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Abstract 22 

Improved knowledge of the chemistry and drivers of surface ozone over the Qinghai-Tibet 23 

Plateau (QTP) is significant for regulatory and control purposes in this high-altitude region in the 24 

Himalaya. In this study, we investigate the processes and drivers of surface ozone anomalies 25 

(defined as deviations of ozone levels relative to their seasonal means) between 2015 and 2020 in 26 

urban areas over the QTP. We separate quantitatively the contributions of anthropogenic emissions 27 

and meteorology to surface ozone anomalies by using the random forest (RF) machine learning 28 

model based meteorological normalization method. Diurnal and seasonal surface ozone anomalies 29 

over the QTP were mainly driven by meteorological conditions, such as temperature, planetary 30 

boundary layer height, surface incoming shortwave flux, downward transport velocity, and inter-31 

annual anomalies were mainly driven by anthropogenic emission. Depending on region and 32 

measurement hour, diurnal surface ozone anomalies varied over -27.82 μg/m3 to 37.11 μg/m3, where 33 

meteorological and anthropogenic contributions varied over -33.88 μg/m3 to 35.86 μg/m3 and -4.32 34 

μg/m3 to 4.05 μg/m3, respectively. Exceptional meteorology driven 97% of surface ozone 35 

nonattainment events from 2015 to 2020 in the urban areas over the QTP. Monthly averaged surface 36 

ozone anomalies from 2015 to 2020 varied with much smaller amplitudes than their diurnal 37 

anomalies, where meteorological and anthropogenic contributions varied over 7.63 μg/m3 to 55.61 38 

μg/m3 and 3.67 μg/m3 to 35.28 μg/m3, respectively. The inter-annual trends of surface ozone in Ngari, 39 

Lhasa, Naqu, Qamdo, Diqing, Haixi and Guoluo can be attributed to anthropogenic emissions by 40 

95.77%, 96.30%, 97.83%, 82.30%, 99.26%, and 87.85%, and meteorology by 4.23%, 3.70%, 2.17%, 41 

3.19%, 0.74%, and 12.15%, respectively. The inter-annual trends of surface ozone in other cities 42 
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were fully driven by anthropogenic emission, where the increasing inter-annual trends would have 1 

larger values if not for the favorable meteorological conditions. This study can not only improve 2 

our knowledge with respect to spatiotemporal variability of surface ozone but also provides valuable 3 

implication for ozone mitigation over the QTP. 4 

1. Introduction 5 

The Qinghai-Tibet Plateau (QTP) (27-45° N, 70-105° E), with an average altitude of 4000m 6 

above sea level (a.s.l), is the highest plateau in the world. It is known as the “Roof of the World” 7 

and the “Third Pole” (Qiu, 2008;Yang et al., 2013;Yin et al., 2017). The QTP has an area of 8 

approximately 2.5106 km2 and accounts for about one quarter of China’s territory (Duo et al., 2018). 9 

The QTP is the source region of five major rivers in Asia, i.e., the Indus, Ganges, Brahmaputra, 10 

Yangtze, and Yellow rivers, which provide water resource to more than 1.4 billion people 11 

(Immerzeel et al., 2010). The QTP has been verified to be a critical region for regulating Asian 12 

monsoon climate and hydrological cycle, and it is thus an important ecological barrier of the whole 13 

Asia (Loewen et al., 2007;Yanai et al., 1992). The QTP has long been regarded as a pristine region 14 

due to its low population and industrial levels (Zhu et al., 2013). Due to its unique features of 15 

landform, ecosystem and monsoon circulation pattern, the QTP has been regarded as a sensitive 16 

region to anthropogenic impact, and is referred to as an important indicator of regional and global 17 

climate change (Qiu, 2008). The exogenous and local atmospheric pollutants are potential to 18 

accelerate the melting of glaciers, damage air quality, water sources, and grasslands, and threaten 19 

climate on regional and global scales (Yin et al., 2017;Yin et al., 2019c;Sun et al., 2021d;Pu et al., 20 

2007;Kang et al., 2016). Therefore, improved knowledge of the evolutions and drivers of 21 

atmospheric pollutants in the QTP is of great importance for understanding local ecological situation 22 

and formulating regulatory policies. 23 

Surface ozone (O3) is a major air pollutant that threatens human health and vegetation growth 24 

(Jerrett et al., 2009;Yin et al., 2021b). Surface ozone over the QTP is generated either from its local 25 

anthropogenic and natural precursors such as nitrogen oxides (NOx), volatile organic compounds 26 

(VOCs), and carbon monoxide (CO) via a chain of photochemical reactions or transported from 27 

long-distance regions by downwelling from the stratosphere. Surface ozone level is sensitive to local 28 

emissions, meteorological conditions and transport. Meteorological conditions affect surface ozone 29 

level indirectly through changes in natural emissions of its precursors or directly via changes in wet 30 

and dry removal, dilution, chemical reaction rates, and transport flux. Emissions of air pollutants 31 

affect surface ozone level by perturbing the abundances of hydroperoxyl (HO2) and alkylperoxyl 32 

(RO2) radicals which are the key atmospheric constituents in formation of ozone. Some previous 33 

studies have presented the variability and analyzed qualitatively the drivers of surface ozone over 34 

the QTP at a specific site or region (Xu et al., 2016;Yin et al., 2019b;Yin et al., 2017;Zhu et al., 35 

2004). However, none of these studies have quantitatively separated the contributions of 36 

anthropogenic emission and meteorology. Separation of anthropogenic and meteorological drivers 37 

is very important since it conveys us exactly which processes drive the observed ozone anomaly 38 

and therefore right conclusions can be made on whether an emission mitigation policy is effective. 39 

Chemical transport models (CTMs) are widely used to evaluate the influences of meteorology 40 

and anthropogenic emission on atmospheric pollution levels (Hou et al., 2022;Sun et al., 2021a;Yin 41 

et al., 2020;Yin et al., 2019a). However, there are significant uncertainties in the emission 42 

inventories and in the models themselves, and shutting down an emission inventory in CTMs may 43 
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cause large nonlinear effect, which inevitably influences the accuracy, performance and efficient of 1 

CTMs (Vu et al., 2019;Zhang et al., 2020). Mathematical and statistical models such as the multiple 2 

linear regression (MLR) model and general additive models (GAMs) have also been used in many 3 

studies to quantify the influence of meteorological factors (Li et al., 2019;Li et al., 2020a;Yin et al., 4 

2021a;Yin et al., 2022;Zhai et al., 2019).  5 

Machine learning (ML) is a well-known field that has been developing rapidly in recent years. 6 

Machine learning is a fusion of statistics, data science, and computing which experiences use across 7 

a very wide range of applications (Grange et al., 2018). Unlike most ML models such as artificial 8 

neural networks which are hard to understand the working mechanisms, the random forest (RF) 9 

model is not a “black-box” method, its prediction process can be explained, investigated, and 10 

understood (Gardner and Dorling, 2001;Grange et al., 2018;Grange and Carslaw, 2019;Shi et al., 11 

2021). Recently, RF model based meteorological normalization technique has been proposed and 12 

used to decouple the meteorological influence on atmospheric pollution. For example, Vu et al. (Vu 13 

et al., 2019) have used this technique to demonstrate that the clean air action plan implemented in 14 

2013 was highly effective in reducing the anthropogenic emissions and improving air quality in 15 

Beijing. Shi et al. (Shi et al., 2021) have used this technique to quantitatively evaluate changes in 16 

ambient NO2, ozone, and PM2.5 concentrations arising from these emission changes in 11 cities 17 

globally during the COVID-19 lockdowns.  18 

In this study, we investigate the evolutions, implications, and drivers of surface ozone 19 

anomalies (defined as deviations of ozone levels relative to their seasonal means) from 2015 to 2020 20 

in the urban areas over the QTP. Compared with previous studies that focus on surface ozone over 21 

the QTP, this study involves in larger area and longer time span. Most importantly, this study 22 

separates quantitatively the contributions of anthropogenic emission and meteorology to surface 23 

ozone anomalies by using the RF model based meteorological normalization method. This study 24 

can not only improve our knowledge with respect to spatiotemporal variability of surface ozone but 25 

also provides valuable implication for ozone mitigation over the QTP. We introduce detailed 26 

descriptions of surface ozone and meteorological field dataset in section 2. The method for 27 

separating contributions of meteorology and anthropogenic emission is presented in section 3. 28 

Section 4 analyzes spatiotemporal variabilities of surface ozone from 2015 to 2020 in each city over 29 

the QTP. The performance of the RF model used for surface ozone prediction over the QTP is 30 

evaluated in Section 5. We discuss the implications and the drivers of surface ozone anomalies from 31 

2015 to 2020 in each city over the QTP in section 6. We conclude this study in section 7. 32 

2. Data sources 33 

2.1 Surface ozone data 34 

The QTP covers an area of 2.5 million square meter and has a population of around 3 million, 35 

with most of them living in several cities. During the in depth study of the atmospheric chemistry 36 

over the Tibetan Plateau, @Tibet field campaign, ozone photochemistry and its roles in ozone 37 

budget are of great interests in both background atmosphere and in QTP urban areas. The former 38 

represents the influence of anthropogenic emission and cross boundary transport on the nature cycle 39 

of ozone in pristine atmosphere. The latter represents not only the upper limit of ozone 40 

photochemistry contribution to its budget, also a demanding knowledge for the sake of ozone 41 

pollution management. As illustrated in Figure 1, the QTP (Latitude range: 26°00’ ~ 39°47’, 42 

Longitude range: 73°19’ ~ 104°47’) covers the Kunlun Mountain, the A-erh-chin Mountain and the 43 
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Qilian Mountain in the north, the Pamir Plateau and the Karakorum Mountains in the west, the 1 

Himalayas in the south, and the Qinling Mountains and the Loess Plateau in the east. These 12 cities 2 

are the most populated areas over the QTP. All these cities except Aba and Diqing are located in 3 

Tibet or Qinghai provinces. Aba and Diqing are in Sichuan and Yunnan provinces, respectively. The 4 

area of these cities ranges from 7.7 to 430 thousand km2, the altitude ranges from 2.3 to 4.8 km a.s.l., 5 

and the population ranges from 0.12 to 2.47 million. The residents within the 12 cities are about 6 

3.85 million account for about 51% of population over the QTP. 7 

Hourly surface ozone data in the urban areas over the QTP are available from the China 8 

National Environmental Monitoring Center (CNMEC) network (http://www.cnemc.cn/en/, last 9 

access: November 26, 2021). The CNMEC network based ozone measurements have been widely 10 

used in many studies for evaluation of regional atmospheric pollution and transport over China (Lu 11 

et al., 2021;Lu et al., 2019a;Lu et al., 2020;Sun et al., 2021c;Sun et al., 2021d;Yin et al., 2021a;Yin 12 

et al., 2021b;Yin et al., 2022).The CNEMC network has deployed 33 measurement sites in 12 cities 13 

over the QTP (Table 1). The number of measurement sites in each city varies from 1 to 6. All surface 14 

ozone time series at each measurement site are provided by active differential absorption ultraviolet 15 

(UV) analyzers. For all the 33 measurement sites, hourly surface ozone data are available since 2015. 16 

We first removed unreliable measurements at all measurement sites in each city by using the filter 17 

criteria following our previous studies (Lu et al., 2018;Lu et al., 2020;Sun et al., 2021b;Sun et al., 18 

2021d;Yin et al., 2021a;Yin et al., 2021b), then averaged all measurements in each city to generate 19 

a city representative dataset. All investigations in this study are performed on such city 20 

representative basis. 21 

The filter criteria can be summarized as follows. Hourly observed data points were first 22 

transformed into Z scores via equation (1) and the observed data were then removed if the 23 

corresponding Zi value met one of the following conditions: (1) Zi is larger or smaller than the 24 

previous one (Zi-1) by 9 (|𝑍𝑖 − 𝑍𝑖−1| > 9), (2) The absolute value of Zi is greater than 4 (|𝑍𝑖| >25 

4) , or (3) the ratio of the Z value to the third-order center moving average is greater than 2 26 

(
3𝑍𝑖

𝑍𝑖−1+𝑍𝑖+𝑍𝑖+1
> 2).  27 

𝒛𝑘 =
𝒙𝑘−𝒖𝑘

𝝈𝑘
                                (1) 28 

where 𝒖𝑘 and 𝝈𝑘 are the average and 1σ standard deviation (STD) of 𝒙𝑘, and 𝒛𝑘 is the pre-29 

processed value for parameter 𝒙𝑘.  30 

2.2 Meteorological data 31 

 Meteorological fields used in this study are from the Modern-Era Retrospective analysis for 32 

Research and Applications Version 2 (MERRA-2) dataset (Gelaro et al., 2017). The MERRA-2 33 

dataset is produced by the NASA Global Modeling and Assimilation Office and it can provide time 34 

series of many meteorological variables with a spatial resolution of 0.5°  0.625° (The NASA Global 35 

Modeling and Assimilation Office (GMAO)). The boundary layer height and surface meteorological 36 

variables are available per hour and other meteorological variables are available every 3 hours. It 37 

has been verified that the MERRA-2 meteorological fields over the QTP are in good agreement with 38 

the observations (Wang and Zeng, 2012;Xie et al., 2017). This MERRA-2 dataset has been 39 

extensively used in evaluations of regional atmospheric pollution formation and transport over 40 

China (Carvalho, 2019;Kishore Kumar et al., 2015;Song et al., 2018;Zhou et al., 2017;Li et al., 41 
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2019;Li et al., 2020a;Yin et al., 2022;Zhai et al., 2019).  1 

3. Methodology 2 

3.1 Quantifying seasonality and inter-annual variability 3 

We quantify the seasonality and inter-annual variability of surface ozone from 2015 to 2020 in 4 

each city over the QTP by using a bootstrap resampling method. The principle of such bootstrap 5 

resampling method was described in detail in Gardiner et al. (Gardiner et al., 2008). Many studies 6 

have verified the robustness of Gardiner’s methodology in modeling the seasonality and inter-annual 7 

variabilities of a suite of atmospheric species (Sun et al., 2020;Sun et al., 2021a;Sun et al., 8 

2021b;Sun et al., 2021d;Sun et al., 2018). In this study, we used a second Fourier series plus a linear 9 

function to fit surface ozone monthly mean time series from 2015 to 2020 over the QTP. The usage 10 

of measurements on monthly basis can improve the fitting correlation and lower the regression 11 

residual. As a result, the relationship between the measured and bootstrap resampled surface ozone 12 

monthly mean time series can be expressed as, 13 

V(t, 𝐛) = b0 + b1t + b2cos⁡(
2πt

12
) + b3sin⁡(

2πt

12
) + b4cos⁡(

4πt

12
) + b5sin⁡(

4πt

12
)          (2) 14 

F(t, a, 𝐛) = V(t, 𝐛) + ε(t)                            (3) 15 

where F(t, a, 𝐛)  and V(t, 𝐛)  represent the measured and fitted surface ozone time series, 16 

respectively. The parameters b0– b5 contained in the vector b are coefficients obtained from the 17 

bootstrap resampling regression with V(t, 𝐛) . The b0 is the intercept, and the b1  is the annual 18 

growth rate, and b1/b0 is the inter-annual trend discussed below. The parameters b2–b5 describe 19 

the seasonality, t is the measurement time in month elapsed since January 2015, and ε(t) represents 20 

the residual between the measurements and the fitting results. The autocorrelation in the residual 21 

can increase the uncertainty in calculation of inter-annual trend. In this study, we have followed the 22 

procedure of Santer et al. (Santer et al., 2008) and included the uncertainty arising from the 23 

autocorrelation in the residual.  24 

3.2 Random Forest (RF) model 25 

We have established a decision tree based random forest (RF) machine learning model to 26 

describe the relationships between hourly surface ozone concentrations (response variables) and 27 

their potential driving factors (predictive variables) in the urban areas over the QTP. As summarized 28 

in Table 2, predictive variables used in this study include time variables such as year 2015 to 2020, 29 

month 1 to 12, day of the year from 1 to 365, hour of the day from 0 to 23, and meteorological 30 

parameters such as wind, temperature, pressure, cloud fraction, rainfall, vertical transport, radiation 31 

and relative humidity. These time variables were selected as proxies for emissions since pollutant 32 

emissions vary by the time of day, day of the week, and season (Grange et al., 2018). 33 

The detailed descriptions of RF machine learning model can be found in Breiman (Breiman, 34 

2001). Briefly, the RF model is an ensemble model consisting of hundreds of individual decision 35 

tree models. Each individual decision tree model uses a bootstrap aggregating algorithm to 36 

randomly sample response variables and their predictive variables with a replacement from a 37 

training dataset. In this study, a single regression decision tree is grown in different decision rules 38 

based on the best fitting between surface ozone measurements and their predictive variables. The 39 

predictive variables are selected randomly to give the best split for each tree node. The predicted 40 

surface ozone concentrations are given by the final decision as the outcome of the weighted average 41 
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of all individual decision trees. By averaging all predictions from bootstrap samples, the bagging 1 

process decreases variance and thus helps the model to minimize overfitting.  2 

As shown in Figure 2, the whole dataset was randomly divided into (1) a training dataset to 3 

establish the random forest model and (2) a testing dataset (not included in model training) to 4 

evaluate the model performance. The training dataset was randomly selected from 70 % of the whole 5 

data and the remaining 30% was taken as the testing dataset. The hyperparameters for the RF model 6 

in this study were configured following those in Vu et al. (Vu et al., 2019) and Shi et al. (Shi et al., 7 

2021) and are summarized as follows: the maximum tree of a forest is 300 (n_tree=300), the number 8 

of variables for splitting the decision tree is 4 (mtry=4), and the minimum size of terminal nodes is 9 

3 (min_node_size=3). Since the meteorological variables differ in units and magnitudes, which 10 

could lead to unstable performance of the model. Therefore, we uniformized all meteorological 11 

variables via equation (1) before using them in the RF model. This pre-processing procedure can 12 

also speed up the establishment of the RF model. 13 

3.3 Separation of meteorological and anthropologic contributions 14 

In order to separate the contributions of meteorology and anthropologic emission to surface 15 

ozone anomalies in each city over the QTP, we have decoupled meteorology driven anomalies by 16 

using the RF model based meteorological normalization method. The meteorological normalization 17 

method was first introduced by (Grange et al., 2018) and improved by Vu et al. (Vu et al., 2019) and 18 

Shi et al (Shi et al., 2021). To decouple the meteorological influence, we first generated a new input 19 

dataset of predictive variables, which includes original time variables and resampled meteorological 20 

variables (Tsurface, U10, V10, PBLH, CLDT, PRECTOT, OMEGA, SWGDN, QV, TROPH). 21 

Specifically, meteorological variables at a specific selected hour of a particular day in the input 22 

dataset were generated by randomly selecting from the meteorological data during 1980 to 2020 at 23 

that particular hour of different dates within a four-week period (i.e., 2 weeks before and 2 weeks 24 

after that selected date). For example, the new input meteorological data at 18:00, 15 February 2018, 25 

are randomly selected from the meteorological data at 18:00 on any date from 1 to 29 February of 26 

any year during 1980 to 2020. This selection process was repeated 1000 times to generate a final 27 

input dataset. The 1000 meteorological data were then fed to the RF model to predict surface ozone 28 

concentration. The 1000 predicted ozone concentrations were then averaged as equation (4) to 29 

calculate the final meteorological normalized concentration (O3, dew) for that particular hour, day, 30 

and year. This process ensures that all kinds of weather conditions around the measurement time 31 

have been considered in the model predictions, which eliminate the influence of abnormal 32 

meteorological conditions and get concentrations under the averaged meteorological conditions. 33 

𝑂3,𝑑𝑒𝑤 =
1

1000
∑ 𝑂3,𝑖,𝑝𝑟𝑒𝑑
1000
𝑖=1                            (4) 34 

where 𝑂3,𝑖,𝑝𝑟𝑒𝑑 is the surface ozone concentration predicted by using the ith meteorological data 35 

randomly selected from the meteorological data at the specific selected hour on any date from 1 to 36 

29 February of any year in 1980 to 2020. O3, dew represents surface ozone concentration under the 37 

mean meteorological conditions at the specific selected hour between 1980 to 2020.  38 

If the seasonal variabilities of anthropogenic emission and meteorology are constant over year, 39 

the variability of surface ozone can be exactly reproduced by equation (2), i.e., the annual growth 40 

rate of surface ozone and the fitting residual should be close to zero. But this is not realistic in real 41 

world. Any year-to-year difference in either anthropogenic emission or meteorology could result in 42 
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anomalies. We calculate surface ozone anomalies (𝑂3,𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 ) in each city over the QTP by 1 

subtracting their seasonal mean values (𝑂3,𝑚𝑒𝑎𝑛 ) from all hourly surface ozone measurements 2 

(𝑂3,𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) through equation (5) (Hakkarainen et al., 2019;Hakkarainen et al., 2016;Mustafa et 3 

al., 2021).  4 

𝑂3,𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 = 𝑂3,𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 − 𝑂3,𝑚𝑒𝑎𝑛                     (5) 5 

where 𝑂3,𝑚𝑒𝑎𝑛 in each city are approximated by the seasonality plus the intercept described in 6 

equation (1). As a result, the difference 𝑂3,𝑚𝑒𝑡𝑒𝑜 between 𝑂3,𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙⁡and 𝑂3,𝑑𝑒𝑤 calculated as 7 

equation (6) is the portion of anomalies induced by changes in meteorology. The difference 8 

𝑂3,𝑒𝑚𝑖𝑠⁡ between 𝑂3,𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠⁡ and 𝑂3,𝑚𝑒𝑡𝑒𝑜  calculated as equation (7) represents the portion of 9 

anomalies induced by changes in anthropogenic emission. 10 

𝑂3,𝑚𝑒𝑡𝑒𝑜 = 𝑂3,𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 −𝑂3,𝑑𝑒𝑤                        (6) 11 

𝑂3,𝑒𝑚𝑖𝑠 = 𝑂3,𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 − 𝑂3,𝑚𝑒𝑡𝑒𝑜                        (7) 12 

By applying the meteorological normalization method, we finally separate the contributions of 13 

meteorology and anthropogenic emissions to the surface ozone anomalies in each city over the QTP. 14 

Positive 𝑂3,𝑚𝑒𝑡𝑒𝑜⁡and 𝑂3,𝑒𝑚𝑖𝑠 indicate that changes in meteorology and anthropogenic emission 15 

cause surface ozone concentration above their seasonal mean values, respectively. Similarly, 16 

negative⁡𝑂3,𝑚𝑒𝑡𝑒𝑜⁡ and 𝑂3,𝑒𝑚𝑖𝑠⁡ indicate that changes in meteorology and anthropogenic emission 17 

cause surface ozone concentration below their seasonal mean values, respectively. 18 

4. Variabilities of surface ozone over the QTP 19 

4.1 Overall ozone level  20 

Statistical summary and box plot of surface ozone concentration (units: μg/m3) in each city 21 

over the QTP from 2015 to 2020 are presented in Table 3 and Figure S1, respectively. The average 22 

of surface ozone between 2015 and 2020 in each city over the QTP varied over (50.67 ±29.57) 23 

μg/m3 to (90.38 ± 28.83) μg/m3, and the median value varied over 53.00 μg/m3 to 90.00 μg/m3. In 24 

comparison, the averages of surface ozone between 2015 and 2020 in the Beijing-Tianjin-Hebei 25 

(BTH), the Fenwei Plain (FWP), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) in 26 

densely populated and highly industrialized eastern China were 140.76 μg/m3, 132.16 μg/m3, 125.09 27 

μg/m3 and 119.82 μg/m3, respectively. The average of surface ozone between 2011 and 2015 at the 28 

suburb Nam Co station in the southern-central of the QTP was (47.00 ± 12.43) μg/m3 (Yin et al., 29 

2019b). As a result, surface ozone levels in the urban areas over the QTP are much lower than those 30 

in urban areas in eastern China but higher than those in the suburb areas over the QTP. Among all 31 

cities over the QTP, the highest and lowest surface ozone concentration occurs in Haixi and Aba, 32 

with mean values of (90.38 ± 28.83) μg/m3 and (50.67 ± 28.83) μg/m3, respectively. Generally, 33 

surface ozone concentrations in Qinghai province are higher than those in Tibet province. We also 34 

presented the percentile variation of surface ozone concentration (units: μg/m3) in each city over the 35 

QTP from 2015 to 2020 in Figure S2. The percentile variation modes of surface ozone concentration 36 

in all cities over the QTP are similar. In this study, only mean plus standard variance of surface 37 

ozone concentration rather than its percentile variation in each city was investigated. This prevailing 38 

method has been used in a number of studies to describe the variabilities of atmospheric 39 

compositions over the QTP (Li et al., 2020b;Liu et al., 2021;Ma et al., 2020;Xu et al., 2018;Xu et 40 

al., 2016;Yin et al., 2019c;Yin et al., 2017).  41 

The ambient air quality standard issued by the Chinese government regularized that the critical 42 

value (Class 1 limit) for the maximum 8-hour average ozone level is 160 μg/m3. With this rule, we 43 
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summarize the number of nonattainment day per year in each city over the QTP in Table 3. The 1 

number of nonattainment day per city and per year over the QTP is only 2 between 2015 and 2020. 2 

Ozone nonattainment events over the QTP typically occur in spring or summer. In comparison, the 3 

number of nonattainment day per city and per year over the BTH, FWP, YRD and PRD are much 4 

larger, with values of 78, 36, 82 and 45 between 2015 and 2020, respectively, and all ozone 5 

nonattainment events over these regions occur in summer. The number of nonattainment day in 6 

Ngari in 2020, Lhasa in 2016 and 2017, Shannan in 2017 and 2018, Haixi in 2015 and 2019, and 7 

Xining in 2017 are 13, 10, 20, 12, 10, 14, 16, and 17 days, respectively. The number of 8 

nonattainment day in all other cities over the QTP are less than 10 days. Especially, surface ozone 9 

concentrations in Aba, Naqu, and Diqing in all years between 2015 and 2020 are less than the Class 10 

1 limit of 160 μg/m3. There are only 1 and 2 nonattainment days in Nyingchi and Qamdo between 11 

2015 and 2020, respectively. 12 

4.2 Diurnal variability 13 

Diurnal cycles of surface ozone in each season and each city over the QTP are presented in 14 

Figure 3. Overall, diurnal cycle of surface ozone in each city over the QTP presents a unimodal 15 

pattern in all seasons. For all cities in all seasons, high levels of surface ozone occur in the daytime 16 

(9:00 to 20:00 LT) and low levels of surface ozone occur in the nighttime (21:00 to 08:00 LT). As 17 

seen from Figure 3, surface ozone levels usually increase over time starting at 8:00 to 11:00 LT in 18 

the morning, reach the maximum values at 15:00 to 18:00 LT in the afternoon, and then decreases 19 

over time till the minimum values at 8:00 or 9:00 LT the next day.  20 

The timings of the diurnal cycles in all cities over the QTP were shifted by 1 to 2 hours later in 21 

winter than those in the rest of the year, most likely due to the later time of sunrise. Yin et al. (2017) 22 

also observed such shift in diurnal cycle at the suburb Nam Co station. The diurnal cycles of surface 23 

ozone in the urban areas over the QTP spanned a large range of −43.73 % to 47.12 % depending on 24 

region, season, and measurement time. The minimum and maximum surface ozone levels in the 25 

urban areas over the QTP varied over (22.89 ± 15.55) μg/m3 to (68.96 ± 18.27) μg/m3 and (57.77 ± 26 

21.56) μg/m3 to (102.08 ± 15.14) μg/m3, respectively. On average, surface ozone levels in the urban 27 

areas over the QTP have mean values of (72.41 ± 33.83) μg/m3 during the daytime (08:00-19:00) 28 

and (60.89 ± 32.25) μg/m3 during the evening (20:00-08:00). The diurnal cycles of surface ozone in 29 

all cities over the QTP are generally consistent with the results reported in eastern China and the 30 

suburb areas over the QTP (Yin et al., 2019b;Yin et al., 2017;Zhao et al., 2016;Shen et al., 2014). 31 

4.3 Seasonal variability 32 

Monthly averaged time series of surface ozone in each city over the QTP between 2015 and 33 

2020 are shown in Figure 4. Surface ozone levels in all cities over the QTP showed pronounced 34 

seasonal features. Seasonal cycles of surface ozone in most cities present a unimodal pattern with a 35 

seasonal peak occurs around March-July and a seasonal trough occurs around October-December. 36 

Specifically, maximum surface ozone levels occur in spring over Diqing, Lhasa, Naqu, Nyingchi, 37 

Qamdo, Shannan, Shigatse, Aba, and occur in summer over Ngari, Xining, Guoluo, and Haixi; 38 

Minimum surface ozone levels in Nyingchi and Diqing occur in autumn, and in other cities occur 39 

in winter. The minimum and maximum surface ozone levels between 2015 and 2020 over the QTP 40 

varied over (29.21 ± 19.03) μg/m3 to (60.45 ± 31.35) μg/m3 and (71.25 ± 26.53) μg/m3 to (112.46 ± 41 

28.92) μg/m3, respectively (Table S1). The peak−to−trough contrast in Diqing, Naqu, Nyingchi, and 42 
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Aba were smaller than those in other cities. Due to regional deference in meteorology and 1 

anthropogenic emission, seasonal cycle of surface ozone in the urban areas over the QTP is also 2 

regional dependent. 3 

4.4 Inter-annual variability 4 

The inter-annual variability of surface ozone between 2015 and 2020 in each city over the QTP 5 

fitted by the bootstrap resampling method is presented in Figure 5 and S3, and also summarized in 6 

Table S1. Generally, the measured and fitted surface ozone concentrations in each city over the QTP 7 

are in good agreement with a correlation coefficient (R) of 0.68–0.92 (Figure S4). The measured 8 

features in terms of seasonality and inter-annual variability can be reproduced by the bootstrap 9 

resampling model. However, due to the year-to-year deference in anthropogenic emission and 10 

meteorology, both inter-annual variability and fitting residual were not zero in all cities. The inter-11 

annual trends in surface ozone level from 2015 to 2020 over the QTP spanned a large range of 12 

(−2.43 ± 0.56) μg/m3·yr-1 to (7.55 ± 1.61) μg/m3·yr-1, indicating a regional representation of each 13 

dataset. The inter-annual trends of surface ozone levels in most cities including Diqing, Naqu, Ngari, 14 

Nyingchi, Shannan, Shigatse, Xining, Abzhou and Haixi showed positive trends. The largest 15 

increasing trends were presented in Diqing and Nagri, with values of (5.31 ± 1.28) μg/m3·yr-1 and 16 

(7.55 ± 1.61) μg/m3·yr-1, respectively. In contrast, surface ozone levels in Lhasa, Qamdo and Guoluo 17 

presented negative trends, with values of (-1.62 ± 0.76) μg/m3·yr-1, (-2.43 ± 0.56) μg/m3·yr-1 and (-18 

2.36 ± 0.81) μg/m3·yr-1, respectively. 19 

5. Performance evaluation 20 

We evaluate the performance of the RF model in predicting hourly surface ozone level in each 21 

city over the QTP using the metrics of Pearson correlation coefficient (R), the root means square 22 

error (RMSE), and the mean absolute error (MAE). They are commonly used metrics for evaluation 23 

of machine learning model predictions, and are defined as equations (8), (9), and (10), respectively. 24 

𝑅 =
𝑛∑ 𝑥𝑖𝑦𝑖−∑ 𝑥𝑖

𝑛
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∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

𝑛
                              (9) 26 

          𝑀𝐴𝐸 =
∑ |𝑥𝑖−𝑦𝑖|
𝑛
𝑖=1

𝑛
                                (10) 27 

where 𝑥𝑖 and 𝑦𝑖 ⁡are the ith concurrent measured and predicted data pairs, respectively. The n is the 28 

number of measurements. The R value represents the fitting correlation between the measurements 29 

and predictions. The RMSE value measures the relative average difference between the 30 

measurements and predictions. The MAE value measures the absolute average difference between 31 

the measurements and predictions. The units of RMSE and MAE are same as the measured data, 32 

namely μg/m3. 33 

Comparisons between the model predictions and measurements for the testing data (not 34 

included in model training) in each city over the QTP are shown in Figure S5. Overall, the RF model 35 

predictions and surface ozone measurements are in good agreements, showing high R and low 36 

RMSE and MAE for testing dataset in each city over the QTP (Figure S5). Depending on cities, the 37 

R values varied over 0.85 to 0.94, the RMSE over 10.24 to 17.55 μg/m3, and MAE over 7.32 to 38 

12.76 μg/m3. The R, RMSE, and MAE are independent of city and surface ozone level. The results 39 
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affirm that our model performs very well in predicting surface ozone levels and variabilities in each 1 

city over the QTP. 2 

We further investigate the importance of each input variable in the RF model for predicting 3 

surface ozone level in each city over the QTP. As shown in Figure S6, time information such as hour 4 

term (Hour), year term (Year) or seasonal term (Month) are the most important variables in the RF 5 

model predictions in all cities except Xining and Haixi where temperature term (T2m) is the most 6 

important variable. For all cities, the aggregate importance of time information is larger than 50%. 7 

In all cities over the QTP, the meteorological variables such as temperature (T2m), relatively 8 

humidity (QV), Vertical pressure velocity (OMEGA) and Planetary boundary layer height (PBLH) 9 

play significant roles when explaining surface ozone concentrations. For other variables, although 10 

they are not decisive variables in the RF model predictions, they are not negligible in predicting 11 

surface ozone in all cities over the QTP. Although time information are the most important variables 12 

in the RF model predictions, they can be used very precisely, and thus the RF model to measurement 13 

discrepancy in all cities could be from other predictive variables rather than time information. 14 

6. Drivers of surface ozone anomalies 15 

In this section, we explore the drivers of surface ozone anomalies between 2015 and 2020 over 16 

the QTP. We first present descriptively the contributions of anthropogenic emission and 17 

meteorology to surface ozone anomalies over the QTP in section 6.1 to 6.3, where statistics on 18 

different time scales were summarized. We then present in-depth analysis of each driver in section 19 

6.4. 20 

6.1 Diurnal scale 21 

 Figure 6 presents diurnal cycles of surface ozone anomalies between 2015 and 2020 along with 22 

the meteorology-driven and anthropogenic-driven portions in each city over the QTP. In all cities, 23 

the anthropogenic contributions are almost constant but the meteorological contributions show large 24 

variations throughout the day. Depending on region and measurement hour, diurnal surface ozone 25 

anomalies on average varied over -27.82 μg/m3 to 37.11 μg/m3 between 2015 and 2020, where 26 

meteorological and anthropogenic contributions varied over -33.88 μg/m3 to 35.86 μg/m3 and -4.32 27 

μg/m3 to 4.05 μg/m3, respectively. The least contrast between meteorological contribution and 28 

anthropogenic contribution occurs in Haixi. The diurnal cycles of meteorological contribution are 29 

consistent with those of surface ozone anomalies. High levels of meteorological contribution occur 30 

in the daytime (9:00 to 20:00 LT) and low levels of meteorological contributions occur in the 31 

nighttime. As a result, diurnal surface ozone anomalies in each city over the QTP were mainly driven 32 

by meteorology.  33 

We further investigated the drivers of surface ozone nonattainment events from 2015 to 2020 34 

in each city over the QTP. All ozone nonattainment events were classified as meteorology-35 

dominated or anthropogenic-dominated events according to which one has a larger contribution to 36 

the observed surface ozone nonattainment events. The statistical results are listed in Table S2. 37 

Except one day in Ngari in 2018, one day in Shigatse in 2016, and one day in Haixi in 2019 which 38 

were dominated by anthropogenic emission, all other surface ozone nonattainment events from 2015 39 

to 2020 over the QTP were dominated by meteorology. Exceptional meteorology driven 97% of 40 

surface ozone nonattainment events from 2015 to 2020 in the urban areas over the QTP. For the 41 

meteorology-dominated surface ozone nonattainment events, meteorological and anthropogenic 42 
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contributions varied over 32.85 μg/m3 to 55.61 μg/m3 and 3.67 μg/m3 to 7.23 μg/m3, respectively. 1 

For the anthropogenic-dominated surface ozone nonattainment events, meteorological and 2 

anthropogenic contributions varied over 7.63 μg/m3 to 10.53 μg/m3 and 15.63 μg/m3 to 35.28 μg/m3, 3 

respectively. 4 

6.2 Seasonal scale 5 

Figure 7 presents seasonal cycles of surface ozone anomalies between 2015 and 2020 along 6 

with the meteorology-driven and anthropogenic-driven portions in each city over the QTP. In all 7 

cities, the monthly averaged surface ozone anomalies between 2015 and 2020 varied with much 8 

smaller amplitudes than their diurnal anomalies. Noticeable anomalies include pronounced positive 9 

anomalies in December in Nagri, in May in Lhasa, Shannan, and Qamdo, in July in Haixi, in June 10 

in Guoluo, and negative anomalies in July in Lhasa, Nyingchi, and Guoluo. Both meteorological 11 

and anthropogenic contributions are regional dependent and show large variations throughout the 12 

year. Depending on region and month, meteorological and anthropogenic contributions varied over 13 

-4.54 μg/m3 to 3.31 μg/m3 and -2.67 μg/m3 to 3.35 μg/m3 between 2015 and 2020, respectively.  14 

Seasonal surface ozone anomalies between 2015 and 2020 in all cities over the QTP were 15 

mainly driven by meteorology. For example, meteorology caused decrements of 3.05 μg/m3 in July 16 

and 4.27 μg/m3 in September in Diqing, while anthropogenic emission caused increments of 0.64 17 

μg/m3 and 1.34 μg/m3 in respective months. Aggregately, we observed -2.41 μg/m3 and -2.89 μg/m3 18 

of seasonal surface ozone anomalies in July and September in Ngari, respectively. In all cities, 19 

seasonal cycles of meteorological contribution are more consistent with those of surface ozone 20 

anomalies over the QTP. In some cases, surface ozone anomalies would have larger values if not for 21 

the unfavorable meteorological conditions, e.g., surface ozone anomalies in June in Ngari, in 22 

December in Shannan, Guoluo and Aba.  23 

6.3 Multi-year scale 24 

Annual mean surface ozone anomalies between 2015 and 2020 along with meteorology-driven 25 

and anthropogenic-driven portions in each city over the QTP are presented in Figure 8. Surface 26 

ozone in Diqing, Naqu, Nagri, Haixi and Shannan show larger year to year variations than those in 27 

other cities. Annual mean surface ozone levels in Diqing, Naqu, Nagri and Haixi showed significant 28 

reductions of 2.10 μg/m3, 10.32 μg/m3, 6.87 μg/m3, and 15.97 μg/m3, respectively, Shannan showed 29 

an increment of 9.12 μg/m3, and other cities showed comparable values in 2016 relative to 2015. 30 

The largest year to year difference occurred in Ngari during 2016 to 2017, which has an increment 31 

of 25.25 μg/m3. The results show that anthropogenic contributions decreased by 1.85 μg/m3, 7.14 32 

μg/m3, 5.65 μg/m3, and 15.98 μg/m3, respectively, in Diqing, Naqu, Nagri, Haixi, and increased by 33 

11.13 μg/m3 in Shannan in 2016 relative to 2015, and increased by 20.85 μg/m3 in Ngari in 2017 34 

relative to 2016. As a result, all above reductions or increments in surface ozone level were mainly 35 

driven by anthropogenic emission. In contrast, surface ozone anomalies in Lhasa in 2017 and 2020, 36 

in Shigatse and Nyingchi in 2019 were mainly driven by meteorology. 37 

Table S3 summarizes the inter-annual trends of surface ozone anomalies, meteorological and 38 

anthropogenic contributions from 2015 to 2020 in each city over the QTP. Except Guoluo, Qamdo 39 

and Lhasa which show decreasing trends, anthropogenic contributions in all other cities showed 40 

increasing trends from 2015 to 2020. With respect to meteorology contribution, Ngari, Naqu, Diqing 41 

and Haixi showed increasing trends from 2015 to 2020 and all other cities showed decreasing trends. 42 
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The inter-annual trends of surface ozone anomalies in Ngari, Lhasa, Naqu, Qamdo, Diqing, Haixi 1 

and Guoluo can be attributed to anthropogenic emissions by 95.77%, 96.30%, 97.83%, 82.30%, 2 

99.26%, and 87.85%, and meteorology by 4.23%, 3.70%, 2.17%, 3.19%, 0.74%, and 12.15%, 3 

respectively. The inter-annual trends of surface ozone in other cities were fully driven by 4 

anthropogenic emission, where the increasing inter-annual trends would have larger values if not 5 

for the favorable meteorological conditions. As a result, the inter-annual trends of surface ozone 6 

anomalies in all cities over the QTP were dominated by anthropogenic emission.  7 

6.4 Discussions 8 

Typically, all cities over the QTP are formed at flat valleys with surrounding mountains rising 9 

to more than 5.0 km a.s.l., and keep continuous expansion and development over time. Inhibited by 10 

surrounding mountains, regional dependent emissions and mountain peak-valley meteorological 11 

systems result in regional representation of surface ozone level and their drivers on diurnal, seasonal, 12 

inter-annual scales.  13 

Correlations between 𝑂3,𝑚𝑒𝑡𝑒𝑜 and each meteorological anomaly are summarized for all time, 14 

diurnal scale, seasonal scale and multi-year scale in Table S4-S7. We find that all time scales of 15 

meteorology-driven surface ozone anomalies in each city are positively related with anomalies of 16 

temperature, planetary boundary layer height (PBLH), surface incoming shortwave flux (SWGDN), 17 

downward transport velocity at the PBLH (OMEGA), and tropopause height (TROPH). Among all 18 

these positive correlations, the correlations with temperature, PBLH, and SWGDN in all cities are 19 

higher than those with OMEGA and TROPH. Since high temperature and SWGDN facilitate the 20 

formation of ozone via the increase in chemical reaction rates or biogenic emissions, the 21 

meteorology-driven surface ozone anomalies have the highest correlations with the changes in 22 

temperature and SWGDN. Possible reasons for the ozone increases with the increase in PBLH 23 

include lower NO concentration at the urban surface due to the deep vertical mixing, which then 24 

limits ozone destruction and increases ozone concentrations (He et al., 2017), and more downward 25 

transport of ozone from the free troposphere where the ozone concentration is higher than the near-26 

surface concentration (Sun et al., 2009). Large OMEGA and high tropopause height also facilitate 27 

downward transport of stratospheric ozone, resulting in high surface ozone level. The QTP has been 28 

identified as a hot spot for stratospheric–tropospheric exchange (Cristofanelli et al., 2010;Škerlak 29 

et al., 2014) where the surface ozone is elevated from the baseline during the spring due to frequent 30 

stratospheric intrusions. Generally, surface ozone anomalies are negatively related with humidity, 31 

rainfall, and total cloud fraction in each city over the QTP. These wet meteorological conditions 32 

inhibit biogenic emissions, slow down ozone chemical production, and facilitate the ventilation of 33 

ozone and its precursors (Gong and Liao, 2019;Jiang et al., 2021;Lu et al., 2019a;Lu et al., 34 

2019b;Ma et al., 2019), and therefore contribute to ozone decrease.  35 

The U10m and V10m represent the metrics for evaluating the horizontal transport. In most of 36 

cities over QTP, noticeable ozone vs. horizontal wind correlations are observed, indicating that 37 

horizontal transport is an important contributor to surface ozone (Shen et al., 2014;Zhu et al., 2004). 38 

The QTP region, as a whole, is primarily regulated by the interplay of the Indian summer monsoon 39 

and the westerlies, and the atmospheric environment over QTP is heterogeneous. Mount Everest is 40 

representative of the Himalayas on the southern edge of the Tibetan Plateau and is close to South 41 

Asia where anthropogenic atmospheric pollution has been increasingly recognized as disturbing the 42 

high mountain regions (Decesari et al., 2010;Maione et al., 2011;Putero et al., 2014). In the northern 43 
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QTP, including Xining, Haixi and Guoluo, is occasionally influenced by regional polluted air masses 1 

(Xue et al., 2011;Zhu et al., 2004), especially, the impacts of anthropogenic emissions from central 2 

and eastern China in the summer (Xue et al., 2011). For cities over the inland QTP, is distant from 3 

both South Asia and northwestern China; it has been found to be influenced by episodic long-range 4 

transport of air pollution from South Asia (Lüthi et al., 2015), evidenced by the study of aerosol and 5 

precipitation chemistry at these cities (Cong et al., 2010). 6 

In order to determine which specific meteorological variables responsible for the meteorology-7 

dominated ozone nonattainment events over the QTP, we have investigated the correlations between 8 

each meteorological variable and ozone anomalies in each city during the ozone nonattainment days. 9 

As tabulated in Table S8, temperature is the dominant meteorological variable responsible for the 10 

meteorology-dominated ozone nonattainment events, especially in Shigatse, Lhasa, Shannan, Haixi 11 

and Guoluo. In addition, the OMEGA is also an important meteorological variable in most cities, 12 

especially in Guoluo where the correlation is up to 0.69. For other meteorological variables, winds 13 

(U10m, V10m) and TROPH also have noticeable contributions to some ozone nonattainment events. 14 

The NOx and VOCs are main precursors of surface ozone. The monthly and annual averaged 15 

anthropogenic emissions of NOx and VOCs in each city over the QTP extracted from the MEIC 16 

(Multi-resolution Emission Inventory for China) inventory between 2015 andto 2017 are presented 17 

in Table S9-S12. Major anthropogenic emissions in each city over the QTP are from transport sector 18 

and residential sector including burning emissions of coal, post-harvest crop residue, yak dung and 19 

religious incense (Chen et al., 2009;Kang et al., 2016;Kang et al., 2019;Li et al., 2017). The NOx 20 

and VOCs emissions have been decreased in Diqing, Naqu, Nagri in 2016 relative to 2015. These 21 

reductions of NOx and VOCs emissions jointly driven the changes of ozone in these cities. Although 22 

NOx emissions increased in Haixi during 2015 to 2016, VOCs emissions have significantly 23 

decreased by 6.82 t. As a result, the decreases of ozone in Haixi in 2016 relative to 2015 were 24 

attributed to VOCs reductions in the same period.  25 

The correlations of the monthly and annual averaged anthropogenic contributions against the 26 

NOx and VOCs emissions are summarized in Table S13. The correlations of the monthly averaged 27 

anthropogenic contributions against anthropogenic NOx and VOCs emissions are in the range of 28 

0.35-0.81 and 0.33-0.83, respectively. For the annual averaged statistics, the correlations against 29 

NOx and VOCs emissions are in the range of 0.15-0.94 (expect for Nyingchi and Diqing), and 0.34-30 

0.98 (expect for Haixi), respectively. For all cities except Shannan, Qamdo and Haixi, both the NOx 31 

and VOCs emissions are consistent with the anthropogenic contributions. While only NOx emissions 32 

in Qamdo and Haixi and VOCs emissions in Shannan are consistent with anthropogenic 33 

contributions. In general, the changes of NOx and VOCs emissions in MEIC inventory are able to 34 

explain the variabilities of both monthly and annual averaged anthropogenic contributions.  35 

7. Conclusions 36 

In this study, we have investigated the evolutions, implications, and the drivers of surface ozone 37 

anomalies (defined as deviations of ozone levels relative to their seasonal means) between 2015 and 38 

2020 in the urban areas over the QTP. Diurnal, seasonal, and inter annual variabilities of surface 39 

ozone in 12 cities over the QTP are analyzed. The average of surface ozone between 2015 and 2020 40 

in each city over the QTP varied over (50.67 ±29.57) μg/m3 to (90.38 ± 28.83) μg/m3, and the median 41 

value varied over 53.00 μg/m3 to 90.00 μg/m3. Overall, diurnal cycle of surface ozone in each city 42 

over the QTP presents a unimodal pattern in all seasons. For all cities in all seasons, high levels of 43 
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surface ozone occur in the daytime (9:00 to 20:00 LT) and low levels of surface ozone occur in the 1 

nighttime (21:00 to 08:00 LT). Seasonal cycles of surface ozone in most cities present a unimodal 2 

pattern with a seasonal peak occurs around March-July and a seasonal trough occurs around 3 

October-December. The inter-annual trends in surface ozone level from 2015 to 2020 over the QTP 4 

spanned a large range of (−2.43 ± 0.56) μg/m3·yr-1 to (7.55 ± 1.61) μg/m3·yr-1, indicating a regional 5 

representation of each dataset.  6 

We have established a RF regression model to describe the relationships between hourly 7 

surface ozone concentrations (response variables) and their potential driving factors (predictive 8 

variables) in the urban areas over the QTP. The RF model predictions and surface ozone 9 

measurements are in good agreement, showing high R and low RMSE and MAE in each city over 10 

the QTP. Depending on cities, the R values varied over 0.85 to 0.94, the RMSE over 10.24 to 17.55 11 

μg/m3, and MAE over 7.32 to 12.76 μg/m3. The R, RMSE, and MAE are independent of city and 12 

surface ozone level. The results affirm that our model performs very well in predicting surface ozone 13 

levels and variabilities in each city over the QTP. 14 

We have separated quantitatively the contributions of anthropogenic emission and meteorology 15 

to surface ozone anomalies by using the RF model based meteorological normalization method. 16 

Diurnal and seasonal surface ozone anomalies over the QTP were mainly driven by meteorology, 17 

and inter-annual anomalies were mainly driven by anthropogenic emission. Depending on region 18 

and measurement hour, diurnal surface ozone anomalies varied over -30.55 μg/m3 to 34.01 μg/m3 19 

between 2015 and 2020, where meteorological and anthropogenic contributions varied over -20.08 20 

μg/m3 to 48.73 μg/m3 and -27.18 μg/m3 to 1.92 μg/m3, respectively. Unfavorable meteorology driven 21 

97% of surface ozone nonattainment events between 2015 and 2020 in the urban areas over the QTP. 22 

Monthly averaged surface ozone anomalies varied with much smaller amplitudes than their diurnal 23 

anomalies, where meteorological and anthropogenic contributions varied over 7.63 μg/m3 to 55.61 24 

μg/m3 and 3.67 μg/m3 to 35.28 μg/m3 between 2015 and 2020, respectively. The inter-annual trends 25 

of surface ozone anomalies in Ngari, Lhasa, Naqu, Qamdo, Diqing, Haixi and Guoluo can be 26 

attributed to anthropogenic emissions by 95.77%, 96.30%, 97.83%, 82.30%, 99.26%, and 87.85%, 27 

and meteorology by 4.23%, 3.70%, 2.17%, 3.19%, 0.74%, and 12.15%, respectively. The inter-28 

annual trends of surface ozone anomalies in other cities were fully driven by anthropogenic emission, 29 

where the increasing inter-annual trends would have larger values if not for the favorable 30 

meteorological conditions. This study can not only improve our knowledge with respect to 31 

spatiotemporal variability of surface ozone but also provides valuable implication for ozone 32 

mitigation over the QTP. 33 
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 1 

Figure 1. Geolocations of each city over the Qinghai-Tibet Plateau (QTP). The base map of the 2 

figure was created using the Basemap package in Python. 3 
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 1 

Figure 2. Flowchart for separation of meteorology and anthropologic contributions. 2 
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 1 

Figure 3. Diurnal cycle of surface ozone (units: μg/m3) in each season and each city over the QTP. 2 

The vertical error bar is 1σ standard variation (STD) within that hour. 3 
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 1 

Figure 4. Monthly mean time series of surface ozone (units: μg/m3) between 2015 and 2020 in each 2 

city over the QTP. The vertical error bar is 1σ standard variation (STD) within that month. 3 
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 1 

Figure 5. Inter-annual trends of surface ozone levels between 2015 and 2020 in the urban areas over 2 

the QTP. Blue dots are the monthly averaged surface ozone measurements. The seasonality and 3 

inter-annual variability in each city fitted by using a bootstrap resampling model with a second 4 

Fourier series (red dots) plus a linear function (black line) is also shown. 5 
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 1 

Figure 6. Diurnal cycles of surface ozone anomalies (𝑂3,𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠, blue dots and lines) along with 2 

the meteorology-driven portions (𝑂3,𝑚𝑒𝑡𝑒𝑜 , red dots and lines) and the anthropogenic-driven 3 

portions (𝑂3,𝑒𝑚𝑖𝑠, black dots and lines) in each city over the QTP. Bold curves and the shadows are 4 

diurnal cycles and the 1σ standard variations, respectively. 5 
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 1 

Figure 7. Seasonal cycles of surface ozone anomalies (𝑂3,𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠, blue dots and lines) along with 2 

the meteorology-driven portions (𝑂3,𝑚𝑒𝑡𝑒𝑜 , red dots and lines) and the anthropogenic-driven 3 

portions (𝑂3,𝑒𝑚𝑖𝑠, black dots and lines) in each city over the QTP. Bold curves and the shadows are 4 

monthly mean values and the 1σ standard variations, respectively. 5 
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 1 

Figure 8. Annual mean surface ozone anomalies (𝑂3,𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 , blue dots and lines) along with 2 

meteorology-driven portions (𝑂3,𝑚𝑒𝑡𝑒𝑜 , red dots and lines) and anthropogenic-driven portions 3 

(𝑂3,𝑒𝑚𝑖𝑠, black dots and lines) in each city over the QTP. Bold curves and the shadows are annual 4 

mean values and the 1σ standard variations, respectively. 5 
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Table 1. Geolocations of each city over the QTP. Population statistics are available from the 2020 1 

nationwide population census issued by National Bureau of Statistics of China. 2 

Name Latitude Longitude Number of 

site 

Altitude 

(km) 

Population 

(million) 

Area  

(Thousand km2) 

Ngari 32.5°N 80.1°E 2 4.5 0.12 345.0 

Shigatse 29.3°N 88.9°E 3 4.0 0.80 182.0 

Lhasa 29.7°N 91.1°E 6 3.7 0.87 31.7 

Shannan 29.2°N 91.8°E 2 3.7 0.35 79.3 

Naqu 31.5°N 92.1°E 3 4.5 0.50 430.0 

Nyingchi 29.6°N 94.4°E 2 3.1 0.23 117.0 

Qamdo 31.1°N 97.2°E 3 3.4 0.76 110.0 

Diqing 27.8°N 99.7°E 2 3.5 0.39 23.9 

Haixi 37.4°N 97.4°E 1 4.8 0.47 325.8 

Guoluo 34.5°N 100.3°E 1 4.3 0.21 76.4 

Xining 36.6°N 101.7°E 5 2.3 2.47 7.7 

Aba 32.9°N 101.7°E 3 3.8 0.82 84.2 

 3 
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Table 2. List of predictive variables fed into the RF model. 1 

Parameters Description Unit 

Meteorological variables by MERRA-2 dataset 

Tsurface Surface air temperature °C 

U10m zonal wind at 10 m height m/s 

V10m meridional wind at 10 m height m/s 

PBLH Planetary boundary layer height m 

CLDT Total cloud area fraction unitless 

PRECTOT Total Precipitation kg·m2/s 

OMEGA Vertical pressure velocity at PBLH  Pa/s 

SWGDN Surface incoming shortwave flux W/m2 

QV Specific humidity at 2 m height kg/kg 

TROPT Tropospheric layer pressure Pa 

Time information 

Year Year since 2015 / 

Month Month of the year / 

day Day of the month / 

Hour Hour of the day / 

 2 
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Table 3. Statistical summary of surface ozone concentration (units: μg/m3) in each city over the 1 

QTP from 2015 to 2020. 2 

City Mean Standard 

deviation 

Median The number of nonattainment day 

2015 2016 2017 2018 2019 2020 

Ngari 74.18 34.26 73.50 0 0 8 9 1 13 

Shigatse 79.25 31.62 82.00 0 5 0 5 5 2 

Lhasa 77.90 32.63 78.67 10 20 2 5 0 0 

Shannan 77.55 30.75 78.00 0 2 12 10 2 3 

Naqu 52.43 26.27 53.00 0 0 0 0 0 0 

Nyingchi 67.30 28.30 68.00 0 0 1 0 0 0 

Qamdo 64.23 31.47 62.00 0 2 0 0 0 0 

Diqing 57.50 27.64 54.50 0 0 0 0 0 0 

Haixi 90.38 28.83 90.00 14 0 0 0 16 2 

Guoluo 82.98 33.29 86.00 3 0 3 3 0 0 

Xining 63.50 36.02 60.00 0 2 17 6 3 3 

Aba 50.67 29.57 47.00 0 0 0 0 0 0 

 3 


