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Abstract. Ice formation in cold temperature regimes is most probably dominated by homogeneous freezing of aqueous solution

droplets
::::::::::::
Homogeneous

:::::::
freezing

::
of

:::::::
solution

:::::::
droplets

::
is
:::
an

::::::::
important

:::::::
pathway

:::
of

:::
ice

::::::::
formation

::
in

:::
the

::::::::::
tropopause

:::::
region. The

nucleation rate as derived from laboratory experiments can be represented
:::
can

:::
be

:::::::::::
parameterised

:
as a function of water activ-

ity. For idealized nucleation events as modelled with a state-of-the-art ice microphysics, ,
:::::
based

:::
on

::::::::
empirical

:::
fits

::::
and

:::::
some

::::::::::
assumptions

:::
on

:::
the

:::::::::
underlying

:::::::::
properties

::
of

:::::::::::
super-cooled

::::::
water,

::::::::
although

:
a
:::::::

general
::::::
theory

::
is

::::::::
missing.

::
It

::
is

:::
not

:::::
clear

::::
how5

::::::::
nucleation

::::::
events

:::
are

:::::::::
influenced

::
by

:::
the

:::::
exact

::::::::::
formulation

::
of

:::
the

:::::::::
nucleation

:::
rate

::
or

::::
even

::::
their

::::::::
inherent

:::::::::
uncertainty.

:::
In

:::
this

:::::
study

::
we

:::::::::
investigate

:::
the

::::::::::
formulation

:::
of

:::
the

::::::::
nucleation

::::
rate

::
of

::::::::::::
homogeneous

:::::::
freezing

::
of

:::::::
solution

:::::::
droplets

:::
(1)

::
to

::::
link

:::
the

::::::::::
formulation

::
to

:::
the

:::::::::
nucleation

::::
rate

::
of

::::
pure

:::::
water

::::::::
droplets,

:::
(2)

::
to
::::::

derive
::
a

:::::
robust

::::
and

::::::
simple

::::::::::
formulation

:::
of

:::
the

:::::::::
nucleation

::::
rate,

::::
and

:::
(3)

::
to

::::::::
determine

:
the impact of different approximations of the nucleation rate on the resulting

::::::::
variations

::
in

:::
the

::::::::::
formulation

:::
on

::::::::
nucleation

:::::::
events.

:::
The

:::::::::
nucleation

::::
rate

:::
can

:::
be

:::::::
adjusted

::::
and

:::
the

::::::::::
formulation

:::
can

:::
be

:::::::::
simplified

::
to

:
a
::::::::
threshold

::::::::::
description.

::::
We10

:::
use

:
a
:::::::::::::
state-of-the-art

::::
bulk

:::
ice

::::::::::::
microphysics

:::::
model

:::
to

:::::::::
investigate

:::::::::
nucleation

::::::
events

::
as

::::::
driven

::
by

::::::::
constant

:::::::
cooling

:::::
rates;

:::
the

:::
key

::::::::
variables

:::
are

::
the

:::::
final ice crystal number concentrations and maximum supersaturation ratios is investigated

:::::::::::
concentration

:::
and

:::
the

:::::::::
maximum

::::::::::::
supersaturation

::::::
during

:::
the

:::::
event. The nucleation events are sensitive to the slope of the nucleation rate but

only weakly affected by changes in its absolute value. This leads to the conclusion that details of the nucleation rate are less

important for simulating ice nucleation in bulk models , if
:
as

::::
long

:::
as the main feature of the nucleation rate (i.e. its slope) is15

represented sufficiently
::::
well. The weak sensitivity on the absolute values of the nucleation rate suggests that the amount of

available solution droplets also does not crucially affect nucleation events. The use of just
::::
only

:
one distinct nucleation thresh-

old
:::::::
function for analysis and model parameterisation should be reinvestigated. The frequently used thresholds corresponding

:
,
::::
since

::
it
::::::::::
corresponds

:
to a very high nucleation rate value,

::::::
which is not reached in many nucleation events with low vertical

updrafts. In contrast, the maximum supersaturation and thus the nucleation thresholds reached during an ice nucleation event20

depend on the vertical updraft velocity or cooling rate. This feature might explain some high supersaturation values during

nucleation events in cloud chambers and suggests a reformulation of ice nucleation schemes used in coarse models based on a

fixed
::::::
purely

:::::::::::::::::::
temperature-dependent nucleation threshold.
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1 Introduction

Clouds are one of the most important components in the Earth-Atmosphere system. They influence the hydrological cycle and25

Earth‘s energy balance via interaction with radiation. Clouds can cool the system by partly scattering and reflecting incoming

solar radiation (albedo effect) but also warm the atmosphere by absorbing and re-emitting thermal radiation as emitted by the

Earth’s surface (greenhouse effect). While for liquid clouds a net cooling effect can be derived, the radiative effect for clouds

containing ice crystals is still under debate. In particular,
:
for pure ice clouds (so-called cirrus clouds) at high altitudes in the

low temperature range (T < 235K) albedo effect and greenhouse effect are of the same order of magnitude but admit different30

signs, leading to different net-effects (see, e.g., Fusina et al., 2007; Joos et al., 2014; Gasparini et al., 2017). Thus, details

in microphysical properties of ice crystals might decide about a net warming or cooling of cirrus clouds, as can be seen in

former model studies (e.g. Zhang et al., 1999). A key aspect of ice crystals is their size which directly affects the scattering

and absorption of radiation. Smaller crystals scatter incoming solar light more effectively, thus the optical depth τ is directly

dependent on the size, as can be seen in the usual approximation (cf., e.g., Fu and Liou, 1993)35

τ = IWC ·∆z ·
(
a+

b

De

)
, (1)

whereDe denotes the effective diameter of the crystal, IWC is the ice water content, and ∆z represents the vertical extent of the

cloud, respectively; a and b
::
and

::::
a, b are empirically derived constants. Since the available water vapour is mainly determined

by thermodynamic conditions, the pathway of ice nucleation often decides about the ice crystal number concentration in cirrus

clouds and thus their effective size (assuming a certain amount of available water vapour).40

Ice crystals can be formed by very different nucleation processes, which can be grouped into two major pathways, namely in

situ and liquid origin ice formation (e.g. Krämer et al., 2016; Luebke et al., 2016; Wernli et al., 2016). The overall term in situ

formation refers to ice formation at humidities below water saturation, whereas liquid origin formation subsumes all formation

processes where cloud droplets are present and humidity is close to water saturation (e.g. freezing of cloud droplets)
:
,
:::
see

:::
the

::::::::
definition

::
in

:
Wernli et al. (2016). It is well known, that the ice crystal number concentration varies crucially in dependence45

on the underlying nucleation process, leading to potentially strong changes in the resulting radiative effect (see, e.g., Krämer

et al., 2020).

Despite of the availability of many observational data and laboratory experiments (e.g. Hoose and Möhler, 2012), and also the

development of new theoretical models (e.g. the soccer ball model, see Niedermeier et al., 2011), the details of ice nucleation

at the molecular scale are still unknown.50

A special situation occurs for the probably dominant formation process at cold temperatures below 235K, the so-called

homogeneous freezing of super-cooled solution droplets (also short: homogeneous nucleation)
::
at

::::
cold

:::::::::::
temperatures

::::::
below

:::::
235K. This process describes the spontaneous freezing of supercooled aqueous solution particles containing a small amount

of (usually inorganic) substances. Albeit also the details of this freezing process are not completely understood on a molecular

scale, reproducible laboratory experiments allowed the formulation of an empirical fit for the nucleation rate (Koop et al., 2000).55

::::
Such

::
a

::
fit

:::::
bears

:::::::
inherent

:::
but

::::::
maybe

::::
also

::::::::
unknown

::::::::::
uncertainty,

:::::
since

:::
we

::::
have

:::
no

::::::::
generally

:::::::
accepted

::::::
theory

:::
for

:::::::::::
comparison.

:::::
Other

::
fits

:::
or

:
a
::::::
change

::
in

:::
the

::
fit

::::::::::
parameters

:::::
might

::::
also

:::
lead

::
to
::::::::
different

::::::::::
formulations

:::
of

::::::::
nucleation

:::::
rates.

:
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In the following,
:
A
::::::
priori,

:
it
::
is
:::
not

:::::
clear

::::
how

::::
large

:::
the

::::::
impact

::
of

:::
the

::::::::::
formulation

::
of
:::::::::
nucleation

:::::
rates

:::::
might

::
be

:::
on

:::::::::
simulating

::::::::
nucleation

::::::
events

::
in

::::::
models

::::::::
resolving

:::::::::
nucleation

:::::
events

::
in

:::::
time.

::::
This

::::
issue

::
is

:::
the

::::::
starting

:::::
point

::
of

:::
our

:::::::::::
investigation.

:::
We

:::::
want

::
to

::::::
address

:::::
three

:::::::
different

:::::::
aspects.

:::::
First,

::
we

:::::
want

::
to

::::
link

:::
the

::::::
former

::::::::::
formulation

::
by

::::::::::::::::::
Koop et al. (2000) to

:::::
recent

:::::::
findings

:::
on

::::
pure60

::::
water

::
in
:::::
order

::
to

::::::::
formulate

::
a
::::::::
consistent

::::::::::
framework

::
for

::::
our

::::::
models.

:::::::
Second,

:::
we

::::
want

::
to
::::::
derive

:
a
::::::
robust

:::
and

::::::
simple

::::::::::
formulation

::
of

:::
the

:::::::::::
homogeneous

:::::::::
nucleation

:::::
rates,

::::::
which

:::
can

::
be

:::::
used

::
for

:::::::::
analytical

::
as

::::
well

::
as

:::::::::
numerical

::::::::::::
investigations.

:::::
Third,

:::
we

:::::
want

::
to

:::::::::
investigate

::
the

::::::
impact

::
of

:::::::::
variations

::
of

:::::::::
nucleation

::::
rates

:::::
(based

:::
on

:::
the

:::
new

:::::::::::
formulation)

::
on

:::::::::
nucleation

::::::
events,

:::
i.e.

::
on

:::
the

::::::::
resulting

::
ice

::::::
crystal

:::::::
number

::::::::::::
concentrations.

:

::::
From

::::::
theory

:::::::::::::::::::::::::::::::::::::
(e.g. Baumgartner and Spichtinger, 2019) and

::::::
former

:::::::
idealized

::::
box

:::::
model

::::::::::
simulations

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Kärcher and Lohmann, 2002; Ren and Mackenzie, 2005; Spichtinger and Gierens, 2009),65

::
we

:::::
know

:::
that

:::
ice

::::::
crystal

:::::::
numbers

::
as

::::::::
produced

::
in

:::::::::::
homogeneous

:::::::::
nucleation

::::::
events

:::::
driven

::
by

::
a
:::::::
constant

::::::
cooling

::::
rate

:::::::::
(equivalent

::
to

:
a
:::::::
constant

::::::
vertical

::::::::
velocity)

::::::::
crucially

::::::
depend

::
on

::::::
several

::::::::::
parameters

::::
and,

::::
thus,

:::::
affect

::::
also

::
the

::::::::
radiative

::::::::
properties

:::
of

::
the

:::::::
formed

::
ice

:::::
cloud

::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., calculations in Krämer et al., 2020; Joos et al., 2009).

::::::::
Therefore,

::
it
::
is

::
of

::::
high

::::::::::
importance

::
to

:::::::::
understand

:::
the

:::::
impact

:::
of

:::
the

:::::::::
formulation

:::
of

::::::::
nucleation

:::::
rates

::
on

:::
the

::::::::
resulting

:::
ice

:::::
crystal

:::::::
number

:::::::::::::
concentrations.

:::
We

:::::::::
emphasize

:::
that

:::
all

:::
our

::::::::::::
investigations

:::
are

::::::
meant

::
in

::
a

:::::::::
bulk-sense,

:::
i.e.

:::::
only

::::::::
integrated

:::::::::
quantities

::::
such

:::
as

:::
the

:::
ice

::::::
crystal70

::::::
number

::::
and

:::::
(total)

:::
ice

::::::
crystal

::::
mass

:::
are

::::::::::
considered.

:::::
Using

:::
this

:::::::::
approach,

:::
we

:::::::
consider

:::
the

::::
case

::
of

:
a
::::::
newly

:::::::
forming

:::::
cirrus

:::::
cloud

:::
and

::
do

:::
not

:::::
focus

:::
on

:::
the

:::::::
freezing

::
or

:::::::
forming

::::::
details

::
of

:::::
single

:::
ice

:::::::
crystals.

:::
The

:::::
study

::
is

:::::::::
structured

::
as

:::::::
follows.

::
In

::::
the

::::
next

::::::
section,

:::
we

:::::::
present

:::
the

::
fit

:::
by

:::::::::::::::::::
Koop et al. (2000) and

::
its

::::::::
empirical

:::::
basis,

:::
as

:::::
related

:::
to

:::::
water

:::::::
theories.

::
In

:::::::
section

:
3
:::

we
::::::::
describe

:::
the

::::::
simple

:::::
model

:::::
used

:::
for

:::::::
idealized

::::::::::
simulations

:::
for

::::::
testing

:::
the

::::::
impact

:::
of

:::::::
different

:::::::::::
formulations

::
of

:::::::::
nucleation

::::
rates.

:::
In

::::::
section

:
4
:::
the

:::::
more

:::::::
compact

::::::::::
formulation

::
of

:::
the

:::::::::
nucleation

::::
rate

:::::
along

::::
with

::::::
several75

::::::::::::
approximations

::
is
:::::::::

discussed.
::::

The
::::::::::::
consequences

::
of

:::::
using

:::
the

::::::::
proposed

::::::::::::::
approximations

:::
are

:::::::
explored

:::
by

::::::::
idealized

:::::::::
numerical

::::::::::
simulations.

::
In

::::::
section

::
5
:::
we

:::::::::
investigate

:::
the

::::::
impact

::
of

::
a

:::::::
recently

::::::::
proposed

::::::::::
formulation

::
of

:::
the

::::::::
saturation

::::::
vapour

::::::::
pressure

::::
over

::::::::::
super-cooled

:::::
liquid

:::::
water

:::
on the nucleation events

::::::::::::::::::
(Nachbar et al., 2019).

::
In

::::::
section

:
6
::
a

:::
new

::::::::::
formulation

:::
of

::
the

:::::::::
nucleation

::::
rate

:::::
based

::
on

::::::
results

:::
for

:::::::
freezing

::
of

::::
pure

:::::::::::
super-cooled

:::::
water

:::::::::::::::::::::::
(Koop and Murray, 2016) is

::::::::
presented

::::
and

::
its

::::::
impact

:::
on

:::
the

:::::::
number

:::::::::::
concentration

::
of

::::::::
nucleated

:::
ice

:::::::
crystals

:
is
:::::::::
discussed.

::
In

::::::
section

::
7
:::
we

:::::::::
investigate

::::::::
thresholds

:::
of

::
ice

:::::::::
nucleation

::
as

::::
well

:::
as

::
the

:::::
peak80

:::::
values

::
of

:::::::::::::
supersaturation

::::::
during

::::::::
nucleation

::::::
events,

:::::::
Finally,

:::
we

:::::::::
summarize

:::
the

::::::
results

:::
and

::::
draw

:::::
some

::::::::::
conclusions

::
in

::::::
section

::
8.

:

2
:::::::::
Empirical

::
fit

::
of

:::
the

::::::::::
nucleation

:::
rate

:::::::::
Nucleation

:::::
events

:
are investigated in the phase space spanned by temperature and water activity of the aqueous solution. The

latter is defined as the ratio of saturation pressures of water vapour over the solution psol and pure water pliq, respectively,

as aw := psol
pliq

. In this representation, the melting curve for different inorganic solutions turns out to be solely temperature85

dependent, i.e. aiw(T ) := aw(Tm) = pice(T )
pliq(T ) (cf. Koop, 2015, his eq.(5) ), where pice denotes the saturation vapour pressure over

ice. The important insight here is that also the freezing/nucleation events collapse to a single line in the diagram (see Koop

et al., 2000; Koop, 2004, 2015), which can be fitted by shifting the melting curve (deviation ∆aw ∼ 0.305). This also means

that the nucleation events do not depend on the solute, which is at least true for most inorganic substances (see, e.g., Koop,

2004). Thus, the nucleation rate can be solely parameterized as a function of ∆aw = aw−aiw. For the fitting procedure in Koop90

3



et al. (2000), a polynomial of degree 3 is used and results in the formulation

Jsol(∆aw) = 10p3(∆aw) with p3(x) =

3∑
k=0

akx
k (2)

of the homogeneous nucleation rate coefficient Jsol. The nucleation rate coefficient is used to formulate the probability of

freezing of aqueous solution droplets. The fit was used in the spirit of the representation of the nucleation rate for pure water

as derived by Pruppacher (1995). During this time, three water theories were available, and the nucleation rate
::
(as

::
a
:::::
cubic95

::::::::::
polynomial) was chosen according to the stability limit hypothesis (e.g. Mishima and Stanley, 1998),

:::::::
leading

::
to

::
an

:::::::::
unlimited

:::::::
increase

::
in

:::
the

::::
rate

::::::::::::::::::::::::::::::::::
(see, e.g., Pruppacher, 1995, his figure 3). However, meanwhile this water theory can be ruled out by

experimental evidence, thus only the two other water theories remain (singularity-free hypothesis vs. liquid-liquid critical

point, cf. Gallo et al., 2019, 2016). For homogeneous freezing of solution droplets at ,
::::::

which
:::
do

:::
not

::::::
admit

::
an

:::::::::
unlimited

:::::::
increase

::
in

:::::::::
nucleation

::::
rates

::
of
:::::

pure
:::::
water

:::::::::::::::::::::::::::::
(see, e.g., Koop and Murray, 2016).

:::::
Thus,

:::
the

::::::::
heuristic

::::
basis

:::
for

::::::::
choosing

::
a
:::::
cubic100

:::::::::
polynomial

::
as

::
a

::
fit

::
is

:::
not

::::
valid

::::::::
anymore.

:

::::
Note

:::
that

:::
for

:
atmospheric relevant conditions, both

::::::::
remaining

:::::
water

:
theories produce essentially the same results. Only at

very low temperatures T < 150K, where highly viscous or even glassy states of water occur, a different behaviour is predicted.

However, these
::::
Such

:
temperatures are not relevant for investigations of ice clouds in the tropopause region, where homoge-

neous freezing of solution droplets appears as the dominant freezing process.
::::
takes

::::::
place.

::::::::
However,

::::
these

:::::::
theories

:::::::
provide

:::
the105

::::
basis

:::
for

:::
the

:::::::::
formulation

::
of

:::
the

::::::::
saturation

::::::
vapour

:::::::
pressure

::::
over

::::::::::
supercooled

:::::
water

::
in

:::
the

::
no

:::::
man’s

::::
land

::::::::::::::::::::::
(Murphy and Koop, 2005),

:::::::::
combining

:::
heat

:::::::::
capacities

::
of

:::::
liquid

:::::
water

:::
and

::::::::::
amorphous

:::
ice.

:

Finally, using the assumption of solution droplets being in equilibrium with their environment
:::
and

:::::::::
neglecting

:::
size

::::::
effects,

water activity equals the liquid water saturation ratio Sliq due to

aw =
psol

pliq

in eq.
=

pv
pliq

= Sliq (3)110

where pv denotes the partial water vapour pressure. Using this representation of aw together with the ice saturation ratio

Si = pv
pice

, the computation

∆aw = aw − aiw =
pv

pliq(T )
− pice(T )

pliq(T )
= (Si− 1)

pice(T )

pliq(T )

= (Si− 1)aiw(T )

(4)

shows that ∆aw only depends on the ice saturation ratio and temperature.

From theory (e.g. Baumgartner and Spichtinger, 2019) and former idealized box model simulations (e.g. Kärcher and Lohmann, 2002; Ren and Mackenzie, 2005; Spichtinger and Gierens, 2009),115

we know that ice crystal numbers as produced in nucleation events driven by a constant cooling rate (equivalent to a constant

vertical velocity) crucially depend on several parameters and, thus, affect also the radiative properties of the formed ice cloud

(see, e.g., calculations in Krämer et al., 2020; Joos et al., 2009). In this study we will investigate the impact of the formulation

of the nucleation rate on the resulting ice crystal number concentrations. In an upcoming study , the impact of ice crystal

growth on nucleation events is investigated. Both processes (nucleation and growth) determine the nucleation events directly.120

4



However, the representation of these processes contains still uncertain parameters or even the (mathematical) formulation of

the processes remain uncertain. Therefore, it is of high interest to investigate the dependence of the ice nucleation events on

these processes and their formulations.

The study is structured as follows
:::::
Note,

:::
that

::::::::
although

::::::
recent

::::::::::::
measurements

::::::::::::::::::::::::::
(Pathak et al., 2021) corroborate

:::
the

:::::::::
procedure

::
in

:::
the

:::::
study

:::
by

::::::::::::::::::::::
Murphy and Koop (2005),

::
in

::
a

:::::
recent

:::::
study

:::
by

:::::::::::::::::::::
Nachbar et al. (2019) the

:::::::::::
combination

::
of

::::::
liquid

:::::
water

::::
and125

:::::::::
amorphous

:::
ice

::
is

:::::
called

::::
into

::::::::
question,

:::::::
leading

::
to

:
a
::::::::
different

::::::::::
formulation

::
of

:::
the

:::::::::
saturation

::::::
vapour

:::::::
pressure

::::
over

:::::::::::
supercooled

::::
water

::::
and

::::
thus

::
a
::::::::
different

:::::
water

::::::
activity. In the next section, we present theoretical concepts and the simple model used

for idealized simulations for testing the impact of different processes. In section 4 the formulation of the nucleation rate

along with several approximations is discussed. The consequences of using the proposed approximations are explored by

idealized numerical simulations. In section 5 we investigate the impact of a recently proposed formulation of the
::::::::
following130

:::::::::::
investigations,

:::
we

::::
will

::::
also

:::
use

::::
this

::::::::::
formulation

::
in

:::::
order

::
to
:::::::::

determine
:::
the

:::::::::
sensitivity

::
of

:::
the

:::::::::
nucleation

::::::
events

:::
on

:::
the

::::::
choice

::
of

:
a
:
saturation vapour pressure over super-cooled liquid water on the nucleation events (Nachbar et al., 2019). In section 6 a

new formulationof the nucleation rate based on results for freezing of pure super-cooled water (Koop and Murray, 2016) is

presented and its impact on the number concentration of nucleated ice crystals is discussed. In section 7 we investigate

thresholds of ice nucleation as well as the peak values of supersaturation during nucleation events, Finally, we summarise135

these results and draw some conclusions in section 8
::::::::::
formulation.

::::
Note,

::::
that

:::
for

::::
each

::::::
choice

:::
the

:::::
water

::::::
activity

::::::
aiw(T )

::::
must

:::
be

::::::::::
recalculated.

:

3 Model description

We begin with the description of the governing equations for the relevant ice processes
::
in

:
a
:::::::::
nucleation

:::::
event, i.e. homogeneous

nucleation and diffusional growth. Both processes are key for determining the properties of the nucleation event, such as the140

number of nucleated ice crystals and the evolution of the ice saturation ratio (e.g.
::
its peak value). Of course, other processes such

as sedimentation and aggregation of ice crystals are important for the evolution of ice clouds, but usually act on larger
:::::
longer

time scales, e.g., when the particles are grown to larger sizes. Thus, we omit these processes and concentrate on nucleation and

growth, as in former studies (e.g. Kärcher and Lohmann, 2002; Baumgartner and Spichtinger, 2019).

We formulate the model in terms of averaged quantities for ice crystal mass and number concentration (qi,ni)::::::
qi, ni), :::

i.e.
::
as145

:
a
:::::::::
2-moment

::::::
scheme. Additionally, the saturation ratio with respect to hexagonal ice, Si = pv

pice(T ) , is used, with the partial water

vapour pressure pv and the saturation water vapour pressure over hexagonal ice, pice(T ), respectively. Thus, the complete set

of equations for an adiabatically ascending air parcel can be represented as follows
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ṅi = Nucn (5)

q̇i = Nucq + Depq (6)150

Ṡi = Cool + Deps (7)

Ṫ =
dT

dt

∣∣∣
adiabatic

+
dT

dt

∣∣∣
diabatic

=− g

cp
w+

L

cp

dqi
dt

::::::::::::::

∣∣∣phase =− g

cp
w+

L

cp
:::::::::::::::

(
Nucq + Depq
::::::::::

)
(8)

ṗ =
dp

dt

∣∣∣
adiabatic

=−gρw,
:::::::

(9)

where the change of temperature and pressure due to the adiabatic cooling and expansion is included. As in former studies

(Spreitzer et al., 2017; Baumgartner and Spichtinger, 2019), constant temperature and pressure is assumed. The tendencies of155

temperature and pressure are only preserved in the saturation equation. This means that the equations (8) and (9) are removed

and
::::::::
including

:::::::
changes

::
of

:::::::::::
temperature

::
T

:::
and

:::::::
pressure

::
p.
:::

In
::::
these

:::::::::
equations,

::
w
:::::::
denotes

:::
the

:::::::
vertical

:::::::
velocity

::
of

:::
the

:::
air

::::::
parcel,

::
cp ::

is
::
the

:::::::
specific

::::
heat

:::::::
capacity

::
of

:::
dry

:::
air

::::::::::::::::::::::::::::::::::::::::::::
(assumed as a constant, see, Baumgartner et al., 2020),

::
L

::::::
denotes

:::
the

:::::::::
(constant)

:::::
latent

:::
heat

:::
of

::::::::::
sublimation,

::::
and

:
ρ
::

is
:::

the
:::

air
:::::::
density.

::::
The

:::::::::
assumption

:::
of

::
an

:::::
ideal

:::
gas

::
is

:::::::
adopted

:::
for

:::
air

:::
and

:::::
water

:::::::
vapour.

::::
The

:::::
terms

::::::::::
Nucn, Nucq :::::

denote
:::::::
changes

::::
due

::
to

:::::::::
nucleation,

:::
the

:::::
terms

:::::::::
Depq, Deps::::::::

describe
::::::
changes

::::
due

::
to

:::::::::
diffusional

::::::
growth

::
of

:::
ice

:::::::
crystals.160

:::
The

::::
term

:::::
Cool

:::::::
denotes

:::
the

::::::
impact

::
of

::::::::
adiabatic

::::::::
expansion

::::
due

::
to

:::::::
upward

::::::
motion

::::
with

:::::::
velocity

:::
w,

:::
this

::
is
::::
also

::::::::
reflected

::
in

:::
the

::::::
change

::
of temperature and pressureare set to fixed parameters T = Tenv,p= penv. Actually, temperature and pressure changes

during a nucleation event are small and their neglect in the growth and nucleation rates enables us to control the impact of

these different processes. ,
:::::
using

::::::::
adiabatic

::::
lapse

::::
rate

:::
and

:::::::::
hydrostatic

::::::::
pressure,

::::::::::
respectively.

::::
For

::::::::::
temperature,

:::
we

:::::
would

:::::
have

::
to

:::::::
consider

:::::::
diabatic

:::::::
changes

:::
due

::
to

:::::
latent

::::
heat

::::::
release

::
in

:::::
phase

:::::::
changes.

:
165

Similarly as in the approach in Kärcher and Lohmann (2002), the impact of

:::::::::
Computing

:::
the

::::
total

:::::::::
derivative

::
of

:::
the

::::::::
saturation

:::::
ratio

:::::
using

:::
the

::::::::::::
representation

::::::::::::
Si = pqv

ε0psi(T ) ,
:::::
where

::
ε0:::::::

denotes
:::
the

::::
ratio

:::
of

:::::
molar

::::::
masses

::
of

:::::
water

:::
and

:::
dry

::::
air,

:::::::
together

::::
with

:::
the

::::::::::::::::
Clausius-Clapeyron

:::::::
equation

::::::
yields

Cool =
∂Si
∂T

dT

dt

∣∣∣
adiabatic

+
∂Si
∂p

dp

dt

∣∣∣
adiabatic

=

[
Lg

cpRvT 2
− g

RaT

]
Siw

::::::::::::::::::::::::::::::::::::::::::::::::::::::

(10)

:::
and170

Deps =
∂Si
∂T

dT

dt

∣∣∣
diabatic

+
∂Si
∂qv

(
Nucq + Depq

)
=−

[
L2

cpRvT 2
+

1

qv

]
Si
(
Nucq + Depq

)
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(11)

::
To

::
a

::::
good

:::::::::::::
approximation,

:::
for

::::
cold

:::::::::::
temperatures

::::
the

:::
first

:::::
term

::
in

:::
the

:::::::
bracket

::
in

:
(11)

:
,
:::::
which

::::::::
describes

:
latent heat release is

neglected. As discussed in appendix B, for high temperatures T > 230K this leads to a change in the saturation ratio and thus

an enhanced ice crystal number concentration in comparison to the results of
:::
due

::
to

:::::
phase

::::::::
changes,

:::
can

:::
be

:::::::
omitted.

:::
In

:::
the

::::::::
following,

:::
we

::::
will

::::
omit

:::
the

::::::::
evolution

::::::::
equations

:
(8)

:
, (9)

:::
for

::::::::::
temperature

:::
and

::::::::
pressure,

:::
i.e.

:::
we

::::::
assume

:::::
these

::
as

:::::
being

::::::::
constant175
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:::::
during

:::
the

:::::::::
nucleation

:::::
event.

:::::
Thus,

:::
we

:::::
arrive

::
at

:

Deps ≈−
p

ε0psi

(
Nucq + Depq

)
:::::::::::::::::::::::::

(12)

::
As

::
a

:::::
result

::
of

::::::::
assuming

::::::::::
temperature

:::
and

:::::::
pressure

::
as

:::::
being

::::::::
constant,

::::
only

:::
the

::::::
vertical

:::::::
velocity

::
w
::
is
:::
an

::::::
external

:::::::::
parameter

:::
for

the full system. This has to be considered for comparing the results of nucleation events with the “benchmark” simulations by

Kärcher and Lohmann (2002)
:::::::::::::
supersaturation.

:::
For

:::
the

::::
terms

::::::::::
Nucx,Depx::::::::::

(x= n,q,s)
:::
we

::::
have

::
to

::::
keep

::::::::::
temperature

::::
and

:::::::
pressure180

::
as

::::
fixed

:::::::::
parameters

:::::::::::::::
T = Tenv,p= penv.

::::
This

::::::::
approach

::::
was

:::
also

::::
used

::
in

::::::
former

:::::::::::
investigations

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Spreitzer et al., 2017; Baumgartner and Spichtinger, 2019).

The nucleation term can be described as

Nucn = JnucVdna, Nucq =m0Nucn (13)

where, Vd is the mean volume of a supercooled solution droplet, na is the number concentration of solution droplets, and m0 is

the mean mass of a newly frozen solution droplet, which can be set tom0 = 10−16 kg. The nucleation rate for the homogeneous185

freezing of solution droplets is denoted by Jnuc. For comparison with former investigations (Kärcher and Lohmann, 2002; Spichtinger and Gierens, 2009)
::::::::::::::::::::::::::::::::::::::::::::::::::
(Kärcher and Lohmann, 2002; Spichtinger and Gierens, 2009),

we set the number concentration of the background aerosol to a quite large value of naρ= 104 cm−3 = 1010 m−3
:
;
:::::
since

:::
the

:::::::
resulting

:::
ice

::::::
crystal

:::::::
number

:::::::::::
concentration

::
as

::::::::
produced

::
in
:::::::::

nucleation
::::::
events

::
is

::::::
usually

:::::
some

::::::
orders

::
of

:::::::::
magnitude

:::::::
smaller,

:::
we

::
do

:::
not

::::
have

::
to

::::
care

:::::
about

:
a
:::::::
possible

:::::::::::
consumption

::
of

::
a
:::::
major

::::
part

::::::
fraction

::
of

:::::::
solution

:::::::
droplets. We will later discuss the impact

of this value in terms of nucleation events.190

The diffusional growth of ice crystals is determined by the growth rate

Depq = ni · 4πD∗vCGv(Si− 1)fv (14)

with the diffusion constant for water vapour in air D∗v =Dv(p,T )fD as corrected by the factor fD for the kinetic regime, the

capacity of ice crystals, C, assuming columnar shape, the Howell factor Gv(p,T ) describing the impact of latent heat, and the

ventilation correction fv , respectively. Note, that the capacity also depends on the mean mass of the ice crystal ensemble, i.e.195

C = C(m̄) = C(ni, qi). The details of the formulation are given in appendix A.

For the determination of the source and sink terms for the supersaturation, we investigate the total derivative of the saturation

ratio Si = pqv
ε0psi(T ) , where ε0 denotes the ratio of molar masses of water and dry air. Within this computation, we incorporate

the tendencies for temperature and pressure. The temperature tendency is separated into an adiabatic and a diabatic contribution

200
dT

dt

∣∣∣
adiabatic

=− g

cp
w,

dT

dt

∣∣∣
diabatic

=
L

cp

dqi
dt

∣∣∣
phase

=
L

cp

(
Nucq + Depq

)
,

and the expression

dp

dt

∣∣∣
adiabatic

=−gρw

7



describes the pressure tendency, respectively. In these equations, w denotes the vertical velocity of the air parcel and cp is

the specific heat capacity of dry air (assumed as a constant, see, Baumgartner et al., 2020). These terms lead to the source and205

sink terms for Si, i.e.,

Cool =

[
Lg

cpRvT 2
− g

RaT

]
Siw

and

Deps =−
[

L2

cpRvT 2
+

1

qv

]
Si
(
Nucq + Depq

)
To a good approximation, for cold temperatures the first term in the bracket in can be omitted. This is also consistent with our210

assumption that during the nucleation event temperature and pressure do not change. Thus, we arrive at

Deps ≈−
p

ε0psi

(
Nucq + Depq

)
Combining the expressions from above, the reduced system of equations reads

ṅi = Nucn (15)

q̇i = Nucq + Depq (16)215

Ṡi =

[
Lg

cpRvT 2
− g

RaT

]
Siw+

p

ε0psi

(
Nucq + Depq

)
(17)

Remark
::::::::
Remarks:

1. As shown in Spreitzer et al. (2017), it is possible to determine and characterize the steady states of the reduced system,

which additionally includes sedimentation. This leads to a nonlinear oscillator with a bifurcation diagram, depending on

the updraft velocity w, and on the temperature T .220

2.
:::
The

:::::::::
usefulness

::
of

::::
this

::::::
simple

::::::
double

:::::::
moment

::::::
scheme

:::::::
depends

:::
on

:::
the

:::::
scales

::
of

:::
the

:::::::::
scenarios.

:::
We

::::::::
generally

:::::
found

:::::
good

::::::::
agreement

:::::
with

::::
such

::::::
parcel

::::::
models

::::
and

::::
also

::
on

:::
an

::::
LES

:::::
scale

::::
(and

:::::
even

::::::
coarser

:::::::::
resolution)

:::::
with

:::::::::::
observations,

:::::
more

::::::::::
sophisticated

:::::::
models,

:::
and

::::
also

:::::
theory

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Spichtinger and Gierens, 2009; Spichtinger, 2014; Baumgartner et al., 2022).

4 Investigations of the nucleation rates225

Investigations of ice clouds in the cold temperature regime (T < 235K) need to include the nucleation process of homogeneous

freezing of aqueous solution droplets. As pointed out in section 1 the formulation by Koop et al. (2000) based on water activity

is a meaningful fit to experimental data. However, for theoretical investigations and the use in reduced order models, a simpler

but still accurate approximation would be helpful. In the following we present a way how to derive such an approximation

based on the original fit through measurements by Koop et al. (2000) in addition to recent observations for pure super-cooled230

water.
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4.1 Correction of the nucleation rate

In the study by Koop and Murray (2016) a parametrisation of the nucleation rate of pure supercooled water Jpure liq(T ) was

derived, based on recent measurements. Thus, in the context of homogeneous freezing of solution droplets, the nucleation rate

for pure water particles should coincide with the nucleation rate of solution droplets Jsol(∆aw)
:::
Jsol:at water saturation, i.e. the235

condition

Jsol(∆aw
∗)

RH=1≡ Jpure liq(T ) (18)

should hold
::
for

:
a
:::::
value

::::
∆a∗w::

at
:::::
water

::::::::
saturation. However, evaluating these two formulations of the nucleation rates at water sat-

uration shows nonequal values
:
a
::::::
similar

:::::::::
qualitative

::::::::
behaviour

:::::
down

::
to

:::::::::::
temperatures

:::::::::
T ∼ 235K

:::
but

:
a
::::::::::
quantitative

::::::::::::
disagreement,

:::
see

:::
the

:::
blue

::::
and

:::::
black

:::::
curve

::
in

:::::
Figure

::
1. A reasonable requirement is that the values of both formulations should match in the240

temperature range 235K≤ T ≤ 240K, since this range is relevant for the freezing of pure water cloud droplets with reasonable

sizes. This temperature range at water saturation is equivalent to the range of water activity difference 0.27≤∆aw ≤ 0.31. The

offset between the curves is shown in figure 1 and can be corrected by shifting the
::::::::
logarithm

::
of

:::
the nucleation rate for solution

droplets by a constant value. The value of the shift was calculated by minimising
:::::::::
minimizing the square distance between the

curves in the respective temperature range. Thus, the corrected nucleation rate for aqueous solution droplets reads as

Figure 1. Nucleation rates for pure super-cooled water droplets (Koop and Murray, 2016, red) and aqueous solution droplets (Koop et al.,

2000)
:
at

::::
water

::::::::
saturation

:::
(i.e.

:::::::
infinitely

::::::::
dissolved); original values

::
by

::::::::::::::
Koop et al. (2000) in blue, shifted values (δ =−1.522) in black (new

reference nucleation rate Jsol,new).
245

log10(Jsol,new(∆aw)) = log10(Jsol(∆aw)) + δ (19)

with δ =−1.522. The nucleation rates are given in SI units (as used for all quantities throughout this study), i.e. [J ] = m−3 s−1.

Remarks:

– The nucleation rate of pure water droplets can be used for a direct parametrisation of the nucleation rate of aqueous

solution droplets. This will be carried out in section 6.1.250

– In the following we will refer to the corrected nucleation rate as “reference” nucleation rate, since, to the best of our

knowledge, it provides the best and most recent fit for the homogenous nucleation rate of solution particles,
:::::
based

:::
on

:::
the

::::::::::
assumptions

:::
that

:::
the

:::::::::
nucleation

::::
rates

:::
for

::::
pure

:::::
water

::::
and

:::::::
solution

:::::::
droplets

:::::
should

:::::
agree

::
at

:::::
water

::::::::
saturation.

4.2 Nucleation rate as a function of T and Si

The general strategy of the study is to represent the exponent of the nucleation rate by low order polynomials in a thermody-255

namic variable x, i.e.

J = 10p(x)pn(x)
::::

, pn
:
(x): =

n∑
k=0

akx
k, degpdegpn

:::::
= n. (20)
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For instance, the formulation of the nucleation rate for aqueous solution droplets by Koop et al. (2000) is based on a polynomial

of degree three, i.e.

Jsol(∆aw) = 10p3(∆aw), p3(x) =

3∑
k=0

akx
k (21)260

using the thermodynamic quantity x= ∆aw = aw − aiw.

Note, also the nucleation rate Jpure liq for pure water droplets is based on the same structure, i.e. log10(Jpure liq) is a polynomial

of order 6 in the thermodynamic variable T (cf. Koop and Murray, 2016). For analytical investigations of the homogeneous

nucleation, it is desirable to represent log10(J) by a polynomial with low degree. As will be shown in the following, the

formulation265

log10(J)≈ pn
:
(x), degpn= degpn

::::::::
≤ 2 (22)

with a polynomial yields sufficient agreement with the reference. For analytical investigations (e.g. using asymptotic analysis) it

is helpful to represent the nucleation rate using a threshold for the humidity to account for the explosive character of nucleation

events as used in the analysis by Baumgartner and Spichtinger (2019). Thus, for the nucleation rate for super-cooled solution

droplets we make the following ansatz270

J = 10p(x) ∼pn(x) =
::::::

exp
(
A(T )(Si−Sc) +B(T )(Si−Sc)2

)
(23)

where Sc = Sc(T ) is the temperature-dependent threshold value for the saturation ratio.
::::
Note,

::::
that

:::
the

:::::
ansatz

::
is
:::::::::
consistent

:::
(or

::::
even

:::::::::
equivalent)

::::
with

::::::::
condition

:
(22)

:
. In order to describe J as a function of Si and T we reformulate ∆aw as

∆aw = (Si− 1)aiw(T ) = (Si−Sc)aiw(T ) + (Sc− 1)aiw(T ) (24)

using a threshold Sc(T ) ; it
:::
that corresponds to a fixed value J0 of the nucleation rate, i.e. J(Sc(T ),T ) = J0. Taking the275

logarithm, this equality implies p(x0) = j0 = log10(J0) with ∆aw = x0:::::::::::::::::::::
pn(x0) = j0 = log10(J0)

::::
with

::::::::
x= ∆aw. As in former

studies (see, e.g., Koop et al., 2000; Kärcher and Lohmann, 2002), we choose J0 = 1016 m−3 s−1 = 1010 cm−3 s−1. Note, that

this choice
:::
for

:::
the

::::::::::::::
parameterisation is quite arbitrary and has no strict physical explanation.

:::::::::::
interpretation,

::::::::
although

:::
one

::::
can

::::
argue

::::
with

:::
the

:::::::
cooling

::::
rates

::
of

:::
the

:::::::::
underlying

::::::::::
experiments

::::
and

:::
thus

::::
with

:::
the

::::::::::
probability

::
of

:::
the

:::::::
freezing

::
of

:::::::
droplets

::::
with

:
a
:::::
given

::::::
volume

::::::
within

:
a
::::::
certain

:::::::::
predefined

::::
time

::::::
interval

:::::::::::::::::
(Koop et al., 2000).280

Evaluating eq. (24) at Si = Sc, we arrive at

p−1
n (j0) = x0 = (Si−Sc)aiw(T ) + (Sc− 1)aiw(T )

Si=Sc= (Sc− 1)aiw(T )
(25)

leading to a description of the threshold

Sc =
1

aiw(T )
p−1
n (j0) + 1 and

∆aw = (Si−Sc)aiw(T ) + p−1
n (j0)

(26)
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if the polynomial p(x)
:::::
pn(x)

:
can be inverted in the relevant range 0.26≤∆aw ≤ 0.34 . Combining the equations from above,285

the nucleation rate can be represented as

log10J = p(∆aw) = pn
:

(
(Si−Sc)aiw(T ) + pn

:

−1(j0)

)
(27)

which is a threshold description using the thermodynamic variables Si,T::::
Si, T . This representation amounts to a reformulation

of the original approximation, if the inverse function p−1(x)
::::::
p−1
n (x)

:
exists in the relevant range (i.e. p(x)

::::
pn(x)

:
is strictly

monotonic). In the following we consider
::
the

::::
case

::
of

:
linear and quadratic polynomials,

:::
as

:::::::::
determined

:::
by

:::
the

:::::
ansatz

:
(23).290

1. Case of a linear polynomial p1(x) = a0 + a1x

The inverse function of p1(x) = y is given by p−1
1 (y) = y−a0

a1
implying the threshold

Sc(T ) =
1

aiw(T )

j0− a0

a1
+ 1. (28)

Substituting eq. (28) into the expression (27) yields

log10J(Si,T ) = j(Si,T ) = j0 + a1a
i
w(T )(Si−Sc(T ))

= j0 +A(T )(Si−Sc(T ))
(29)295

using the approximation p3(∆aw)≈ p1(∆aw) = a0 + a1∆aw whereas
:::::
where

:
A(T ) = a1a

i
w(T ); the coeffifients

:
.
::::
The

:::::::::
coefficients

:
a0,a1 can be determined in different ways, see section 4.3. Furthermore, approximations to the functions

A(T ) and Sc(T ) can be investigated.

2. Case of a
:
quadratic polynomial p2(x) = b0 + b1x+ b2x

2 = a(x− b)2 + c

Since a quadratic function is not strictly monotonic in general, inverting the quadratic polynomial leads to two functions,300

i.e.

p−1
2 (y) = b±

√
y− c
a

. (30)

If one solution can be ruled out (e.g. due to physical constraints) we can formulate

log10J = p2

(
(Si−Sc(T ))aiw(T ) + p−1

2 (j0)
)

(31)

using the threshold description305

Sc(T ) =

(
b±
√
j0− c
a

)
1

aiw(T )
+ 1 (32)

Equivalently, we can derive a formulation

log10J = c0 + q1(T )(Si−Sc(T ))

+ q2(T )(Si−Sc(T ))2
(33)

with appropriate functions q1, q2:::::
q1, q2, which might be useful for analytic investigations.

Remark: We will
::::
again

:
use this quadratic ansatz for a direct approximation of the nucleation rate of pure water droplets310

(see section 6.1).
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4.3 Linear polynomial fit for the nucleation rate

In this section we investigate approximations of the exponent of the nucleation rate of aqueous solution droplets Jsol and their

impact on nucleation events in an idealised scenario. We concentrate on the reference formulation (Koop et al., 2000). Since

the polynomial p3(x) in the original formulation315

Jsol(∆aw) = 10p3(∆aw), p3(x) =

3∑
k=0

akx
k (34)

nearly behaves as a linear polynomial in the relevant range 0.26≤∆aw ≤ 0.34, it can be easily approximated by a linear

relation, i.e. p3(x)≈ b0 + b1x. For this we can use two different approaches: (i) using a least square fit to p3 and (ii) a Taylor

expansion at a prescribed value y0. While the first approach is just a fitting procedure in the relevant range 0.26≤∆aw ≤ 0.34,

the second approach relies on an a priori choice for the evaluation point y0 ∈ [0.26,0.34] ;
:::
and

:
it is not evident from the outset320

which value should be used to provide an accurate approximation. For this, we investigate the sensitivity of p3 to a small

perturbation ε= y− y0, i.e. we consider

p3(y) = p3(y0 + ε) = p3(y0) +
dp3

dx

∣∣∣
y0
ε+O

(
ε2
)

(35)

≈ bt0 + bt1 · y = pt,y0(y) (36)

with the coefficients325

bt0 = p3(y0)− dp3

dx

∣∣∣
y0
· y0 and bt1 =

dp3

dx

∣∣∣
y0
. (37)

The Taylor approximation leads us to
:::::::
provides

:
a range for the slope of the linear approximation; these values motivate later

the sensitivity analysis in section 4.5.2. In the relevant range 0.26≤ y ≤ 0.34 for y = ∆aw we obtain slopes in the range

221≤ bt1 ≤ 453. This investigation gives us a hint about possible variations in the slope of pls(x), which will be used later for

the sensitivity analysis in section 4.5.2.330

In contrast, using a least square fitting routine for 0.26≤∆aw ≤ 0.34 we obtain a linear function

pls(x) = bls,0 + bls,1 ·x (38)

with bls,0 =−62.19267 and bls,1 = 254.7749. For the further investigations, we only use the linear fit from eq. (38).

We observe that the linear fit pls(x) best approximates p3 close to the inflection point xinfl ≈ 0.30756 (see figure 2, left

panel).335

For each linear approximation p(x) = b0+b1·x of p3(x), the exponent of the nucleation rate and the saturation ratio threshold

become, as demonstrated in section 4.2,

j(Si,T ) = j0 + b1a
i
w(T )︸ ︷︷ ︸

:=A(T )

(Si−Sc(T )),

Sc(T ) =
1

aiw(T )

j0− b0
b1

+ 1.

(39)
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Since aiw is a rather complicated function of temperature, it is particularly useful in the context of analytical investigations to

have simpler approximations of this quantity. This motivates to approximate aiw and its inverse 1
aiw

in the relevant temperature340

range 190≤ T ≤ 230K by polynomials q(T ) of degree degq ≤ 2. Similarly, we can approximate the nucleation threshold

Sc(T ) by polynomials s(T ) of degree degs≤ 2. For the approximation
:::::::::::::
approximations we use a least square procedure within

the temperature range 190≤ T ≤ 230K.The results are presented in figure 2 (middle and right panels). Note that the thresholds,

either exact or approximate, are quite similar to the former approximations by Ren and Mackenzie (2005), while there is a larger

difference to the approximation by Kärcher and Lohmann (2002).345

Figure 2. Polynomial approximations of the nucleation rate (left), the ice water activity aiw(T ) = pice(T )
pliq(T )

(middle), and

the saturation ratio threshold Sc(T ) (right panel), respectively. The right panel also includes the approximations by

Kärcher and Lohmann (2002); Ren and Mackenzie (2005)
::::::::::::::::::::::::
Kärcher and Lohmann (2002) and

:::::::::::::::::::::
Ren and Mackenzie (2005).

Combining the approximations q(T ) and s(T ) yields the formulation

j(Si,T ) = j0 + b1q(T )(Si− s(T ))

≈ j0 +A(T )(Si−Sc(T ))
(40)

of log10(J). As can be seen in Figure 2, the nucleation threshold is accurately approximated by a linear relation (deviation is

smaller than 0.3%). In former studies (e.g. Kärcher and Lohmann, 2002; Ren and Mackenzie, 2005) linear fits were derived for

the nucleation thresholds; however, these fits deviate significantly more from the reference in comparison to ours (see figure 2).350

The deviation depends on the respective formulation (or approximation) of aiw.

::::
Also

::::::
former

::::::
studies

:::
use

:::::::::
(empirical)

:::::
linear

::::::::::::
approximation

:::
for

::
the

:::::::::
saturation

::::::::
threshold.

:::::::::
Comparing

:::::
these

:::::
linear

:::::::::::::
approximations

::::
with

:::
ours

:::
in

:::
Fig

:
2
::
it

::
is

::::::
evident

::::
that

:::
they

:::::::
deviate

::::::::::
significantly.

:

4.4 Thresholds for prescribed nucleation rate values

The threshold description in section 4.3 was based on the (arbitrary) choice of a nucleation rate value
:::::
choice

:
j0 = 16, leading355

:::::::::::
corresponding

:
to a nucleation rate J = 1016 m−3s−1. As already mentioned, the choice of j0 is quite arbitrary, and these high

values of J are very often not reached in the numerical simulations (see section 4.5). For a better diagnostics of the nucleation

events and the relative strength of nucleation events, we introduce a similar concept for nucleation thresholds, based on a

prescribed nucleation rate value J ∼ 10x0 . For this purpose we repeat
::
use

:
eq. (40) of the nucleation threshold based on the

linear approximation of the nucleation rate :360

j(Si,T ) = j0 +A(T )(Si−Sc(T ))

With
::::
with a fixed but arbitrary value x0 > 0

::
for

:::
the

:::::::::
nucleation

:::
rate

:::::
value;

::::::
hence, we can write

x0 = j(S0,T ) = j0 +A(T )(S0−Sc(T ))

⇔ Scx0(T ) = S0 =
x0− j0
A(T )

+Sc(T )
(41)
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whereas
:::::
where the function A(T ) = b1a

i
w(T ) depends only on the linear approximation of J as stated in section 4.2. Note that

obviously Scx0(T ) = Sc(T ) for x0 = j0. This leads to the formulation of the nucleation rate365

j(Si,T ) = x0 +A(T )(S0−Scx0(T )) . (42)

with a general nucleation value x0 and its associated threshold function Scx0(T ). The threshold function is just constantly

shifted on the vertical axis
:::::
shifted

:::
by

:::
the

::::
value

::::::

x0−j0
A(T ) , i.e. the type of the threshold function remains the same. This formulation

will be used for the theoretical investigations using small perturbations (see section 4.6)

4.5 Numerical simulations of nucleation events for different approximations370

In the following we will investigate the impact of our approximations of log10(J) on nucleation events. The setup is as follows:

We use the simple bulk ice physics model as described by the set of ODEs (15), (16), (17) in section 3. A nucleation event

is ensured by assuming a constant vertical velocity, which directly translates into an
:
a

:::::::
constant

:
adiabatic cooling of the air

parcel and, thus, an initially increasing saturation ratio. Note, we do not change the temperature directly, but instead use the

term dT
dt =− g

cp
w as a forcing of supersaturation as indicated in eq. (17). This approach was already successfully employed in375

Spreitzer et al. (2017) and allows
::::::
Instead

::
of

::::::::
changing

:::
the

::::::::::
temperature

:::::::::::
adiabatically,

:::
we

:::::::
directly

::::::
control

:::
the

:::::::::::::
supersaturation

::
as

::::::::
described

::
in

:::
sec.

::
3;
::::
this

:::::
allows

:::
us to control the nucleation event without the need to disentangle the different contributions of

temperature and supersaturation.

As in the reference study by Kärcher and Lohmann (2002) we ignore the impact of latent heat in the simple model, but this

effect was included in the study by Spichtinger and Gierens (2009). As described in appendix B, the impact of latent heat is380

negligible for temperatures T < 230K. For higher temperatures, nucleation parameterisations based on Kärcher and Lohmann (2002) might

lead to higher ice crystal concentrations in comparison to formulations including latent heat release.

Idealised nucleation events have always
:::
The

:::::::::
nucleation

:::::
events

::::::
always

:::::
admit

:
the same structure: Due to the supersaturation

source ∼ wSi with constant updraft w the variable Si increases and the nucleation term produces ice crystals, which can grow

by water vapour diffusion, constituting a sink for supersaturation. The peak value of Si is reached at balance between
::::
once385

::
the

:
source and sink of supersaturation , after this maximum

:::::::
balance.

:::::::::
Afterwards

:
the variable Si decreases due to diffusional

growth and thus shut off the nucleation term. The peak value depends crucially on the number of nucleated ice crystals that

are needed, to balance the source for Si by the diffusional growth (depending on the product of number concentration and

mean radius of ice crystals). The number concentration of ice crystals produced in the nucleation event clearly depends on

the vertical velocity w (source term) and the environmental conditions (diffusion depends on temperature and pressure). For390

details of the time evolution of nucleation events see appendix A
:
B.

4.5.1 Standard approximation

We compare the following four different representations of the nucleation rates
:::
rate using numerical simulations:

1. nucleation rate in the water activity formulation by Koop et al. (2000) with the correction as described in section 4.1

(reference nucleation rate)395
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Figure 3. Different approximations of nucleation rate for different temperatures (left: T = 196K, middle: T = 216K, right: T = 236K).

Black: Reference nucleation rate; red: linear fit to reference nucleation rate; blue: threshold description due to eq 43, using a linear approx-

imation for aiw and a quadratic threshold function Sc; green: threshold description due to eq. (43), using a constant for aiw and a linear

threshold function Sc.

2. water activity approximated by the linear fit as described in section 4.3 (see eq. (38), linear regression)

3. nucleation rate as a function of Si,T ::::
Si, T:

as described in section 4.2 based on the formulation

log10J = j0 +A(T )(Si−Sc(T )) (43)

of the exponent of the nucleation rate. We compare the following two sets of approximations for A(T ) and Sc(T ),

respectively:400

(a) a linear approximation for A(T ) and a quadratic approximation for Sc(T ), and

(b) a constant approximation for A(T ) and a linear approximation for Sc(T ).

These are specific cases, however arbitrary combinations of approximations for A(T ) and Sc(T ) might be used.

Figure 3 shows the approximated exponents of the nucleation rate together with the (corrected) reference formulation by

Koop et al. (2000) for the three standard temperatures T = 196, 216, 236K as functions of ∆aw. These temperatures are chosen405

for direct comparison with former studies (Kärcher and Lohmann, 2002; Spichtinger and Gierens, 2009). Evidently, the linear

fit with respect to water activity is very close to the reference, and the same is true for the case of a linear function A(T ) and

a quadratic approximation Sc(T ). For the simplest approximation (constant function A(T ) and linear approximation Sc(T )),

larger deviations from the reference nucleation rate can be seen.

For
::
At

:
T = 196K, there is a strong underestimation in the lower range of ∆aw, whereas for T = 236K the underestimation410

is most pronounced for higher values of ∆aw ::::::
(green

:::
vs.

:::::
black

::::::
curves). In both cases, we expect deviations in the number

concentrations of nucleated ice crystals during the nucleation event and the maximum saturation ratio attained.

We investigate standard nucleation events in terms of (i) the resulting ice crystal number concentration
::
at

:::
the

:::
end

:::
of

:::
the

::::::::
simulation

:
as in former studies (e.g. Kärcher and Lohmann, 2002; Spichtinger and Gierens, 2009) and of (ii) the maximum

(peak) supersaturation, which was reached during the nucleation event. The
:::::::
Although

:::
the

:
latter is usually not investigated;415

however,
:::::::::
considered,

::
it

::
is

::
of

:::::::
interest

:
for comparisons with real measurements, e.g. in cloud chambers, these values are of

interest. .
:

Figure 4 shows the results of the numerical simulations, i.e. the number of nucleated ice crystals (left panel) and the max-

imum saturation ratio (right panel) at environmental pressure 200hPa
::::::::::
p= 200hPa

:
(the results are similar for other environ-

mental conditions).420

Comparing the number of nucleated ice crystals as well as the maximum saturation ratio it is evident, that the difference

between the reference calculation, based on the corrected nucleation rate by Koop et al. (2000), and the runs
:::::::::
simulations using

the approximated nucleation rates are rather small.
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Figure 4. Comparison of different approximations of the nucleation rate by Koop et al. (2000) for standard nucleation events as driven by
:
a

constant vertical velocity w. Left: ice crystal number concentration; right: maximum supersaturation
:
.

For most
:::::
almost

:::
all

:
nucleation events, the deviation from the reference simulations is not larger than ±15%. To assess

these deviations one should keep in mind that measurements of ice crystal number concentrations are quite difficult and the425

uncertainties are usually larger than 15%. For instance, for the FSSP instrument, which was used in many flight campaigns (e.g.

Voigt et al., 2017), the uncertainty is estimated by about ∼ 10% (de Reus et al., 2009). Thus, the deviations in our simulations

and the uncertainties of realistic measurements are roughly of the same order. This fact renders it presumably impossible to

decide on the correctness of any of the different formulations and approximations of the nucleation rate based on the available

observations.430

Finally, we conclude that a linear approximation of the reference nucleation rate by Koop et al. (2000) is accurate enough to

represent nucleation events in a physically meaningful way. Thus, we can use this description as well as the derived formula-

tions of the nucleation rate as a function of temperature T and saturation ratio Si in order to investigate which parameters of

the nucleation rates significantly affect the outcome of nucleation events. This will be carried out in the next section.

4.5.2 Impact of the parameters of the linear approximation435

In the following, we investigate the influence of the parameters of the linear approximation of log10(J) in a more qualitative

way. In the preceding section we already showed the good approximation quality of the linear approximation. Thus, we use

the
::::::::
Generally,

:::
we

::::
are

::::::::
interested

::
in
::::

the
::::::
impact

::
of

:::
the

:::::::::::
formulation

::
of

:::
the

:::::::::
nucleation

::::
rate

:::
on

:::::::::
nucleation

::::::
events.

::::
The

:::::::
original

:::::::::::::
parameterisation

:::
by

:::::::::::::::::
Koop et al. (2000) is

:::::
based

:::
on

:
a
:::::
cubic

::::::::::
polynomial,

::::::
which

::::::
admits

:::::
slopes

:::
in

:::
the

:::::
range

:::::::::::::
221≤ b≤ 453,

:::
see

::::
Sect.

:::
4.3.

::::
The

:::::
linear

::::::::::::
approximation

::
is

:::::::::
sufficiently

::::
good

:::
for

::::::::::
representing

:::
the

::::::::::
“reference”

::::
rate;

::::
thus,

:::
we

::::
now

:::
use

:::
this

::::::
simple linear440

representation log10J = b0 + b1 ·∆aw in order to test the sensitivity of nucleation events on the two parameters b0, b1 ::::
b0, b1.

Parameter b0 controls the absolute value of the nucleation rate while parameter b1 accounts for its steepness
:
,
:::
i.e.

::
the

:::::
slope.

In a first step, we investigate the impact of the steepness
:::::
slope of the nucleation rate , i.e. the influence of the

::::
given

:::
by

coefficient b1. One should keep in mind that during the nucleation event the value of ∆aw = (Si− 1)aiw(T ) is increasing as

Si increases, thus the exponent of the nucleation rate basically grows linearly. Consequently, an increase in the saturation ratio445

immediately translates into an increase in ∆aw, hence the abscissa in figure 5 may be thought of as representing saturation

ratio. If high values of the nucleation rate are already reached at lower supersaturation values, the nucleation is triggered earlier

in comparison to the reference scenario.

However, an earlier onset of ice nucleation implies that the newly nucleated ice crystals already start to grow by diffusion. As

a consequence
:::::::::::
Consequently, the growing ice crystals tend to decrease the saturation ratio and, if they are sufficiently numerous,450

prematurely stop the ice nucleation event. In this case, less ice crystals will nucleate and a smaller maximum saturation ratio

will be reached compared to the reference. The opposite mechanism is expected for smaller values of the nucleation ratio in

comparison to the reference, i.e. higher ice crystals concentrations will occur together with larger maximal saturation ratio.
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Figure 5. Artificial change in the slope of the linear function in the exponent of the nucleation rate. The fit to the reference curve is indicated

by the green line (slope b1 ∼ 250); a reduced slope (b1 ∼ 100) is displayed in red, an enhanced slope (b1 ∼ 500) is displayed as
::
in bluecurve.

In order to illustrate this mechanism more quantitatively, we
::::::::
artificially

:
changed the slope of the linear function. The slope

:::::::::
“reference”

:::::
slope

::::::::
b1 ≈ 255

:
is either reduced to a value of b1 = 100 or enhanced to a value b1 = 500, which is motivated by455

the values of the Taylor approximation, as derived in section 4.3. Note that the “reference” value for the linear fit is b1 ≈ 255.

In both cases, the parameter b0 of the linear function is adapted such that the inflection point of the polynomial p3(∆aw)

at ∆aw ∼ 0.311 is met for better comparison with the reference simulations. The resulting nucleation rates are displayed in

figure 5, while the number of nucleated ice crystals and the maximum ice saturation ratio during the nucleation event are

summarized in figure 6: The left panel shows the concentrations of nucleated ice crystals and the right panel the maximum460

saturation ratio during the nucleation events.

Figure 6. Impact of the slope on the idealized nucleation events. Left: ice crystal number concentrations, right: maximum supersaturation

values. The colours are chose as in figure 5, i.e. red squares indicate reduced slope, and blue triangles indicate enhanced slope, respectively.

In case of the enhanced or reduced slope as indicated in figure 5 we exactly see the theoretically proposed behaviour in the

ice crystal number concentration;
:
: the values are reduced for reduced slopes, and enhanced for enhanced slopes, respectively.

The reductions are by up to a factor of 0.4, the enhancements are by up to a factor of 2.4, and the largest changes can be seen

at the highest temperature T = 236K.465

In the right panel of Figure 6, a dependency on temperature and vertical velocity is seen. For very low vertical velocities, the

maximum supersaturation behaves as expected, i.e. reduced values for the reduced slope and enhanced values for the enhanced

slope, respectively. For very high vertical velocities, this behaviour is reversed, i.e. we see reduced values of Si,max for enhanced

slopes and enhanced values of Si,max for reduced slopes, respectively. The transition slightly depends on the temperature. This

can be explained as follows: For low vertical velocities, ∆aw (and thus the supersaturation) is always below the inflection point470

∆aw ∼ 0.311; thus,
:
.
::::
Thus

:
the nucleation rate is always smaller for the enhanced slope in comparison to the reference while it

is always larger in comparison to the reference for the reduced slope. Therefore, in case of an enhanced slope the nucleation

starts later compared to the reference. This leads to the behaviour as described above. However, beyond the inflection point

the behaviour is reversed and thus the resulting maximum supersaturation is now enhanced for reduced slope and it is reduced

for enhanced slope. The inflection point is reached at different vertical velocities for different temperatures, i.e. for lower475

temperatures at lower values of w and for higher temperatures at higher values of w. Note, only the maximum supersaturation

is affected upon ∆aw crossing the inflection point while no influence on the number concentration of ice crystals is seen.

After having varied the slope of the nucleation rate, we now turn to its absolute values and modify coefficient b0, which trans-

lates into a change of values of J by 10b0 . In order to investigate the sensitivity, we add a constant value ∆b ∈ {−6,−3,3,6}

:::::::::::::::::
∆b ∈ {−6,−3, 3, 6} to the coefficient b0, leading to

:::::::
resulting

::
in

:
an increase or decrease in the absolute value of the nucleation480
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rate by a factor of 10∆b. In figure 7 the results in terms of ice crystal number concentration and maximum supersaturation are

displayed.

Figure 7. Comparison of ice crystal number concentrations (left panel) and maximum supersaturation (right panel) for absolute changes in

the nucleation rate by a factor 10∆b , ∆b=−6,−3,3,6
::::
with

::::::::::::::::
∆b ∈ {−6,−3, 3, 6}.

Maybe surprisingly, the absolute values of the number concentrations of ice crystals in comparison to the reference formu-

lation are not crucially affected (see figure 7, left panel), although some deviations occur (up to a factor of two). The strongest

deviations can be seen for warm temperatures (T = 236K) at very low vertical velocities. Overall, the relative deviations from485

the reference events in variables ni and peak values of Si are within the interval [0.4,2]
::::::
[0.4, 2], but for vertical velocities in the

range w ≥ 0.05m s−1 the relative deviation is within the interval [0.8,1.4]
::::::::
[0.8, 1.4].

Comparing the influence of a scaling of the absolute values of the nucleation rate and the steepness of the rate, we conclude

that the correct steepness of the nucleation rate is much more important
:::
than

:::
the

:::::::
absolute

:::::
value

::
of

::
J . Even changes by orders of

magnitude in the values of the nucleation rate has a minor impact on the number of nucleated ice crystals. A similar conclusion490

was also drawn in the theoretical study by Baumgartner and Spichtinger (2019). In that study, the authors investigated a slightly

simplified system of equations by means of asymptotic analysis. The simplified system describes the temporal evolution of the

number concentration of ice crystals and the saturation ratio and an approximate asymptotic solution was constructed. To

leading order, the approximate solution for the number concentration of ice crystals was completely independent of the precise

values of the nucleation rate, but the steepness contributed directly. The only necessary condition on the values of the nucleation495

rate was that it attains large values, i.e. significantly larger than the other coefficients within the equations.

For the maximum supersaturation values, the impact of the absolute value
:
of

::
J
:
is much more pronounced. As expected, upon

reduction of the nucleation rate by a factor of 10∆b with ∆b ∈ {−6,−3}
:::::::::::::
∆b ∈ {−6,−3}

:
the supersaturation reaches much

higher values of Si, until the values of the rescaled nucleation rate become large enough to initiate the nucleation of ice crystals.

For the enhancement of the absolute values of the nucleation rate, the results are reversed: The maximum supersaturation is500

reduced, since the enhanced nucleation rate attains values that allow the production of ice crystals for smaller saturation ratios.

This behaviour is represented in the right panel of figure 7.

Remark: This idealized enhancement of the nucleation rate can also be seen in the connection with the aerosol number

concentration na. A change of na by some orders of magnitudes while no changes in J are applied has the same effect as

changing the absolute value of the nucleation rate (or the parameter b0 in the argument of the exponential function). Thus,505

a strong reduction or enhancement of the available solution droplets will only slightly change the amount of ice crystals in

a nucleation event. Therefore, we can conclude that for a meaningful approximation of the nucleation rate the exact number

concentration of available aerosols is also not crucial for the strength of the homogeneous nucleation event, but perhaps for the

starting time of the event. Including size effects of the solution droplets might additionally change the picture quantitatively

(see, e.g., Baumgartner et al., 2020).510
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4.6 Impact of perturbations in Si and T on the nucleation rate

In this section
:::
we

:::::::::
investigate

:
the impact of changes in Si and/or T on the nucleation rate is theoretically investigated.

::
by

:::::::::
employing

:
a
:::::::::::
perturbation

:::::::
analysis.

:::
A

::::
short

::::::::::
explanation

:::
of

:::
this

:::::::::
technique

::
is

:::::
given

:::
in

::::::::
Appendix

:::
D.

:
In the real atmosphere,

variations of the temperature due to dynamical processes will introduce such changes, e.g. such as from a passing or even

breaking gravity wave. In numerical simulations, these variations (also often called fluctuations) are often artificially introduced515

(e.g. Jensen and Pfister, 2004). In any case, the impact of such changes is investigated using perturbation analysis
:::
(also

::::::
called

:::::::::
asymptotic

:::::::
analysis).

As derived earlier, using

:::
We

::::
start

::::
with the linear approximation of the nucleation rate (b1 ≈ 254.77) we can rewrite the nucleation rate as

J(Si,T ) = Junit · 10j(Si,T )520

with the function

j(Si,T ) = j0 +A(T )(Si−Sc(T )) and A(T ) = b1a
i
w(T ).

::
as

:::::::::
formulated

::
in

:::
eq. (40)

:::
with

:::::::::::::::
A(T ) = b1a

i
w(T ).

:
We can estimate the usual values of the functionA(T ) in the temperature range

190K≤ T ≤ 230K using 0.51≤ aiw(T )≤ 0.66 such that 129≤A(T )≤ 169. For a very simple but still sufficient
:::::::::
sufficiently

:::::::
accurate constant approximation of aiw(T ) we can set aiw0 = 0.574312 (see fig. 2, pink line) such that A(T )≈A0 = b1a

i
w0 =525

146.32. Finally we can state A(T ) =O
(
ε−2
)

with the usual
:::::::::
perturbation

:
approach ε∼ 0.1, such that we set A(T ) =A∗ε−2

with A∗ =O(1) as ε→ 0. For the non-dimensionalization of the threshold function in the linear approximation Sc(T )≈
s0 + s1T we have to estimate the order of the coefficients for the relevant temperature range. Using 190K≤ Tref ≤ 230K and

the definition T = Trefϑ with the nondimensional temperature ϑ, we have
:::
find

:

Sc(T ) = sc(ϑ) = s0 + s1T = s0 + s1Trefϑ= σ0−σ1ϑ (44)530

with σ1 =−s1Tref. Obviously, s0 = σ0 = 2.27697 =O(1) and 0.66≤ σ1 ≤ 0.8 such that σ1 =O(1). Using the simplest ap-

proximation A(T ) =A0 and Sc(T ) = s0 +s1T for the general formulation of the threshold function Scx0 (cf. eq. (41)) we can

simplify the expression as

Scx0(T ) =
x0− j0
A0

+ s0 + s1T =

(
x0− j0
A0

+ s0

)
︸ ︷︷ ︸

=:sx0

+s1T

= sx0 + s1T.

(45)

Using non-dimensionalization we end up with the following representation535

Scx0(T ) = scx0(ϑ) = sx0 + s1T = σx0−σ1ϑ, (46)

with
:::::
where σx0 = sx0,σ1 =−s1Tref. Finally, we can estimate with

:::
use

:::
the

::::::::
estimation

:
A0 =A∗ε−2 , such that we

::
to obtain

σx0 = (A∗)
−1
ε2(x0− j0) +σ0 = δ+σ0. (47)
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Since j0 =O
(
ε−1
)

and x0 =O
(
εβ
)

with β ≥−1 we find σx0 = δ+σ0 =O (ε)+O(1) =O(1). After non-dimensionalizing

the argument in the nucleation rate, we can now investigate the response of the nucleation rate due to
::::
upon

:
a
:
perturbation (i) in540

saturation ratio (i.e. in the same way as the numerical simulations are set up), (ii) in temperature, and (iii) in adiabatic changes

of temperature driving changes in the saturation ratio simultaneously. In reality, almost exclusively case (iii) is relevant.

First, we estimate the increase of J due to variations of Si at a constant temperature T = Tref. For this purpose we start

at a given value of the saturation ratio Si which corresponds to a certain threshold x0 via the relation (41). We choose this

value as a reference value Sref = Scx0(Tref) = scx0(1) = σ0−σ1; this corresponds to a reference value of the nucleation rate545

J = Jref = Junit · 10x0 (with Junit = 1m−3 s−1). Assuming the expansion

Si = S0 + εS1 + ε2S2 + ε3S3 +O
(
ε4
)

(48)

for the saturation ratio where S0 = Srefσx0−σ1 we investigate the impact of such a perturbation on the exponent j. Keeping

the temperature fixed as in the numerical simulations we arrive at

j(Si,T ) = j(s, t) = x0 +A0 (Si−Sref)

= x0 +A∗ε−2
(
Sref + εS1 + ε2S2 + ε3S3 +O

(
ε4
)
−Sref

)
= x0 + ε−1A∗S1 +A∗S2 + εA∗S3 +O

(
ε2
)
.

(49)550

We are interested in the relative change of the nucleation rates J(Si,T )
Jref

, which translates into j(Si,1)−j(Sref,1). By definition,

we have x0 = j(Sref,1), thus we obtain

j(Si,1)− j(Sref,1) = ε−1A∗S1 +A∗S2 + εA∗S3 +O
(
ε2
)
. (50)

Inspecting eq. (50) it is evident, that a nonzero perturbation term Sα in eq. (48) is connected with the factor εα−2, hence

a change of order O (εα)
:
in
:::::::::::::

supersaturation
:
translates into a change of order O

(
εα−2

)
in the exponent of J .

:::
For

:::::::
instance,

::
a555

::::::
change

::
by

::::::::
S ∼ 0.01

::::::::
translates

::::
into

:
a
::::::
change

::
of

:::::
O(1)

::
in

::
j,

::::
thus

::
in

:
a
:::::::
change

::
by

:
a
::::::
factor

::
of

::
10

::
in

:::
the

:::::::::
nucleation

::::
rate

:
J
:

Second, we consider perturbations of temperature without changing the saturation ratio, although this might not happen

in the atmosphere. Using the approach above with a constant reference value of saturation, i.e. Sref = scx0(1) = σ0−σ1 and

temperature perturbations ϑ= 1 + εϑ1 + ε2ϑ2 + ε3ϑ3 +O
(
ε4
)

we find the following expression:

j(sref,ϑ) = x0 +A0 (Sref

−
(
σ0−σ1

(
1 + εϑ1 + ε2ϑ2 + ε3ϑ3 +O

(
ε4
))))

= x0 +A∗ε−2
(
εϑ1 + ε2σ1ϑ2 + ε3σ1ϑ3 +O

(
ε4
))

= x0 + ε−1A∗σ1ϑ1 +A∗σ1ϑ2 + εA∗σ1ϑ3 +O
(
ε2
)
.

(51)560

The relative change of the nucleation rate is then given by

j(Sref,ϑ)− j(Sref,1) = x0 + ε−1A∗σ1ϑ1

+A∗σ1ϑ2 +A∗σ1ϑ3ε+O
(
ε2
)
.

(52)
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Thus, a temperature perturbation ϑα of order O (εα) leads to a relative change in j of order O
(
εα−2

)
. Note the sign of the

perturbations, which turns into the opposite sign in the change of j. Because of the strictly monotonic descrease of the threshold

function Scx0(T ), a negative temperature change leads to a higher threshold and in turn to a lower nucleation rate at a given565

saturation ratio.

Instead of perturbing the saturation ratio and the temperature individually, these quantities are connected in the real world. To

a good approximation, their joint variation is through an
:::::
purely adiabatic change. Therefore, we finally investigate the impact

of adiabatic temperature changes on the saturation ratio and in turn on the nucleation rate. For this purpose we have to consider

the dependence of Si on adiabatic temperature changes; we
:
.
:::
We start with the

::::::
cooling

:
source term of the saturation ratio570

dSi =

(
1

κ
− L

RvT

)
Si

dT

T
. (53)

First we estimate the term
:::
The

::::
term

:
γ(T ) = 1

κ−
L

RvT :::::
within

:::
the

::::::
bracket

::::::
admits

:::
the

:::::
values−28.8≤ γ(T )≤−23.2 for 190K≤

T ≤ 230K , leading to such that we find γ(T ) =O
(
ε−1
)

= γ∗ε−1 and γ∗ ∼−2.5< 0. We approximate
::::::::::::
Approximating the

total differential
::
in

:::
eq. (53) with finite differences ∆Si,∆T , i.e.

::::::::
∆Si,∆T ,

:::
we

:::::
arrive

::
at

∆Si
Si

= γ∗ε−1 ∆T

T
. (54)575

We set as an approximation Si = Sref and T = Tref such that we can set

∆Si
Sref

= εlSl +O
(
εl+1

)
=O

(
εl
)

(55)

with Sl =O(1). We assume l ≥ 1 since we do not consider changes of the saturation ratio of order O(1). The analoguous

expansion for the temperature reads

∆T

Tref
= εkϑk +O

(
εk+1

)
=O

(
εk
)

with ϑk =O(1) ∀k ≥ 1. (56)580

Combining these expansions, we arrive at
:::
Eq. (53)

:::::::
becomes

∆Si
Sref

= γ∗ε−1 ∆T

Tref
= γ∗ε−1

(
εkϑk +O

(
εk+1

))
= γ∗tkε

k−1 +O
(
εk
) (57)

or equivalently

εlSl = ∆Si = Srefγ
∗ϑkε

k−1 +O
(
εk
)
. (58)

The only non-trivial balance is
:::::::
achieved

:
for l = k− 1, i.e.585

Sk−1 = Srefγ
∗ϑk ⇔ Sk = Srefγ

∗ϑk+1. (59)

Note that l = k−1≥ 1, i.e. we have to consider k ≥ 2 for the perturbation of temperature. This is a meaningful restriction since

we are interested in small changes of temperature in the cold temperature regime. Thus,
:::
i.e.

:
a
:::::::
change

::
in

:::
the

::::::::::
temperature

::
in

:::
the
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::::
order

::
of

::::::
∼ 1K

::
in

:::::::
physical

:::::
units.

::::::
Hence, we would not expect adiabatic temperature changes of order O (ε), corresponding to

changes of order ∼ 10K. Thus, we assume an asymptotic expansion590

ϑ= 1 + ε2ϑ2 + ε3ϑ3 +O
(
ε4
)

(60)

for the temperature perturbation. We are generally interested in adiabatic expansions due to vertical upward motion, which in

turn leads to descreasing
:::::::::
decreasing

:
temperatures, hence we conclude ϑk < 0 for k ≥ 2. Since γ∗ < 0, equation (59) leads to

positive changes in the saturation ratio sk > 0 for ϑk < 0. Generally, warming due to adiabatic compression can be studied in

the same way by setting ϑk > 0.595

Now we consider the nucleation rate in the formulation for arbitrary thresholds x0 ::
in

:::
the

:::::::::
nucleation

:::
rate

:
using Sref = σx0−

σ1 = scx0(1):

j(Si,T ) = j(Si, t) = x0 +A∗ε−2 (Si− scx0(ϑ))

= x0 +A∗ε−2
(
Sref + εS1 + ε2S2 + ε3S3

−
(
σx0−σ1

(
1 + ε2ϑ2 + ε3ϑ3

))
+O

(
ε4
))

= x0 +A∗ε−2
(
εS1 + ε2S2 + ε3S3 + ε2σ1ϑ2

+ε3σ1ϑ3 +O
(
ε4
))

= x0 +A∗ε−2
(
εSrefγ

∗ϑ2 + ε2Srefγ
∗ϑ3 + ε3Srefγ

∗ϑ4

+ε2σ1ϑ2 + ε3σ1ϑ3 +O
(
ε4
))

= x0 +A∗ε−2
(
εSrefγ

∗ϑ2 + ε2 (Srefγ
∗ϑ3 +σ1ϑ2)

+ε3 (Srefγ
∗ϑ4 +σ1ϑ3) +O

(
ε4
))

= x0 +A∗Srefγ
∗ϑ2ε

−1 +A∗ (Srefγ
∗ϑ3 +σ1ϑ2)

+A∗ (srefγ
∗ϑ4 +σ1ϑ3)ε+O

(
ε2
)
.

(61)

Thus, for k ≥ 2 we find terms of the form A∗ (srefγ
∗ϑk+1 +σ1ϑk)εk−2 of orderO

(
εk−2

)
. Comparing the nucleation rates we

find for the relative change600

j(Si,T )− j(Sref,Tref) = j(Si, t)− j(Sref,1)

=A∗Srefγ
∗ϑ2ε

−1 +A∗ (Srefγ
∗ϑ3 +σ1ϑ2)

+A∗ (Srefγ
∗ϑ4 +σ1t3)ε+O

(
ε2
)
.

(62)

For the relative impact of these terms we use the estimations γ∗ <−2.3 and σ1 ≤ 0.8. We have to distinguish two scenarios

for perturbations ϑk < 0:

1. ϑk < 0 for all k ≥ 2. In this case we can assume

Srefγ
∗ϑk+1 +σ1ϑk > 0. (63)605
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Therefore, an adiabatic temperature perturbation ϑk of order O
(
εk
)

(k ≥ 2) lead
::::
leads to relative changes in j of order

O
(
εk−3

)
. Note, that the changes in saturation ratio are always dominant and larger than the changes in the threshold,

which changes j by order O
(
εk−2

)
in the opposite direction.

2. ϑk < 0 and ϑk+1 = 0 for a distinct k ≥ 2. In this case, the previously discussed temperature effect can be seen, i.e. the

nucleation threshold is changed, leading to a reduction of the nucleation rate exponent. This effect is merely academic,610

since we have to switch off higher perturbations in temperature, which is quite unlikely.

One should keep in mind that we investigated the relative increase in the exponent of the nucleation rate. A relative change of

order O
(
εk
)

in the exponent translates into a relative change of order O
(
exp

(
εk
))

in the nucleation rate J , thus ranging over

several orders of magnitudes.
:::
For

::::::::
instance,

::
in

:::
the

:::
first

::::::::
scenario

:::::::
changes

::
of

::::::::::
temperature

::
of

:::::
order

:::::
∼ 1K

::::
lead

::
to

:::::::
changes

::
in

::
j

::
of

::::
about

:::::
∼ 10,

::::::
which

::
in

::::
turn

:::::::
translate

:::
into

::
a
::::::
change

::
of

:::
the

:::::::::
nucleation

:::
rate

::
J
:::
by

:
a
:::::
factor

::
of
::::::::::::
exp10∼ 105.

:
615

::::::
Overall,

:::
we

::::
can

::::
state

::::
that

:::::::
changes

::
in

:::
Si:::

are
:::::
most

::::::::
important

:::
for

::::::::
changing

::
j,

:::::
either

:::::::::
stemming

:::::
from

:::::::
adiabatic

:::::::::::
temperature

::::::
changes

:::
or

:::::
driven

:::::::
directly

::
as

::
in

:::
our

:::::::::
numerical

::::::
studies.

:

5 Impact of saturation vapour pressure formulation

::::
Since

:::
the

::::::::::
formulation

::
of

:::
the

:::::::::
nucleation

:::
rate

::
by

::::::::::::::::::::
Koop et al. (2000) relies

:::
on

::
the

:::::
water

:::::::
activity,

:::
and

::::
thus

::
on

:::
the

:::::::
function

::::::::::::::
aiw(T ) = pice(T )

pliq(T ) ,

::
the

:::::::::
saturation

::::::
vapour

:::::::
pressure

::::
over

:::::
liquid

:::::
water

:::
(i.e.

::
in

:::
the

:::
no

:::::
man’s

::::
land)

:::::
plays

::
an

::::::::
important

::::
role.

:::
In

:::
this

::::::
section

:::
we

:::::::::
investigate620

::
the

::::::
impact

:::
of

:::::::
choosing

:::::::
another

::::::::::
formulation

:::
for

::::::
pliq(T )

::
on

:::
the

:::::::::
nucleation

:::
rate

::::
and

::::
thus

:::
the

::::::::
nucleation

::::::
events.

:

5.1 New representation of saturation water vapour

In the formulation by Murphy and Koop (2005) the extrapolation of the saturation vapour pressure into the no man’s land of

water’s phase diagram is based on the assumption that the state of amorphous ice is thermodynamically equivalent to super-

cooled liquid water. Therefore, the specific heat of liquid water can be extended in the super-cooled regime using measurements625

of amorphous ice. This leads to the established formulation in Murphy and Koop (2005).

Recently, a new representation of the saturation vapour pressure over super-cooled liquid water was proposed by Nachbar

et al. (2019). In this study, the authors consider different states of water in the low temperature range. They conclude that

amorphous ice is thermodynamically different from super-cooled water, thus they provide a different extrapolation for the

saturation vapour pressure (Nachbar et al., 2019). In figure ?? the two formulations are displayed (left: absolute values, right:630

ratio of functions).

Saturation vapour pressure over super-cooled liquid water. Left: two formulations by Murphy and Koop (2005) (red line)

and Nachbar et al. (2019) (blue line). Right: ratio of the two formulations pliq,MK2005

pliq,N2019
Although the deviation between the two

curves is very small ,
:
–
:
even in the low temperature range less than 10% ,

:
– its impact on saturation ratios as well as on the

nucleation thresholds is quite large, as can be seen in figure 8.635
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Figure 8. Water saturation (Si =
pliq
pice

) and nucleation threshold (for J = 1016 m−3 s−1) for different formulations of saturation vapour

pressure over super-cooled water, Murphy and Koop (2005) vs. Nachbar et al. (2019)

The curves of water saturation as well as the nucleation thresholds are systematically shifted to higher values. In addition,

the new curves have a more linear shape than the curves resulting from Murphy and Koop (2005). The ratio of the saturation

pressures over ice and liquid (i.e. the functions aiw(T ) and 1
aiw(T ) behave differently: aiw(T ) is much closer to a quadratic curve

as can be seen in the left panel of figure 9.

Figure 9. Left: Function aiw(T ) = pice(T )
pliq(T )

(black line) and polynomial approximations (red: quadratic, blue: linear, green: constant). Right:

Nucleation threshold Sc(T ) (black line) and polynomial approximations(red: quadratic, blue: linear). Note that the former approximation

by Kärcher and Lohmann (2002) (dark green) are now very close to the new formulation, whereas the fit by Ren and Mackenzie (2005)

(turquoise) deviates significantly.

These new fits were used for the formulation of the approximated nucleation rate. Thus, we do not change the general640

approach for approximating the nucleation rate etc., we only use a different representation of the function aiw(T ).

5.2 Numerical simulations of nucleation events

In figure 10 the results of the nucleation events using the new representation of the saturation vapour pressure due to Nach-

bar et al. (2019) are shown. As for former experiments, the ice crystal number concentration (left panel) and the maximum

supersaturation values (right panel) are shown.645

Figure 10. Impact of the formulation of the saturation vapour pressure by Nachbar et al. (2019) on the idealized nucleation events. Left: ice

crystal number concentrations, right: maximum supersaturation values. The relative differences in number concentrations are always smaller

than 15%

For the ice crystal number concentration, the impact of the new formulation of pliq is small; the relative deviation from the

reference simulations using the original vapour pressure formulation by Murphy and Koop (2005) is always smaller than 15%.

The deviation increases with decreasing temperature and is most prominent for lower vertical updrafts (w < 1m s−1).

For the maximum saturation ratio the change as compared to the reference simulations is much more prominent. As can be

seen in figure 8 the nucleation thresholds for a value of J = 1016m−3 s−1
::::::::::::::
J = 1016m−3 s−1

:
are increasing with decreasing650

temperature with a larger slope compared to the reference case. This behaviour can clearly be seen in the maximum supersat-

uration; for decreasing temperature the maximum supersaturation is increasing to higher values in comparison to the reference

simulations. The increase does not depend on the vertical velocities.

Remark: At the moment it is not clear, which thermodynamic hypothesis and thus which resulting approximation for the sat-

uration vapour pressure over liquid water is physically correct
:
,
:::::::
although

::::
the

::::::::::
formulation

::
by

:::::::::::::::::::::::::::
Murphy and Koop (2005) seems655
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::
to

::::
agree

::::
with

::::::
recent

::::::::::::
measurements

::::::::::::::::
(Pathak et al., 2021). In particular, it is not clear if the formulation of Nachbar et al. (2019)

can be extrapolated to values T < 200K. Thus, we cannot recommend to use a certain formulation.

6 Another approach to formulate the nucleation rate

::
Up

::
to
::::
now

:::
we

::::::
always

::::::::
employed

:::
the

:::::::::
“reference”

:::::::::
nucleation

::::
rate

:
in
:::
our

::::::::::::
computations,

:::
i.e.

:::
the

::::::::::
formulation

::
as

::
in

::::::::::::::::::
Koop et al. (2000) but

:::::::
corrected

:::
by

:
a
:::::::
constant

::::::
offset,

::
see

:::::::
Section

:::
4.1,

::
in

:::::
order

::
to

:::::
match

:::
the

::::::::
nucleation

::::
rate

:::
for

::::
pure

::::
water

:::::::
droplets

:::
by

::::::::::::::::::::::
Koop and Murray (2016) in660

:
a
::::::
certain

::::::::::
temperature

::::::
range.

::
In

::::
this

::::::
section

:::
we

::::
take

::
a
::::::::
different

::::
point

:::
of

::::
view

:::::::::
assuming

:::
that

:::
we

::::
can

::::
just

::::::
directly

::::::
adopt

:::
the

:::::::::
formulation

:::
by

:::::::::::::::::::::::
Koop and Murray (2016) for

:::
the

:::::::::
nucleation

:::
rate

:::
of

:::::::
aqueous

:::::::
solution

:::::::
droplets,

::::::::
providing

:::
an

::::
exact

::::::
match

::
of

::::
both

:::::
curves

:::
by

:::::::::
definition.

::
In

:::
the

:::::::::
following

:::
we

::::::
discuss

:::
the

::::::::::::
consequences

:::
of

:::::
using

::::
such

::
a

:::::
direct

::::::::
approach

::
in

:::::
terms

:::
of

:::::::::
nucleation

::::::
events.

6.1 Direct fit to nucleation rate of pure water665

In contrast to use the nucleation formulation by Koop et al. (2000) which is an excellent fit to laboratory data for freezing of

solution droplets , we could also use the new fit for the freezing rate of pure water droplets(Koop and Murray, 2016). Here

::
In

::::
order

:::
to

:::::
arrive

::
at

:
a
::::::

direct
::
fit,

:
we assume that at water saturation, the freezing of pure water droplets should behave as the

freezing of solution droplets at super-cooled states. For deriving a new formulation based on the freezing rate as determined by

Koop and Murray (2016) , we reformulate the freezing rate depending on
::
To

:::::
avoid

:
a
::::::::::
complicated

::::::::::::
reformulation

::
of

:::
the

:::::::
formula670

::::
from

:::::::::::::::::::::::
Koop and Murray (2016) in

:::::
terms

::
of

:::
the water activity ∆aw. Since the reformulation for a polynomial of high degree is

quite complicated we just use a polynomial fit through the data as can be obtained from ,
:::
we

:::
use

::
a
::::::::
quadratic

:::::::::
polynomial

:::
fit

::
to

the original formulation Jhom(T ) at water saturation. For simplicity we use a quadratic polynomial, as described in appendix C.

In figure 11 ,
:::
see

:::::::::
Appendix

::
C

::
for

:::::::
details.

:::::
Figure

:::
11

:::::::
presents the original data and the new fit is presented.

Freezing rate of water droplets (Koop and Murray, 2016, black), a polynomial fit (red), and the nucleation rate of solution675

droplets (Koop et al., 2000, corrected, blue), all depending on ∆aw.

Since the nucleation rate is now formulated in terms of ∆aw it can be used for homogeneous freezing of solution droplets,

assuming that the rate does not depend on other quantities than water activity. In comparison with the
:::::
(black

::::::
curve)

:::::::
together

::::
with

:::
the

:::::::
quadratic

:::
fit

:::
(red

::::::
curve)

:::
and

:::
the

::::::::
corrected

::::::::::
formulation

::
of

::::::::::::::::::::
Koop et al. (2000) (blue

::::::
curve)

::::
from

::::::
section

::::
4.1.

::
In

:::::::
contrast

::
to

:::
the

:::::::::
(corrected) formulation by Koop et al. (2000) we find that the nucleation rate reaches a maximum at ∆aw ∼ 0.345 and680

decreases afterwards. There
::
As

::
a
:::::
result,

:::::
there

:
is a significant deviation between the two nucleation rates (JK2000 > JKM2016)

for the range ∆aw > 0.32. Thus, we can expect that for cold temperatures and/or high upward motions there will be large

deviations in the produced ice crystal number concentrations within nucleation events.

Since the formulation of homogeneous freezing of solution droplets (cf. Koop et al., 2000) relies on the shift of the melting

curve by ∆aw ∼ 0.3,685

:
It
::::::
should

:::
be

::::
kept

::
in
:::::

mind
::::

that
:
the range of the parameterisation

::
of

:::
the

:::::::::
nucleation

::::
rate

::
as

:::::
given

:::
in

:::::::::::::::
Koop et al. (2000) is

restricted to the interval 0.26≤∆aw ≤ 0.34. It
::
As

::
a
:::::
result,

::
it
:
is not clear , if the analogy works for values beyond 0.34. In
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Figure 11.
::::::
Freezing

:::
rate

::
of
:::::
water

::::::
droplets

::::::::::::::::::::::::
(Koop and Murray, 2016, black),

:
a
:::::::::
polynomial

::
fit

::::
(red),

:::
and

:::
the

:::::::
nucleation

:::
rate

::
of
:::::::
solution

::::::
droplets

::::::::::::::::::::::::::
(Koop et al., 2000, corrected, blue),

::
all

::::::::
depending

::
on

:::::
∆aw.

addition, some measurements for
:
if
:::
the

::::::::::::::
parameterisation

:::::
works

::::
well

:::
for

:::::
values

:::::::::::
∆aw > 0.34.

::::::::
However,

:::::
there

:::
are

::::::::::::
measurements

:::::::::::::::::::::::::
(see Laksmono et al., 2015) for

:::
the

:::::::
freezing

:::
of pure water droplets (Laksmono et al., 2015)

:::
that

::::
also

:
show a kind of plateau

for
:
at
:
cold temperatures (which correspond

::::::::::::
corresponding to high values of ∆aw), which is not kept in the polynomial fit by690

Koop and Murray (2016). Thus, for higher values ∆aw > 0.34 we use the value JKM2016(∆aw) = JKM2016(0.34) to (a) mimick

the plateau in the measurements, and (b) avod
::::
avoid numerical issues in the simulations.

::::::::
Assuming

::::
that

::
the

:::::::::
nucleation

::::
rate

::::
does

:::
not

::::::
depend

:::
on

::::
other

:::::::::
quantities

::::
than

:::::
water

:::::::
activity,

:
it
::::
may

::::
now

:::
be

::::
used

::
in
:::::::::
numerical

::::::::::
simulations

::
of

::::::::::::
homogeneous

:::::::::
nucleation

::::::
events.

6.2 Numerical simulations of nucleation events695

We investigate the impact of the newly proposed nucleation rate
:::::
After

::::::
having

:::::::
obtained

:::
the

:::::
direct

::::::::::
formulation

::
of

:::
the

:::::::::
nucleation

:::
rate

::
of

::::::::::::::::::::::
(Koop and Murray, 2016),

:::
we

::::
now

:::::::::
investigate

:::
its

::::::
impact

::
on

:::::::::
nucleation

::::::
events using numerical simulations as before.

Since we have seen in section 5, that there might be an alternative way for formulating the saturation vapour pressure over

liquid water (Nachbar et al., 2019), we carried out
:::
For

:::::::::::
completeness,

:
two different types of simulations for testing the impact

of the nucleation rate, as derived in section 6.1
:::
are

::::
done: (1) Simulations using the standard formulation of pliq by Murphy and700

Koop (2005) and (2) simulations using the new formulation of pliq by Nachbar et al. (2019). The results of the simulations are

shown in figure 12.

Figure 12. Impact of the direct formulation of the nucleation rate based on Koop and Murray (2016) on the idealized nucleation events. Black

triangles and lines indicate the reference simulation, red squares and lines denote the use of the nucleation rate based on Koop and Murray

(2016), and blue squares and lines represent the use of the nucleation rate based on Koop and Murray (2016) together with the saturation

vapour pressure due to Nachbar et al. (2019). Left: ice crystal number concentrations, right: maximum supersaturation values.

First we consider the ice crystal number concentrations (left panel). For low vertical updrafts, the values of ni are only

slightly affected in case of using the adapted nucleation rate. For higher vertical velocities, there is a reduction in the produced

ice crystal number concentrations; this reduction increases with increasing vertical updrafts. This effect can be explained as705

follows. The nucleation rates differ significantly for higher values ∆aw ≥ 0.31, i.e. the slope of the adapted rate is (much)

smaller than the original nucleation rate by Koop et al. (2000). For higher updrafts, the supersaturation reaches higher values,

which is equivalent to higher values of ∆aw. Thus, the nucleation rates differ for these high updraft events, and less ice crystals

are produced for using the adapted nucleation rate. Generally, we can state that
:::::
Apart

::::
from

:::
the

::::::::
influence

:::
at

::::
high

:::::::
vertical

::::::::
velocities,

:
there is almost no difference in

::
the

:
ice crystal number concentrations between the nucleation events using different710

formulations of the saturation pressure over liquid water, i.e. using the standard formulation by Murphy and Koop (2005) (red

line in fig. 8) vs. the new formulation by Nachbar et al. (2019) (blue line in fig. 8), respectively
::
the

::::::::
different

::::::::::
formulations.
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Second, for the maximum supersaturation values, we see
::::::::::
Considering

:::
the

:::::
values

::
of

:::::::::
maximum

:::::::::::::
supersaturation

:::::
(right

::::::
panel),

::::
there

::
is a similar behaviour as for ni. For

::
At low vertical velocities there is almost no difference between the reference nucle-

ation rate and the newly adapted rate. In case of using the saturation vapour pressure according to Nachbar et al. (2019), there715

is the shift in
:::
the

:::::::
observed

:::::
shift

::
in

:::
the maximum supersaturation values depending on temperature, as we already saw in the

simulations in section 5.

For
:::::
stems

::::
from

:::
the

::::::::
increased

::::::::
difference

:::::::
between

:::
the

::::::
values

::
of

:::
the

::::::::
saturation

:::::
vapor

::::::::
pressures

::
at

:::
low

:::::::::::
temperatures,

:::
see

:::::::
Section

::
5.

::
At

:
higher updrafts (w > 0.5m s−1), the maximum supersaturation values increase nonlinearly. For the coldest temperature

(T = 196K) we note a dramatic increase up to very high values (Si,max ∼ 1.8). However,
::::
note

:::
that

:
in all cases ice nucleation720

due to freezing of solution droplets is the correct prediction, since
:::
the

:::::
values

:::
of

:::
the

:::::::::
maximum

:::::::::::::
supersaturation

::::
stays

::::::
below

water saturation, and thus
:::::
hence

::
no

:
liquid origin ice formation , is not reached

:::::
would

:::::
occur.

7 Thresholds of ice nucleation

For the evaluation of measurements of ice clouds, the possible range of supersaturation is often estimated using the so-called

Koop-line, i.e. the supersaturation threshold Sc(T ) which corresponds to a nucleation rate value J = 1016m−3 s−1 = 1010cm−3 s−1
::::::::::::::::::::::::::::
J = 1016m−3 s−1 = 1010cm−3 s−1.725

In many investigations (see, e.g., Krämer et al., 2009) this function is used as an upper bound for possible values of Si inside

and also outside of ice clouds. However, from our investigations in this study so far, we have to carefully consider two different

aspects from a purely theoretical point of view:

1. The nucleation threshold assigned to the frequently used value j0 = 16 is completely arbitrary chosen; there is no

convincing physical justification for using this particular value; actually, in
:
.
::
In

:
Koop et al. (2000) different values730

J = 10xm−3 s−1 with x ∈ [1,17]
:::::::::::::::
J = 10j0 m−3 s−1

::::
with

:::::::::
j0 ∈ [1, 17]

:
are used, but for testing the impact of droplet sizes,

they used the value x= j0 = 16
::::::
j0 = 16. Nucleation of ice crystals is not a switching process, it occurs gradually and

smooth, although the nucleation rates are very steep functions of the supersaturation. The size or strength of the nucle-

ation event cannot be determined just by the maximum of the supersaturation; the amount of ice crystals as formed in the

nucleation event is determined by the integral over the supersaturation curve (see, e.g., discussion in Dinh et al., 2016)
::::::::::::::::::::::::::::::::::::
(see, e.g., the discussion in Dinh et al., 2016).735

Thus, it is possible to form many crystals in lower updrafts even if the high nucleation threshold is not reached. From our

simulations we observe , that the peak supersaturation for nucleation events depends crucially on the vertical velocity,

i.e. on the temperature rate, which is prescribed during the event. This is quite obvious from the differential equation

determining the change of Si: The peak value is given by dSi

dt = 0, i.e. when source and sink terms balance each other.

Since the source includes the vertical velocity linearly, the dependence of the peak supersaturation on w is obvious,740

although not linear.

2. As described above in section 5, it is still not clear which formulation of the saturation vapor pressure is physically

correct. However, the use of the formulation by Nachbar et al. (2019) leads to a higher saturation vapour pressure and

thus to a higher nucleation threshold, even for arbitrary values x0 :
j0:and its associated nucleation threshold Scx0(T ).
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Taking these two aspects into account, we can observe the following behaviour. In figure 13 (left panel) we compare the nucle-745

ation thresholds for the saturation vapour pressure according to Murphy and Koop (2005) for j0 = 10 (red curve) and j0 = 16

(dark blue curve) with the range of peak supersaturations for vertical velocities 0.01m s−1 ≤ w ≤ 2m s−1 (black vertical bar)

and the maximum value for a very unrealistic value w = 10m s−1 (black crosses) . For comparison, the well known Koop-line

as fit and proposed by Kärcher and Lohmann (2002) is plotted (light blue curve). It is quite obvious, that for typical vertical

velocity values the “classical” Koop-line is not reached, i.e. the peak supersaturation is below the threshold. Nevertheless, for750

strong cooling rates (very high vertical velocities), as are used in experiments in cloud chambers, high supersaturations are

reached, which still partly remain below the Koop-line. If we change the saturation vapour pressure to the formulation by

Nachbar et al. (2019), the qualitative picture remains the same (right panel in fig 13): Even for high vertical updrafts the high

nucleation rates are reached,
:
;
:
for moderate and small updrafts, the peak supersaturation stays well below the classical nucle-

ation threshold. However, the nucleation thresholds are generally shifted to higher values of supersaturation due to the different755

saturation vapour pressure formulation. It seems that these values fit better to the experiments in the AIDA cloud chamber as

reported in Baumgartner et al. (2022) and Schneider et al. (2021). This might be interpreted as a hint that the formulation by

Nachbar et al. (2019) is
:::::
might

::
be

:
the more appropriate formulation for the saturation vapour pressure,

::::::::
although

:::
the

::::::::::
formulation

::
by

:::::::::::::::::::::::::::
Murphy and Koop (2005) agrees

::::
well

::::
with

:::::
recent

::::::::::::
measurements

:::::::::::::::::
(Pathak et al., 2021). In any case, one has to consider the

impact of the cooling rate on the peak supersaturation in a nucleation event. Therefore, the use of the “Koop-line” in the cur-760

rently applied way is misleading and does not correspond to the actual physics of nucleation events. Note, that the
::::::::::
temperature

::::::::
dependent

:
threshold is used in some parameterisations of ice clouds in climate and numerical weather prediction models

(see, e.g., Kärcher et al., 2006; Köhler and Seifert, 2015)
::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Kärcher et al., 2006; Köhler and Seifert, 2015).

::
A

::::::
simple

:::
but

::::
albeit

:::::
more

:::::::
realistic

::::::::
extension

::
of

:::::
such

:::::::
schemes

::::::
would

::
be

:
a
::::::::

threshold
:::::::::

depending
:::
on

:::::
both,

::::::
vertical

:::::::
velocity

::
w

::::
and

::::::::::
temperature

::
T ;

:
a
:::
2D

:::
fit

::
to

:::
the

::::::::
maximum

:::::::::::::
supersaturation

::::
data

::::
from

:::
our

::::::::::
simulations

:::::
might

:::
be

:
a
::::
first

::::::
attempt

::::
into

:::
this

::::::::
direction.765

Figure 13. Comparison of nucleation thresholds (red curve: x0 = 10, blue curve x0 = 16) and the classical “Koop-line” (light blue curve).

The black vertical bars indicate the range of peak supersaturation ratios within the nucleation events computed using vertical velocities

ranging from 0.01m s−1 to 2m s−1. The black cross corresponds to the peak supersaturation ratio for the vertical velocity of 10m s−1. Left

panel: Curves based on the water activity using the saturation vapour pressure formulation by Murphy and Koop (2005); right panel: the

same for the saturation vapour pressure formulation by Nachbar et al. (2019).

Finally, we can also investigate the peak supersaturation values for the new empirical nucleation rate formulation, as derived

in section 6.1. Generally, we see the same behaviour as for the reference simulations with a monotonic increase of peak

supersaturation values with increasing vertical velocity (cf. figure 14). The use of the saturation vapour pressure formulation

by Nachbar et al. (2019) additionally enhances the peak values as seen before. However, the peak values for cold temperatures

and very high vertical velocities are strongly enhanced in comparison with the reference simulations. Also these high values770

are still in line with the measurements in the AIDA chamber as reported by Baumgartner et al. (2022) and Schneider et al.

(2021).
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Figure 14. Same as in figure 13, but using the nucleation rate as empirically derived in section 6.1.

8 Summary and outlook

We have investigated the impact of the representation of nucleation rates and diffusional growth on idealized nucleation events,

as driven by a constant vertical updraft (i.e. a constant cooling rate). In a first step, we have investigated the original formulation775

of the nucleation rate for homogeneous freezing of aqueous solution droplets in the formulation by Koop et al. (2000), which

is a well-accepted and verified formulation
:
;
::
for

::
a
:::::
better

:::::::::
agreement

::::
with

::
the

:::::::::
nucleation

::::
rate

::
of

::::
pure

:::::
water

:::::::
droplets

:
a
::::::
simple

::::
shift

::::
could

:::
be

::::::
applied. For analytical purposes and simple model calculations, a less complicated formulation is desired. We showed

that a linear fit to the original formulation depending on the difference in water activity ∆aw = aw − aiw is accurate enough

to reproduce the ice crystal number concentrations quantitatively. Based on this linearization approach, we derived a threshold780

formulation of the nucleation rate, which can be used for analytical investigations as already presented in Baumgartner and

Spichtinger (2019). Again, the new formulations are good enough to represent nucleation events quantitatively as compared to

the reference nucleation formulation.

Using the linear approximation as a starting point, we investigated the impact of different formulations on idealized nu-

cleation events, changing the two relevant parameters (slope and constant offset). These investigations led to the first major785

results:

– The absolute values of the nucleation rate has only marginal impact on the resulting ice crystal number concentrations

in a nucleation event. Even a scaling by up to six orders of magnitudes did not severely affect the resulting number

concentrations. However, the maximum supersaturations changed, and the resulting deviations range up to few percent

relative humidity. In addition, the time of nucleation onset is slightly shifted.790

– The slope of the nucleation rate (or more precisely in the argument of the exponential function) has a much larger impact

on the resulting nucleation event, and the ice crystal number concentration. Variations in the slope change the number

concentrations in the nucleation events by up to a factor 2.5 (in both directions). Also, the maximum supersaturation is

affected by a deviation of a few percent of relative humidity.

As a final conclusion of this part of our work, we can state that the shape of the nucleation rate is of high importance for the795

representation of the nucleation process, whereas the absolute strength of the rate is almost negligible, if the values are high

enough. This shows that the nucleation process (homogeneous freezing of solution droplets) itself is a quite robust process,

thus the accurate formulation is maybe less critical as we thought. Also the amount of available solution droplets as controlled

by the background aerosol does not affect the nucleation events itself; it can be seen as a scaling factor of the nucleation rate,

in the same sense as in the sensitivity analysis of changing the absolute values of nucleation rates. As long as the amount of800

aerosol particles is some orders of magnitude larger than the ice crystal number concentration as predicted for a nucleation

event, this does not play a role for the nucleation events,
:::
and

:::
we

:::
do

:::
not

::::
have

::
to

::::
care

:::::
about

:::::::::
exhausting

:::
the

::::::::
reservoir

::
of

:::::::
solution

::::::
droplets.
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We also investigated the impact of the
:
a
:
recently published formulation of the water saturation pressure based on a thermody-

namic assumption of different phases of water in the very low temperature range (Nachbar et al., 2019). This new formulation805

leads to changes in the function aiw, which directly affected the nucleation rate based on ∆aw. Following the derivations of

the threshold description, approximations could be found
::::
were

:::::::::
constructed. The new resulting functions aiw(T ) and Sc(T ) can

be accurately approximated with polynomials of smaller degrees, as compared to the standard formulation. The new formu-

lation of pliq only marginally changed the resulting ice crystal number concentrations. However, the impact on the maximum

supersaturations increased with decreasing temperature up to few percent of relative humidity. Overall, the two different rep-810

resentations of the saturation vapour pressure over liquid water produced very similar, even almost identical, results. Thus, a

decision about the validity of a certain formulation must be left to extensive experimental measurements.

In a more speculative part of the study we adapted the nucleation rate of homogeneous freezing of pure water droplets (Koop

and Murray, 2016) as a new parameterisation for homogeneous freezing of aqueous solution droplets. This representation

is quite similar for low values of ∆aw to the original formulation by Koop et al. (2000) and its approximations. However,815

for very high water activities (i.e. high supersaturations as driven by large vertical updrafts), there is a significant deviation

from the reference nucleation rate. Thus, for some cases in the parameter space (high updrafts and low temperatures) there

is a significant deviation in the number concentrations, and, more obvious, in the maximum supersaturations, which reach

almost water saturation in some cases. This approach showed that the shape of the nucleation rate is important for the resulting

nucleation events; strong deviations of the shape from its reference affect the results of the nucleation event significantly. If820

this representation of the nucleation rate is
::::
more

:
close to the physics of ice nucleation remains open, and might be an objective

for experimental investigations.

Finally, we investigated the commonly used threshold for homogeneous nucleation (“Koop-line”) in the light of peak su-

persaturation values during nucleation events. This threshold corresponds to a nucleation rate of 1016m−3 s−1
:::::::::::
1016m−3 s−1,

but is only rarely reached during nucleation events. Nucleation itself starts usually at much lower values of Si corresponding825

to lower values of the nucleation rate. The peak supersaturation during a nucleation event, characterised as an equilibrium

between sources and sinks of supersaturation depends on temperature and vertical velocity. The peak supersaturation is a much

more physical quantity to investigate the strength of a nucleation event. The peak supersaturation as diagnosed from the nu-

merical simulations might be a more physical representation of ice nucleation in coarse resolution models in comparison to the

frequently used nucleation threshold.830

:
It
::::::
should

::
be

::::::::::
emphasized

::::
that

::
all

:::
the

::::::
results

:::
and

::::::::::
conclusions

:::
are

:::::
meant

::
in

:
a
::::::::::
bulk-sense,

:::
i.e.

::
for

::
a

::::
large

::::::::
collection

::
of

:::
ice

:::::::
crystals

::::
such

::
as

:
a
::::::
newly

:::::::
forming

:::::
cirrus

:::::
cloud.

::
If

:::
one

::
is
:::::::::
interested

::
in

:::
the

:::::
details

:::
of

::
ice

:::::::::
formation

:::
for

:
a
:::::
single

:::
or

::::
only

:
a
:::::
small

:::::::
number

::
of

:::::::
particles

::::
then

::
all

::::::
details

::
of

:::
the

:::::::::
nucleation

::::
rate

:::::
might

::
be

:::::::
equally

:::::::::
important.

::
In

:::
that

:::::::
respect,

:::
our

:::::
study

::::::
shows

:::
that

::::::::::::
homogeneous

:::::
cirrus

::::::::
formation

::
is

:
a
::::::
robust

:::::::
physical

:::::::
process.
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Appendix A: Model description - details835

In this appendix, we present the details of the model as used for the numerical simulations of the nucleation events. Note, that

we use the mathematical
::::
(and

:::
also

:::::::::::::
programming) notation of logarithms, i.e. log denotes the natural logarithm (to base e).

Background aerosol

We assume for the aqueous solution droplets in the tropopause region a size distribution of lognormal type:

fsol(r) =
na√

2π logσr
exp

(
−1

2

(
log(r/rsol)

logσr

)2
)

1

r
(A1)840

with a modal radius rsol = 75 · 10−9 m, and a geometric standard deviation σr = 1.5. These values are adapted from the more

complex model by Spichtinger and Gierens (2009), using the fact that the dry aerosol population, as used in Spichtinger and

Gierens (2009), has grown to larger sizes by water vapour uptake (i.e. assuming Köhler theory, see, e.g. Köhler, 1936). The

mean volume of the solution droplets

Vd = Vsol =
4

3
πr3

sol · csolexp
:::

(
9

2
:

(
logσr
::::

)
2

)
(A2)845

with

csol = exp

(
9

2
(logσr)

2

)
is calculated from the third moment of the lognormal distribution.

Mass distribution for ice crystals

For the ice crystals, we assume a mass distribution of lognormal type850

f(m) =
ni√

2π logσm
exp

(
−1

2

(
log(m/mm)

logσm

))
1

m
(A3)

with a parameter

r0 = exp
(
(logσm)2

)
, m=mm

√
r0 = 3 (A4)

representing the width of the distribution as described in Spichtinger and Gierens (2009). This distribution is used for the

derivation of the rates in the ODE system for the mean quantities of ice mass and number concentration. The integration of855

weighting functions of the type mk,k ∈ R+ leads to general moments, which can be computed analytically:

µ[m]k :=

∞∫
0

mkf(m)dm= ni ·mk
m exp

(
1

2
(k logσm)

2

)

= ni ·mkr
k(k−1)

2
0

(A5)

Note, that for the averaged quantities we obtain ni = µ[m]0, qi = µ[m]1, respectively.
:::::
Thus,

:::
we

:::
use

:
a
::::::
double

:::::::
moment

:::::::
scheme

::
in

:::
our

::::::
model.
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Diffusion constant860

For the diffusion of water vapour in dry air, we use the following expression

Dv =Dv0

(
T

T0

)1.94(
p0

p

)
(A6)

which is an empirical fit to measurement data (Hall and Pruppacher, 1976). Note, that the valid temperature range is different

in the book Pruppacher and Klett (2010) and in the original article Hall and Pruppacher (1976). For analytical investigations,

a representation using a quadratic temperature dependence constitute a good approximation for a restricted temperature range.865

For the kinetic correction we use the function

fD(r,a,b) =
1

r
r+a + b

r

=
r2 + ar

r2 + br+ ab
(A7)

whereas r denotes the radius of the ice crystal (using a bulk density of ice ρb = 0.81kg m−3), and the parameters are given by

a= λ ·Ccunn, b=
4Dv

αmc̄v
(A8)

using the mean free path of water molecules in air λ (acc. to Pruppacher and Klett, 2010), the Cunningham correction factor870

Ccunn = 0.7, and the mean velocity of water molecules c̄v . We set the accomodation coefficient αm = 0.5 for comparison with

former investigations (Kärcher and Lohmann, 2002); this value is also within the range as recommended in recent work by

Skrotzki et al. (2013).

For representing the growth rates for the ensemble of ice crystals, by comparison with numerical integration we find that

using a shifted mean mass m1 = c1 · m̄, c1 ≈ 0.819 in the kinetic correction function f(r1,a,b) is a good approximation.875

Howell factor

Latent heat release due to phase changes during diffusional growth changes the surface temperature of the ice crystal. For

taking this into account, we use the Howell factor

Gv =

[(
L

RvT
− 1

)
L

T

D∗v
K∗T

+
RvT

psi

]−1

≈
[(

L

RvT
− 1

)
L

T

Dv

KT
+
RvT

psi

]−1

.

(A9)

In the approximation, we neglect the kinetic corrections for diffusion coefficient Dv and heat conductivity of air KT .880

Capacity of ice crystals

For ice crystals we assume columnar shape
:::::::
spherical

::::::
shape

:::
for

:::::
small

:::::::
crystals

::::
and

::::::::
columnar

:::::
shape

:::
for

:::::
large

:::::::
crystals

::
as

:::
in

:::::::::::::::::::::::::
Spichtinger and Gierens (2009); thus the shape factor, or capacity, can be determined exactly using the electrostatic analogy

(McDonald, 1963), using a prolate spheroid with semi axes a,b; the capacity can be analytically expressed by

C =
Lε′

log( 1−ε′
1+ε′ )

Lε′

log( 1+ε′

1−ε′ )
::::::::

(A10)885
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using the eccentricity ε′ =
√

1−
(
b
a

)2
and the length L of the crystal.

:
,
:::::
which

::
in

::::
turn

::
is

:
a
:::::::
function

::
of

:::
the

::::::
crystal

:::::
mass.

::::
Note,

::::
that

::
the

::::::::::
eccentricity

:::::::
changes

::::
with

::::::
crystal

::::::
growth

::::
since

:::
the

:::::
aspect

::::
ratio

::
is

::::::::
changing

:::::::::::::::::::::::::::::::::::::::::
(see Spichtinger and Gierens, 2009, their eq. (17)) We

find a very good approximation
::
to

:::
the

:::::::::
piece-wise

::::::::
definition

:::
of

:::
the

:::::::
capacity

:::
by

::::::::::::::::::::::::::
Spichtinger and Gierens (2009) depending on

the ice crystal mass

C(m)≈ a1 ·mb1 + a2 ·mb2 (A11)890

with constants

a1 = 0.015755m kg
1
b1 , b1 = 0.3,

a2 = 0.33565m kg
1
b2 , b2 = 0.43.

(A12)

The representation of the capacity in the ice crystal ensemble is given by the integration, leading to general moments µ[m]bi .

Ventilation correction

The empirical ventilation corrections usually depend on the use of two dimensionless numbers, i.e. the Schmidt number NSc895

and the Reynolds number NRe

NSc =
µ

Dvρ
,NRe =

ρ

µ
vtL (A13)

using the dynamic viscosity of air µ (e.g. Dixon, 2007). Thus, the size of the ice crystal L is influencing the Reynolds number

via the product vt(m)L, using the terminal velocity vt for an ice crystal of mass m. The effect of ventilation, i.e. the additional

uptake of water vapour by the airflow around the particle crucially depends on the shape of the particles. For columnar shaped900

ice crystals, we adapt the empirical quadratic fit by Liu et al. (2003) to the simulation data (Ji and Wang, 1999) as follows

fv = 1 + cχ ·χ2, cχ = 0.14856, χ=N
1
3

ScN
1
2

Re (A14)

For the formulation of the terminal velocity of columnar shaped ice crystals, vt(m), we use the formulation by Spichtinger

and Gierens (2009), including also the correction for temperature and pressure, respectively. For representing the ensemble of

ice crystals, by comparison with the numerical integration we find that using a shifted mean mass m2 = c2 ·m,c2 = 1.5 in the905

formulation of the Reynolds number leads to a very good agreement.

Appendix B: Reference simulation results

In this section we report on the results of the reference simulations, using the corrected formulation of the nucleation rate for

super-cooled aqueous solution droplets by Koop et al. (2000). For evaluating the quality of the simplified model, we compare

the number concentration of ice crystals as obtained from standard nucleation events with results from literature, i.e. with910

a model using sophisticated Lagrangian particle physics (Kärcher and Lohmann, 2002) and a complex bulk physics scheme
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Figure B1. Comparison of ice crystal number concentrations as obtained for typical nucleation events from different models. Red squares:

Particle model by Kärcher and Lohmann (2002), blue circles: complex two moment bulk scheme by Spichtinger and Gierens (2009), black

line & triangles: simpler bulk model from this study, indicated as new reference

(Spichtinger and Gierens, 2009). In figure B1 the results are represented for the temperatures T = 196, 216, 236K at pressure

p= 200hPa, as prescribed in Kärcher and Lohmann (2002).

In comparison we see an overall good agreement of our simple model with the more sophisticated models (Kärcher and Lohmann, 2002; Spichtinger and Gierens, 2009)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Kärcher and Lohmann, 2002; Spichtinger and Gierens, 2009).

However, we have to remark here that the deviation in the results for temperature T = 236K at low vertical velocities is the915

result of the neglegtance of the ventilation correction in the model by Kärcher and Lohmann (2002). In summary, our simplified

approach compares very well with the results of the other studies.

In the study by Kärcher and Lohmann (2002) the impact of latent heat release on the diffusional growth is not considered.

It is argued, that for cold temperature this effect is negligible. However, we found in our investigations, that this is only true

for temperatures well below 220K. A comparison at reference temperatures (196/216/236K) shows, that there is an impact920

of latent heat leading to reduced ice crystal number concentrations due to an enhanced diffusional growth as compared to

the values given in Kärcher and Lohmann (2002). For environmental conditions as above (p= 200hPa), the reduction in the

nucleated ice crystal number concentrations is about 20% for T = 236K and about 5% for T = 216K, respectively. Thus, one

should be aware of that using parameterisations based on Kärcher and Lohmann (2002) might lead to moderately enhanced ice

crystal number concentrations in the warm temperature regime.925

In figure B2 a typical nucleation event is shown. Here, two different nucleation parameterizations are used, the reference by

Koop et al. (2000) (black line) and the linear fit (red line). There are small differences in the time evolution of the variables

saturation ratio Si (left panel), number concentration ni (middle panel) and mean mass m (right panel), but in general there is

the same behaviour in both cases.

Figure B2. Representative example for a typical nucleation event for temperature T = 216K and pressure p= 200hPa with a forcing of

w = 1m s−1. Red line: reference nucleation rate after Koop et al. (2000), black line: nucleation rate approximated by linear function as given

in eq. (38).

The source of supersaturation (i.e. cooling by vertical updraft and adiabatic expansion) leads to an increase in Si until930

nucleation starts at about tstart ∼ 40s, i.e. at very low values of the nucleation rate. Si is still increasing since the sink of

depositional growth is not strong enough to reduce water vapour efficiently, thus;
:::::
thus, the ice crystal number concentration

is further increasing due to permanent ice nucleation. At the peak supersaturation, source and sink of supersaturation are

balanced (tpeak ∼ 110s); after this time, Si is decreasing due to the dominant growth term. The number concentration does

not change much from this time on but as long as the values of Si are large enough, still ice nucleation takes place. At about935

t∼ 125s the nucleation event is complete, no further nucleation takes place, since the nucleation rate is too small. Note that

during the time interval [tstart, tpeak] the mean mass m is almost constant (this feature is more prominent in the linear fit case),
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whereas for t > tpeak the mass increases. For t < tpeak the nucleation is dominant, thus diffusional growth just compensates the

number increase by mass, whereas afterwards crystal growth is dominant over nucleation. This feature was already seen in

former investigations, which leads to a model reduction for analytical investigations (Baumgartner and Spichtinger, 2019). The940

different nucleation parameterisations agree qualitatively for a nucleation event; however, the nonlinear reference rate leads to

some variations. While for the linear fit case, the increase in ni is approximately an exponential growth ni(t)∼ exp(αt), and

in turn the mean mass is almost constant in the relevant time interval, for the reference case the change deviates slightly from

exponential growth.

Note, that the thresholds of constant nucleation rates in figure B2 (left panel) can be calculated from eq. (39) using the945

respective values for j0 (i.e. j0 ∈ {10,12,14,16}) in the formulation of the supersaturation threshold.

Appendix C: Simple fit for nucleation rate of pure water droplets

In Koop and Murray (2016) a polynomial of degree 6 is used for fitting the experimental values of the nucleation rate for pure

super-cooled water. Since polynomials of high degree are difficult to evaluate numerically, we present fits with polynomials of

lower degrees, which are still accurate in the relevant temperature range. The original formulation of the nucleation rate is950

Jhom(T ) = 10p(x)pn(x)
::::

, pn
:
(x) =

n∑
i=0

ci ·xi, x= T −Tm. (C1)

with a polynomial p(x)
::::
pn(x)

:
of degree n= 6 using the melting temperature of pure water Tm = 273.15K. The coefficients

ci are reported in Koop and Murray (2016, table VII), where the nucleation rate is given in units cm−3 s−1. We reformulate

the nucleation rate in SI units (i.e. [J ] = m−3 s−1) by a factor of 106 and approximate the logarithmic values log10(J) by

polynomials of degree 2 and 4, respectively, i.e.955

p2(T ) = a0 + a1 ·T + a2 ·T 2,

p4(T ) = a0 + a1 ·T + a2 ·T 2 + a3 ·T 3 + a4 ·T 4
(C2)

the coefficients are given in table C1. For this purpose we use a least square fit for the temperature range 225≤ T ≤ 245K,

for which supercooled water droplets can still exist (see, e.g., figure 4 in Koop and Murray, 2016). In figure C1 (left panel) the

approximations are shown in comparison with the original fit, while the ratio r = pi(T )
p(x) is shown in the right panel.

Figure C1. Polynomial fits of low degrees for the nucleation rate as given by Koop and Murray (2016). Left: Reference and fits p2(T ),

p4(T ), right: ratio of reference and fits p2(T ), p4(T )

As can be seen the relative error for the polynomial fit p4(T ) is less than 0.25%, while even for the quadratic fit p2(T ) the960

error is smaller than 2%. For practical applications in the relevant temperature range 225≤ T ≤ 240K the quadratic fit might

be sufficient. If the original polynomial is used, a sophisticated evaluation of the polynomial is recommended (e.g. Horner

scheme).
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fit a0 a1 a2 a3 a4

p2(T ) −5369.61 46.96750 −0.10236 − −

p4(T ) −848143.02 14534.5767 −93.481032 0.26745460 −0.0002872

Table C1. Coefficients for the polynomial fits of the nucleation rate by Koop and Murray (2016) as given in equation (C2).

Appendix D:
:::::::::::
Perturbation

::::::::
Analysis

:::
The

::::::::::
perturbation

:::::::
analysis

:::
or

:::::::::
asymptotic

:::::::
analysis

::
as

::::::
applied

:::
in

::::::
Section

:::
4.6

::
is

:
a
::::::::::
well-known

:::::::::
technique

::
to

:::::::::
investigate

:::
the

::::::
impact965

::
of

:::::::::::
perturbations

::
on

::
a
:::::::::::
mathematical

::::::
object

::::
such

::
as

::
a
:::::::::::
mathematical

:::::::::
expression

:::
or

:::
the

:::::::
solution

::
of

:::
an

::::::::
equation.

::
A

::::
good

:::::::
general

::::::::::
introduction

::
is

::::
given

:::
in

:::::::::::::::
Holmes (2013) and

:::
an

:::::::::
application

::
in

:::::::::::
meteorology

::
is

::::::::
explained

::
in

:::::::::::
Klein (2010).

:

:::
The

:::::
basic

::::
idea

::
is

::
to

::::::::
introduce

::
a
:::::
small

::::::::
parameter

:::
ε,

::
to

::::::
expand

:::
the

:::::::
quantity

:::
of

::::::
interest

:::
in

::::::
powers

::
of

::
ε,
:::
i.e.

::::::::
ε, ε2, . . .

::::
and

::
to

::::::::
substitute

:::
this

:::::::::
expansion

::::
into

:::
the

::::::::::::
mathematical

:::::
object

:::
of

::::::
interest

::::
(see

::::
Eq. (48)

:::
for

::::
such

:::
an

::::::::::
expansion).

:::::
Since

:::
the

::::::::
resulting

:::::::::
expression

:::::
should

::::
hold

:::
for

:::
any

:::::
value

::
of

::
ε

:::
and

::::
even

::
in

:::
the

::::
limit

::::::
ε→ 0,

::
all

:::
the

:::::::::::
contributions

:::::
from

:::
the

::::::
various

::::::
powers

::
of

:
ε
::::
may

:::
be970

:::::::::
considered

::::::::::
individually.

:::::
Given

::::
that

:::
the

::::::::
parameter

::
ε

:
is
::::::::
assumed

::
as

:::::
being

:::::
small,

::::::
effects

:::
that

:::::
stem

::::
from

:::::
terms

::::
with

::::::
higher

::::::
powers

::
of

:
ε
::::
will

::::
only

::::
have

:
a
:::::
small

::::::
impact

:::::::
whereas

::::::
effects

::::
with

:
a
:::::
lower

::::::
power

::
of

:
ε
::::
will

::
be

:::::::::
dominant.

:

:::
For

:::::::
practical

::::::::::
applications

::
it
::
is

::::::::
common

::
to

::::
also

::::
scale

::::::::::
coefficients

:::
and

::::::::::
parameters

::
of

:::
the

:::::::::::
mathematical

:::::::::
expression

::
in
:::::::
powers

::
of

::
ε.

::::
This

:::
step

:::::::
ensures

:::
that

:::
the

::::::
mutual

::::::::::
magnitudes

::
of

:::
the

:::::::::
parameters

::::
stay

:::::::::
consistent,

::::
even

::
in

:::
the

::::
limit

::::::
ε→ 0.

::::
This

::::
task

:::::::
involves

::::::
usually

::::
some

::::
free

:::::::
choices,

:::
and

::
is
::::::
known

::
as

::::::::::::
distinguished

::::
limit.

:
975

::
In

:::
the

::::
spirit

::
of

:::
the

:::::
works

::
of

:::::
Klein

:::
and

::::::
Majda,

:::
the

::::::
scaling

::
of

:::
the

:::::::::
parameters

::
is
:::::
often

::::
done

::
by

::::::::
assuming

:::::::
ε∼ 0.1,

:::
i.e.

::::::::::
substituting

:::
this

:::::
value

::
of

:
ε
:::
into

:::
the

::::::
scaling

::
of

:::
the

:::::::::
parameters

:::::
yields

::
a
::::::
realistic

:::::
value

::
of

:::
the

:::::::::
parameters

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Hittmeir and Klein, 2017; Baumgartner and Spichtinger, 2019; Klein and Majda, 2006).

::
As

:::
an

:::::::
example,

:::
the

:::::::::
parameter

:::::::::::::::::::::::::
A(T )≈A0 = b1a

i
w0 ≈ 149.32

::
is

::::::
written

::
as

:::::::::::
A0 =A∗ε−2

::::
with

::::::::::
A∗ =O(1)

:::::
where

:::
the

:::::
latter

::::
may

::
be

:::::::::
understood

::
as

:::
A∗

::
is
::::::::::
independent

:::
of

::
ε.

::::
With

:::::::::::
A∗ ≈ 1.4932

:::
the

:::::
value

::::::
ε∼ 0.1

:::::::
restores

:::
the

::::::
original

:::::
value

::
of

::::
A0.

::
In

:::::::
essence,

:::
the

::::
goal

::
is

::
to

:::::::::
determine

:::
the

::::::::::::
nonzero-parts

::
of

:::
the

:::::::::
expansion

::
of

:::
the

:::::::::::
mathematical

:::::::::
expression

::::
and

:::
the

:::::::::
respective980

:::::
power

::
of

:
ε
::::::::
indicates

::::
how

:::::
strong

:::
this

::::::::::
contribution

:::
is.

::
As

::
an

::::::::
example,

::
if

::
the

::::
final

:::::::::
expansion

::
is

:::::
found

::
to

::
be

::::::::::::::::::::::::
ε−1ω−1 +ω0 + εω1 +O(ε2)

:::
then

:::
the

::::
term

::::
ω−1::::

will
::
be

::::::::
dominant

:::::
since

:::
this

::::
term

::
is

::::::::
associated

::::
with

:::
the

::::::
lowest

:::::
power

::
of

::
ε.

::
If

:::
the

:::::
result

:::::
would

::
be

:::
the

:::::::::
expansion

:::::::::::::::
ω0 + εω1 +O(ε2)

::::
then

:::
we

::::
may

:::::::
conclude

::::
that

:::
ω0 ::

is
:::
the

::::::::
dominant

::::
part

:::
and

:::
all

::
ωk:::

for
::::::
k ≥ 1

::::
only

::::::::
contribute

:::::
small

::::::::::
corrections

:::::
(since

:
ε
::
is

::::::
small).

:

:::::::
Another

::::::
fruitful

:::
use

::
of

:::::::::::
perturbation

:::::::
analysis

:
is
:::
to

::::
allow

:::
an

:::::::
equation

::
to
:::::::::

determine
:::
the

:::::::
possible

::::::::
matching

::::::
powers

:::
of

::
ε,

:::
i.e.

::
to985

::::::
answer

:::
the

:::::::
question:

::::::
Which

::::::
powers

::
of

::
ε
:::
are

::::::
needed

::
to

::::::
achieve

::
a

::::::
balance

::
in

:::
the

:::::::
equation

::
at
::::::
hand?

::
As

:::
an

:::::::
example,

:::::
from

:::::::
physical

::::::::::::
considerations

::
we

:::::
know

::::
that

:::::::
equation (59)

:::::
holds.

:::
As

:
a
:::::::::::
consequence,

::::
after

::::::
having

::::::::
expanded

::::
both

::::
sides

::
of

:::
the

::::::::
equation

::
in

::::::
powers

::
of

::
ε,

:::
the

:::::::::
expansions

::
on

::::
both

:::::
sides

::::
must

:::::
agree

:::::::::
(otherwise

:::
the

:::::::
equation

::::::
would

:::
not

:::::
hold).

::::
This

::
is

::::
only

:::::::
possible

::
if

:::
the

::::::
powers

::
of

::
ε

:::::
match,

::::::
hence

::
the

::::::::::
appropriate

::::::
powers

:::
for

::
ε

::::
may

::
be

:::::::
inferred.

:
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