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Abstract

Improved knowledge of the chemistry and drivers of surface ozone over the Qinghai-Tibet
Plateau (QTP) is significant for regulatory and control purposes in this high-altitude region in the
Himalaya. In this study, we investigate the processes and drivers of surface ozone anomalies
(defined as deviations of ozone levels relative to their seasonal means) between 2015 and 2020 in
urban areas over the QTP. We separate quantitatively the contributions of anthropogenic emissions
and meteorology to surface ozone anomalies by using the random forest (RF) machine learning
model based meteorological normalization method. Diurnal and seasonal surface ozone anomalies
over the QTP were mainly driven by meteorological conditions, such as temperature, planetary
boundary layer height, surface incoming shortwave flux, downward transport velocity, and inter-
annual anomalies were mainly driven by anthropogenic emission. Depending on region and
measurement hour, diurnal surface ozone anomalies varied over -27.82 pg/m® to 37.11 pg/m?, where
meteorological and anthropogenic contributions varied over -33.88 ug/m? to 35.86 pg/m3 and -4.32
ug/m’ to 4.05 pg/m?, respectively. Exceptional meteorology driven 97% of surface ozone
nonattainment events from 2015 to 2020 in the urban areas over the QTP. Monthly averaged surface
ozone anomalies from 2015 to 2020 varied with much smaller amplitudes than their diurnal
anomalies, where meteorological and anthropogenic contributions varied over 7.63 pug/m? to 55.61
ug/m?3and 3.67 pug/m? to 35.28 pg/m’, respectively. The inter-annual trends of surface ozone in Ngari,
Lhasa, Naqu, Qamdo, Diqing, Haixi and Guoluo can be attributed to anthropogenic emissions by
95.77%., 96.30%, 97.83%, 82.30%, 99.26%, and 87.85%, and meteorology by 4.23%, 3.70%, 2.17%,
3.19%, 0.74%, and 12.15%, respectively. The inter-annual trends of surface ozone in other cities
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were fully driven by anthropogenic emission, where the increasing inter-annual trends would have
larger values if not for the favorable meteorological conditions. This study can not only improve
our knowledge with respect to spatiotemporal variability of surface ozone but also provides valuable
implication for ozone mitigation over the QTP.

1. Introduction

The Qinghai-Tibet Plateau (QTP) (27-45° N, 70-105° E), with an average altitude of 4000m
above sea level (a.s.l), is the highest plateau in the world. It is known as the “Roof of the World”
and the “Third Pole” (Qiu, 2008;Yang et al., 2013;Yin et al., 2017). The QTP has an area of
approximately 2.5x10°% km? and accounts for about one quarter of China’s territory (Duo et al., 2018).
The QTP is the source region of five major rivers in Asia, i.e., the Indus, Ganges, Brahmaputra,
Yangtze, and Yellow rivers, which provide water resource to more than 1.4 billion people
(Immerzeel et al., 2010). The QTP has been verified to be a critical region for regulating Asian
monsoon climate and hydrological cycle, and it is thus an important ecological barrier of the whole
Asia (Loewen et al., 2007;Yanai et al., 1992). The QTP has long been regarded as a pristine region
due to its low population and industrial levels (Zhu et al., 2013). Due to its unique features of
landform, ecosystem and monsoon circulation pattern, the QTP has been regarded as a sensitive
region to anthropogenic impact, and is referred to as an important indicator of regional and global
climate change (Qiu, 2008). The exogenous and local atmospheric pollutants are potential to
accelerate the melting of glaciers, damage air quality, water sources, and grasslands, and threaten
climate on regional and global scales (Yin et al., 2017;Yin et al., 2019¢;Sun et al., 2021d;Pu et al.,
2007;Kang et al., 2016). Therefore, improved knowledge of the evolutions and drivers of
atmospheric pollutants in the QTP is of great importance for understanding local ecological situation
and formulating regulatory policies.

Surface ozone (O3) is a major air pollutant that threatens human health and vegetation growth
(Jerrett et al., 2009;Yin et al., 2021b). Surface ozone over the QTP is generated either from its local
anthropogenic and natural precursors such as nitrogen oxides (NOy), volatile organic compounds
(VOCs), and carbon monoxide (CO) via a chain of photochemical reactions or transported from
long-distance regions by downwelling from the stratosphere. Surface ozone level is sensitive to local
emissions, meteorological conditions and transport. Meteorological conditions affect surface ozone
level indirectly through changes in natural emissions of its precursors or directly via changes in wet
and dry removal, dilution, chemical reaction rates, and transport flux. Emissions of air pollutants
affect surface ozone level by perturbing the abundances of hydroperoxyl (HO;) and alkylperoxyl
(RO») radicals which are the key atmospheric constituents in formation of ozone. Some previous
studies have presented the variability and analyzed qualitatively the drivers of surface ozone over
the QTP at a specific site or region (Xu et al., 2016;Yin et al., 2019b;Yin et al., 2017;Zhu et al.,
2004). However, none of these studies have quantitatively separated the contributions of
anthropogenic emission and meteorology. Separation of anthropogenic and meteorological drivers
is very important since it conveys us exactly which processes drive the observed ozone anomaly
and therefore right conclusions can be made on whether an emission mitigation policy is effective.

Chemical transport models (CTMs) are widely used to evaluate the influences of meteorology
and anthropogenic emission on atmospheric pollution levels (Hou et al., 2022;Sun et al., 2021a;Yin
et al., 2020;Yin et al., 2019a). However, there are significant uncertainties in the emission

inventories and in the models themselves, and shutting down an emission inventory in CTMs may
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cause large nonlinear effect, which inevitably influences the accuracy, performance and efficient of
CTMs (Vu et al., 2019;Zhang et al., 2020). Mathematical and statistical models such as the multiple
linear regression (MLR) model and general additive models (GAMs) have also been used in many
studies to quantify the influence of meteorological factors (Li et al., 2019;Li et al., 2020a;Yin et al.,
2021a;Yin et al., 2022;Zhai et al., 2019).

Machine learning (ML) is a well-known field that has been developing rapidly in recent years.
Machine learning is a fusion of statistics, data science, and computing which experiences use across
a very wide range of applications (Grange et al., 2018). Unlike most ML models such as artificial
neural networks which are hard to understand the working mechanisms, the random forest (RF)
model is not a “black-box” method, its prediction process can be explained, investigated, and
understood (Gardner and Dorling, 2001;Grange et al., 2018;Grange and Carslaw, 2019;Shi et al.,
2021). Recently, RF model based meteorological normalization technique has been proposed and
used to decouple the meteorological influence on atmospheric pollution. For example, Vu et al. (Vu
et al., 2019) have used this technique to demonstrate that the clean air action plan implemented in
2013 was highly effective in reducing the anthropogenic emissions and improving air quality in
Beijing. Shi et al. (Shi et al., 2021) have used this technique to quantitatively evaluate changes in
ambient NO,, ozone, and PM> s concentrations arising from these emission changes in 11 cities
globally during the COVID-19 lockdowns.

In this study, we investigate the evolutions, implications, and drivers of surface ozone
anomalies (defined as deviations of ozone levels relative to their seasonal means) from 2015 to 2020
in the urban areas over the QTP. Compared with previous studies that focus on surface ozone over
the QTP, this study involves in larger area and longer time span. Most importantly, this study
separates quantitatively the contributions of anthropogenic emission and meteorology to surface
ozone anomalies by using the RF model based meteorological normalization method. This study
can not only improve our knowledge with respect to spatiotemporal variability of surface ozone but
also provides valuable implication for ozone mitigation over the QTP. We introduce detailed
descriptions of surface ozone and meteorological field dataset in section 2. The method for
separating contributions of meteorology and anthropogenic emission is presented in section 3.
Section 4 analyzes spatiotemporal variabilities of surface ozone from 2015 to 2020 in each city over
the QTP. The performance of the RF model used for surface ozone prediction over the QTP is
evaluated in Section 5. We discuss the implications and the drivers of surface ozone anomalies from
2015 to 2020 in each city over the QTP in section 6. We conclude this study in section 7.

2. Data sources
2.1 Surface ozone data

The QTP covers an area of 2.5 million square meter and has a population of around 3 million,
with most of them living in several cities. During the in depth study of the atmospheric chemistry
over the Tibetan Plateau, @Tibet field campaign, ozone photochemistry and its roles in ozone
budget are of great interests in both background atmosphere and in QTP urban areas. The former
represents the influence of anthropogenic emission and cross boundary transport on the nature cycle
of ozone in pristine atmosphere. The latter represents not only the upper limit of ozone
photochemistry contribution to its budget, also a demanding knowledge for the sake of ozone
pollution management. As illustrated in Figure 1, the QTP (Latitude range: 26°00° ~ 39°47°,
Longitude range: 73°19° ~ 104°47") covers the Kunlun Mountain, the A-erh-chin Mountain and the
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Qilian Mountain in the north, the Pamir Plateau and the Karakorum Mountains in the west, the
Himalayas in the south, and the Qinling Mountains and the Loess Plateau in the east. These 12 cities
are the most populated areas over the QTP. All these cities except Aba and Diqing are located in
Tibet or Qinghai provinces. Aba and Diqing are in Sichuan and Yunnan provinces, respectively. The
area of these cities ranges from 7.7 to 430 thousand km?, the altitude ranges from 2.3 to 4.8 km a.s.1.,
and the population ranges from 0.12 to 2.47 million. The residents within the 12 cities are about
3.85 million account for about 51% of population over the QTP.

Hourly surface ozone data in the urban areas over the QTP are available from the China
National Environmental Monitoring Center (CNMEC) network (http://www.cnemc.cn/en/, last
access: November 26, 2021). The CNMEC network based ozone measurements have been widely
used in many studies for evaluation of regional atmospheric pollution and transport over China (Lu
etal., 2021;Luetal., 2019a;Lu et al., 2020;Sun et al., 2021¢;Sun et al., 2021d;Yin et al., 2021a;Yin
etal., 2021b;Yin et al., 2022).The CNEMC network has deployed 33 measurement sites in 12 cities
over the QTP (Table 1). The number of measurement sites in each city varies from 1 to 6. All surface
ozone time series at each measurement site are provided by active differential absorption ultraviolet
(UV) analyzers. For all the 33 measurement sites, hourly surface ozone data are available since 2015.
We first removed unreliable measurements at all measurement sites in each city by using the filter
criteria following our previous studies (Lu et al., 2018;Lu et al., 2020;Sun et al., 2021b;Sun et al.,
2021d;Yin et al., 2021a;Yin et al., 2021b), then averaged all measurements in each city to generate
a city representative dataset. All investigations in this study are performed on such city
representative basis.

The filter criteria can be summarized as follows. Hourly observed data points were first
transformed into Z scores via equation (1) and the observed data were then removed if the
corresponding Z; value met one of the following conditions: (1) Zi is larger or smaller than the
previous one (Zi.1) by 9 (1Z; — Z;_1|1 > 9), (2) The absolute value of Z; is greater than 4 (|Z;| >
4), or (3) the ratio of the Z value to the third-order center moving average is greater than 2

( 3Z;
Zi1+Zi+Ziyq

> 2).

_ Xk~ Ug

zZy =—— (1)

Ok

where u;, and o, are the average and lo standard deviation (STD) of x, and Zj is the pre-
processed value for parameter x,.

2.2 Meteorological data

Meteorological fields used in this study are from the Modern-Era Retrospective analysis for
Research and Applications Version 2 (MERRA-2) dataset (Gelaro et al., 2017). The MERRA-2
dataset is produced by the NASA Global Modeling and Assimilation Office and it can provide time
series of many meteorological variables with a spatial resolution of 0.5° x 0.625° (The NASA Global
Modeling and Assimilation Office (GMAO)). The boundary layer height and surface meteorological
variables are available per hour and other meteorological variables are available every 3 hours. It
has been verified that the MERRA-2 meteorological fields over the QTP are in good agreement with
the observations (Wang and Zeng, 2012;Xie et al., 2017). This MERRA-2 dataset has been
extensively used in evaluations of regional atmospheric pollution formation and transport over
China (Carvalho, 2019;Kishore Kumar et al., 2015;Song et al., 2018;Zhou et al., 2017;Li et al.,

4



© 00 N o ol WD

e il =
W N B O

14

15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

2019;Li et al., 2020a;Yin et al., 2022;Zhai et al., 2019).

3. Methodology
3.1 Quantifying seasonality and inter-annual variability

We quantify the seasonality and inter-annual variability of surface ozone from 2015 to 2020 in
each city over the QTP by using a bootstrap resampling method. The principle of such bootstrap
resampling method was described in detail in Gardiner et al. (Gardiner et al., 2008). Many studies
have verified the robustness of Gardiner’s methodology in modeling the seasonality and inter-annual
variabilities of a suite of atmospheric species (Sun et al., 2020;Sun et al., 2021a;Sun et al.,
2021b;Sun et al., 2021d;Sun et al., 2018). In this study, we used a second Fourier series plus a linear
function to fit surface ozone monthly mean time series from 2015 to 2020 over the QTP. The usage
of measurements on monthly basis can improve the fitting correlation and lower the regression
residual. As a result, the relationship between the measured and bootstrap resampled surface ozone
monthly mean time series can be expressed as,

V(t,b) = by + byt + bycos (53) + bsin (32 + bycos (5 + bgsin (53) Q)

F(t,a,b) = V(t,b) + £(t) 3)
where F(t,a,b) and V(t,b) represent the measured and fitted surface ozone time series,
respectively. The parameters by-bs contained in the vector b are coefficients obtained from the
bootstrap resampling regression with V(t,b). The by is the intercept, and the b, is the annual
growth rate, and b;/b, is the inter-annual trend discussed below. The parameters b,—bg describe
the seasonality,  is the measurement time in month elapsed since January 2015, and €(t) represents
the residual between the measurements and the fitting results. The autocorrelation in the residual
can increase the uncertainty in calculation of inter-annual trend. In this study, we have followed the
procedure of Santer et al. (Santer et al., 2008) and included the uncertainty arising from the
autocorrelation in the residual.

3.2 Random Forest (RF) model

We have established a decision tree based random forest (RF) machine learning model to
describe the relationships between hourly surface ozone concentrations (response variables) and
their potential driving factors (predictive variables) in the urban areas over the QTP. As summarized
in Table 2, predictive variables used in this study include time variables such as year 2015 to 2020,
month 1 to 12, day of the year from 1 to 365, hour of the day from 0 to 23, and meteorological
parameters such as wind, temperature, pressure, cloud fraction, rainfall, vertical transport, radiation
and relative humidity. These time variables were selected as proxies for emissions since pollutant
emissions vary by the time of day, day of the week, and season (Grange et al., 2018).

The detailed descriptions of RF machine learning model can be found in Breiman (Breiman,
2001). Briefly, the RF model is an ensemble model consisting of hundreds of individual decision
tree models. Each individual decision tree model uses a bootstrap aggregating algorithm to
randomly sample response variables and their predictive variables with a replacement from a
training dataset. In this study, a single regression decision tree is grown in different decision rules
based on the best fitting between surface ozone measurements and their predictive variables. The
predictive variables are selected randomly to give the best split for each tree node. The predicted
surface ozone concentrations are given by the final decision as the outcome of the weighted average
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of all individual decision trees. By averaging all predictions from bootstrap samples, the bagging
process decreases variance and thus helps the model to minimize overfitting.

As shown in Figure 2, the whole dataset was randomly divided into (1) a training dataset to
establish the random forest model and (2) a testing dataset (not included in model training) to
evaluate the model performance. The training dataset was randomly selected from 70 % of the whole
data and the remaining 30% was taken as the testing dataset. The hyperparameters for the RF model
in this study were configured following those in Vu et al. (Vu et al., 2019) and Shi et al. (Shi et al.,
2021) and are summarized as follows: the maximum tree of a forest is 300 (n_tree=300), the number
of variables for splitting the decision tree is 4 (mtry=4), and the minimum size of terminal nodes is
3 (min_node size=3). Since the meteorological variables differ in units and magnitudes, which
could lead to unstable performance of the model. Therefore, we uniformized all meteorological
variables via equation (1) before using them in the RF model. This pre-processing procedure can
also speed up the establishment of the RF model.

3.3 Separation of meteorological and anthropologic contributions

In order to separate the contributions of meteorology and anthropologic emission to surface
ozone anomalies in each city over the QTP, we have decoupled meteorology driven anomalies by
using the RF model based meteorological normalization method. The meteorological normalization
method was first introduced by (Grange et al., 2018) and improved by Vu et al. (Vu et al., 2019) and
Shi et al (Shi et al., 2021). To decouple the meteorological influence, we first generated a new input
dataset of predictive variables, which includes original time variables and resampled meteorological
variables (Tsurfaces Uto, Vie, PBLH, CLDT, PRECTOT, OMEGA, SWGDN, QV, TROPH).
Specifically, meteorological variables at a specific selected hour of a particular day in the input
dataset were generated by randomly selecting from the meteorological data during 1980 to 2020 at
that particular hour of different dates within a four-week period (i.e., 2 weeks before and 2 weeks
after that selected date). For example, the new input meteorological data at 18:00, 15 February 2018,
are randomly selected from the meteorological data at 18:00 on any date from 1 to 29 February of
any year during 1980 to 2020. This selection process was repeated 1000 times to generate a final
input dataset. The 1000 meteorological data were then fed to the RF model to predict surface ozone
concentration. The 1000 predicted ozone concentrations were then averaged as equation (4) to
calculate the final meteorological normalized concentration (O3, dew) for that particular hour, day,
and year. This process ensures that all kinds of weather conditions around the measurement time
have been considered in the model predictions, which eliminate the influence of abnormal
meteorological conditions and get concentrations under the averaged meteorological conditions.

03,dew = ﬁzggo 03,i,pred 4)
where 03 ,eq is the surface ozone concentration predicted by using the /™ meteorological data
randomly selected from the meteorological data at the specific selected hour on any date from 1 to
29 February of any year in 1980 to 2020. O3, ¢ew represents surface ozone concentration under the
mean meteorological conditions at the specific selected hour between 1980 to 2020.

If the seasonal variabilities of anthropogenic emission and meteorology are constant over year,
the variability of surface ozone can be exactly reproduced by equation (2), i.e., the annual growth
rate of surface ozone and the fitting residual should be close to zero. But this is not realistic in real
world. Any year-to-year difference in either anthropogenic emission or meteorology could result in
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anomalies. We calculate surface ozone anomalies (O3 gnomaiies) in €ach city over the QTP by
subtracting their seasonal mean values (O3 peqn) from all hourly surface ozone measurements
(03,ingiviauar) through equation (5) (Hakkarainen et al., 2019;Hakkarainen et al., 2016;Mustafa et
al., 2021).
03,anomalies = 03,individual - 03,mean (5)
where O3 eqn in each city are approximated by the seasonality plus the intercept described in
equation (1). As a result, the difference O3 ereo between O3 ingividuar and O3 ey calculated as
equation (6) is the portion of anomalies induced by changes in meteorology. The difference
03 emis between O3 gnomaties ad O3 mereo calculated as equation (7) represents the portion of
anomalies induced by changes in anthropogenic emission.
O3 :meteo = O3ingividual = 03,dew (6)
03,emis = 03,anomalies - 03,meteo (7)
By applying the meteorological normalization method, we finally separate the contributions of
meteorology and anthropogenic emissions to the surface ozone anomalies in each city over the QTP.
Positive O3 meteo and O3 ¢p;s indicate that changes in meteorology and anthropogenic emission
cause surface ozone concentration above their seasonal mean values, respectively. Similarly,
negative O3 meteo aNd O3 i indicate that changes in meteorology and anthropogenic emission

cause surface ozone concentration below their seasonal mean values, respectively.

4. Variabilities of surface ozone over the QTP
4.1 Overall ozone level

Statistical summary and box plot of surface ozone concentration (units: pg/m?) in each city
over the QTP from 2015 to 2020 are presented in Table 3 and Figure S1, respectively. The average
of surface ozone between 2015 and 2020 in each city over the QTP varied over (50.67 +29.57)
ng/m? to (90.38 + 28.83) ug/m’3, and the median value varied over 53.00 ug/m3 to 90.00 ug/m?. In
comparison, the averages of surface ozone between 2015 and 2020 in the Beijing-Tianjin-Hebei
(BTH), the Fenwei Plain (FWP), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) in
densely populated and highly industrialized eastern China were 140.76 ug/m?, 132.16 pug/m?, 125.09
pg/m? and 119.82 pg/m?, respectively. The average of surface ozone between 2011 and 2015 at the
suburb Nam Co station in the southern-central of the QTP was (47.00 £ 12.43) pug/m?® (Yin et al.,
2019b). As a result, surface ozone levels in the urban areas over the QTP are much lower than those
in urban areas in eastern China but higher than those in the suburb areas over the QTP. Among all
cities over the QTP, the highest and lowest surface ozone concentration occurs in Haixi and Aba,
with mean values of (90.38 + 28.83) ug/m?® and (50.67 + 28.83) pg/m?, respectively. Generally,
surface ozone concentrations in Qinghai province are higher than those in Tibet province. We also
presented the percentile variation of surface ozone concentration (units: pg/md) in each city over the
QTP from 2015 to 2020 in Figure S2. The percentile variation modes of surface ozone concentration
in all cities over the QTP are similar. In this study, only mean plus standard variance of surface
0zone concentration rather than its percentile variation in each city was investigated. This prevailing
method has been used in a number of studies to describe the variabilities of atmospheric
compositions over the QTP (Li et al., 2020b;Liu et al., 2021;Ma et al., 2020;Xu et al., 2018;Xu et
al., 2016;Yin et al., 2019¢;Yin et al., 2017).

The ambient air quality standard issued by the Chinese government regularized that the critical
value (Class 1 limit) for the maximum 8-hour average ozone level is 160 pg/m?. With this rule, we
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summarize the number of nonattainment day per year in each city over the QTP in Table 3. The
number of nonattainment day per city and per year over the QTP is only 2 between 2015 and 2020.
Ozone nonattainment events over the QTP typically occur in spring or summer. In comparison, the
number of nonattainment day per city and per year over the BTH, FWP, YRD and PRD are much
larger, with values of 78, 36, 82 and 45 between 2015 and 2020, respectively, and all ozone
nonattainment events over these regions occur in summer. The number of nonattainment day in
Ngari in 2020, Lhasa in 2016 and 2017, Shannan in 2017 and 2018, Haixi in 2015 and 2019, and
Xining in 2017 are 13, 10, 20, 12, 10, 14, 16, and 17 days, respectively. The number of
nonattainment day in all other cities over the QTP are less than 10 days. Especially, surface ozone
concentrations in Aba, Naqu, and Diqing in all years between 2015 and 2020 are less than the Class
1 limit of 160 pug/m?. There are only 1 and 2 nonattainment days in Nyingchi and Qamdo between
2015 and 2020, respectively.

4.2 Diurnal variability

Diurnal cycles of surface ozone in each season and each city over the QTP are presented in
Figure 3. Overall, diurnal cycle of surface ozone in each city over the QTP presents a unimodal
pattern in all seasons. For all cities in all seasons, high levels of surface ozone occur in the daytime
(9:00 to 20:00 LT) and low levels of surface ozone occur in the nighttime (21:00 to 08:00 LT). As
seen from Figure 3, surface ozone levels usually increase over time starting at 8:00 to 11:00 LT in
the morning, reach the maximum values at 15:00 to 18:00 LT in the afternoon, and then decreases
over time till the minimum values at 8:00 or 9:00 LT the next day.

The timings of the diurnal cycles in all cities over the QTP were shifted by 1 to 2 hours later in
winter than those in the rest of the year, most likely due to the later time of sunrise. Yin et al. (2017)
also observed such shift in diurnal cycle at the suburb Nam Co station. The diurnal cycles of surface
ozone in the urban areas over the QTP spanned a large range of —43.73 % to 47.12 % depending on
region, season, and measurement time. The minimum and maximum surface ozone levels in the
urban areas over the QTP varied over (22.89 + 15.55) ug/m? to (68.96 + 18.27) ug/m3and (57.77 +
21.56) pg/m3to (102.08 & 15.14) pg/m?>, respectively. On average, surface ozone levels in the urban
areas over the QTP have mean values of (72.41 + 33.83) ug/m? during the daytime (08:00-19:00)
and (60.89 £ 32.25) ug/m? during the evening (20:00-08:00). The diurnal cycles of surface ozone in
all cities over the QTP are generally consistent with the results reported in eastern China and the
suburb areas over the QTP (Yin et al., 2019b;Yin et al., 2017;Zhao et al., 2016;Shen et al., 2014).

4.3 Seasonal variability

Monthly averaged time series of surface ozone in each city over the QTP between 2015 and
2020 are shown in Figure 4. Surface ozone levels in all cities over the QTP showed pronounced
seasonal features. Seasonal cycles of surface ozone in most cities present a unimodal pattern with a
seasonal peak occurs around March-July and a seasonal trough occurs around October-December.
Specifically, maximum surface ozone levels occur in spring over Diqing, Lhasa, Naqu, Nyingchi,
Qamdo, Shannan, Shigatse, Aba, and occur in summer over Ngari, Xining, Guoluo, and Haixi;
Minimum surface ozone levels in Nyingchi and Diqing occur in autumn, and in other cities occur
in winter. The minimum and maximum surface ozone levels between 2015 and 2020 over the QTP
varied over (29.21 + 19.03) pg/m? to (60.45 £ 31.35) pg/m? and (71.25 +26.53) ng/m3to (112.46 +
28.92) pg/m’, respectively (Table S1). The peak—to—trough contrast in Diqing, Naqu, Nyingchi, and
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Aba were smaller than those in other cities. Due to regional deference in meteorology and
anthropogenic emission, seasonal cycle of surface ozone in the urban areas over the QTP is also
regional dependent.

4.4 Inter-annual variability

The inter-annual variability of surface ozone between 2015 and 2020 in each city over the QTP
fitted by the bootstrap resampling method is presented in Figure 5 and S3, and also summarized in
Table S1. Generally, the measured and fitted surface ozone concentrations in each city over the QTP
are in good agreement with a correlation coefficient (R) of 0.68—0.92 (Figure S4). The measured
features in terms of seasonality and inter-annual variability can be reproduced by the bootstrap
resampling model. However, due to the year-to-year deference in anthropogenic emission and
meteorology, both inter-annual variability and fitting residual were not zero in all cities. The inter-
annual trends in surface ozone level from 2015 to 2020 over the QTP spanned a large range of
(—2.43 £ 0.56) pg/m3-yr! to (7.55 £ 1.61) pg/m?-yr!, indicating a regional representation of each
dataset. The inter-annual trends of surface ozone levels in most cities including Diqing, Naqu, Ngari,
Nyingchi, Shannan, Shigatse, Xining, Abzhou and Haixi showed positive trends. The largest
increasing trends were presented in Diging and Nagri, with values of (5.31 £ 1.28) pg/m3-yr'! and
(7.55 £ 1.61) pg/m3-yr'!, respectively. In contrast, surface ozone levels in Lhasa, Qamdo and Guoluo
presented negative trends, with values of (-1.62 £ 0.76) ug/m?-yr!, (-2.43 £ 0.56) ug/m?-yr'! and (-
2.36 £ 0.81) ug/m3-yr, respectively.

5. Performance evaluation
We evaluate the performance of the RF model in predicting hourly surface ozone level in each
city over the QTP using the metrics of Pearson correlation coefficient (R), the root means square
error (RMSE), and the mean absolute error (MAE). They are commonly used metrics for evaluation
of machine learning model predictions, and are defined as equations (8), (9), and (10), respectively.
R= n Yo Xi¥i=Yizo Xi 2ieo Vi )
(B (R T Y- (v

RMSE = /Z—iﬂ(’z"”)z )

MAE — Zi:l |::i_yi| (10)

where x; and y; are the i concurrent measured and predicted data pairs, respectively. The n is the
number of measurements. The R value represents the fitting correlation between the measurements
and predictions. The RMSE value measures the relative average difference between the
measurements and predictions. The MAE value measures the absolute average difference between
the measurements and predictions. The units of RMSE and MAE are same as the measured data,
namely pg/m’.

Comparisons between the model predictions and measurements for the testing data (not
included in model training) in each city over the QTP are shown in Figure S5. Overall, the RF model
predictions and surface ozone measurements are in good agreements, showing high R and low
RMSE and MAE for testing dataset in each city over the QTP (Figure S5). Depending on cities, the
R values varied over 0.85 to 0.94, the RMSE over 10.24 to 17.55 pg/m?, and MAE over 7.32 to
12.76 pg/m3. The R, RMSE, and MAE are independent of city and surface ozone level. The results

9
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affirm that our model performs very well in predicting surface ozone levels and variabilities in each
city over the QTP.

We further investigate the importance of each input variable in the RF model for predicting
surface ozone level in each city over the QTP. As shown in Figure S6, time information such as hour
term (Hour), year term (Year) or seasonal term (Month) are the most important variables in the RF
model predictions in all cities except Xining and Haixi where temperature term (Tam) is the most
important variable. For all cities, the aggregate importance of time information is larger than 50%.
In all cities over the QTP, the meteorological variables such as temperature (Tom), relatively
humidity (QV), Vertical pressure velocity (OMEGA) and Planetary boundary layer height (PBLH)
play significant roles when explaining surface ozone concentrations. For other variables, although
they are not decisive variables in the RF model predictions, they are not negligible in predicting
surface ozone in all cities over the QTP. Although time information are the most important variables
in the RF model predictions, they can be used very precisely, and thus the RF model to measurement
discrepancy in all cities could be from other predictive variables rather than time information.

6. Drivers of surface ozone anomalies

In this section, we explore the drivers of surface ozone anomalies between 2015 and 2020 over
the QTP. We first present descriptively the contributions of anthropogenic emission and
meteorology to surface ozone anomalies over the QTP in section 6.1 to 6.3, where statistics on
different time scales were summarized. We then present in-depth analysis of each driver in section
6.4.

6.1 Diurnal scale

Figure 6 presents diurnal cycles of surface ozone anomalies between 2015 and 2020 along with
the meteorology-driven and anthropogenic-driven portions in each city over the QTP. In all cities,
the anthropogenic contributions are almost constant but the meteorological contributions show large
variations throughout the day. Depending on region and measurement hour, diurnal surface ozone
anomalies on average varied over -27.82 pg/m?® to 37.11 ug/m? between 2015 and 2020, where
meteorological and anthropogenic contributions varied over -33.88 pg/m? to 35.86 ug/m?3 and -4.32
ng/m? to 4.05 ug/m3, respectively. The least contrast between meteorological contribution and
anthropogenic contribution occurs in Haixi. The diurnal cycles of meteorological contribution are
consistent with those of surface ozone anomalies. High levels of meteorological contribution occur
in the daytime (9:00 to 20:00 LT) and low levels of meteorological contributions occur in the
nighttime. As a result, diurnal surface ozone anomalies in each city over the QTP were mainly driven
by meteorology.

We further investigated the drivers of surface ozone nonattainment events from 2015 to 2020
in each city over the QTP. All ozone nonattainment events were classified as meteorology-
dominated or anthropogenic-dominated events according to which one has a larger contribution to
the observed surface ozone nonattainment events. The statistical results are listed in Table S2.
Except one day in Ngari in 2018, one day in Shigatse in 2016, and one day in Haixi in 2019 which
were dominated by anthropogenic emission, all other surface ozone nonattainment events from 2015
to 2020 over the QTP were dominated by meteorology. Exceptional meteorology driven 97% of
surface ozone nonattainment events from 2015 to 2020 in the urban areas over the QTP. For the

meteorology-dominated surface ozone nonattainment events, meteorological and anthropogenic
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contributions varied over 32.85 ug/m? to 55.61 ug/m?and 3.67 pug/m? to 7.23 pg/m’, respectively.
For the anthropogenic-dominated surface ozone nonattainment events, meteorological and
anthropogenic contributions varied over 7.63 pg/m? to 10.53 pg/m?and 15.63 pg/m? to 35.28 pg/m’,
respectively.

6.2 Seasonal scale

Figure 7 presents seasonal cycles of surface ozone anomalies between 2015 and 2020 along
with the meteorology-driven and anthropogenic-driven portions in each city over the QTP. In all
cities, the monthly averaged surface ozone anomalies between 2015 and 2020 varied with much
smaller amplitudes than their diurnal anomalies. Noticeable anomalies include pronounced positive
anomalies in December in Nagri, in May in Lhasa, Shannan, and Qamdo, in July in Haixi, in June
in Guoluo, and negative anomalies in July in Lhasa, Nyingchi, and Guoluo. Both meteorological
and anthropogenic contributions are regional dependent and show large variations throughout the
year. Depending on region and month, meteorological and anthropogenic contributions varied over
-4.54 ug/m3 to 3.31 pug/m? and -2.67 pg/m? to 3.35 pg/m? between 2015 and 2020, respectively.

Seasonal surface ozone anomalies between 2015 and 2020 in all cities over the QTP were
mainly driven by meteorology. For example, meteorology caused decrements of 3.05 pg/m? in July
and 4.27 ug/m? in September in Diging, while anthropogenic emission caused increments of 0.64
ng/m?® and 1.34 pg/m? in respective months. Aggregately, we observed -2.41 pg/m? and -2.89 pug/m?3
of seasonal surface ozone anomalies in July and September in Ngari, respectively. In all cities,
seasonal cycles of meteorological contribution are more consistent with those of surface ozone
anomalies over the QTP. In some cases, surface ozone anomalies would have larger values if not for
the unfavorable meteorological conditions, e.g., surface ozone anomalies in June in Ngari, in
December in Shannan, Guoluo and Aba.

6.3 Multi-year scale

Annual mean surface ozone anomalies between 2015 and 2020 along with meteorology-driven
and anthropogenic-driven portions in each city over the QTP are presented in Figure 8. Surface
ozone in Diqing, Naqu, Nagri, Haixi and Shannan show larger year to year variations than those in
other cities. Annual mean surface ozone levels in Diging, Naqu, Nagri and Haixi showed significant
reductions of 2.10 pg/m?, 10.32 ug/m?3, 6.87 ug/m3, and 15.97 pug/m?, respectively, Shannan showed
an increment of 9.12 pg/m?, and other cities showed comparable values in 2016 relative to 2015.
The largest year to year difference occurred in Ngari during 2016 to 2017, which has an increment
of 25.25 ug/m?. The results show that anthropogenic contributions decreased by 1.85 pg/m?, 7.14
ng/m?, 5.65 pg/m?, and 15.98 pg/m?, respectively, in Diging, Naqu, Nagri, Haixi, and increased by
11.13 pg/m3 in Shannan in 2016 relative to 2015, and increased by 20.85 pg/m? in Ngari in 2017
relative to 2016. As a result, all above reductions or increments in surface ozone level were mainly
driven by anthropogenic emission. In contrast, surface ozone anomalies in Lhasa in 2017 and 2020,
in Shigatse and Nyingchi in 2019 were mainly driven by meteorology.

Table S3 summarizes the inter-annual trends of surface ozone anomalies, meteorological and
anthropogenic contributions from 2015 to 2020 in each city over the QTP. Except Guoluo, Qamdo
and Lhasa which show decreasing trends, anthropogenic contributions in all other cities showed
increasing trends from 2015 to 2020. With respect to meteorology contribution, Ngari, Naqu, Diqing
and Haixi showed increasing trends from 2015 to 2020 and all other cities showed decreasing trends.

11
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The inter-annual trends of surface ozone anomalies in Ngari, Lhasa, Naqu, Qamdo, Diqing, Haixi
and Guoluo can be attributed to anthropogenic emissions by 95.77%, 96.30%, 97.83%, 82.30%,
99.26%, and 87.85%, and meteorology by 4.23%, 3.70%, 2.17%, 3.19%, 0.74%, and 12.15%,
respectively. The inter-annual trends of surface ozone in other cities were fully driven by
anthropogenic emission, where the increasing inter-annual trends would have larger values if not
for the favorable meteorological conditions. As a result, the inter-annual trends of surface ozone
anomalies in all cities over the QTP were dominated by anthropogenic emission.

6.4 Discussions

Typically, all cities over the QTP are formed at flat valleys with surrounding mountains rising
to more than 5.0 km a.s.l., and keep continuous expansion and development over time. Inhibited by
surrounding mountains, regional dependent emissions and mountain peak-valley meteorological
systems result in regional representation of surface ozone level and their drivers on diurnal, seasonal,
inter-annual scales.

Correlations between O3 eteo and each meteorological anomaly are summarized for all time,
diurnal scale, seasonal scale and multi-year scale in Table S4-S7. We find that all time scales of
meteorology-driven surface ozone anomalies in each city are positively related with anomalies of
temperature, planetary boundary layer height (PBLH), surface incoming shortwave flux (SWGDN),
downward transport velocity at the PBLH (OMEGA), and tropopause height (TROPH). Among all
these positive correlations, the correlations with temperature, PBLH, and SWGDN in all cities are
higher than those with OMEGA and TROPH. Since high temperature and SWGDN facilitate the
formation of ozone via the increase in chemical reaction rates or biogenic emissions, the
meteorology-driven surface ozone anomalies have the highest correlations with the changes in
temperature and SWGDN. Possible reasons for the ozone increases with the increase in PBLH
include lower NO concentration at the urban surface due to the deep vertical mixing, which then
limits ozone destruction and increases ozone concentrations (He et al., 2017), and more downward
transport of ozone from the free troposphere where the ozone concentration is higher than the near-
surface concentration (Sun et al., 2009). Large OMEGA and high tropopause height also facilitate
downward transport of stratospheric ozone, resulting in high surface ozone level. The QTP has been
identified as a hot spot for stratospheric—tropospheric exchange (Cristofanelli et al., 2010;Skerlak
et al., 2014) where the surface ozone is elevated from the baseline during the spring due to frequent
stratospheric intrusions. Generally, surface ozone anomalies are negatively related with humidity,
rainfall, and total cloud fraction in each city over the QTP. These wet meteorological conditions
inhibit biogenic emissions, slow down ozone chemical production, and facilitate the ventilation of
ozone and its precursors (Gong and Liao, 2019;Jiang et al., 2021;Lu et al., 2019a;Lu et al.,
2019b;Ma et al., 2019), and therefore contribute to ozone decrease.

The Uiom and Viom represent the metrics for evaluating the horizontal transport. In most of
cities over QTP, noticeable ozone vs. horizontal wind correlations are observed, indicating that
horizontal transport is an important contributor to surface ozone (Shen et al., 2014;Zhu et al., 2004).
The QTP region, as a whole, is primarily regulated by the interplay of the Indian summer monsoon
and the westerlies, and the atmospheric environment over QTP is heterogeneous. Mount Everest is
representative of the Himalayas on the southern edge of the Tibetan Plateau and is close to South
Asia where anthropogenic atmospheric pollution has been increasingly recognized as disturbing the
high mountain regions (Decesari et al., 2010;Maione et al., 2011;Putero et al., 2014). In the northern
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QTP, including Xining, Haixi and Guoluo, is occasionally influenced by regional polluted air masses
(Xue et al., 2011;Zhu et al., 2004), especially, the impacts of anthropogenic emissions from central
and eastern China in the summer (Xue et al., 2011). For cities over the inland QTP, is distant from
both South Asia and northwestern China; it has been found to be influenced by episodic long-range
transport of air pollution from South Asia (Liithi et al., 2015), evidenced by the study of aerosol and
precipitation chemistry at these cities (Cong et al., 2010).

In order to determine which specific meteorological variables responsible for the meteorology-
dominated ozone nonattainment events over the QTP, we have investigated the correlations between
each meteorological variable and ozone anomalies in each city during the ozone nonattainment days.
As tabulated in Table S8, temperature is the dominant meteorological variable responsible for the
meteorology-dominated ozone nonattainment events, especially in Shigatse, Lhasa, Shannan, Haixi
and Guoluo. In addition, the OMEGA is also an important meteorological variable in most cities,
especially in Guoluo where the correlation is up to 0.69. For other meteorological variables, winds
(U10m, V10m) and TROPH also have noticeable contributions to some ozone nonattainment events.

The NOx and VOCs are main precursors of surface ozone. The monthly and annual averaged
anthropogenic emissions of NOx and VOCs in each city over the QTP extracted from the MEIC
(Multi-resolution Emission Inventory for China) inventory between 2015 andte 2017 are presented
in Table S9-S12. Major anthropogenic emissions in each city over the QTP are from transport sector
and residential sector including burning emissions of coal, post-harvest crop residue, yak dung and
religious incense (Chen et al., 2009;Kang et al., 2016;Kang et al., 2019;Li et al., 2017). The NOy
and VOCs emissions have been decreased in Diqing, Naqu, Nagri in 2016 relative to 2015. These
reductions of NOx and VOCs emissions jointly driven the changes of ozone in these cities. Although
NOx emissions increased in Haixi during 2015 to 2016, VOCs emissions have significantly
decreased by 6.82 t. As a result, the decreases of ozone in Haixi in 2016 relative to 2015 were
attributed to VOCs reductions in the same period.

The correlations of the monthly and annual averaged anthropogenic contributions against the
NOx and VOCs emissions are summarized in Table S13. The correlations of the monthly averaged
anthropogenic contributions against anthropogenic NOy and VOCs emissions are in the range of
0.35-0.81 and 0.33-0.83, respectively. For the annual averaged statistics, the correlations against
NOx and VOCs emissions are in the range of 0.15-0.94 (expect for Nyingchi and Diging), and 0.34-
0.98 (expect for Haixi), respectively. For all cities except Shannan, Qamdo and Haixi, both the NOx
and VOCs emissions are consistent with the anthropogenic contributions. While only NOx emissions
in Qamdo and Haixi and VOCs emissions in Shannan are consistent with anthropogenic
contributions. In general, the changes of NOx and VOCs emissions in MEIC inventory are able to
explain the variabilities of both monthly and annual averaged anthropogenic contributions.

7. Conclusions

In this study, we have investigated the evolutions, implications, and the drivers of surface ozone
anomalies (defined as deviations of ozone levels relative to their seasonal means) between 2015 and
2020 in the urban areas over the QTP. Diurnal, seasonal, and inter annual variabilities of surface
ozone in 12 cities over the QTP are analyzed. The average of surface ozone between 2015 and 2020
in each city over the QTP varied over (50.67 £29.57) pg/m? to (90.38 + 28.83) pg/m?, and the median
value varied over 53.00 pg/m?to 90.00 pg/m?3. Overall, diurnal cycle of surface ozone in each city
over the QTP presents a unimodal pattern in all seasons. For all cities in all seasons, high levels of
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surface ozone occur in the daytime (9:00 to 20:00 LT) and low levels of surface ozone occur in the
nighttime (21:00 to 08:00 LT). Seasonal cycles of surface ozone in most cities present a unimodal
pattern with a seasonal peak occurs around March-July and a seasonal trough occurs around
October-December. The inter-annual trends in surface ozone level from 2015 to 2020 over the QTP
spanned a large range of (—2.43 £ 0.56) pg/m?-yr! to (7.55 = 1.61) pg/m?-yr’!, indicating a regional
representation of each dataset.

We have established a RF regression model to describe the relationships between hourly
surface ozone concentrations (response variables) and their potential driving factors (predictive
variables) in the urban areas over the QTP. The RF model predictions and surface ozone
measurements are in good agreement, showing high R and low RMSE and MAE in each city over
the QTP. Depending on cities, the R values varied over 0.85 to 0.94, the RMSE over 10.24 to 17.55
ug/m?, and MAE over 7.32 to 12.76 pug/m?. The R, RMSE, and MAE are independent of city and
surface ozone level. The results affirm that our model performs very well in predicting surface ozone
levels and variabilities in each city over the QTP.

We have separated quantitatively the contributions of anthropogenic emission and meteorology
to surface ozone anomalies by using the RF model based meteorological normalization method.
Diurnal and seasonal surface ozone anomalies over the QTP were mainly driven by meteorology,
and inter-annual anomalies were mainly driven by anthropogenic emission. Depending on region
and measurement hour, diurnal surface ozone anomalies varied over -30.55 pg/m?3 to 34.01 pg/m?
between 2015 and 2020, where meteorological and anthropogenic contributions varied over -20.08
ug/m? to 48.73 ug/m3and -27.18 pg/m? to 1.92 pg/m?, respectively. Unfavorable meteorology driven
97% of surface ozone nonattainment events between 2015 and 2020 in the urban areas over the QTP.
Monthly averaged surface ozone anomalies varied with much smaller amplitudes than their diurnal
anomalies, where meteorological and anthropogenic contributions varied over 7.63 pug/m? to 55.61
pg/m?® and 3.67 ug/m? to 35.28 pg/m? between 2015 and 2020, respectively. The inter-annual trends
of surface ozone anomalies in Ngari, Lhasa, Naqu, Qamdo, Diqing, Haixi and Guoluo can be
attributed to anthropogenic emissions by 95.77%, 96.30%, 97.83%, 82.30%, 99.26%, and 87.85%,
and meteorology by 4.23%, 3.70%, 2.17%, 3.19%, 0.74%, and 12.15%, respectively. The inter-
annual trends of surface ozone anomalies in other cities were fully driven by anthropogenic emission,
where the increasing inter-annual trends would have larger values if not for the favorable
meteorological conditions. This study can not only improve our knowledge with respect to
spatiotemporal variability of surface ozone but also provides valuable implication for ozone
mitigation over the QTP.
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Figure 1. Geolocations of each city over the Qinghai-Tibet Plateau (QTP). The base map of the
figure was created using the Basemap package in Python.
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Figure 5. Inter-annual trends of surface ozone levels between 2015 and 2020 in the urban areas over

the QTP. Blue dots are the monthly averaged surface ozone measurements. The seasonality and

inter-annual variability in each city fitted by using a bootstrap resampling model with a second

Fourier series (red dots) plus a linear function (black line) is also shown.
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Figure 6. Diurnal cycles of surface ozone anomalies (O3 gnomaiies- blue dots and lines) along with
the meteorology-driven portions (O3 meteo, red dots and lines) and the anthropogenic-driven
portions (O3 ¢m;s, black dots and lines) in each city over the QTP. Bold curves and the shadows are

diurnal cycles and the 16 standard variations, respectively.
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Figure 7. Seasonal cycles of surface ozone anomalies (O3 gnomaries> blue dots and lines) along with
the meteorology-driven portions (O3 meteo, red dots and lines) and the anthropogenic-driven
portions (O3 ¢m;s, black dots and lines) in each city over the QTP. Bold curves and the shadows are

monthly mean values and the 1o standard variations, respectively.
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Figure 8. Annual mean surface ozone anomalies (O3 gnomaiies> lue dots and lines) along with
meteorology-driven portions (O3 meteo, red dots and lines) and anthropogenic-driven portions
(03 emis»> black dots and lines) in each city over the QTP. Bold curves and the shadows are annual

mean values and the 1o standard variations, respectively.
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Table 1. Geolocations of each city over the QTP. Population statistics are available from the 2020
nationwide population census issued by National Bureau of Statistics of China.

Name Latitude Longitude Number of Altitude Population Area
site (km) (million) (Thousand km?)
Ngari 32.5°N 80.1°E 2 4.5 0.12 345.0
Shigatse 29.3°N 88.9°E 3 4.0 0.80 182.0
Lhasa 29.7°N 91.1°E 6 3.7 0.87 31.7
Shannan 29.2°N 91.8°E 2 3.7 0.35 79.3
Naqu 31.5°N 92.1°E 3 4.5 0.50 430.0
Nyingchi 29.6°N 94.4°E 2 3.1 0.23 117.0
Qamdo 31.1°N 97.2°E 3 34 0.76 110.0
Diqing 27.8°N 99.7°E 2 35 0.39 23.9
Haixi 37.4°N 97.4°E 1 4.8 0.47 325.8
Guoluo 34.5°N 100.3°E 1 43 0.21 76.4
Xining 36.6°N 101.7°E 5 2.3 2.47 7.7
Aba 32.9°N 101.7°E 3 3.8 0.82 84.2
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Table 2. List of predictive variables fed into the RF model.

Parameters Description Unit
Meteorological variables by MERRA-2 dataset
Tsurface Surface air temperature °C
Ulom zonal wind at 10 m height m/s
Viom meridional wind at 10 m height m/s
PBLH Planetary boundary layer height m
CLDT Total cloud area fraction unitless
PRECTOT Total Precipitation kg-m?/s
OMEGA Vertical pressure velocity at PBLH Pa/s
SWGDN Surface incoming shortwave flux W/m?
Qv Specific humidity at 2 m height kg/kg
TROPT Tropospheric layer pressure Pa
Time information
Year Year since 2015 /
Month Month of the year /
day Day of the month /
Hour Hour of the day /
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Table 3. Statistical summary of surface ozone concentration (units: pg/m?) in each city over the
QTP from 2015 to 2020.

City Mean Standard Median The number of nonattainment day
deviation 2015 2016 2017 2018 2019 2020

Ngari 74.18 34.26 73.50 0 0 8 9 1 13
Shigatse 79.25 31.62 82.00 0 5 0 5 5 2
Lhasa 77.90 32.63 78.67 10 20 2 5 0 0
Shannan 77.55 30.75 78.00 0 2 12 10 2 3
Naqu 52.43 26.27 53.00 0 0 0 0 0 0
Nyingchi  67.30 28.30 68.00 0 0 1 0 0 0
Qamdo 64.23 31.47 62.00 0 2 0 0 0 0
Diqing 57.50 27.64 54.50 0 0 0 0 0 0
Haixi 90.38 28.83 90.00 14 0 0 0 16 2
Guoluo 82.98 33.29 86.00 0 3 3 0 0
Xining 63.50 36.02 60.00 0 2 17 6 3 3
Aba 50.67 29.57 47.00 0 0 0 0 0 0
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