,, =
0.574312 (see fig. 2, pink line) such that A(T') ~ Ay = bya’,, = 146.32. Finally we can state A(T') = O (¢~2) with the usual
perturbation approach ¢ ~ 0.1, such that we set A(T) = A*c~2 with A* = O(1) as € — 0. For the non-dimensionalization of
the threshold function in the linear approximation S.(T") & so + s17" we have to estimate the order of the coefficients for the
relevant temperature range. Using 190K < Ti.; < 230K and the definition T" = T;;¢) with the nondimensional temperature ¥,

we find

Se(T) = 5c(9) = s0+ 51T = 50 + $1T1ef) = 09 — 010 (44)
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with 01 = —s1Tier. Obviously, sy = 09 = 2.27697 = O(1) and 0.66 < o1 < 0.8 such that o7 = O(1). Using the simplest ap-
proximation A(T) = Ag and S.(T') = sg+ $1T for the general formulation of the threshold function S0 (cf. eq. (41)) we can

simplify the expression as

Lo — i
+sg+s11 = ( 0 —Jo +50) +51T
Ao

=i8z0

o — Jo

Sch (T) = AO

=5Sz0+ 517

Using non-dimensionalization we end up with the following representation

SCZEO (T) - Sch(ﬁ) =Sz0+ SIT =0z0 — 0'1’(9, (46)
where 0,0 = 520,01 = —51 T}t Finally, we use the estimation Ag = A*¢~?2 to obtain
a0 = (A") "' e2(x0 — jo) + 00 = 3+ 0. @7)

Since jo = O (¢71) and zp = O (¢7) with 3 > —1 we find 0,0 = § + 09 = O (€) + O(1) = O(1). After non-dimensionalizing
the argument in the nucleation rate, we can now investigate the response of the nucleation rate upon a perturbation (i) in
saturation ratio (i.e. in the same way as the numerical simulations are set up), (ii) in temperature, and (iii) in adiabatic changes
of temperature driving changes in the saturation ratio simultaneously. In reality, almost exclusively case (iii) is relevant.

First, we estimate the increase of J due to variations of S; at a constant temperature 7" = T}.¢. For this purpose we start
at a given value of the saturation ratio .S; which corresponds to a certain threshold z via the relation (41). We choose this
value as a reference value Sief = Ser0(Trer) = Sex0(1) = 09 — 01; this corresponds to a reference value of the nucleation rate

J = Jret = Junit - 1070 (with Jypie = 1m =3 s71). Assuming the expansion
S;=So+¢eS1 +e°S2+e°53+ 0 (e*) (48)

for the saturation ratio where Sy = Sief0,0 — 01 We investigate the impact of such a perturbation on the exponent j. Keeping

the temperature fixed as in the numerical simulations we arrive at

J(Si,T) =7(s,t) =20+ Ao (Si — Srer)

=2+ A% ? (Ser + 51 + €255 + %53+ O (%) — Seer) (49)
=X +€71A*Sl + A*Sy +eA*S3+0O (82) .

J(8:,T)
Jrcl'

We are interested in the relative change of the nucleation rates , which translates into j(.S;,1) — j(Srer, 1). By definition,

we have 29 = j(Sre, 1), thus we obtain
3(Sis1) = j(Srer, 1) = T A*S1 + A* Sy +eA* S5+ O (7). (50)

Inspecting eq. (50) it is evident, that a nonzero perturbation term S,, in eq. (48) is connected with the factor £*~2, hence
a change of order O (¢%) in supersaturation translates into a change of order O (EQ’Q) in the exponent of J. For instance, a

change by S ~ 0.01 translates into a change of O(1) in j, thus in a change by a factor of 10 in the nucleation rate .J
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Second, we consider perturbations of temperature without changing the saturation ratio, although this might not happen
in the atmosphere. Using the approach above with a constant reference value of saturation, i.e. Sgef = Scz0(1) = 09 — 01 and

temperature perturbations ¥ = 1 + vy + &2 + £33 + O (¢*) we find the following expression:

j(srefaﬂ) =x0+ Ag (Sref
— (00— 01 (L+e01 + %9+ %054+ O (¢4))))

(51D
=94+ A2 (5191 + 201099+ 30195+ O (54))
=X +€_1A*0'1191 + A*o1¥s + A% o193+ O (52) .
The relative change of the nucleation rate is then given by
j(Sref7’l9) - j(Srefa 1) =0 + 571A*01191
(52)

4+ A*0199 + AT 01936 + O (62) .

Thus, a temperature perturbation ¥, of order O (¢%) leads to a relative change in j of order O (s"‘”). Note the sign of the
perturbations, which turns into the opposite sign in the change of j. Because of the strictly monotonic descrease of the threshold
function S..0(T), a negative temperature change leads to a higher threshold and in turn to a lower nucleation rate at a given
saturation ratio.

Instead of perturbing the saturation ratio and the temperature individually, these quantities are connected in the real world. To
a good approximation, their joint variation is through an purely adiabatic change. Therefore, we finally investigate the impact
of adiabatic temperature changes on the saturation ratio and in turn on the nucleation rate. For this purpose we have to consider
the dependence of S; on adiabatic temperature changes. We start with the cooling source term of the saturation ratio

1 L dT
ds; = (H R T) Si— T (53)

The term ’y(T) =1_ R
we find y(T) = O (e7') =~*¢ ! and v* ~ —2.5 < 0. Approximating the total differential in eq. (53) with finite differences

within the bracket admits the values —28.8 < v(T") < —23.2 for 190K < T < 230K such that

AS;, AT, we arrive at

AS; AT
= * —_—. 4
S TE T (54)

We set as an approximation S; = St and T' = Ti¢ such that we can set

AS;
S ref

=clS+0(E) =0() (55)

with S; = O(1). We assume [ > 1 since we do not consider changes of the saturation ratio of order O(1). The analoguous

expansion for the temperature reads

% ="+ 0 (") = 0(e¥) with ¥, =0(1) Vk > 1. (56)
ref
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Combining these expansions, Eq. (53) becomes

AS; AT x_—1(_k k+1
Seet T E EhrO() 57)

=yt + O (€M)

*

or equivalently

'S = AS; = Sty e+ O (7). (58)
The only non-trivial balance is achieved for [ = k — 1, i.e.

Sk—1= StV I & Sk = SretV Vpt1- (59)

Note that [ =k —1 > 1, i.e. we have to consider k > 2 for the perturbation of temperature. This is a meaningful restriction
since we are interested in small changes of temperature in the cold temperature regime, i.e. a change in the temperature in the
order of ~ 1K in physical units. Hence, we would not expect adiabatic temperature changes of order O (¢), corresponding to

changes of order ~ 10 K. Thus, we assume an asymptotic expansion
9=14e2054305+0 (54) (60)

for the temperature perturbation. We are generally interested in adiabatic expansions due to vertical upward motion, which
in turn leads to decreasing temperatures, hence we conclude ¥, < 0 for k > 2. Since v* < 0, equation (59) leads to positive
changes in the saturation ratio s, > 0 for ¥;, < 0. Generally, warming due to adiabatic compression can be studied in the same
way by setting ¥, > 0.
Now we consider the nucleation rate in the formulation for arbitrary thresholds z in the nucleation rate using Sef = 0,0 —
01 = Sex0(1):
§(Si,T) = §(Si,t) = xo + A*e ™2 (S; — 8c00(1))
=xo+ A*e? (Sref +eSy +e285 +35;
— (om0 — 01 (1405 +£°03)) + O (7))
=z + A% ? (81 +282 + 2S5 + %0102
+e30195+ O (64))
=0+ A* e ? (eSery V2 + €2 Spery 5 + €° Srery* Va (61)
+e201099 + 30193+ O (54))
= 3o+ A% (eSwery V2 + €2 (Srery U3 + 0102)
+€3 (Srety Vs + 0193) + O (%))
=20+ A" Spry" 927 + A" (Srery 3 + 0102)
+ A" (Srery 04 + 0103) e+ O (52) .
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Thus, for k > 2 we find terms of the form A* (syefy* V511 + 0195 ) "2 of order O (¢¥~2). Comparing the nucleation rates we

find for the relative change

J(8i,T) = j(Stet, Tret) = j(Sist) — (Sret, 1)

= A*Spery V2™ + A* (Srery* 5 + 0102) (62)
+ A" (Seery Vs + o1t3) e+ O (52) .

For the relative impact of these terms we use the estimations v* < —2.3 and o7 < 0.8. We have to distinguish two scenarios

for perturbations ¥, < 0:
1. ¥ < 0 for all £ > 2. In this case we can assume
Sref’}/*'ﬁk_i,_l + o019 > 0. (63)

Therefore, an adiabatic temperature perturbation ¥, of order O (ak) (k > 2) leads to relative changes in j of order
@) (5’“_3). Note, that the changes in saturation ratio are always dominant and larger than the changes in the threshold,

which changes j by order O (sk ’2) in the opposite direction.

2. 9 <0 and Y441 = 0 for a distinct £ > 2. In this case, the previously discussed temperature effect can be seen, i.e. the
nucleation threshold is changed, leading to a reduction of the nucleation rate exponent. This effect is merely academic,

since we have to switch off higher perturbations in temperature, which is quite unlikely.

One should keep in mind that we investigated the relative increase in the exponent of the nucleation rate. A relative change of
order O (5’“) in the exponent translates into a relative change of order O (exp (5’“)) in the nucleation rate J, thus ranging over
several orders of magnitudes. For instance, in the first scenario changes of temperature of order ~ 1K lead to changes in j of
about ~ 10, which in turn translate into a change of the nucleation rate .J by a factor of exp 10 ~ 10°.

Overall, we can state that changes in S; are most important for changing j, either stemming from adiabatic temperature

changes or driven directly as in our numerical studies.

5 Impact of saturation vapour pressure formulation

Since the formulation of the nucleation rate by Koop et al. (2000) relies on the water activity, and thus on the function afu (T) =

Pice (T)
piig(T)’

investigate the impact of choosing another formulation for pjiq(7") on the nucleation rate and thus the nucleation events.

the saturation vapour pressure over liquid water (i.e. in the no man’s land) plays an important role. In this section we

5.1 New representation of saturation water vapour

In the formulation by Murphy and Koop (2005) the extrapolation of the saturation vapour pressure into the no man’s land of
water’s phase diagram is based on the assumption that the state of amorphous ice is thermodynamically equivalent to super-
cooled liquid water. Therefore, the specific heat of liquid water can be extended in the super-cooled regime using measurements

of amorphous ice. This leads to the established formulation in Murphy and Koop (2005).
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Recently, a new representation of the saturation vapour pressure over super-cooled liquid water was proposed by Nachbar
et al. (2019). In this study, the authors consider different states of water in the low temperature range. They conclude that
amorphous ice is thermodynamically different from super-cooled water, thus they provide a different extrapolation for the
saturation vapour pressure (Nachbar et al., 2019).

Although the deviation between the two curves is very small — even in the low temperature range less than 10% — its impact

on saturation ratios as well as on the nucleation thresholds is quite large, as can be seen in figure 8.
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29 P - S water saturation (N19) h
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A TN nucleation threshold (N18) |
2
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Figure 8. Water saturation (S; = %) and nucleation threshold (for J = 10 m~2s™!) for different formulations of saturation vapour

pressure over super-cooled water, Murphy and Koop (2005) vs. Nachbar et al. (2019)

The curves of water saturation as well as the nucleation thresholds are systematically shifted to higher values. In addition,
the new curves have a more linear shape than the curves resulting from Murphy and Koop (2005). The ratio of the saturation
pressures over ice and liquid (i.e. the functions a,(T") and ﬁ behave differently: a, (T) is much closer to a quadratic curve
as can be seen in the left panel of figure 9. These new fits were used for the formulation of the approximated nucleation rate.
Thus, we do not change the general approach for approximating the nucleation rate etc., we only use a different representation

of the function a’,(T').
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Figure 9. Left: Function a?,(T) = I;‘]?ei((;g (black line) and polynomial approximations (red: quadratic, blue: linear, green: constant). Right:
iq

Nucleation threshold S.(T") (black line) and polynomial approximations(red: quadratic, blue: linear). Note that the former approximation

by Kércher and Lohmann (2002) (dark green) are now very close to the new formulation, whereas the fit by Ren and Mackenzie (2005)

(turquoise) deviates significantly.

5.2 Numerical simulations of nucleation events

In figure 10 the results of the nucleation events using the new representation of the saturation vapour pressure due to Nach-
bar et al. (2019) are shown. As for former experiments, the ice crystal number concentration (left panel) and the maximum
supersaturation values (right panel) are shown.

For the ice crystal number concentration, the impact of the new formulation of pjiq is small; the relative deviation from the
reference simulations using the original vapour pressure formulation by Murphy and Koop (2005) is always smaller than 15%.
The deviation increases with decreasing temperature and is most prominent for lower vertical updrafts (w < 1ms™1).

For the maximum saturation ratio the change as compared to the reference simulations is much more prominent. As can
be seen in figure 8 the nucleation thresholds for a value of J = 10%m~3s~! are increasing with decreasing temperature
with a larger slope compared to the reference case. This behaviour can clearly be seen in the maximum supersaturation; for
decreasing temperature the maximum supersaturation is increasing to higher values in comparison to the reference simulations.
The increase does not depend on the vertical velocities.

Remark: At the moment it is not clear, which thermodynamic hypothesis and thus which resulting approximation for the
saturation vapour pressure over liquid water is physically correct, although the formulation by Murphy and Koop (2005) seems
to agree with recent measurements (Pathak et al., 2021). In particular, it is not clear if the formulation of Nachbar et al. (2019)

can be extrapolated to values 7' < 200 K. Thus, we cannot recommend to use a certain formulation.
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Figure 10. Impact of the formulation of the saturation vapour pressure by Nachbar et al. (2019) on the idealized nucleation events. Left: ice
crystal number concentrations, right: maximum supersaturation values. The relative differences in number concentrations are always smaller

than 15%

6 Another approach to formulate the nucleation rate

Up to now we always employed the “reference” nucleation rate in our computations, i.e. the formulation as in Koop et al.
(2000) but corrected by a constant offset, see Section 4.1, in order to match the nucleation rate for pure water droplets by Koop
and Murray (2016) in a certain temperature range. In this section we take a different point of view assuming that we can just
directly adopt the formulation by Koop and Murray (2016) for the nucleation rate of aqueous solution droplets, providing an
exact match of both curves by definition. In the following we discuss the consequences of using such a direct approach in terms

of nucleation events.
6.1 Direct fit to nucleation rate of pure water

In order to arrive at a direct fit, we assume that at water saturation, the freezing of pure water droplets should behave as
the freezing of solution droplets at super-cooled states. To avoid a complicated reformulation of the formula from Koop and
Murray (2016) in terms of the water activity Aa,,, we use a quadratic polynomial fit to the original formulation Juom(7') at
water saturation, see Appendix C for details. Figure 11 presents the original data (black curve) together with the quadratic fit
(red curve) and the corrected formulation of Koop et al. (2000) (blue curve) from section 4.1. In contrast to the (corrected)
formulation by Koop et al. (2000) the nucleation rate reaches a maximum at Aa,, ~ 0.345 and decreases afterwards. As a
result, there is a significant deviation between the two nucleation rates (Jxao00 > Jxmeo16) for the range Aa,, > 0.32. Thus,
we can expect that for cold temperatures and/or high upward motions there will be large deviations in the produced ice crystal

number concentrations within nucleation events.
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Figure 11. Freezing rate of water droplets (Koop and Murray, 2016, black), a polynomial fit (red), and the nucleation rate of solution droplets
(Koop et al., 2000, corrected, blue), all depending on Aa,,.

It should be kept in mind that the range of the parameterisation of the nucleation rate as given in Koop et al. (2000) is
restricted to the interval 0.26 < Aa,, < 0.34. As a result, it is not clear if the parameterisation works well for values Aa,, >
0.34. However, there are measurements (see Laksmono et al., 2015) for the freezing of pure water droplets that also show a
kind of plateau at cold temperatures (corresponding to high values of Aa,,). Thus, for higher values Aa,, > 0.34 we use the
value Jrmoo16(Aayw) = Jrknmzo16(0.34) to (a) mimick the plateau in the measurements, and (b) avoid numerical issues in the
simulations. Assuming that the nucleation rate does not depend on other quantities than water activity, it may now be used in

numerical simulations of homogeneous nucleation events.
6.2 Numerical simulations of nucleation events

After having obtained the direct formulation of the nucleation rate of (Koop and Murray, 2016), we now investigate its impact
on nucleation events using numerical simulations as before. For completeness, two different types of simulations are done: (1)
Simulations using the standard formulation of pj;q by Murphy and Koop (2005) and (2) simulations using the new formulation
of piiq by Nachbar et al. (2019). The results of the simulations are shown in figure 12.

First we consider the ice crystal number concentrations (left panel). For low vertical updrafts, the values of n; are only
slightly affected in case of using the adapted nucleation rate. For higher vertical velocities, there is a reduction in the produced

ice crystal number concentrations; this reduction increases with increasing vertical updrafts. This effect can be explained as
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Figure 12. Impact of the direct formulation of the nucleation rate based on Koop and Murray (2016) on the idealized nucleation events. Black
triangles and lines indicate the reference simulation, red squares and lines denote the use of the nucleation rate based on Koop and Murray
(2016), and blue squares and lines represent the use of the nucleation rate based on Koop and Murray (2016) together with the saturation

vapour pressure due to Nachbar et al. (2019). Left: ice crystal number concentrations, right: maximum supersaturation values.

follows. The nucleation rates differ significantly for higher values Aa,, > 0.31, i.e. the slope of the adapted rate is (much)
smaller than the original nucleation rate by Koop et al. (2000). For higher updrafts, the supersaturation reaches higher values,
which is equivalent to higher values of Aa,,. Thus, the nucleation rates differ for these high updraft events, and less ice crystals
are produced for using the adapted nucleation rate. Apart from the influence at high vertical velocities, there is almost no
difference in the ice crystal number concentrations between the nucleation events using the different formulations.
Considering the values of maximum supersaturation (right panel), there is a similar behaviour as for n;. At low vertical
velocities there is almost no difference between the reference nucleation rate and the newly adapted rate. In case of using the
saturation vapour pressure according to Nachbar et al. (2019), the observed shift in the maximum supersaturation values stems
from the increased difference between the values of the saturation vapor pressures at low temperatures, see Section 5. At higher
updrafts (w > 0.5ms~"'), the maximum supersaturation values increase nonlinearly. For the coldest temperature (T = 196 K)
we note a dramatic increase up to very high values (S; max ~ 1.8). However, note that in all cases the values of the maximum

supersaturation stays below water saturation, hence no liquid origin ice formation would occur.

7 Thresholds of ice nucleation

For the evaluation of measurements of ice clouds, the possible range of supersaturation is often estimated using the so-
called Koop-line, i.e. the supersaturation threshold S.(7") which corresponds to a nucleation rate value J = 10m=3s~! =

10'%m~3s~!. In many investigations (see, e.g., Krimer et al., 2009) this function is used as an upper bound for possible
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values of S; inside and also outside of ice clouds. However, from our investigations in this study so far, we have to carefully

consider two different aspects from a purely theoretical point of view:

1. The nucleation threshold assigned to the frequently used value j, = 16 is arbitrary chosen; there is no convincing physical
justification for using this particular value. In Koop et al. (2000) different values J = 1070 m=3 s~! with jo € [1, 17] are
used, but for testing the impact of droplet sizes, they used the value j, = 16. Nucleation of ice crystals is not a switching
process, it occurs gradually and smooth, although the nucleation rates are very steep functions of the supersaturation.
The size or strength of the nucleation event cannot be determined just by the maximum of the supersaturation; the
amount of ice crystals as formed in the nucleation event is determined by the integral over the supersaturation curve
(see, e.g., the discussion in Dinh et al., 2016). Thus, it is possible to form many crystals in lower updrafts even if the
high nucleation threshold is not reached. From our simulations we observe that the peak supersaturation for nucleation

events depends crucially on the vertical velocity, i.e. on the temperature rate, which is prescribed during the event. This

ds; _
dt

is quite obvious from the differential equation determining the change of S;: The peak value is given by 0, i.e.
when source and sink terms balance each other. Since the source includes the vertical velocity linearly, the dependence

of the peak supersaturation on w is obvious, although not linear.

2. As described above in section 5, it is still not clear which formulation of the saturation vapor pressure is physically
correct. However, the use of the formulation by Nachbar et al. (2019) leads to a higher saturation vapour pressure and

thus to a higher nucleation threshold, even for arbitrary values j, and its associated nucleation threshold S.,o(T").

Taking these two aspects into account, we can observe the following behaviour. In figure 13 (left panel) we compare the
nucleation thresholds for the saturation vapour pressure according to Murphy and Koop (2005) for jo = 10 (red curve) and
jo = 16 (dark blue curve) with the range of peak supersaturations for vertical velocities 0.01ms™! < w < 2ms™! (black
vertical bar) and the maximum value for a very unrealistic value w = 10ms~! (black crosses) . For comparison, the well
known Koop-line as fit and proposed by Kéarcher and Lohmann (2002) is plotted (light blue curve). It is quite obvious, that for
typical vertical velocity values the “classical” Koop-line is not reached, i.e. the peak supersaturation is below the threshold.
Nevertheless, for strong cooling rates (very high vertical velocities), as are used in experiments in cloud chambers, high
supersaturations are reached, which still partly remain below the Koop-line. If we change the saturation vapour pressure to the
formulation by Nachbar et al. (2019), the qualitative picture remains the same (right panel in fig 13): Even for high vertical
updrafts the high nucleation rates are reached; for moderate and small updrafts, the peak supersaturation stays well below the
classical nucleation threshold. However, the nucleation thresholds are generally shifted to higher values of supersaturation due
to the different saturation vapour pressure formulation. It seems that these values fit better to the experiments in the AIDA
cloud chamber as reported in Baumgartner et al. (2022) and Schneider et al. (2021). This might be interpreted as a hint that the
formulation by Nachbar et al. (2019) might be the more appropriate formulation for the saturation vapour pressure, although
the formulation by Murphy and Koop (2005) agrees well with recent measurements (Pathak et al., 2021). In any case, one has to
consider the impact of the cooling rate on the peak supersaturation in a nucleation event. Therefore, the use of the “Koop-line”

in the currently applied way is misleading and does not correspond to the actual physics of nucleation events. Note, that the
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temperature dependent threshold is used in some parameterisations of ice clouds in climate and numerical weather prediction

models (see, e.g., Kércher et al., 2006; Kohler and Seifert, 2015). A simple but albeit more realistic extension of such schemes

would be a threshold depending on both, vertical velocity w and temperature 7’; a 2D fit to the maximum supersaturation data

from our simulations might be a first attempt into this direction.
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Figure 13. Comparison of nucleation thresholds (red curve: xg = 10, blue curve xo = 16) and the classical “Koop-line” (light blue curve).

The black vertical bars indicate the range of peak supersaturation ratios within the nucleation events computed using vertical velocities

ranging from 0.01m s~ to 2ms™~!. The black cross corresponds to the peak supersaturation ratio for the vertical velocity of 10ms~". Left

panel: Curves based on the water activity using the saturation vapour pressure formulation by Murphy and Koop (2005); right panel: the

same for the saturation vapour pressure formulation by Nachbar et al. (2019).

Finally, we can also investigate the peak supersaturation values for the new empirical nucleation rate formulation, as derived

in section 6.1. Generally, we see the same behaviour as for the reference simulations with a monotonic increase of peak

supersaturation values with increasing vertical velocity (cf. figure 14). The use of the saturation vapour pressure formulation

by Nachbar et al. (2019) additionally enhances the peak values as seen before. However, the peak values for cold temperatures

and very high vertical velocities are strongly enhanced in comparison with the reference simulations. Also these high values

are still in line with the measurements in the AIDA chamber as reported by Baumgartner et al. (2022) and Schneider et al.

(2021).

8 Summary and outlook

We have investigated the impact of the representation of nucleation rates and diffusional growth on idealized nucleation events,

as driven by a constant vertical updraft (i.e. a constant cooling rate). In a first step, we have investigated the original formulation
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Figure 14. Same as in figure 13, but using the nucleation rate as empirically derived in section 6.1.

of the nucleation rate for homogeneous freezing of aqueous solution droplets in the formulation by Koop et al. (2000); for a
better agreement with the nucleation rate of pure water droplets a simple shift could be applied. For analytical purposes and
simple model calculations, a less complicated formulation is desired. We showed that a linear fit to the original formulation
depending on the difference in water activity Aa,, = a,, —a’, is accurate enough to reproduce the ice crystal number concentra-
tions quantitatively. Based on this linearization approach, we derived a threshold formulation of the nucleation rate, which can
be used for analytical investigations as already presented in Baumgartner and Spichtinger (2019). Again, the new formulations
are good enough to represent nucleation events quantitatively as compared to the reference nucleation formulation.

Using the linear approximation as a starting point, we investigated the impact of different formulations on idealized nu-
cleation events, changing the two relevant parameters (slope and constant offset). These investigations led to the first major

results:

— The absolute values of the nucleation rate has only marginal impact on the resulting ice crystal number concentrations
in a nucleation event. Even a scaling by up to six orders of magnitudes did not severely affect the resulting number
concentrations. However, the maximum supersaturations changed, and the resulting deviations range up to few percent

relative humidity. In addition, the time of nucleation onset is slightly shifted.

— The slope of the nucleation rate (or more precisely in the argument of the exponential function) has a much larger impact
on the resulting nucleation event, and the ice crystal number concentration. Variations in the slope change the number
concentrations in the nucleation events by up to a factor 2.5 (in both directions). Also, the maximum supersaturation is

affected by a deviation of a few percent of relative humidity.
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As a final conclusion of this part of our work, we can state that the shape of the nucleation rate is of high importance for the
representation of the nucleation process, whereas the absolute strength of the rate is almost negligible, if the values are high
enough. This shows that the nucleation process (homogeneous freezing of solution droplets) itself is a quite robust process,
thus the accurate formulation is maybe less critical as we thought. Also the amount of available solution droplets as controlled
by the background aerosol does not affect the nucleation events itself; it can be seen as a scaling factor of the nucleation rate,
in the same sense as in the sensitivity analysis of changing the absolute values of nucleation rates. As long as the amount of
aerosol particles is some orders of magnitude larger than the ice crystal number concentration as predicted for a nucleation
event, this does not play a role for the nucleation events, and we do not have to care about exhausting the reservoir of solution
droplets.

We also investigated the impact of a recently published formulation of the water saturation pressure based on a thermody-
namic assumption of different phases of water in the very low temperature range (Nachbar et al., 2019). This new formulation
leads to changes in the function a’,, which directly affected the nucleation rate based on Aa,,. Following the derivations of
the threshold description, approximations were constructed. The new resulting functions a’,(T) and S.(T") can be accurately
approximated with polynomials of smaller degrees, as compared to the standard formulation. The new formulation of pj;q only
marginally changed the resulting ice crystal number concentrations. However, the impact on the maximum supersaturations
increased with decreasing temperature up to few percent of relative humidity. Overall, the two different representations of the
saturation vapour pressure over liquid water produced very similar, even almost identical, results. Thus, a decision about the
validity of a certain formulation must be left to extensive experimental measurements.

In a more speculative part of the study we adapted the nucleation rate of homogeneous freezing of pure water droplets (Koop
and Murray, 2016) as a new parameterisation for homogeneous freezing of aqueous solution droplets. This representation
is quite similar for low values of Aa,, to the original formulation by Koop et al. (2000) and its approximations. However,
for very high water activities (i.e. high supersaturations as driven by large vertical updrafts), there is a significant deviation
from the reference nucleation rate. Thus, for some cases in the parameter space (high updrafts and low temperatures) there
is a significant deviation in the number concentrations, and, more obvious, in the maximum supersaturations, which reach
almost water saturation in some cases. This approach showed that the shape of the nucleation rate is important for the resulting
nucleation events; strong deviations of the shape from its reference affect the results of the nucleation event significantly. If
this representation of the nucleation rate is more close to the physics of ice nucleation remains open, and might be an objective
for experimental investigations.

Finally, we investigated the commonly used threshold for homogeneous nucleation (“Koop-line”) in the light of peak super-
saturation values during nucleation events. This threshold corresponds to a nucleation rate of 101 m=3s~1, but is only rarely
reached during nucleation events. Nucleation itself starts usually at much lower values of .S; corresponding to lower values
of the nucleation rate. The peak supersaturation during a nucleation event, characterised as an equilibrium between sources
and sinks of supersaturation depends on temperature and vertical velocity. The peak supersaturation is a much more physical

quantity to investigate the strength of a nucleation event. The peak supersaturation as diagnosed from the numerical simulations
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might be a more physical representation of ice nucleation in coarse resolution models in comparison to the frequently used
nucleation threshold.

It should be emphasized that all the results and conclusions are meant in a bulk-sense, i.e. for a large collection of ice crystals
such as a newly forming cirrus cloud. If one is interested in the details of ice formation for a single or only a small number of
particles then all details of the nucleation rate might be equally important. In that respect, our study shows that homogeneous

cirrus formation is a robust physical process.

Appendix A: Model description - details

In this appendix, we present the details of the model as used for the numerical simulations of the nucleation events. Note, that

we use the mathematical (and also programming) notation of logarithms, i.e. log denotes the natural logarithm (to base e).
Background aerosol

We assume for the aqueous solution droplets in the tropopause region a size distribution of lognormal type:

o (1 bg(r/W)Z 1
fra(r) = \/ﬂlogar exp( 2 < log o, r (AD)

with a modal radius 74 = 75 - 10~ m, and a geometric standard deviation ¢, = 1.5. These values are adapted from the more
complex model by Spichtinger and Gierens (2009), using the fact that the dry aerosol population, as used in Spichtinger and
Gierens (2009), has grown to larger sizes by water vapour uptake (i.e. assuming Kohler theory, see, e.g. Kohler, 1936). The

mean volume of the solution droplets

4 9
Vi=Vi1 = gwrf’ol - exp (2 (log O’r)2> (A2)
is calculated from the third moment of the lognormal distribution.

Mass distribution for ice crystals

For the ice crystals, we assume a mass distribution of lognormal type

m)= " exp( -z (28 Mm) ) 2 A3

f( ) vV 2 IOg Om P < 2 ( IOgO'm m ( )
with a parameter

To = €xXp ((1ogam)2) , M=mMmm\/T9=3 (A4)

representing the width of the distribution as described in Spichtinger and Gierens (2009). This distribution is used for the

derivation of the rates in the ODE system for the mean quantities of ice mass and number concentration. The integration of

33



765

770

775

780

785

weighting functions of the type m”* k € R, leads to general moments, which can be computed analytically:

T 1

pll = [ o fm)dm = g b ex (2 (klogam>2)
0 (A5)
k(k—1)

=n; -m Ty 2

Note, that for the averaged quantities we obtain n; = u[m]o, q; = pu[m]1, respectively. Thus, we use a double moment scheme

in our model.
Diffusion constant

For the diffusion of water vapour in dry air, we use the following expression

T\ Do
p=pu(gz) (%) o

which is an empirical fit to measurement data (Hall and Pruppacher, 1976). Note, that the valid temperature range is different
in the book Pruppacher and Klett (2010) and in the original article Hall and Pruppacher (1976). For analytical investigations,
a representation using a quadratic temperature dependence constitute a good approximation for a restricted temperature range.
For the kinetic correction we use the function

1 B 2+ ar
+ 2t br+ab

fp(r,a,b) = —
T+a

(AT)

whereas r denotes the radius of the ice crystal (using a bulk density of ice p, = 0.81kgm~?), and the parameters are given by

4D,
a=X Coyp, b=—+ (A8)

QU Cy
using the mean free path of water molecules in air A (acc. to Pruppacher and Klett, 2010), the Cunningham correction factor
Ceunn = 0.7, and the mean velocity of water molecules ¢,,. We set the accomodation coefficient «v,,, = 0.5 for comparison with
former investigations (Kércher and Lohmann, 2002); this value is also within the range as recommended in recent work by
Skrotzki et al. (2013).
For representing the growth rates for the ensemble of ice crystals, by comparison with numerical integration we find that

using a shifted mean mass m; = ¢; - m, ¢; = 0.819 in the kinetic correction function f(r1,a,b) is a good approximation.
Howell factor

Latent heat release due to phase changes during diffusional growth changes the surface temperature of the ice crystal. For

taking this into account, we use the Howell factor
L LD R,T] "
G, = 1) ==+
R, T T K7 Dsi

N L_1£m+&T4.
RvT T KT Dsi

In the approximation, we neglect the kinetic corrections for diffusion coefficient D,, and heat conductivity of air K.

(A9)
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Capacity of ice crystals

For ice crystals we assume spherical shape for small crystals and columnar shape for large crystals as in Spichtinger and Gierens
(2009); thus the shape factor, or capacity, can be determined exactly using the electrostatic analogy (McDonald, 1963), using
a prolate spheroid with semi axes a, b; the capacity can be analytically expressed by

Lé

1+e’)

_ (A10)
log(15

using the eccentricity ¢/ = /1 — (3)2 and the length L of the crystal, which in turn is a function of the crystal mass. Note,
that the eccentricity changes with crystal growth since the aspect ratio is changing (see Spichtinger and Gierens, 2009, their
eq. (17)) We find a very good approximation to the piece-wise definition of the capacity by Spichtinger and Gierens (2009)

depending on the ice crystal mass
C(m) = ay -mb + ay - m®? (A11)

with constants

a1 = 0.015755m kg, by = 0.3,
. (A12)
as = 0.33565m kg™, by = 0.43.

The representation of the capacity in the ice crystal ensemble is given by the integration, leading to general moments pi[m]p, .
Ventilation correction

The empirical ventilation corrections usually depend on the use of two dimensionless numbers, i.e. the Schmidt number N,
and the Reynolds number Ng,

Nee = -2 Nge = 20y (A13)
Dyp 1%

using the dynamic viscosity of air y (e.g. Dixon, 2007). Thus, the size of the ice crystal L is influencing the Reynolds number
via the product v;(m) L, using the terminal velocity v; for an ice crystal of mass m. The effect of ventilation, i.e. the additional
uptake of water vapour by the airflow around the particle crucially depends on the shape of the particles. For columnar shaped

ice crystals, we adapt the empirical quadratic fit by Liu et al. (2003) to the simulation data (Ji and Wang, 1999) as follows
1 1
fo=14cy X%, ¢, =0.14856, x = N N2, (A14)

For the formulation of the terminal velocity of columnar shaped ice crystals, v¢(m), we use the formulation by Spichtinger
and Gierens (2009), including also the correction for temperature and pressure, respectively. For representing the ensemble of
ice crystals, by comparison with the numerical integration we find that using a shifted mean mass ms = ¢y - M, co = 1.5 in the

formulation of the Reynolds number leads to a very good agreement.
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Appendix B: Reference simulation results

In this section we report on the results of the reference simulations, using the corrected formulation of the nucleation rate for
super-cooled aqueous solution droplets by Koop et al. (2000). For evaluating the quality of the simplified model, we compare
the number concentration of ice crystals as obtained from standard nucleation events with results from literature, i.e. with a
model using sophisticated particle physics (Kdrcher and Lohmann, 2002) and a complex bulk physics scheme (Spichtinger and
Gierens, 2009). In figure B1 the results are represented for the temperatures 7" = 196, 216, 236 K at pressure p = 200hPa, as
prescribed in Kércher and Lohmann (2002).

1e+10

Karcher & Lohmann (2002) = ‘ .
16409 | Spichtinger & Gierens (2009)  « - )
e+lv ¢ ‘reference —~—

T=196K
T=216K

1e+08 """""""""""""""""""""""""" '''''''''''''''''''''''''''' T T=236K
1e+07 |
16406 ; rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr S s
100000

10000 | A L

ice crystal number concentration (m‘3)

1000 R E,,hb,it

100 L ] - .
0.01 0.1 1 10

vertical velocity (m/s)

Figure B1. Comparison of ice crystal number concentrations as obtained for typical nucleation events from different models. Red squares:
Particle model by Kércher and Lohmann (2002), blue circles: complex two moment bulk scheme by Spichtinger and Gierens (2009), black

line & triangles: simpler bulk model from this study, indicated as new reference

In comparison we see an overall good agreement of our simple model with the more sophisticated models (Kércher and
Lohmann, 2002; Spichtinger and Gierens, 2009). However, we have to remark here that the deviation in the results for temper-
ature T' = 236 K at low vertical velocities is the result of the neglegtance of the ventilation correction in the model by Kércher
and Lohmann (2002). In summary, our simplified approach compares very well with the results of the other studies.

In figure B2 a typical nucleation event is shown. Here, two different nucleation parameterizations are used, the reference by

Koop et al. (2000) (black line) and the linear fit (red line). There are small differences in the time evolution of the variables
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saturation ratio .S; (left panel), number concentration n; (middle panel) and mean mass m (right panel), but in general there is

the same behaviour in both cases.
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Figure B2. Representative example for a typical nucleation event for temperature 7' = 216 K and pressure p = 200hPa with a forcing of
w = 1ms™'. Red line: reference nucleation rate after Koop et al. (2000), black line: nucleation rate approximated by linear function as given

in eq. (38).

The source of supersaturation (i.e. cooling by vertical updraft and adiabatic expansion) leads to an increase in S; until
nucleation starts at about tg, ~ 40s, i.e. at very low values of the nucleation rate. .S; is still increasing since the sink of
depositional growth is not strong enough to reduce water vapour efficiently; thus, the ice crystal number concentration is
further increasing due to permanent ice nucleation. At the peak supersaturation, source and sink of supersaturation are balanced
(tpeak ~ 110s); after this time, S; is decreasing due to the dominant growth term. The number concentration does not change
much from this time on but as long as the values of \S; are large enough, still ice nucleation takes place. At about ¢t ~ 125s the
nucleation event is complete, no further nucleation takes place, since the nucleation rate is too small. Note that during the time
interval [tsr, tpeak] the mean mass m is almost constant (this feature is more prominent in the linear fit case), whereas for ¢ >
Tpeak the mass increases. For ¢ < ¢,k the nucleation is dominant, thus diffusional growth just compensates the number increase
by mass, whereas afterwards crystal growth is dominant over nucleation. This feature was already seen in former investigations,
which leads to a model reduction for analytical investigations (Baumgartner and Spichtinger, 2019). The different nucleation
parameterisations agree qualitatively for a nucleation event; however, the nonlinear reference rate leads to some variations.
While for the linear fit case, the increase in n; is approximately an exponential growth n;(t) ~ exp (at), and in turn the mean
mass is almost constant in the relevant time interval, for the reference case the change deviates slightly from exponential
growth.

Note, that the thresholds of constant nucleation rates in figure B2 (left panel) can be calculated from eq. (39) using the

respective values for jy (i.e. jo € {10,12,14,16}) in the formulation of the supersaturation threshold.
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Appendix C: Simple fit for nucleation rate of pure water droplets

In Koop and Murray (2016) a polynomial of degree 6 is used for fitting the experimental values of the nucleation rate for pure
super-cooled water. Since polynomials of high degree are difficult to evaluate numerically, we present fits with polynomials of

lower degrees, which are still accurate in the relevant temperature range. The original formulation of the nucleation rate is
Toom(T) =107 ) py (@) = "e;-al, @=T—Tp. (1)
i=0

with a polynomial p, (x) of degree n = 6 using the melting temperature of pure water T,,, = 273.15K. The coefficients ¢;
are reported in Koop and Murray (2016, table VII), where the nucleation rate is given in units cm~3s~!. We reformulate
the nucleation rate in SI units (i.e. [J] =m™3s™1) by a factor of 10° and approximate the logarithmic values log;,(.J) by
polynomials of degree 2 and 4, respectively, i.e.

pQ(T) =ag+ay -T—I—GQ-T2,

(C2)
pa(T)=ag+ar-T+as-T? +as-T> +ay-T?

the coefficients are given in table C1. For this purpose we use a least square fit for the temperature range 225 <7 < 245K,
for which supercooled water droplets can still exist (see, e.g., figure 4 in Koop and Murray, 2016). In figure C1 (left panel) the

approximations are shown in comparison with the original fit, while the ratio r = 2 (D) is shown in the right panel.

p(z)
20 ——— 1.02 —_—
[ Koop & Murray (2016) —— | I polynomial fit po(T) —— ]
I : polynomial fit py(T) —— : polynomial fit py(T) ——
18 = TS polynomial fit py(T) —— 7| 1,015 b
[ : : 1 8’? [
c‘? I | © 1005 o
B e T IS
| o
c A
[ : ; i = 1
10 [\ g
8 0.995 [
225 230 235 240 225 230 235 240
temperature (K) temperature (K)

Figure C1. Polynomial fits of low degrees for the nucleation rate as given by Koop and Murray (2016). Left: Reference and fits p2(T),
pa(T), right: ratio of reference and fits p2(7"), p4(T)

As can be seen the relative error for the polynomial fit p,(7) is less than 0.25%, while even for the quadratic fit po(7") the

error is smaller than 2%. For practical applications in the relevant temperature range 225 < 7T < 240K the quadratic fit might
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be sufficient. If the original polynomial is used, a sophisticated evaluation of the polynomial is recommended (e.g. Horner

scheme).

fit H ag ai as as aq

p2(T) —5369.61 46.96750 —0.10236 — -
pa(T) || —848143.02 | 14534.5767 | —93.481032 | 0.26745460 | —0.0002872

Table C1. Coefficients for the polynomial fits of the nucleation rate by Koop and Murray (2016) as given in equation (C2).

Appendix D: Perturbation Analysis

The perturbation analysis or asymptotic analysis as applied in Section 4.6 is a well-known technique to investigate the impact
of perturbations on a mathematical object such as a mathematical expression or the solution of an equation. A good general
introduction is given in Holmes (2013) and an application in meteorology is explained in Klein (2010).

The basic idea is to introduce a small parameter ¢, to expand the quantity of interest in powers of ¢, i.e. £, €2, ... and to
substitute this expansion into the mathematical object of interest (see Eq. (48) for such an expansion). Since the resulting
expression should hold for any value of ¢ and even in the limit € — 0, all the contributions from the various powers of € may be
considered individually. Given that the parameter ¢ is assumed as being small, effects that stem from terms with higher powers
of £ will only have a small impact whereas effects with a lower power of ¢ will be dominant.

For practical applications it is common to also scale coefficients and parameters of the mathematical expression in powers
of ¢. This step ensures that the mutual magnitudes of the parameters stay consistent, even in the limit ¢ — 0. This task involves
usually some free choices, and is known as distinguished limit.

In the spirit of the works of Klein and Majda, the scaling of the parameters is often done by assuming € ~ 0.1, i.e. substituting
this value of ¢ into the scaling of the parameters yields a realistic value of the parameters (see, e.g., Hittmeir and Klein, 2017;
Baumgartner and Spichtinger, 2019; Klein and Majda, 2006). As an example, the parameter A(T') ~ Ay = byal,, ~ 149.32 is
written as Ag = A*e~2 with A* = O(1) where the latter may be understood as A* is independent of £. With A* ~ 1.4932 the
value € ~ 0.1 restores the original value of Ay.

In essence, the goal is to determine the nonzero-parts of the expansion of the mathematical expression and the respective

power of ¢ indicates how strong this contribution is. As an example, if the final expansion is found to be ¢!

wW_1+wo+ew+
O(e?) then the term w_1 will be dominant since this term is associated with the lowest power of ¢. If the result would be the
expansion wg + ew; + O(g?) then we may conclude that wy is the dominant part and all wy, for k > 1 only contribute small
corrections (since ¢ is small).

Another fruitful use of perturbation analysis is to allow an equation to determine the possible matching powers of ¢, i.e. to

answer the question: Which powers of ¢ are needed to achieve a balance in the equation at hand? As an example, from physical

39



885 considerations we know that equation (59) holds. As a consequence, after having expanded both sides of the equation in powers
of ¢, the expansions on both sides must agree (otherwise the equation would not hold). This is only possible if the powers of ¢

match, hence the appropriate powers for € may be inferred.
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