10

15

20

Impact of formulations of the homogeneous nucleation rate on ice
nucleation events in cirrus

Peter Spichtinger!, Patrik Marschalik'?, and Manuel Baumgartner!->*

! Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Germany
2now at DB Systel GmbH, Berlin, Germany

3 Zentrum fiir Datenverarbeitung, Johannes Gutenberg University Mainz, Germany

4 now at German Weather Service (DWD), Offenbach, Germany

Correspondence: Peter Spichtinger (peter.spichtinger @uni-mainz.de)

Abstract.

droplets-Homogeneous freezing of solution droplets is an important pathway of ice formation in the tropopause region. The
nucleation rate mmmﬂm%mwﬁ%mwmm a function of water activ-
ity—For ies;—, based on empirical fits and some
assumptions on the underlying properties of super-cooled water, although a general theory is missing. It is not clear how.
nucleation events are influenced by the exact formulation of the nucleation rate or even their inherent uncertainty. In this study
we investigate the formulation of the nucleation rate of homogeneous freezing of solution droplets (1) to link the formulation
to_the nucleation rate of pure water droplets, (2) to derive a robust and simple formulation of the nucleation rate, and (3)

to_determine the impact of

nucleation events. The nucleation rate can be adjusted and the formulation can be simplified to a threshold description. We
use a state-of-the-art bulk ice microphysics model to investigate nucleation events as driven by constant cooling rates; the

key variables are the final ice crystal number concentration
and the maximum supersaturation during the event. The nucleation events are sensitive to the slope of the nucleation rate but

only weakly affected by changes in its absolute value. This leads to the conclusion that details of the nucleation rate are less
important for simulating ice nucleation in bulk models ;-if-as long as the main feature of the nucleation rate (i.e. its slope) is
represented sufficiently well. The weak sensitivity on the absolute values of the nucleation rate suggests that the amount of
available solution droplets also does not crucially affect nucleation events. The use of just-only one distinct nucleation thresh-
old function for analysis and model parameterisation should be reinvestigated—Fhe-frequently-used-thresholds-eerrespending
. since it corresponds to a very high nucleation rate value, which is not reached in many nucleation events with low vertical
updrafts. In contrast, the maximum supersaturation and thus the nucleation thresholds reached during an ice nucleation event
depend on the vertical updraft velocity or cooling rate. This feature might explain some high supersaturation values during
nucleation events in cloud chambers and suggests a reformulation of ice nucleation schemes used in coarse models based on a

fixed-purely temperature-dependent nucleation threshold.
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1 Introduction

Clouds are one of the most important components in the Earth-Atmosphere system. They influence the hydrological cycle and
Earth‘s energy balance via interaction with radiation. Clouds can cool the system by partly scattering and reflecting incoming
solar radiation (albedo effect) but also warm the atmosphere by absorbing and re-emitting thermal radiation as emitted by the
Earth’s surface (greenhouse effect). While for liquid clouds a net cooling effect can be derived, the radiative effect for clouds
containing ice crystals is still under debate. In particular, for pure ice clouds (so-called cirrus clouds) at high altitudes in the
low temperature range (1" < 235K) albedo effect and greenhouse effect are of the same order of magnitude but admit different
signs, leading to different net-effects (see, e.g., Fusina et al., 2007; Joos et al., 2014; Gasparini et al., 2017). Thus, details
in microphysical properties of ice crystals might decide about a net warming or cooling of cirrus clouds, as can be seen in
former model studies (e.g. Zhang et al., 1999). A key aspect of ice crystals is their size which directly affects the scattering
and absorption of radiation. Smaller crystals scatter incoming solar light more effectively, thus the optical depth 7 is directly

dependent on the size, as can be seen in the usual approximation (cf., e.g., Fu and Liou, 1993)

D

where D, denotes the effective diameter of the crystal, IWC is the ice water content, and-A z represents the vertical extent of the

T:IWC~AZ~<a+b), M

cloud, respeetively;-e-and-b-and a, b are empirically derived constants. Since the available water vapour is mainly determined
by thermodynamic conditions, the pathway of ice nucleation often decides about the ice crystal number concentration in cirrus
clouds and thus their effective size (assuming a certain amount of available water vapour).

Ice crystals can be formed by very different nucleation processes, which can be grouped into two major pathways, namely in
situ and liquid origin ice formation (e.g. Kramer et al., 2016; Luebke et al., 2016; Wernli et al., 2016). The overall term in situ
formation refers to ice formation at humidities below water saturation, whereas liquid origin formation subsumes all formation
processes where cloud droplets are present and humidity is close to water saturation (e.g. freezing of cloud droplets), see the
definition in Wernli et al. (2016). It is well known, that the ice crystal number concentration varies crucially in dependence
on the underlying nucleation process, leading to potentially strong changes in the resulting radiative effect (see, e.g., Kramer
et al., 2020).

Despite of the availability of many observational data and laboratory experiments (e.g. Hoose and Mohler, 2012), and also the
development of new theoretical models (e.g. the soccer ball model, see Niedermeier et al., 2011), the details of ice nucleation
at the molecular scale are still unknown.

A special situation occurs for the he-so-called

homogeneous freezing of super-cooled solution droplets (also short: homogeneous nucleation) at cold temperatures below
235 K. This process describes the spontaneous freezing of supercooled aqueous solution particles containing a small amount
of (usually inorganic) substances. Albeit also the details of this freezing process are not completely understood on a molecular

scale, reproducible laboratory experiments allowed the formulation of an empirical fit for the nucleation rate (Koop et al., 2000).

Such a fit bears inherent but maybe also unknown uncertainty, since we have no generally accepted theory for comparison.
Other fits or a change in the fit parameters might also lead to different formulations of nucleation rates.
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In-the-following-A prior, it is not clear how large the impact of the formulation of nucleation rates might be on simulating
nucleation events in models resolving nucleation events in time. This issue is the starting point of our investigation. We want to
address three different aspects. First, we want to link the former formulation by Koop et al. (2000) to recent findings on pure
water in order to formulate a consistent framework for our models. Second, we want to derive a robust and simple formulation
of the homogeneous nucleation rates, which can be used for analytical as well as numerical investigations. Third, we want to

investigate the impact of variations of nucleation rates (based on the new formulation) on nucleation events, i.e. on the resultin

ice crystal number concentrations.

. Baumgartner and Spichtinger, 2019) and former idealized box model simulations (e.

From theory (e.

we know that ice crystal numbers as produced in homogeneous nucleation events driven by a constant cooling rate (equivalent to

a constant vertical velocity) crucially depend on several parameters and, thus, affect also the radiative properties of the formed

calculations in Kriamer et al., 2020; Joos et al., 2009). Therefore, it is of high importance to understand the

ice cloud (see, e.g.

impact of the formulation of nucleation rates on the resulting ice crystal number concentrations.

We emphasize that all our investigations are meant in a bulk-sense, i.e. only integrated quantities such as the ice crystal
number and (total) ice crystal mass are considered. Using this approach, we consider the case of a newly forming cirrus cloud
and do not focus on the freezing or forming details of single ice crystals.

The study is structured as follows. In the next section, we present the fit by Koop et al. (2000) and its empirical basis, as
related to water theories. In section 3 we describe the simple model used for idealized simulations for testing the impact of
different formulations of nucleation rates. In section 4 the more compact formulation of the nucleation rate along with several
approximations is discussed. The consequences of using the proposed approximations are explored by idealized numerical
simulations. In section 5 we investigate the impact of a recently proposed formulation of the saturation vapour pressure over
super-cooled liquid water on the nucleation events (Nachbar et al., 2019). In section 6 a new formulation of the nucleation rate
based on results for freezing of pure super-cooled water (Koop and Murray, 2016) is presented and its impact on the number
concentration of nucleated ice crystals is discussed. In section 7 we investigate thresholds of ice nucleation as well as the peak
values of supersaturation during nucleation events, Finally, we summarize the results and draw some conclusions in section 8.

2 Empirical fit of the nucleation rate

Nucleation events are investigated in the phase space spanned by temperature and water activity of the aqueous solution. The

latter is defined as the ratio of saturation pressures of water vapour over the solution ps, and pure water pyq, respeetively;

as Q= ﬁi‘:. In this representation, the melting curve for different inorganic solutions turns out to be solely temperature
dependent, i.e. afu (T) :=aw(Th) = ﬁETT; (cf. Koop, 2015, his eq.(5) ), where p;.. denotes the saturation vapour pressure over
ice. The important insight here is that also the freezing/nucleation events collapse to a single line in the diagram (see Koop
et al., 2000; Koop, 2004, 2015), which can be fitted by shifting the melting curve (deviation Aa,, ~ 0.305). This also means
that the nucleation events do not depend on the solute, which is at least true for most inorganic substances (see, e.g., Koop,

2004). Thus, the nucleation rate can be solely parameterized as a function of Aa,, = a,, —a’,. For the fitting procedure in Koop

. Kércher and Lohmann, 2002; R
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et al. (2000), a polynomial of degree 3 is used and results in the formulation
3
Jool(Aay) = 107(3%)  with  ps(z) = axa® 2)
k=0

of the homogeneous nucleation rate coefficient Js;. The nucleation rate coefficient is used to formulate the probability of
freezing of aqueous solution droplets. The fit was used in the spirit of the representation of the nucleation rate for pure water
as derived by Pruppacher (1995). During this time, three water theories were available, and the nucleation rate (as a cubic
polynomial) was chosen according to the stability limit hypothesis (e.g. Mishima and Stanley, 1998), leading to an unlimited
increase in the rate (see, e.g., Pruppacher, 1995, his figure 3). However, meanwhile this water theory can be ruled out by
experimental evidence, thus only the two other water theories remain (singularity-free hypothesis vs. liquid-liquid critical
point, cf. Gallo et al., 2019, 2016)-—Feor-homogeneous—freezing-of solution—droplets—at-, which do not admit an unlimited
increase in nucleation rates of pure water (see, e.g., Koop and Murray, 2016). Thus, the heuristic basis for choosing a cubic

olynomial as a fit is not valid anymore.
Note that for atmospheric relevant conditions, both remaining water theories produce essentially the same results. Only at

very low temperatures 7' < 150 K, where highly viscous or even glassy states of water occur, a different behaviour is predicted.

Heweverthese-Such temperatures are not relevant for investigations of ice clouds in the tropopause region, where homoge-

neous freezing of solution droplets appears-as-the-dominantfreezingproeess—takes place. However, these theories provide the
basis for the formulation of the saturation vapour pressure over supercooled water in the no man’s land (Murphy and Koop, 2005),

combining heat capacities of liquid water and amorphous ice.
Finally, using the assumption of solution droplets being in equilibrium with their environment and neglecting size effects,

water activity equals the liquid water saturation ratio Sj;q due to

a, =22 P _ g 3)
Piiq Piig

where p,, denotes the partial water vapour pressure. Using this representation of a,, together with the ice saturation ratio

S; = %, the computation

Ay = ay — a°, = Py _pice(T) —(Si—1 Dice(T)
T = o = = ) @) O Y @) @

= (8; — 1)al,(T)

shows that Aa,, only depends on the ice saturation ratio and temperature.
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The-study-is-structured-asfolowsNote, that although recent measurements (Pathak et al., 2021) corroborate the procedure
in the study by Murphy and Koop (2005), in a recent study by Nachbar et al. (2019) the combination of liquid water and
amorphous ice is called into question, leading to a different formulation of the saturation vapour pressure over supercooled

water and thus a different water activity. In the next—

following.
investigations, we will also use this formulation in order to determine the sensitivity of the nucleation events on the choice

of a saturation vapour pressure

theseresults-and-draw-some-conetusionsin-seetion-8formulation. Note, that for each choice the water activity a?,(7) must be

recalculated.

3 Model description

We begin with the description of the governing equations for the relevant ice processes in a nucleation event, i.e. homogeneous
nucleation and diffusional growth. Both processes are key for determining the properties of the nucleation event, such as the
number of nucleated ice crystals and the evolution of the ice saturation ratio (e.g. its peak value). Of course, other processes such
as sedimentation and aggregation of ice crystals are important for the evolution of ice clouds, but usually act on farger-longer
time scales, e.g., when the particles are grown to larger sizes. Thus, we omit these processes and concentrate on nucleation and
growth, as in former studies (e.g. Kircher and Lohmann, 2002; Baumgartner and Spichtinger, 2019).

We formulate the model in terms of averaged quantities for ice crystal mass and number concentration (¢;5%:)q;, 1), 1.€. as.
a 2-moment scheme. Additionally, the saturation ratio with respect to hexagonal ice, S; = pifig}T)’ is used, with the partial water
vapour pressure p,, and the saturation water vapour pressure over hexagonal ice, pic (T')-+espeetively. Thus, the complete set

of equations for an adiabatically ascending air parcel can be represented as foHows-
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n; = Nuc, (5)

¢ = Nucg+ Dep, ©
S; = Cool + Dep, (7
. dT dT g L dg; g L
T = — — =—-= — —— |phase = —— — [N D 8
dt ladiabatic  dt Idiabatic cpw N cp dt IP hase cpw * Cp o 0Py ®
dp
) = — = — 9
p dt ladiabatic W’\g’\p/‘% ( )

and-including changes of temperature 7' and pressure p. In these equations, w denotes the vertical velocity of the air parcel,
cp s the specific heat capacity of dry air (assumed as a constant, see, Baumgartner et al., 2020), I, denotes the (constant) latent
heat of sublimation, and p is the air density, The assumption of an ideal gas is adopted for air and water vapour. The terms
Nuc,, Nuc, denote changes due to nucleation, the terms Dep,, Dep;, describe changes due to diffusional growth of ice crystals.

The term Cool denotes the impact of adiabatic expansion due to upward motion with velocity w, this is also reflected in the
change of temperature and pressures

these-different-proeesses—, using adiabatic lapse rate and hydrostatic pressure, respectively. For temperature, we would have to
consider diabatic changes due to latent heat release in phase changes.

Computing the total derivative of the saturation ratio using the representation S; = —2%* - where £q denotes the ratio of
molar masses of water and dry air, together with the Clausius-Clapeyron equation yields

851' drT 852 dp Lg g
00 OT dt ladiabatic 3p dt ladiabatic |:CpRUT2 RaT v ( )
and
05; dT a5, L? 1
Dep, = — — — (N D =—|——+—|S;(N D . 11
“Ps OT dt ldiabatic + Jq, ( ucq + epq) |:chsz + qv] ( ucq + epq) (11)

To a good approximation, for cold temperatures the first term in the bracket in (11), which describes latent heat release is

naclectad—Acd od-in-anpend D o gl oo, o 0 th aadcta

due to phase changes, can be omitted. In the
following, we will omit the evolution equations (8), (9) for temperature and pressure, i.e. we assume these as being constant



during the nucleation event. Thus, we arrive at

Dep, ~ — (Nuc, + Dep,) (12)

€opPsi

As a result of assuming temperature and pressure as being constant, only the vertical velocity w is an external parameter for
the . ) . » ) . .

180 Kircherandlohmann(2002)supersaturation. For the terms Nuc,., Dep . (z = n, ¢, s) we have to keep temperature and pressure
v. This a Spreitzer et al., 2017,

The nucleation term can be described as

as fixed parameters 1" = T; roach was also used in former investigations (see, €.g. Baumgartner

Nuc,, = JucVana, Nucy =moNuc,, (13)

where, V; is the mean volume of a supercooled solution droplet, n, is the number concentration of solution droplets, and my is
185 the mean mass of a newly frozen solution droplet, which can be set to my = 10~ 6 kg. The nucleation rate for the homogeneous
freezing of solution droplets is denoted by Jy,c. For comparison with former investigations (Kéarcher-and-Lohmann;2002;-Spichtinger-and-€
we set the number concentration of the background aerosol to a quite large value of n,p = 10*cm ™3 = 10'° m=3; since the
resulting ice crystal number concentration as produced in nucleation events is usually some orders of magnitude smaller, we
do not have to care about a possible consumption of a major part fraction of solution droplets. We will later discuss the impact

190 of this value in terms of nucleation events.

The diffusional growth of ice crystals is determined by the growth rate
Dep, =n; - 4nD;CG,(S; — 1) fy (14)

with the diffusion constant for water vapour in air D}, = D,,(p,T') fp as corrected by the factor fp for the kinetic regime, the
capacity of ice crystals, C, assuming columnar shape, the Howell factor G, (p, T') describing the impact of latent heat, and the

195 ventilation correction f,, respectively. Note, that the capacity also depends on the mean mass of the ice crystal ensemble, i.e.

C = C(m) = C(n;,q;). The details of the formulation are given in appendix A.

200
dt ladiabatic N Cp ’
dr L dg; L
dt T = — (Nucy + Dep, ),
dt ldiabatic ¢, dt Iphase Cp( q Pq),
dp
b — apw
dt ladiabatic gp
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— | Si (Nucy + Dep,)

210
Dep, ~ . (Nuc, + Dep,)
) EoPsi
Combining the expressions from above, the reduced system of equations reads
ni = Nuc, 15)
215 ¢; = Nucg+Dep, (16)
: Ly g P
Si = — Si N D 17
' |:CpRuT2 RaT:| it E0Psi ( UCq+ epq) ( )
RemarkRemarks:
1. As shown in Spreitzer et al. (2017), it is possible to determine and characterize the steady states of the reduced system,
which additionally includes sedimentation. This leads to a nonlinear oscillator with a bifurcation diagram, depending on
220 the updraft velocity w, and on the temperature 7.

2. The usefulness of this simple double moment scheme depends on the scales of the scenarios. We generally found good
agreement with such parcel models and also on an LES scale (and even coarser resolution) with observations, more

., Spichtinger and Gierens, 2009; Spichtinger, 2014; Baumgartner et al., 2022).

sophisticated models, and also theor

225 4 Investigations of the nucleation rates

Investigations of ice clouds in the cold temperature regime (1" < 235K) need to include the nucleation process of homogeneous
freezing of aqueous solution droplets. As pointed out in section 1 the formulation by Koop et al. (2000) based on water activity
is a meaningful fit to experimental data. However, for theoretical investigations and the use in reduced order models, a simpler
but still accurate approximation would be helpful. In the following we present a way how to derive such an approximation
230 based on the original fit through measurements by Koop et al. (2000) in addition to recent observations for pure super-cooled

water.
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4.1 Correction of the nucleation rate

In the study by Koop and Murray (2016) a parametrisation of the nucleation rate of pure supercooled water Jpure 1iq(1") was

derived, based on recent measurements. Thus, in the context of homogeneous freezing of solution droplets, the nucleation rate

for pure water particles should coincide with the nucleation rate of solution droplets Jr{Aam)-Jy at water saturation, i.e. the
condition

RH=1
Jsol(Aaw*) = qure liq(T) (18)

should hold for a value Aa at water saturation. However, evaluating these two formulations of the nucleation rates at water sat-

uration shows nenequal-valuesa similar qualitative behaviour down to temperatures 7' ~ 235K but a quantitative disagreement
see the blue and black curve in Figure 1. A reasonable requirement is that the values of both formulations should match in the

temperature range 235K < T' < 240K, since this range is relevant for the freezing of pure water cloud droplets with reasonable
sizes. This temperature range at water saturation is equivalent to the range of water activity difference 0.27 < Aa,, < 0.31. The
offset between the curves is-shown-in-figure-+and can be corrected by shifting the logarithm of the nucleation rate for solution
droplets by a constant value. The value of the shift was calculated by minimising-minimizing the square distance between the

curves in the respective temperature range. Thus, the corrected nucleation rate for aqueous solution droplets reads as

Figure 1. Nucleation rates for pure super-cooled water droplets (Koop and Murray, 2016, red) and aqueous solution droplets (Koop et al.,

2000) at water saturation (i.e. infinitely dissolved); original values by Koop et al. (2000) in blue, shifted values (§ = —1.522) in black (new

reference nucleation rate Jsolnew)-

10810 (Jsotnew (Aaw)) =10g14(Jsol(Aaw)) + 6 (19)
with § = —1.522. The nucleation rates are given in SI units (as used for all quantities throughout this study), i.e. [J] = m~3s~ 1.
Remarks:

— The nucleation rate of pure water droplets can be used for a direct parametrisation of the nucleation rate of aqueous

solution droplets. This will be carried out in section 6.1.

— In the following we will refer to the corrected nucleation rate as “reference” nucleation rate, since, to the best of our

knowledge, it provides the best and most recent fit for the homogenous nucleation rate of solution particles, based on the

assumptions that the nucleation rates for pure water and solution droplets should agree at water saturation.

4.2 Nucleation rate as a function of 7" and S;

The general strategy of the study is to represent the exponent of the nucleation rate by low order polynomials in a thermody-

namic variable z, i.e.

n
J =107 (@) pu(®): = Zakxk, degpdegp,, = n. (20)
k=0
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For instance, the formulation of the nucleation rate for aqueous solution droplets by Koop et al. (2000) is based on a polynomial

of degree three, i.e.
3
Jsol(Aaw) = 10p3(Aaw)’ P3(I) = Zakxk (21)
k=0

using the thermodynamic quantity = Aa,, = a,, — a’,.

Note, also the nucleation rate Jpu 1iq for pure water droplets is based on the same structure, i.e. 10g; ¢ (Jpure 1iq) i$ @ polynomial
of order 6 in the thermodynamic variable 7" (cf. Koop and Murray, 2016). For analytical investigations of the homogeneous
nucleation, it is desirable to represent log;,(.JJ) by a polynomial with low degree. As will be shown in the following, the

formulation
1OglO(J) ~ pg(x)a degpn = degpn <2 (22)

with a polynomial yields sufficient agreement with the reference. For analytical investigations (e.g. using asymptotic analysis) it
is helpful to represent the nucleation rate using a threshold for the humidity to account for the explosive character of nucleation
events as used in the analysis by Baumgartner and Spichtinger (2019). Thus, for the nucleation rate for super-cooled solution

droplets we make the following ansatz
J =107 <) —exp (A(T)(S; - S2) + B(T)(Si - 5.)°) 23)

where S, = S.(T') is the temperature-dependent threshold value for the saturation ratio. Note, that the ansatz is consistent (or
even equivalent) with condition (22). In order to describe J as a function of S; and T" we reformulate Aa,, as

Aay, = (S; —1)a (T) = (S; — S.)a’,(T) + (S. — 1)a’, (T) (24)

using a threshold S.(T") +t-that corresponds to a fixed value Jy of the nucleation rate, i.e. J(S.(T'),T) = Jo. Taking the

logarithm, this equality implies ptzg)r=7s0=1logt: i i —0Pp(L0) = ] .- As in former

studies (see, e.g., Koop et al., 2000; Kércher and Lohmann, 2002), we choose Jy = 106 m—3s~1 =1019cm—3 s~ 1. Note, that

this choice for the parameterisation is quite arbitrary and has no strict physical explanatien—interpretation, although one can
argue with the cooling rates of the underlying experiments and thus with the probability of the freezing of droplets with a given
volume within a certain predefined time interval (Koop et al., 2000).

Evaluating eq. (24) at S; = S, we arrive at
(25

leading to a description of the threshold

1
Se=— pgl(j )+1 and
ai, (T) 0 (26)

Aay, = (S; — Se)al, (T) +p,, (o)

10
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if the polynomial p{z)-p, (z) can be inverted in the relevant range 0.26 < Aa,, < 0.34. Combining the equations from above,

the nucleation rate can be represented as

logyo 7 = p(Adw) = py ((Si _ S.)al,(T) +pgl<jo>) @)

which is a threshold description using the thermodynamic variables -5;7.5;, T'. This representation amounts to a reformulation
of the original approximation, if the inverse function = {z}-p, ! (z) exists in the relevant range (i.e. pfz}p, (z) is strictly
monotonic). In the following we consider the case of linear and quadratic polynomials, as determined by the ansatz (23).

1. Case of a linear polynomial p; (z) = ag + a1

The inverse function of p; () = y is given by p; * (y) = Y=20 implying the threshold

1
1 jo—ag
at,(T) @

Substituting eq. (28) into the expression (27) yields

S.(T) = +1. (28)

logyoJ (95, T) = j(S:,T) = jo + aral,(T)(S; — S(T))
= jo+ A(T)(Si — S(T))

(29)

where A(T) = ayal,(T)+theeeeffifients—, The
coefficients ag,a; can be determined in different ways, see section 4.3. Furthermore, approximations to the functions
A(T) and S.(T') can be investigated.

2. Case of a quadratic polynomial ps(z) = by + by 7 + baz? = a(z — b)* + ¢

Since a quadratic function is not strictly monotonic in general, inverting the quadratic polynomial leads to two functions,

Le.
- —c
Py (y) =bxy /. (30)
If one solution can be ruled out (e.g. due to physical constraints) we can formulate
log,oJ = pa (i = Se(T))ay, (T) +p; " (jo)) (31)
using the threshold description
Jo—c¢ 1
S(T)=[b=x . 1 32
()( a)%m+ (32)
Equivalently, we can derive a formulation
logoJ =co+q1(T)(S; —S.(T))
10 (33)

+¢2(T)(8; = Se(T))?
with appropriate functions ¢1¢zqy, g2, which might be useful for analytic investigations.
Remark: We will again use this quadratic ansatz for a direct approximation of the nucleation rate of pure water droplets

(see section 6.1).

11
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4.3 Linear polynomial fit for the nucleation rate

In this section we investigate approximations of the exponent of the nucleation rate of aqueous solution droplets Jy, and their
impact on nucleation events in an idealised scenario. We concentrate on the reference formulation (Koop et al., 2000). Since

the polynomial p3(«x) in the original formulation

3
Jool(Aay,) =107 2%) - pa(z) = " aa® (34)
k=0

nearly behaves as a linear polynomial in the relevant range 0.26 < Aa,, < 0.34, it can be easily approximated by a linear
relation, i.e. p3(z) & by + by x. For this we can use two different approaches: (i) using a least square fit to p3 and (ii) a Taylor
expansion at a prescribed value yo. While the first approach is just a fitting procedure in the relevant range 0.26 < Aa,, < 0.34,
the second approach relies on an a priori choice for the evaluation point yo € [0.26,0.34] :-and it is not evident from the outset
which value should be used to provide an accurate approximation. For this, we investigate the sensitivity of ps to a small

perturbation € = y — ¥, i.e. we consider

dps

ps(y)=ps(yo+e) = palyo) + 7| e+ O (%) 35)
Yo
~ b+ by = Diy (y) (36)
with the coefficients
d d
bio = p3(yo) — % ‘Yo and by = P 37
T lyo dz lyo

The Taylor approximation feads-us-te-provides a range for the slope of the linear approximation; these values motivate later
the sensitivity analysis in section 4.5.2. In the relevant range 0.26 <y < 0.34 for y = Aa,, we obtain slopes in the range
221 < by; < 453. This investigation gives us a hint about possible variations in the slope ef;s{4};-which will be used later for
the sensitivity analysis in section 4.5.2.

In contrast, using a least square fitting routine for 0.26 < Aa,, < 0.34 we obtain a linear function
pis(z) = biso + bis1 - (38)

with bjso = —62.19267 and bjs; = 254.7749. For the further investigations, we only use the linear fit from eq. (38).

We observe that the linear fit pis(z) best approximates ps close to the inflection point iyg ~ 0.30756 (see figure 2, left
panel).

For each linear approximation p(z) = bo+b; -« of p3(z), the exponent of the nucleation rate and the saturation ratio threshold

become, as demonstrated in section 4.2,

3(8i,T) = jo + bral, (T)(S; — Se(T)),
——

:=A(T) (39)
1 jo—
Jo—bo iy

Se(T) =5 (T) b

12
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Since a!, is a rather complicated function of temperature, it is particularly useful in the context of analytical investigations to
have simpler approximations of this quantity. This motivates to approximate a’, and its inverse i in the relevant temperature
range 190 < T < 230K by polynomials ¢(7T") of degree degq < 2. Similarly, we can approximate the nucleation threshold
Sc(T') by polynomials s(T") of degree deg s < 2. For the approximation-approximations we use a least square procedure within
the temperature range 190 <T' < 230 K.The results are presented in figure 2 (middle and right panels). Note that the thresholds,
either exact or approximate, are quite similar to the former approximations by Ren and Mackenzie (2005), while there is a larger
difference to the approximation by Kércher and Lohmann (2002).

:c(T)

Figure 2. Polynomial approximations of the nucleation rate (left), the ice water activity ai,(T):% (middle), and
1q

the saturation ratio threshold S.(7') (right panel), respectively. The right panel also includes the approximations by
Kireher-andohmann(2002): Renand-Maeckenzie-(2005)Kircher and Lohmann (2002) and Ren and Mackenzie (2005).

Combining the approximations ¢(7") and s(T") yields the formulation

J(8i,T) = jo +b1q(T)(S; — s(T))
~ jo+ A(T)(S; — S.(T))

(40)

of log;,(J). As can be seen in Figure 2, the nucleation threshold is accurately approximated by a linear relation (deviation is
smaller than 0.3%). In former studies (e.g. Kércher and Lohmann, 2002; Ren and Mackenzie, 2005) linear fits were derived for
the nucleation thresholds; however, these fits deviate significantly more from the reference in comparison to ours (see figure 2).

%
w*

The deviation depends on the respective formulation (or approximation) of a

roximation for the saturation threshold. Comparing these linear a

with ours in Fig 2 it is evident that they deviate significantly.

Also former studies use (empirical) linear a

4.4 Thresholds for prescribed nucleation rate values

The threshold description in section 4.3 was based on the (arbitrary)-choiece-of-a-nueleationrate-valuechoice jo = 16, leading

corresponding to a nucleation rate J = 106 m~—3s~1

. As already mentioned, the choice of j, is quite arbitrary, and these high
values of J are very often not reached in the numerical simulations (see section 4.5). For a better diagnostics of the nucleation
events and the relative strength of nucleation events, we introduce a similar concept for nucleation thresholds, based on a
prescribed nucleation rate value J ~ 10%°. For this purpose we repeat-use eq. (40) of the nucleation threshold based on the

linear approximation of the nucleation rate :-

J(S:,T) = jo+ A(T) (S; — Se(T'))

With-with a fixed but arbitrary value xo > 0 for the nucleation rate value; hence, we can write

zo = 3j(50,T) = jo+ A(T) (So — Sc(T))

o _To—Jo
= SCQ;O (T) = SO = A(T)

(41)

+5.(T)
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whereas-where the function A(T) = bya’, (T') depends only on the linear approximation of .J as stated in section 4.2. Note that

obviously Se.0(T) = S.(T') for 29 = jo. This leads to the formulation of the nucleation rate

with a general nucleation value xo and its associated threshold function S.,o(7"). The threshold function is just eonstantly
shifted-on-the-vertieal-axisshifted by the value 2092 je. the type of the threshold function remains the same. This formulation

will be used for the theoretical investigations using small perturbations (see section 4.6)
4.5 Numerical simulations of nucleation events for different approximations

In the following we will-investigate the impact of our approximations of log;,(.J) on nucleation events. The setup is as follows:
We use the simple bulk ice physics model as described by the set of ODEs (15), (16), (17) in section 3. A nucleation event
is ensured by assuming a constant vertical velocity, which directly translates into an-a constant adiabatic cooling of the air

parcel and, thus, an initially increasing saturation ratio. N

o dT 5
dt cp

Spreitzeret-al-(2017)-and-allews-Instead of changing the temperature adiabatically, we directly control the supersaturation as

described in sec. 3; this allows us to control the nucleation event without the need to disentangle the different contributions of

temperature and supersaturation.

Tdeatised-nucleation-events-have-atways-The nucleation events always admit the same structure: Due to the supersaturation
source ~ w.S; with constant updraft w the variable .S; increases and the nucleation term produces ice crystals, which can grow
by water vapour diffusion, constituting a sink for supersaturation. The peak value of .S; is reached at-balanee-between-once
the source and sink of supersaturation ;-after-this-maximum-balance. Afterwards the variable S; decreases due to diffusional
growth and thus shut off the nucleation term. The peak value depends crucially on the number of nucleated ice crystals that
are needed, to balance the source for .S; by the diffusional growth (depending on the product of number concentration and
mean radius of ice crystals). The number concentration of ice crystals produced in the nucleation event clearly depends on
the vertical velocity w (source term) and the environmental conditions (diffusion depends on temperature and pressure). For

details of the time evolution of nucleation events see appendix AB.
4.5.1 Standard approximation

We compare the following four different representations of the nucleation ratesrate using numerical simulations:

1. nucleation rate in the water activity formulation by Koop et al. (2000) with the correction as described in section 4.1

(reference nucleation rate)
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Figure 3. Different approximations of nucleation rate for different temperatures (left: 7' = 196 K, middle: 7' = 216 K, right: 7' = 236 K).
Black: Reference nucleation rate; red: linear fit to reference nucleation rate; blue: threshold description due to eq 43, using a linear approx-
imation for @, and a quadratic threshold function S.; green: threshold description due to eq. (43), using a constant for a’, and a linear

threshold function S..

2. water activity approximated by the linear fit as described in section 4.3 (see eq. (38), linear regression)
3. nucleation rate as a function of :57-S;, T as described in section 4.2 based on the formulation
logygJ = jo + A(T)(Si = 5c(T)) (43)

of the exponent of the nucleation rate. We compare the following two sets of approximations for A(7T") and S.(T');
respeetively:
(a) alinear approximation for A(7T") and a quadratic approximation for S..(7T'), and-

(b) a constant approximation for A(T") and a linear approximation for S.(T').

These are specific cases, however arbitrary combinations of approximations for A(7) and S.(T") might be used.

Figure 3 shows the approximated exponents of the nucleation rate together with the (corrected) reference formulation by
Koop et al. (2000) for the three standard-temperatures 7" = 196, 216, 236 K as functions of Aa,,. These temperatures are chosen
for direct comparison with former studies (Kércher and Lohmann, 2002; Spichtinger and Gierens, 2009). Evidently, the linear
fit with respect to water activity is very close to the reference, and the same is true for the case of a linear function A(7") and
a quadratic approximation S.(T'). For the simplest approximation (constant function A(7") and linear approximation S.(7T)),
larger deviations from the reference nucleation rate can be seen.

For-At T'= 196 K, there is a strong underestimation in the lower range of Aa,,, whereas for T" = 236 K the underestimation
is most pronounced for higher values of Aa,, (green vs. black curves). In both cases, we expect deviations in the number
concentrations of nucleated ice crystals during the nucleation event and the maximum saturation ratio attained.

We investigate standard nucleation events in terms of (i) the resulting ice crystal number concentration at the end of the
simulation as in former studies (e.g. Kércher and Lohmann, 2002; Spichtinger and Gierens, 2009) and of-(ii) the maximum
(peak) supersaturation, which was reached during the nucleation event. The-Although the latter is usually not investigated;
hewever—considered, it is of interest for comparisons with real measurements, e.g. in cloud chambers;-these—values—are-of
interest—,

Figure 4 shows the results of the numerical simulations, i.e. the number of nucleated ice crystals (left panel) and the max-
imum saturation ratio (right panel) at environmental pressure 260hPa-p = 200hPa (the results are similar for other environ-
mental conditions).

Comparing the number of nucleated ice crystals as well as the maximum saturation ratio it is evident, that the difference
between the reference calculation, based on the corrected nucleation rate by Koop et al. (2000), and the runs-simulations using

the approximated nucleation rates are rather small.
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Figure 4. Comparison of different approximations of the nucleation rate by Koop et al. (2000) for standard nucleation events as-driven by a

constant vertical velocity w. Left: ice crystal number concentration; right: maximum supersaturation,

For mest-almost all nucleation events, the deviation from the reference simulations is not larger than +15%. To assess
these deviations one should keep in mind that measurements of ice crystal number concentrations are quite difficult and the
uncertainties are usually larger than 15%. For instance, for the FSSP instrument, which was used in many flight campaigns (e.g.
Voigt et al., 2017), the uncertainty is estimated by about ~ 10% (de Reus et al., 2009). Thus, the deviations in our simulations
and the uncertainties of realistic measurements are roughly of the same order. This fact renders it presumably impossible to
decide on the correctness of any of the different formulations and approximations of the nucleation rate based on the available
observations.

Finally, we conclude that a linear approximation of the reference nucleation rate by Koop et al. (2000) is accurate enough to
represent nucleation events in a physically meaningful way. Thus, we can use this description as well as the derived formula-
tions of the nucleation rate as a function of temperature 7" and saturation ratio .S; in order to investigate which parameters of

the nucleation rates significantly affect the outcome of nucleation events. This will be carried out in the next section.

4.5.2 Impact of the parameters of the linear approximation

the-Generally, we are interested in the impact of the formulation of the nucleation rate on nucleation events. The original
arameterisation by Koop et al. (2000) is based on a cubic polynomial, which admits slopes in the range 221 < b < 453, see

Sect. 4.3. The linear approximation is sufficiently good for representing the “reference” rate; thus, we now use this simple linear
representation log,,J = bg + b1 - Aa,, in order to test the sensitivity of nucleation events on the two parameters by;b1bg, b1.

Parameter by controls the absolute value of the nucleation rate while parameter b; accounts for its steepness, i.e. the slope.

In a first step, we investigate the impact of the steepness-slope of the nucleation rate ;-+e—the-influence-of-the-given by
coefficient b;. One should keep in mind that during the nucleation event the value of Aa,, = (S; — 1)a’,(T') is increasing as
S; increases, thus the exponent of the nucleation rate basically grows linearly. Consequently, an increase in the saturation ratio
immediately translates into an increase in Aa,,, hence the abscissa in figure 5 may be thought of as representing saturation
ratio. If high values of the nucleation rate are already reached at lower supersaturation values, the nucleation is triggered earlier
in comparison to the reference scenario.

However, an earlier onset of ice nucleation implies that the newly nucleated ice crystals already start to grow by diffusion. As
aconsequeneeConsequently, the growing ice crystals tend to decrease the saturation ratio and, if they are sufficiently numerous,
prematurely stop the fee-nucleation event. In this case, less ice crystals will nucleate and a smaller maximum saturation ratio
will be reached compared to the reference. The opposite mechanism is expected for smaller values of the nucleation ratio in

comparison to the reference, i.e. higher ice crystals concentrations will occur together with larger maximal saturation ratio.
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Figure 5. Artificial change in the slope of the linear function in the exponent of the nucleation rate. The fit to the reference curve is indicated

by the green line (slope b1 ~ 250); a reduced slope (b1 ~ 100) is displayed in red, an enhanced slope (b1 ~ 500) is displayed as-in blueeurve.

In order to illustrate this mechanism more quantitatively, we artificially changed the slope of the linear function. The slope
“reference” slope by ~ 255 is either reduced to a value of b; = 100 or enhanced to a value b; = 500, which is motivated by
the values of the Taylor approximation, as-derived in section 4.3. Nete-that-the-“reference”valuefor-the-linearfitis-br=~-255-
In both cases, the parameter by of the linear function is adapted such that the inflection point of the polynomial ps(Aa.,)
at Aa,, ~ 0.311 is met for better comparison with the reference simulations. The resulting nucleation rates are displayed in
figure 5, while the number of nucleated ice crystals and the maximum ice saturation ratio during the nucleation event are
summarized in figure 6: The left panel shows the concentrations of nucleated ice crystals and the right panel the maximum

saturation ratio during the nucleation events.

Figure 6. Impact of the slope on the idealized nucleation events. Left: ice crystal number concentrations, right: maximum supersaturation

values. The colours are chose as in figure 5, i.e. red squares indicate reduced slope, and blue triangles indicate enhanced slope, respectively.

In case of the enhanced or reduced slope as indicated in figure 5 we exactly see the theoretically proposed behaviour in the
ice crystal number concentration;-; the values are reduced for reduced slopes, and enhanced for enhanced slopes;+espeetively.
The reductions are by up to a factor of 0.4, the enhancements are by up to a factor of 2.4, and the largest changes can be seen
at the highest temperature 7" = 236 K.

In the right panel of Figure 6, a dependency on temperature and vertical velocity is seen. For very low vertical velocities, the
maximum supersaturation behaves as expected, i.e. reduced values for the reduced slope and enhanced values for the enhanced
slope;respeetively. For very high vertical velocities, this behaviour is reversed, i.e. we see reduced values of S; i,y for enhanced
slopes and enhanced values of \S; max for reduced slopes;tespeetively. The transition slightly depends on the temperature. This
can be explained as follows: For low vertical velocities, Aa,, (and thus the supersaturation) is always below the inflection point
Aay, ~ 0.311:thus;-. Thus the nucleation rate is always smaller for the enhanced slope in comparison to the reference while it
is always larger in comparison to the reference for the reduced slope. Therefore, in case of an enhanced slope the nucleation
starts later compared to the reference. This leads to the behaviour as described above. However, beyond the inflection point
the behaviour is reversed and thus the resulting maximum supersaturation is now enhanced for reduced slope and it is reduced
for enhanced slope. The inflection point is reached at different vertical velocities for different temperatures, i.e. for lower
temperatures at lower values of w and for higher temperatures at higher values of w. Note, only the maximum supersaturation
is affected upon Aa,, crossing the inflection point while no influence on the number concentration of ice crystals is seen.

After having varied the slope of the nucleation rate, we now turn to its absolute values and modify coefficient by, which trans-
lates into a change of values of .J by 10%. In order to investigate the sensitivity, we add a constant value Ab-c+{—6;—3;3:6}
Ab e {-6,—3, 3,6} to the coefficient by, leading-to-resulting in an increase or decrease in the absolute value of the nucleation
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rate by a factor of 104°. In figure 7 the results in terms of ice crystal number concentration and maximum supersaturation are

displayed.

Figure 7. Comparison of ice crystal number concentrations (left panel) and maximum supersaturation (right panel) for absolute changes in
the nucleation rate by a factor 10°° --Ab-=—6—3:3-6with Ab € {—6, —3, 3, 6}.

Maybe surprisingly, the absolute values of the number concentrations of ice crystals in comparison to the reference formu-
lation are not crucially affected (see figure 7, left panel), although some deviations occur (up to a factor of two). The strongest
deviations can be seen for warm temperatures (1" = 236 K) at very low vertical velocities. Overall, the relative deviations from
the reference events in variables n; and peak values of \S; are within the interval {0-4:2}{0.4, 2], but for vertical velocities in the
range w > 0.05ms ™! the relative deviation is within the interval {6-8;1-4}{0.8, 1.4].

Comparing the influence of a scaling of the absolute values of the nucleation rate and the steepness of the rate, we conclude
that the correct steepness of the nucleation rate is much more important than the absolute value of J. Even changes by orders of
magnitude in the values of the nucleation rate has a minor impact on the number of nucleated ice crystals. A similar conclusion
was also drawn in the theoretical study by Baumgartner and Spichtinger (2019). In that study, the authors investigated a slightly
simplified system of equations by means of asymptotic analysis. The simplified system describes the temporal evolution of the
number concentration of ice crystals and the saturation ratio and an approximate asymptotic solution was constructed. To
leading order, the approximate solution for the number concentration of ice crystals was completely independent of the precise
values of the nucleation rate, but the steepness contributed directly. The only necessary condition on the values of the nucleation
rate was that it attains large values, i.e. significantly larger than the other coefficients within the equations.

For the maximum supersaturation values, the impact of the absolute value of J is much more pronounced. As expected, upon
reduction of the nucleation rate by a factor of 102 with Ab-c{—6,—3}-Ab € {—6, —3} the supersaturation reaches much
higher values of \S;, until the values of the rescaled nucleation rate become large enough to initiate the nucleation of ice crystals.
For the enhancement of the absolute values of the nucleation rate, the results are reversed: The maximum supersaturation is
reduced, since the enhanced nucleation rate attains values that allow the production of ice crystals for smaller saturation ratios.
This behaviour is represented in the right panel of figure 7.

Remark: This idealized enhancement of the nucleation rate can also be seen in the connection with the aerosol number
concentration n,. A change of n, by some orders of magnitudes while no changes in J are applied has the same effect as
changing the absolute value of the nucleation rate (or the parameter by in the argument of the exponential function). Thus,
a strong reduction or enhancement of the available solution droplets will only slightly change the amount of ice crystals in
a nucleation event. Therefore, we can conclude that for a meaningful approximation of the nucleation rate the exact number
concentration of available aerosols is also not crucial for the strength of the homogeneous nucleation event, but perhaps for the
starting time of the event. Including size effects of the solution droplets might additionally change the picture quantitatively

(see, e.g., Baumgartner et al., 2020).
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4.6 Impact of perturbations in .S; and 7" on the nucleation rate

In this section we investigate the impact of changes in .S; and/or T" on the nucleation rate is-theoretically—investigated—by

employing a perturbation analysis. A short explanation of this technique is given in Appendix D. In the real atmosphere,
variations of the temperature due to dynamical processes will introduce such changes, e.g. such as from a passing or even

breaking gravity wave. In numerical simulations, these variations (also often called fluctuations) are often artificially introduced
(e.g. Jensen and Pfister, 2004). In any case, the impact of such changes is investigated using perturbation analysis (also called
sderived-earlierusi
We start with the linear approximation of the nucleation rate (br=-254-77-we-eanrewrite-the-nueleationrate-as-

J(SlT) = Junit * 101(Sz,T)

< th-the-funet

3(8:,T) = jo+ A(T) (S; = Se(T)) and A(T) = byay, (T).

as formulated in eq. (40) with A(T) = bya’, (T'). We can estimate the usual values of the function A(T') in the temperature range
190K < T < 230K using 0.51 < a’, (T') < 0.66 such that 129 < A(T') < 169. For a very simple but still sufficientsufficiently
accurate constant approximation of a’, (") we can set a’,, = 0.574312 (see fig. 2, pink line) such that A(T) =~ Ay = bya’,, =
146.32. Finally we can state A(T) = O (¢~2) with the usual perturbation approach e ~ 0.1, such that we set A(T) = A*e~?
with A* = O(1) as € — 0. For the non-dimensionalization of the threshold function in the linear approximation S.(T") ~
S0 + s11" we have to estimate the order of the coefficients for the relevant temperature range. Using 190K < Tis < 230K and

the definition T" = T\t with the nondimensional temperature ¥J, we have-find
SC(T) :80(19) =59+ 811 =59+ 8111t = 09 — 010 44)

with 01 = —s1T1er. Obviously, sg = 09 = 2.27697 = O(1) and 0.66 < o1 < 0.8 such that o7 = O(1). Using the simplest ap-
proximation A(T) = Ag and S.(T') = sg+ $1T for the general formulation of the threshold function Se.o (cf. eq. (41)) we can

simplify the expression as

To—J To— )
Sexo(T) = OAOJO +so+51T = ( OAOJO +80) +5.T
v (45)

=:18z0
=550+ 517

Using non-dimensionalization we end up with the following representation
Sch(T) = 55:1:0(79) = Sz0+ SlT =020 — 0'1’19, (46)
with-where 0,0 = 540,01 = —51Trer. Finally, we ean-estimate-with-use the estimation Ag = A*e™2 Tstich-that-we-to obtain

Uzo:(A*)7152(330—j0)+00=5+00- 47
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Since jo = O (¢71) and zg = O (e?) with 8 > —1 we find 5,0 = 6+ 0o = O () + O(1) = O(1). After non-dimensionalizing
the argument in the nucleation rate, we can now investigate the response of the nucleation rate due-te-upon a perturbation (i) in
saturation ratio (i.e. in the same way as the numerical simulations are set up), (ii) in temperature, and (iii) in adiabatic changes
of temperature driving changes in the saturation ratio simultaneously. In reality, almost exclusively case (iii) is relevant.

First, we estimate the increase of J due to variations of S; at a constant temperature 7" = Ti;. For this purpose we start
at a given value of the saturation ratio .S; which corresponds to a certain threshold z via the relation (41). We choose this
value as a reference value Sief = Sep0(Trer) = Sex0(1) = 09 — 01; this corresponds to a reference value of the nucleation rate

J = Jret = Junit - 1070 (with Jypie = 1m~3 s™1). Assuming the expansion
S;=So+¢eS1+e°S2+e°55+ 0 (e*) (48)

for the saturation ratio where Sy = Sef0,0 — 01 We investigate the impact of such a perturbation on the exponent j. Keeping

the temperature fixed as in the numerical simulations we arrive at

j(SmT) = j(S,t) =0+ AO (Sz - Sref)
=0+ A% ™% (Srer +51 +6252 + %95+ O (') — Sker) (49)
=Xy +5_1A*Sl + A*Sy +eA*S3+ O (62) .

We are interested in the relative change of the nucleation rates J(iifrT), which translates into j(.S;,1) — 5(Skef, 1). By definition,

we have 29 = j(Sref, 1), thus we obtain
§(Sis1) = j(Srer, 1) = T A* S + A* Sy +eA* S5+ O (7). (50)

Inspecting eq. (50) it is evident, that a nonzero perturbation term S, in eq. (48) is connected with the factor ¢*~2, hence

a change of order O (¢*) in supersaturation translates into a change of order O (aa’Q) in the exponent of J. For instance, a

change by S ~ 0.01 translates into a change of O(1) in 4, thus in a change by a factor of 10 in the nucleation rate .J

Second, we consider perturbations of temperature without changing the saturation ratio, although this might not happen
in the atmosphere. Using the approach above with a constant reference value of saturation, i.e. Sief = Scz0(1) = 09 — 01 and

temperature perturbations ¥ = 1 + et + 29 + 393 + O (54) we find the following expression:

j(sref,ﬁ) =xo+ AO (Sref
— (0’0 — 01 (1 +€191 +€2’L92 +€3193 +0O (84))))

(51
=g —|—A*€_2 (6191 -‘1-520'1192 +830'1193 +0O (64))
=X+ E_lA*O'l’lgl + A*c199 +eA%0193 + O (62) .
The relative change of the nucleation rate is then given by
(St ) — j(Sref, 1) = o + 671A*0'1?91
e (9 (52)

+ Aoy 4+ A*o193e + O (7).
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Thus, a temperature perturbation ¥, of order O (¢%) leads to a relative change in j of order O (s‘kz). Note the sign of the
perturbations, which turns into the opposite sign in the change of j. Because of the strictly monotonic descrease of the threshold
function S..o(T), a negative temperature change leads to a higher threshold and in turn to a lower nucleation rate at a given
saturation ratio.

Instead of perturbing the saturation ratio and the temperature individually, these quantities are connected in the real world. To
a good approximation, their joint variation is through an purely adiabatic change. Therefore, we finally investigate the impact
of adiabatic temperature changes on the saturation ratio and in turn on the nucleation rate. For this purpose we have to consider

the dependence of S; on adiabatic temperature changes;-we-. We start with the cooling source term of the saturation ratio

1 L dT

dS;i=(———=—=|S;—. 53
(li RUT) T (53)
Firstwe-estimate the-term The term (T') =  — 7 within the bracket admits the values —28.8 < (T') < ~23.2 for 190K <
T < 230K sleading-to-such that we find v(T) = O (e 7') =~*e~! and v* ~ —2.5 < 0. We-approximate-Approximating the

total differential in eq. (53) with finite differences ASAF+e-AS;, AT, we arrive at

AS; AT

— el T 54
s, ¢ T (54)

We set as an approximation S; = S, and T' = Ti¢ such that we can set

AS;
Sref

=eS+0(E) =0() (55)

with S; = O(1). We assume [ > 1 since we do not consider changes of the saturation ratio of order O(1). The analoguous

expansion for the temperature reads

AT

ref

=9+ 0 (") =0 (¢¥) with ¥, =O(1) Vk > 1. (56)

Combining these expansions, we-arrive-at-Eq. (53) becomes

*

gf: =*e1 % ="t ("9 + O (F11)) 7
=yt + O (€M)

or equivalently

'Sy = AS; = Sty e+ O (9). (58)

The only non-trivial balance is achieved for [ =k — 1, i.e.

Si—1 =5tV V% < Sk = SretV Pit1- (59)

Note that! = k—1 > 1, i.e. we have to consider k& > 2 for the perturbation of temperature. This is a meaningful restriction since

we are interested in small changes of temperature in the cold temperature regime—Fhus, i.e. a change in the temperature in the
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order of ~ 1K in physical units. Hence, we would not expect adiabatic temperature changes of order O (&), corresponding to

590 changes of order ~ 10K. Thus, we assume an asymptotic expansion
Y= 1+E2192 +€3193+O(€4) (60)

for the temperature perturbation. We are generally interested in adiabatic expansions due to vertical upward motion, which in
turn leads to desereasing-decreasing temperatures, hence we conclude 9, < 0 for k£ > 2. Since v* < 0, equation (59) leads to
positive changes in the saturation ratio s; > 0 for 9 < 0. Generally, warming due to adiabatic compression can be studied in
595 the same way by setting ¥y, > 0.
Now we consider the nucleation rate in the formulation for arbitrary thresholds x in the nucleation rate using St = 050 —
01 = Sexo(1):
J(8i,T) = j(Si,t) = wo + A" (S; — sea0 (V)
=xo+ A*e? (Sref +eS; +e255 +3S;
— (Jmo -0 (1 +e2095 + 53193)) +O (54))
=xg+A*e? (eS1 + %52 + 7S5 + %019
+e30195+ O (64))
=xo+ A*e? (ESref’)/*192 + €2 8,ery 03 + €3 Spery g (61)
+e20199 + 30193+ O (54))
= 2o+ A% (eSwery V2 + €2 (Srery V3 + 0102)
+€3 (Srety Vs + 0193) + O (%))
=20+ A" Spy 927 + A" (Srery V3 + 0102)
+ A" (S 0s + 0193) e+ O (7).

Thus, for k > 2 we find terms of the form A* (syery*Ip41 + 0195) 72 of order O (7~2). Comparing the nucleation rates we

600 find for the relative change

](SzaT) _j(SrefaT}ef) = j(Siat) _j(Srefa 1)
= A*Seepy* Poe ™ + A (Seery* I3 + 192) (62)
+ A (Seery Vs + o1t3) e+ O (7).

For the relative impact of these terms we use the estimations v* < —2.3 and o7 < 0.8. We have to distinguish two scenarios

for perturbations 9 < 0:

1. ¥4 < 0for all £k > 2. In this case we can assume

605 Sref")/*’ﬁk_l,_l + o019 > 0. (63)
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Therefore, an adiabatic temperature perturbation 9y, of order O (¢¥) (k > 2) tead-leads to relative changes in j of order
@ (5k_3). Note, that the changes in saturation ratio are always dominant and larger than the changes in the threshold,

which changes j by order O (¢*~2) in the opposite direction.

2. Y <0 and Y41 = 0 for a distinct k£ > 2. In this case, the previously discussed temperature effect can be seen, i.e. the
610 nucleation threshold is changed, leading to a reduction of the nucleation rate exponent. This effect is merely academic,

since we have to switch off higher perturbations in temperature, which is quite unlikely.

One should keep in mind that we investigated the relative increase in the exponent of the nucleation rate. A relative change of

order O (¥) in the exponent translates into a relative change of order O (exp (£")) in the nucleation rate J, thus ranging over

several orders of magnitudes. For instance, in the first scenario changes of temperature of order ~ 1K lead to changes in j of
615  about ~ 10, which in turn translate into a change of the nucleation rate J by a factor of exp10 ~ 10°.
Overall, we can state that changes in 5; are most important for changing j, either stemming from adiabatic temperature
changes or driven directly as in our numerical studies.

5 Impact of saturation vapour pressure formulation

i

_ Dice (T)

Since the formulation of the nucleation rate by Koop et al. (2000) relies on the water activity, and thus on the function a’, (7'

620 the saturation vapour pressure over liquid water (i.e. in the no man’s land) plays an important role. In this section we investigate
the impact of choosing another formulation for pj;,(1") on the nucleation rate and thus the nucleation events.

5.1 New representation of saturation water vapour

In the formulation by Murphy and Koop (2005) the extrapolation of the saturation vapour pressure into the no man’s land of

water’s phase diagram is based on the assumption that the state of amorphous ice is thermodynamically equivalent to super-

625 cooled liquid water. Therefore, the specific heat of liquid water can be extended in the super-cooled regime using measurements
of amorphous ice. This leads to the established formulation in Murphy and Koop (2005).

Recently, a new representation of the saturation vapour pressure over super-cooled liquid water was proposed by Nachbar

et al. (2019). In this study, the authors consider different states of water in the low temperature range. They conclude that

amorphous ice is thermodynamically different from super-cooled water, thus they provide a different extrapolation for the

630 saturation vapour pressure (Nachbar et al., 2019).

; p[')‘f"“:fi‘l"; Although the deviation between the two
g N2
curves is very small s— even in the low temperature range less than 10% — its impact on saturation ratios as well as on the

635 nucleation thresholds is quite large, as can be seen in figure 8.
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Figure 8. Water saturation (S; = ?) and nucleation threshold (for J = 10"°m™3s™') for different formulations of saturation vapour

pressure over super-cooled water, Murphy and Koop (2005) vs. Nachbar et al. (2019)

The curves of water saturation as well as the nucleation thresholds are systematically shifted to higher values. In addition,

the new curves have a more linear shape than the curves resulting from Murphy and Koop (2005). The ratio of the saturation

_1

pressures over ice and liquid (i.e. the functions a’,(T) and T (T) behave differently: a?, (T") is much closer to a quadratic curve

as can be seen in the left panel of figure 9.

Figure 9. Left: Function a’, (T) = % (black line) and polynomial approximations (red: quadratic, blue: linear, green: constant). Right:
iq

Nucleation threshold S.(T") (black line) and polynomial approximations(red: quadratic, blue: linear). Note that the former approximation
by Kércher and Lohmann (2002) (dark green) are now very close to the new formulation, whereas the fit by Ren and Mackenzie (2005)

(turquoise) deviates significantly.

These new fits were used for the formulation of the approximated nucleation rate. Thus, we do not change the general

approach for approximating the nucleation rate etc., we only use a different representation of the function a’,(T').
5.2 Numerical simulations of nucleation events

In figure 10 the results of the nucleation events using the new representation of the saturation vapour pressure due to Nach-
bar et al. (2019) are shown. As for former experiments, the ice crystal number concentration (left panel) and the maximum

supersaturation values (right panel) are shown.

Figure 10. Impact of the formulation of the saturation vapour pressure by Nachbar et al. (2019) on the idealized nucleation events. Left: ice
crystal number concentrations, right: maximum supersaturation values. The relative differences in number concentrations are always smaller

than 15%

For the ice crystal number concentration, the impact of the new formulation of pjq is small; the relative deviation from the
reference simulations using the original vapour pressure formulation by Murphy and Koop (2005) is always smaller than 15%.
The deviation increases with decreasing temperature and is most prominent for lower vertical updrafts (w < 1ms~1).

For the maximum saturation ratio the change as compared to the reference simulations is much more prominent. As can be
seen in figure 8 the nucleation thresholds for a value of F=10m=3s=17J =10'm?s~! are increasing with decreasing
temperature with a larger slope compared to the reference case. This behaviour can clearly be seen in the maximum supersat-
uration; for decreasing temperature the maximum supersaturation is increasing to higher values in comparison to the reference
simulations. The increase does not depend on the vertical velocities.

Remark: At the moment it is not clear, which thermodynamic hypothesis and thus which resulting approximation for the sat-

uration vapour pressure over liquid water is physically correct, although the formulation by Murphy and Koop (2005) seems
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to agree with recent measurements (Pathak et al., 2021). In particular, it is not clear if the formulation of Nachbar et al. (2019)

can be extrapolated to values 7' < 200 K. Thus, we cannot recommend to use a certain formulation.

6 Another approach to formulate the nucleation rate

Up to now we always employed the “reference” nucleation rate in our computations, i.e. the formulation as in Koop et al. (2000) but

660 corrected by a constant offset, see Section 4.1, in order to match the nucleation rate for pure water droplets by Koop and Murray (2016) in
a certain temperature range. In this section we take a different point of view assuming that we can just directly adopt the
formulation by Koop and Murray (2016) for the nucleation rate of aqueous solution droplets, providing an exact match of both
curves by definition. In the following we discuss the consequences of using such a direct approach in terms of nucleation

events.

665 6.1 Direct fit to nucleation rate of pure water

In order to arrive at a direct fit, we assume that at water saturation, the freezing of pure water droplets should behave as the

AN AR AN AN AN ARAANAAANAANAANANIN

freezing of solution droplets at super-cooled states. F

670 r-To avoid a complicated reformulation of the formula

from Koop and Murray (2016) in terms of the water activity Aa,,—Sinee-thereformulationfor-apolynomial-of-hich-degreeis
-, we use a quadratic polynomial fit to

the original formulation Jyom (77) at water saturation—F

Infigure1-, see Appendix C for details. Figure 11 presents the original data and-the-newfitispresented-—

675 Ereezing-rate-of-water-dropletsKoop-and-Murray; 2046, bla a-polynomial-fit-(red);-and-the-nueles

black curve) together

with the quadratic fit (red curve) and the corrected formulation of Koop et al. (2000) (blue curve) from section 4.1. In contrast
680 to the (corrected) formulation by Koop et al. (2000) we-find-that-the nucleation rate reaches a maximum at Aa,, ~ 0.345 and

decreases afterwards. There-As a result, there is a significant deviation between the two nucleation rates (Jxoo00 > Jxm2016)
for the range Aa,, > 0.32. Thus, we can expect that for cold temperatures and/or high upward motions there will be large

deviations in the produced ice crystal number concentrations within nucleation events.

685 eurvebyAay~03;
It should be kept in mind that the range of the parameterisation of the nucleation rate as given in Koop et al. (2000) is
restricted to the interval 0.26 < Aa,, < 0.34. It-As a result, it is not clear -if-the-analogy-worksfor-values-beyond-0-341In
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Figure 11. Freezing rate of water droplets (Koop and Murray, 2016, black), a polynomial fit (red), and the nucleation rate of solution droplets
Koop et al., 2000, corrected, blue), all depending on Aa,,.

addition; some measurementsfor-if the parameterisation works well for values Aay, > 0.34. However, there are measurements
(see Laksmono et al., 2015) for the freezing of pure water droplets (Laksmone-et-al52045)-that also show a kind of plateau
for-at cold temperatures (which-correspend-corresponding to high values of Aa,,);-which-isnotkeptin-the-pelynomial-fitby
Koop-and-Murray(26+6). Thus, for higher values Aa,, > 0.34 we use the value Jxmz016(Aaw) = Jkma016(0.34) to (a) mimick
the plateau in the measurements, and (b) aved-avoid numerical issues in the simulations. Assuming that the nucleation rate does

not depend on other quantities than water activity, it may now be used in numerical simulations of homogeneous nucleation

events.

6.2 Numerical simulations of nucleation events

After having obtained the direct formulation of the nucleation

rate of (Koop and Murray, 2016), we now investigate its impact on nucleation events using numerical simulations as before.

mm%&wwﬁmm%two different types of simulations for-testing-the-impact
of-the-nucleationrate;-as-derived-in-seetion-6-tare done: (1) Simulations using the standard formulation of pj;q by Murphy and

Koop (2005) and (2) simulations using the new formulation of pjiq by Nachbar et al. (2019). The results of the simulations are

shown in figure 12.

Figure 12. Impact of the direct formulation of the nucleation rate based on Koop and Murray (2016) on the idealized nucleation events. Black
triangles and lines indicate the reference simulation, red squares and lines denote the use of the nucleation rate based on Koop and Murray
(2016), and blue squares and lines represent the use of the nucleation rate based on Koop and Murray (2016) together with the saturation

vapour pressure due to Nachbar et al. (2019). Left: ice crystal number concentrations, right: maximum supersaturation values.

First we consider the ice crystal number concentrations (left panel). For low vertical updrafts, the values of n, are only
slightly affected in case of using the adapted nucleation rate. For higher vertical velocities, there is a reduction in the produced
ice crystal number concentrations; this reduction increases with increasing vertical updrafts. This effect can be explained as
follows. The nucleation rates differ significantly for higher values Aa,, > 0.31, i.e. the slope of the adapted rate is (much)
smaller than the original nucleation rate by Koop et al. (2000). For higher updrafts, the supersaturation reaches higher values,

which is equivalent to higher values of Aa,,. Thus, the nucleation rates differ for these high updraft events, and less ice crystals

are produced for using the adapted nucleation rate. Generally;—we-ean—state-that-Apart from the influence at high vertical

velocities, there is almost no difference in the ice crystal number concentrations between the nucleation events using different
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onsidering the values of maximum supersaturation (right panel)

there is a similar behaviour as for n;. Fer-At low vertical velocities there is almost no difference between the reference nucle-

ation rate and the newly adapted rate. In case of using the saturation vapour pressure according to Nachbar et al. (2019), there

is-the-shift-in-the observed shift in the maximum supersaturation values depending-on-temperature;-as-we-already-saw-in-the
E‘im‘i ;lti eﬂfx iﬂ Eweeti eﬂ ‘S -

For-stems from the increased difference between the values of the saturation vapor pressures at low temperatures, see Section

5. At higher updrafts (w > 0.5ms™'), the maximum supersaturation values increase nonlinearly. For the coldest temperature

(T'= 196 K) we note a dramatic increase up to very high values (.S; max ~ 1.8). However, note that in all cases iee-nueleation

due—to-freezing-of-solution—droplets-is-theecorrect-predietion;—sinee-the values of the maximum supersaturation stays below
water saturation, and-thus-hence no liquid origin ice formation is-notreachedwould occur.

7 Thresholds of ice nucleation

For the evaluation of measurements of ice clouds, the possible range of supersaturation is often estimated using the so-called

Koop-line, i.e. the supersaturation threshold S, (7") which corresponds to a nucleation rate value L L IL A
In many investigations (see, e.g., Krdmer et al., 2009) this function is used as an upper bound for possible values of S; inside
and also outside of ice clouds. However, from our investigations in this study so far, we have to carefully consider two different

aspects from a purely theoretical point of view:

1. The nucleation threshold assigned to the frequently used value jo = 16 is eempletely—arbitrary chosen; there is no

convincing physical justification for using this particular values—aetaally—in—. In Koop et al. (2000) different values
—3 =1

J =10°m ! with jq € [1, 17] are used, but for testing the impact of droplet sizes,
they used the value HU—]:élQ/V\N@ Nucleation of ice crystals is not a switching process, it occurs gradually and
smooth, although the nucleation rates are very steep functions of the supersaturation. The size or strength of the nucle-
ation event cannot be determined just by the maximum of the supersaturation; the amount of ice crystals as formed in the
nucleation event is determined by the integral over the supersaturation curve {see;-e-g--disctussion-inDinh-etal;2616)(see, e.g., the d
Thus, it is possible to form many crystals in lower updrafts even if the high nucleation threshold is not reached. From our
simulations we observe ;-that the peak supersaturation for nucleation events depends crucially on the vertical velocity,
i.e. on the temperature rate, which is prescribed during the event. This is quite obvious from the differential equation

ds; + = =0, i.e. when source and sink terms balance each other.

determining the change of S;: The peak value is given by ;
Since the source includes the vertical velocity linearly, the dependence of the peak supersaturation on w is obvious,

although not linear.

2. As described above in section 35, it is still not clear which formulation of the saturation vapor pressure is physically
correct. However, the use of the formulation by Nachbar et al. (2019) leads to a higher saturation vapour pressure and

thus to a higher nucleation threshold, even for arbitrary values #g-jg and its associated nucleation threshold S.0(T).
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Taking these two aspects into account, we can observe the following behaviour. In figure 13 (left panel) we compare the nucle-
ation thresholds for the saturation vapour pressure according to Murphy and Koop (2005) for jo = 10 (red curve) and jo = 16
(dark blue curve) with the range of peak supersaturations for vertical velocities 0.01ms~! < w < 2ms™! (black vertical bar)
and the maximum value for a very unrealistic value w = 10ms~! (black crosses) . For comparison, the well known Koop-line
as fit and proposed by Kércher and Lohmann (2002) is plotted (light blue curve). It is quite obvious, that for typical vertical
velocity values the “classical” Koop-line is not reached, i.e. the peak supersaturation is below the threshold. Nevertheless, for
strong cooling rates (very high vertical velocities), as are used in experiments in cloud chambers, high supersaturations are
reached, which still partly remain below the Koop-line. If we change the saturation vapour pressure to the formulation by
Nachbar et al. (2019), the qualitative picture remains the same (right panel in fig 13): Even for high vertical updrafts the high
nucleation rates are reached;-; for moderate and small updrafts, the peak supersaturation stays well below the classical nucle-
ation threshold. However, the nucleation thresholds are generally shifted to higher values of supersaturation due to the different
saturation vapour pressure formulation. It seems that these values fit better to the experiments in the AIDA cloud chamber as
reported in Baumgartner et al. (2022) and Schneider et al. (2021). This might be interpreted as a hint that the formulation by
Nachbar et al. (2019) is-might be the more appropriate formulation for the saturation vapour pressure, although the formulation
impact of the cooling rate on the peak supersaturation in a nucleation event. Therefore, the use of the “Koop-line” in the cur-
rently applied way is misleading and does not correspond to the actual physics of nucleation events. Note, that the temperature
dependent threshold is used in some parameterisations of ice clouds in climate and numerical weather prediction models

., Kércher et al., 2006; Kohler and Seifert, 2015). A simple but

albeit more realistic extension of such schemes would be a threshold depending on both, vertical velocity w and temperature
T'; a 2D fit to the maximum supersaturation data from our simulations might be a first attempt into this direction.

Figure 13. Comparison of nucleation thresholds (red curve: zo = 10, blue curve xo = 16) and the classical “Koop-line” (light blue curve).
The black vertical bars indicate the range of peak supersaturation ratios within the nucleation events computed using vertical velocities
ranging from 0.01ms™* to 2ms ™. The black cross corresponds to the peak supersaturation ratio for the vertical velocity of 10ms™*. Left
panel: Curves based on the water activity using the saturation vapour pressure formulation by Murphy and Koop (2005); right panel: the

same for the saturation vapour pressure formulation by Nachbar et al. (2019).

Finally, we can also investigate the peak supersaturation values for the new empirical nucleation rate formulation, as derived
in section 6.1. Generally, we see the same behaviour as for the reference simulations with a monotonic increase of peak
supersaturation values with increasing vertical velocity (cf. figure 14). The use of the saturation vapour pressure formulation
by Nachbar et al. (2019) additionally enhances the peak values as seen before. However, the peak values for cold temperatures
and very high vertical velocities are strongly enhanced in comparison with the reference simulations. Also these high values
are still in line with the measurements in the AIDA chamber as reported by Baumgartner et al. (2022) and Schneider et al.

(2021).
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Figure 14. Same as in figure 13, but using the nucleation rate as empirically derived in section 6.1.

8 Summary and outlook

We have investigated the impact of the representation of nucleation rates and diffusional growth on idealized nucleation events,
as driven by a constant vertical updraft (i.e. a constant cooling rate). In a first step, we have investigated the original formulation
of the nucleation rate for homogeneous freezing of aqueous solution droplets in the formulation by Koop et al. (2000);-which
is-a-well-aceepted and-verified-formulation; for a better agreement with the nucleation rate of pure water droplets a simple shift
could be applied. For analytical purposes and simple model calculations, a less complicated formulation is desired. We showed
that a linear fit to the original formulation depending on the difference in water activity Aa,, = a,, — al, is accurate enough
to reproduce the ice crystal number concentrations quantitatively. Based on this linearization approach, we derived a threshold
formulation of the nucleation rate, which can be used for analytical investigations as already presented in Baumgartner and
Spichtinger (2019). Again, the new formulations are good enough to represent nucleation events quantitatively as compared to
the reference nucleation formulation.

Using the linear approximation as a starting point, we investigated the impact of different formulations on idealized nu-
cleation events, changing the two relevant parameters (slope and constant offset). These investigations led to the first major

results:

— The absolute values of the nucleation rate has only marginal impact on the resulting ice crystal number concentrations
in a nucleation event. Even a scaling by up to six orders of magnitudes did not severely affect the resulting number
concentrations. However, the maximum supersaturations changed, and the resulting deviations range up to few percent

relative humidity. In addition, the time of nucleation onset is slightly shifted.

— The slope of the nucleation rate (or more precisely in the argument of the exponential function) has a much larger impact
on the resulting nucleation event, and the ice crystal number concentration. Variations in the slope change the number
concentrations in the nucleation events by up to a factor 2.5 (in both directions). Also, the maximum supersaturation is

affected by a deviation of a few percent of relative humidity.

As a final conclusion of this part of our work, we can state that the shape of the nucleation rate is of high importance for the
representation of the nucleation process, whereas the absolute strength of the rate is almost negligible, if the values are high
enough. This shows that the nucleation process (homogeneous freezing of solution droplets) itself is a quite robust process,
thus the accurate formulation is maybe less critical as we thought. Also the amount of available solution droplets as controlled
by the background aerosol does not affect the nucleation events itself; it can be seen as a scaling factor of the nucleation rate,
in the same sense as in the sensitivity analysis of changing the absolute values of nucleation rates. As long as the amount of

aerosol particles is some orders of magnitude larger than the ice crystal number concentration as predicted for a nucleation

event, this does not play a role for the nucleation events, and we do not have to care about exhausting the reservoir of solution
droplets.
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We also investigated the impact of the-a recently published formulation of the water saturation pressure based on a thermody-
namic assumption of different phases of water in the very low temperature range (Nachbar et al., 2019). This new formulation
leads to changes in the function a,, which directly affected the nucleation rate based on Aa,,. Following the derivations of
the threshold description, approximations eeuld-be-foundwere constructed. The new resulting functions a?,(T') and S.(T') can
be accurately approximated with polynomials of smaller degrees, as compared to the standard formulation. The new formu-
lation of pjiq only marginally changed the resulting ice crystal number concentrations. However, the impact on the maximum
supersaturations increased with decreasing temperature up to few percent of relative humidity. Overall, the two different rep-
resentations of the saturation vapour pressure over liquid water produced very similar, even almost identical, results. Thus, a
decision about the validity of a certain formulation must be left to extensive experimental measurements.

In a more speculative part of the study we adapted the nucleation rate of homogeneous freezing of pure water droplets (Koop
and Murray, 2016) as a new parameterisation for homogeneous freezing of aqueous solution droplets. This representation
is quite similar for low values of Aa,, to the original formulation by Koop et al. (2000) and its approximations. However,
for very high water activities (i.e. high supersaturations as driven by large vertical updrafts), there is a significant deviation
from the reference nucleation rate. Thus, for some cases in the parameter space (high updrafts and low temperatures) there
is a significant deviation in the number concentrations, and, more obvious, in the maximum supersaturations, which reach
almost water saturation in some cases. This approach showed that the shape of the nucleation rate is important for the resulting
nucleation events; strong deviations of the shape from its reference affect the results of the nucleation event significantly. If
this representation of the nucleation rate is more close to the physics of ice nucleation remains open, and might be an objective
for experimental investigations.

Finally, we investigated the commonly used threshold for homogeneous nucleation (“Koop-line”) in the light of peak su-
persaturation values during nucleation events. This threshold corresponds to a nucleation rate of +816m=35=1100m 351,
but is only rarely reached during nucleation events. Nucleation itself starts usually at much lower values of \S; corresponding
to lower values of the nucleation rate. The peak supersaturation during a nucleation event, characterised as an equilibrium
between sources and sinks of supersaturation depends on temperature and vertical velocity. The peak supersaturation is a much
more physical quantity to investigate the strength of a nucleation event. The peak supersaturation as diagnosed from the nu-
merical simulations might be a more physical representation of ice nucleation in coarse resolution models in comparison to the

frequently used nucleation threshold.

It should be emphasized that all the results and conclusions are meantin a bulk-sense, i.e. for a large collection of ice crystals
such as a newly forming cirrus cloud. If one is interested in the details of ice formation for a single or only a small number of
particles then all details of the nucleation rate might be equally important. In that respect, our study shows that homogeneous
cirrus formation is a robust physical process.
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Appendix A: Model description - details

In this appendix, we present the details of the model as used for the numerical simulations of the nucleation events. Note, that

we use the mathematical (and also programming) notation of logarithms, i.e. log denotes the natural logarithm (to base ¢).

Background aerosol

We assume for the aqueous solution droplets in the tropopause region a size distribution of lognormal type:

B Ng 1 1og(r/rsol)>2 1
foalr) = \/ﬂlogar exp< 2 < log o, r (AD)

with a modal radius 74 = 75 - 10~ m, and a geometric standard deviation ¢, = 1.5. These values are adapted from the more
complex model by Spichtinger and Gierens (2009), using the fact that the dry aerosol population, as used in Spichtinger and
Gierens (2009), has grown to larger sizes by water vapour uptake (i.e. assuming Kohler theory, see, e.g. Kohler, 1936). The

mean volume of the solution droplets
4 3 9 2
Va = Vi = 37750 csorexp | 5 | logay (A2)
with-
9
Csol = €XP (2 (log(r,.)Q)

is calculated from the third moment of the lognormal distribution.

Mass distribution for ice crystals

For the ice crystals, we assume a mass distribution of lognormal type

n; 1 log(m/mm)>> 1
m) = ———=¢E —_— _— —_— A3
100 = e (53 (M) ) 8
with a parameter
rozexp((logam)Z), M =mMm\/To =3 (A4)

representing the width of the distribution as described in Spichtinger and Gierens (2009). This distribution is used for the
derivation of the rates in the ODE system for the mean quantities of ice mass and number concentration. The integration of

weighting functions of the type m*,k € R leads to general moments, which can be computed analytically:

ulmly == /mkf(m)dm =n;-mk exp (; (klogam)2>
0 (AS5)

k(k—1)

=n;-mry >

Note, that for the averaged quantities we obtain n; = p[m]o, q¢; = pu[m]1, respectively. Thus, we use a double moment scheme

in our model.
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Diffusion constant

For the diffusion of water vapour in dry air, we use the following expression

T 1.94 Do
Dv :D’UO (TO) (p) (A6)

which is an empirical fit to measurement data (Hall and Pruppacher, 1976). Note, that the valid temperature range is different
in the book Pruppacher and Klett (2010) and in the original article Hall and Pruppacher (1976). For analytical investigations,
a representation using a quadratic temperature dependence constitute a good approximation for a restricted temperature range.
For the kinetic correction we use the function

1 r? 4+ ar
fD (’I", a, b) = = (A7)

b 2
ety ritbrtab

whereas r denotes the radius of the ice crystal (using a bulk density of ice p, = 0.81kgm~?), and the parameters are given by

4D,
a=A-Cem, b= (A8)

(67 m EU

using the mean free path of water molecules in air A (acc. to Pruppacher and Klett, 2010), the Cunningham correction factor
Ceunmn = 0.7, and the mean velocity of water molecules ¢,. We set the accomodation coefficient a,,, = 0.5 for comparison with
former investigations (Kércher and Lohmann, 2002); this value is also within the range as recommended in recent work by
Skrotzki et al. (2013).

For representing the growth rates for the ensemble of ice crystals, by comparison with numerical integration we find that

using a shifted mean mass m; = ¢1 - m, ¢; =~ 0.819 in the kinetic correction function f(r1,a,b) is a good approximation.

Howell factor

Latent heat release due to phase changes during diffusional growth changes the surface temperature of the ice crystal. For

taking this into account, we use the Howell factor

L L D* 7171
Gv = —1] == + Rv
RUT TK; DPsi

L LD, R,T] "
R —1|= + .
R’UT TKT DPsi

In the approximation, we neglect the kinetic corrections for diffusion coefficient D,, and heat conductivity of air K.

(A9)

Capacity of ice crystals

For ice crystals we assume eolumnarshapespherical shape for small crystals and columnar shape for large crystals as in
Spichtinger and Gierens (2009); thus the shape factor, or capacity, can be determined exactly using the electrostatic analogy
(McDonald, 1963), using a prolate spheroid with semi axes a, b; the capacity can be analytically expressed by
L€ L¢
" log(155) log(£2)

(A10)
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using the eccentricity ¢ = 1/1 — (3) ? and the length L of the crystal—, which in turn is a function of the crystal mass. Note, that
the eccentricity changes with crystal growth since the aspect ratio is changing (see Spichtinger and Gierens, 2009, their eq. (17)) We
find a very good approximation to the piece-wise definition of the capacity by Spichtinger and Gierens (2009) depending on

the ice crystal mass
890 C(m)~ay-m" +ay-m? (Al1)

with constants

a1 = 0.015755m kg, by = 0.3,
) (A12)
as = 0.33565m kg, by = 0.43.

The representation of the capacity in the ice crystal ensemble is given by the integration, leading to general moments p[mlp,.
Ventilation correction

895 The empirical ventilation corrections usually depend on the use of two dimensionless numbers, i.e. the Schmidt number Ng,
and the Reynolds number Ng,

Noe = =2 Nye = 20y L (A13)
Dyp Iz

using the dynamic viscosity of air x (e.g. Dixon, 2007). Thus, the size of the ice crystal L is influencing the Reynolds number
via the product v;(m) L, using the terminal velocity v; for an ice crystal of mass m. The effect of ventilation, i.e. the additional
900 uptake of water vapour by the airflow around the particle crucially depends on the shape of the particles. For columnar shaped

ice crystals, we adapt the empirical quadratic fit by Liu et al. (2003) to the simulation data (Ji and Wang, 1999) as follows
PR
fo=14cy X%, ¢, =0.14856, x = NS N2 (A14)

For the formulation of the terminal velocity of columnar shaped ice crystals, v¢(m), we use the formulation by Spichtinger
and Gierens (2009), including also the correction for temperature and pressure, respectively. For representing the ensemble of
905 ice crystals, by comparison with the numerical integration we find that using a shifted mean mass mo = c2 - m,ca = 1.5 in the

formulation of the Reynolds number leads to a very good agreement.

Appendix B: Reference simulation results

In this section we report on the results of the reference simulations, using the corrected formulation of the nucleation rate for
super-cooled aqueous solution droplets by Koop et al. (2000). For evaluating the quality of the simplified model, we compare
910 the number concentration of ice crystals as obtained from standard nucleation events with results from literature, i.e. with

a model using sophisticated Eagrangian-particle physics (Kércher and Lohmann, 2002) and a complex bulk physics scheme
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Figure B1. Comparison of ice crystal number concentrations as obtained for typical nucleation events from different models. Red squares:
Particle model by Kércher and Lohmann (2002), blue circles: complex two moment bulk scheme by Spichtinger and Gierens (2009), black

line & triangles: simpler bulk model from this study, indicated as new reference

(Spichtinger and Gierens, 2009). In figure B1 the results are represented for the temperatures T' = 196, 216, 236 K at pressure
p = 200hPa, as prescribed in Kércher and Lohmann (2002).
In comparison we see an overall good agreement of our simple model with the more sophisticated models (Kéreher-and-Lohmann; 2002+
915 However, we have to remark here that the deviation in the results for temperature 7' = 236 K at low vertical velocities is the

result of the neglegtance of the ventilation correction in the model by Kircher and Lohmann (2002). In summary, our simplified

approach compares very well with the results of the other studies.

920

925 fo‘f‘f']] ﬁﬂfﬂbef‘ Geﬂeeﬁﬁc']ﬂ.eﬂf l.ﬂ the wWart feﬂ:ipef'iﬂlfe fegime.
In figure B2 a typical nucleation event is shown. Here, two different nucleation parameterizations are used, the reference by
Koop et al. (2000) (black line) and the linear fit (red line). There are small differences in the time evolution of the variables
saturation ratio S; (left panel), number concentration n; (middle panel) and mean mass m (right panel), but in general there is

the same behaviour in both cases.

Figure B2. Representative example for a typical nucleation event for temperature 7' = 216 K and pressure p = 200hPa with a forcing of
w = 1ms™'. Red line: reference nucleation rate after Koop et al. (2000), black line: nucleation rate approximated by linear function as given
in eq. (38).

930 The source of supersaturation (i.e. cooling by vertical updraft and adiabatic expansion) leads to an increase in S; until
nucleation starts at about tg, ~ 40s, i.e. at very low values of the nucleation rate. .S; is still increasing since the sink of
depositional growth is not strong enough to reduce water vapour efficiently;-thus; thus, the ice crystal number concentration
is further increasing due to permanent ice nucleation. At the peak supersaturation, source and sink of supersaturation are
balanced (tpeax ~ 110s); after this time, S; is decreasing due to the dominant growth term. The number concentration does

935 not change much from this time on but as long as the values of S; are large enough, still ice nucleation takes place. At about
t ~ 1255 the nucleation event is complete, no further nucleation takes place, since the nucleation rate is too small. Note that

during the time interval [tstm,tpeak] the mean mass m is almost constant (this feature is more prominent in the linear fit case),
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whereas for ¢ > ?pc the mass increases. For £ < fjca the nucleation is dominant, thus diffusional growth just compensates the
number increase by mass, whereas afterwards crystal growth is dominant over nucleation. This feature was already seen in
former investigations, which leads to a model reduction for analytical investigations (Baumgartner and Spichtinger, 2019). The
different nucleation parameterisations agree qualitatively for a nucleation event; however, the nonlinear reference rate leads to
some variations. While for the linear fit case, the increase in n; is approximately an exponential growth n;(t) ~ exp (at), and
in turn the mean mass is almost constant in the relevant time interval, for the reference case the change deviates slightly from
exponential growth.

Note, that the thresholds of constant nucleation rates in figure B2 (left panel) can be calculated from eq. (39) using the

respective values for jy (i.e. jo € {10,12,14,16}) in the formulation of the supersaturation threshold.

Appendix C: Simple fit for nucleation rate of pure water droplets

In Koop and Murray (2016) a polynomial of degree 6 is used for fitting the experimental values of the nucleation rate for pure
super-cooled water. Since polynomials of high degree are difficult to evaluate numerically, we present fits with polynomials of

lower degrees, which are still accurate in the relevant temperature range. The original formulation of the nucleation rate is
Jhom(T) = 10720 ) - (@) = "¢, o =T =Ty, (C1)
i=0

with a polynomial p{#)-p, () of degree n = 6 using the melting temperature of pure water 7}, = 273.15K. The coefficients

¢; are reported in Koop and Murray (2016, table VII), where the nucleation rate is given in units cm =3 s~!. We reformulate

the nucleation rate in SI units (i.e. [J]=m™3s~!) by a factor of 10° and approximate the logarithmic values log;(J) by
polynomials of degree 2 and 4, respectively, i.e.
pQ(T) :a0+a1 ~T+a2 'Tz,

. (C2)
p4(T) :a0—|—a1 'T+CL2'T2+Q3'T3+0,4'T4
the coefficients are given in table C1. For this purpose we use a least square fit for the temperature range 225 <7T' < 245K,
for which supercooled water droplets can still exist (see, e.g., figure 4 in Koop and Murray, 2016). In figure C1 (left panel) the

approximations are shown in comparison with the original fit, while the ratio r = pzj((xT)) is shown in the right panel.

Figure C1. Polynomial fits of low degrees for the nucleation rate as given by Koop and Murray (2016). Left: Reference and fits p2(T),
pa(T), right: ratio of reference and fits p2(T"), pa(T")

As can be seen the relative error for the polynomial fit p,(T) is less than 0.25%, while even for the quadratic fit po(7") the
error is smaller than 2%. For practical applications in the relevant temperature range 225 <7 < 240K the quadratic fit might
be sufficient. If the original polynomial is used, a sophisticated evaluation of the polynomial is recommended (e.g. Horner

scheme).
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fit H ag al az as [« 27

p2(T) —5369.61 46.96750 —0.10236 — —
pa(T) || —848143.02 | 14534.5767 | —93.481032 | 0.26745460 | —0.0002872

Table C1. Coefficients for the polynomial fits of the nucleation rate by Koop and Murray (2016) as given in equation (C2).

Appendix D: Perturbation Analysis

965 The perturbation analysis or asymptotic analysis as applied in Section 4.6 is a well-known technique to investigate the impact

of perturbations on a mathematical object such as a mathematical expression or the solution of an equation. A good general

introduction is given in Holmes (2013) and an application in meteorology is explained in Klein (2010).

The basic idea is to introduce a small parameter €, to expand the quantity of interest in powers of ¢, i.e. £. 7, ... and to
substitute this expansion into the mathematical object of interest (see Eq. (48) for such an expansion). Since the resulting
970  expression should hold for any value of ¢ and even in the limit ¢ — 0, all the contributions from the various powers of ¢ may be
considered individually. Given that the parameter ¢ is assumed as being small, effects that stem from terms with higher powers
of ¢ will only have a small impact whereas effects with a lower power of ¢ will be dominant.
For practical applications it is common to also scale coefficients and parameters of the mathematical expression in powers
of ¢. This step ensures that the mutual magnitudes of the parameters stay consistent, even in the limit ¢ — 0. This task involves
975  usually some free choices, and is known as distinguished limit.
In the spirit of the works of Klein and Majda, the scaling of the parameters is often done by assuming ¢ ~ 0.1, i.e. substituting

., Hittmeir and Klein, 2017; Baumgartner ¢

this value of ¢ into the scaling of the parameters yields a realistic value of the parameters (see, €.

~ 149.32 is written as Ay = A*¢ 2 with A* = O(1) where the latter ma

As an example, the parameter A(T) ~ A

be understood as A” is independent of ¢, With A ~ 1.4932 the value £ ~ 0.1 restores the original value of Ag.
980  In essence, the goal is to determine the nonzero-parts of the expansion of the mathematical expression and the respective
ower of ¢ indicates how strong this contribution is. As an example, if the final expansion is found to be £ ~* + wo + ewy + O(e2
then the term w_ will be dominant since this term is associated with the lowest power of £. If the result would be the expansion
wo tewy + O(?) then we may conclude that wy is the dominant part and all wj, for & > 1 only contribute small corrections.
985  Another fruitful use of perturbation analysis is to allow an equation to determine the possible matching powers of ¢, i.e. to
answer the question: Which powers of ¢ are needed to achieve a balance in the equation at hand? As an example, from physical
considerations we know that equation (59) holds. As a consequence, after having expanded both sides of the equation in powers
of €. the expansions on both sides must agree (otherwise the equation would not hold). This is only possible if the powers of £
match, hence the appropriate powers for ¢ may be inferred.
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