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Abstract: Understanding aerosol particle activation is essential for evaluating aerosol 14 

indirect effects (AIEs) on climate. Long-term measurements on of aerosol particle 15 

activation help to understand the AIEs and narrow down the uncertainties of AIEs 16 

simulation; . Hhowever, they are still scarce. In this study, more than 4-year aerosol 17 

comprehensive measurements were utilized at the central European research station 18 

Melpitz, Germany, to gain insight into the aerosol particle activation and provide 19 

recommendations on improving the prediction of number concentration of cloud 20 

condensation nuclei (CCN, NCCN). As supersaturation (SS) increases from 0.1% to 0.7%, 21 

the median NCCN increases from 399 to 2144 cm-3, which represents 10% to 48% of the 22 

total particle number concentration with a diameter range of 10 – 800 nm, while the 23 

median hygroscopicity factor () and critical diameter (Dc) decrease from 0.27 to 0.19 24 

and from 176 to 54 nm, respectively. Aerosol particle activation is highly variable 25 

across seasons, especially at low SS conditions. At SS = 0.1%, the median NCCN and 26 
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activation ratio (AR) in winter are 1.6 and 2.3 times higher than the summer values, 27 

respectively. Both  and the mixing state are size dependent. As the particle diameter 28 

(Dp) increases,  increases at Dp of ~40 to 100 nm and almost stays constant at Dp of 29 

100 to 200 nm, whereas the degree of the external mixture keeps decreasing at Dp of 30 

~40 to 200 nm. The relationships of  vs. Dp and degree of mixing vs. Dp were both 31 

fitted well by a power-law function. Size-resolved  improves the NCCN prediction. We 32 

recommend applying the  - Dp power-law fit for NCCN prediction at Melpitz, which 33 

performs better than using the constant  of 0.3 and the  derived from particle chemical 34 

compositions and much better than using the NCCN (AR) vs. SS relationships. The  - 35 

Dp power-law fit measured at Melpitz could be applied to predict NCCN for other rural 36 

regions. For the purpose of improving the prediction of NCCN, long-term monodisperse 37 

CCN measurements are still needed to obtain the  - Dp relationships for different 38 

regions and their seasonal variations.The overall characteristics of aerosol particle 39 

activation at Melpitz are first summarized. For supersaturation (SS) levels of 0.1%, 40 

0.2%, 0.3%, 0.5%, and 0.7%, the mean cloud condensation nuclei (CCN) number 41 

concentration (NCCN) increases with the increase of SS from 513 to 2477 cm-3, which 42 

represents 11% to 52% of the total particle number concentration with diameter ranging 43 

from 10 to 800 nm, while the hygroscopicity factor () and the critical diameter (Dc) 44 

decrease from 0.28±0.08 (mean value ± one standard deviation) to 0.20±0.09 and 45 

from 177±19 to 54±8 nm, respectively. Aerosol particle activation is highly variable 46 

across seasons, especially at low SS conditions. At SS = 0.1%, the seasonal mean NCCN 47 

is 681 cm-3 in winter, which is almost twice higher than the summer value (347 cm-3); 48 

the seasonal mean activation ratio (AR) in winter (0.18) is three times higher than the 49 

summer one. Subsequently, size dependency of both  and the state of mixing were 50 
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investigated. As the particle diameter (Dp) increases,  increases at Dp of ~40 to 100 nm 51 

and almost stays constant at Dp of 100 to 200 nm, whereas the degree of the external 52 

mixture keeps decreasing at Dp of ~40 to 200 nm. The relationships of  vs. Dp and 53 

mixture degree vs. Dp were both fitted well by the power-law function for each season. 54 

Finally, we recommend applying the  - Dp power-law fit for NCCN prediction, which 55 

can narrow down the median uncertainty within 10% for different SS conditions and 56 

seasons at Melpitz; it also could be applied to predict NCCN at other rural and continental 57 

regions with a similar aerosol background. Additionally, the mean  value over Dp of 58 

100 to 200 nm also works well on the NCCN prediction when SS is less than 0.2%. 59 

1. Introduction  60 

The specific subset of aerosol particles that serves as nuclei for the condensation 61 

of water vapor, forming cloud droplets at a given supersaturation (SS) condition, is 62 

known as cloud condensation nuclei (CCN). Aerosol particle activation affects the 63 

aerosol and cloud interactions (ACI), thereby changing the cloud microstructure (Zhao 64 

et al., 2012; Jia et al., 2019; Wang et al., 2019), precipitation (Khain, 2009; Wang et al., 65 

2011; Fan et al., 2012, 2018), radiation (Twomey, 1974, 1977; Albrecht, 1989; Zhao 66 

and Garrett, 2015), and by these effects the global climate (Ramanathan et al., 2001; 67 

Rosenfeld et al., 2019). The latest sixth assessment report from IPCC (2021) pointed 68 

out that aerosol indirect effects (AIEs) remain the most considerable uncertainty in 69 

assessing the anthropogenic contribution to present and future climate change.  70 

The ambient SS and aerosol activation ability are both important for predicting the 71 

number concentration of activated cloud droplets. The classical Köhler theory (Köhler, 72 

1936), combining the Raoult law with the Kelvin effect, illustrates that the aerosol 73 

particle activation depends on particle size, chemical composition and the given SS. 74 

Petters and Kreidenweis (2007) parameterized the Raoult term with a single 75 
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hygroscopicity factor κ to capture the water activity without needing to know anything 76 

about the dissolved compounds.Petters and Kreidenweis (2007) utilized a single 77 

hygroscopicity factor κ to describe the CCN activity at each particle diameter (Dp), 78 

which facilitates studying the activation process without considering the complex 79 

chemical compositions of aerosol particles (McFiggans et al., 2006).  Different 80 

perspectives have been presented on the influence of particle size and composition on 81 

the CCN activation. In terms of a single aerosol particle, the actual particle size plays a 82 

more important role than the chemical composition for activation because of the 83 

different range in which κ and particle diameter (Dp) vary and the reciprocal relationship 84 

between κ and the third power of the critical Dp (Dc
3)Dp

3 at a given SS. As for a 85 

population of aerosol particles, Dusek et al. (2006) concluded that particle number size 86 

distribution (PNSD) matters more than the chemical composition distribution, which 87 

has been supported by many experiments. Even sometimes, assuming a constant κ still 88 

predicted CCN number concentration (NCCN) well (e.g., Sihto et al., 2011; Wang et al., 89 

2018a). Andreae and Rosenfeld (2008) reviewed the previous studies on aerosol particle 90 

activation and recommended that for modeling purposes, the global κ values of 0.3±0.1 91 

and 0.7±0.2 can be representative for continental and marine aerosol, respectively, 92 

which has been widely used to predict NCCN. The regional variability should be 93 

underlined emphasized because the mean κ measured in urban, rural, and forest exhibits 94 

significant differences. For instance, Sihto et al. (2011) suggested an average κ of 0.18 95 

to predict the CCN activation well in boreal forest conditions in Hyytiälä, Finland; . a 96 

A fixed κ of 0.31 suffices to calculate the NCCN in a suburban site located in the center 97 

of the North China Plain (Wang et al., 2018a); ). the The mean κ is 0.5 in a near-coast 98 

background station (CESAR Tower) in Netherlands (Schmale et al., 2018).; the The 99 

median κ ranges from 0.02 to 0.16 at SS = 0.1−1.0% in an urban background site in 100 
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Budapest, Hungary (Salma et al., 2021). Therefore, the assumption of a constant κ = 101 

0.3 may not be appropriate when trying to predict NCCN for different continental regions. 102 

Additionally, some experiments, especially conducted on more diverse particulate 103 

sources, have indicated chemistry does play an important role in NCCN variability (e.g., 104 

Nenes et al., 2002; Petters and Kreidenweis, 2007; Rose et al., 2010). Not only the bulk 105 

chemical composition with a constant κ should be considered for NCCN prediction, but 106 

the size-resolved chemical composition (Deng et al., 2011; Wu et al., 2016) and the 107 

mixing state should be applied (Su et al., 2010; Zhang et al., 2014). Information on the 108 

organic aerosol fraction improves NCCN prediction considerably (Poulain et al., 2010; 109 

Zhang et al., 2016; Kuang et al., 2020). Freshly formed particles are about 1 nm in 110 

diameter (Kulmala et al., 2012); they, which must grow to tens of nanometers in 111 

diameter to serve as the effective CCN at a relatively high SS of ~1% (Dusek et al., 112 

2006) and even larger than 200 nm to be efficient at SS less than 0.1% (Deng et al., 113 

2013). Aerosol chemical composition changes during the growing and aging processes. 114 

For instance,  increases with particle size caused by photochemical processes which 115 

enhancing secondary inorganic species formation and going along with an increase in 116 

particle size (Massling et al., 2009; Zhang et al., 2017; Wang et al., 2018b). On the other 117 

hand, in sulfate dominated new particle formation (NPF) events with subsequent 118 

particle growth by condensation of organic vapors, the  of small particles may exceed 119 

the  of the larger ones (Wang et al., 2018a). If the κ of organic aerosol increases from 120 

0.05 to 0.15, the global average aerosol radiative forcing would decrease by ~1 W m−2, 121 

which is in the same order of magnitude as the overall climate forcing of anthropogenic 122 

aerosol during the industrialization period (Rastak et al., 2017).  123 

To obtain the regional parameters of aerosol particle activation, extensive field 124 

campaigns have been conducted worldwide. Besides the significant difference in spatial, 125 
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also the temporal variations of aerosol activation characteristics are essential for NCCN 126 

prediction (Andreae and Rosenfeld, 2008). Most of the observations lasted 1–2 months 127 

or even less; , they mainly focused focusing on the effects of short-term weather 128 

processes or pollution events on aerosol particle activation, such as the effects of the 129 

summer monsoon (Jayachandran et al., 2020), wet removal (Croft et al., 2009), NPF 130 

events (Dusek et al., 2010; Wu et al., 2015), biomass burning (Rose et al., 2010), and 131 

aerosol particle aging as well as oxidation processes (Zhang et al., 2016, 2017). The 132 

long-term CCN measurements (of at least one full year) are still rarely reported, 133 

resulting in insufficient knowledge concerning the seasonal and annual cycles of 134 

aerosol particle activation, which are also critical for model predictions and evaluations. 135 

Burkart et al. (2011) reported the particle activation in the urban background aerosol of 136 

Vienna, Austria, based on 11-month aerosol and CCN concentration measurements. 137 

Paramonov et al. (2015) reported a synthesis of CCN measurements within the 138 

EUCAARI network using the long-term data collected at 14 locations. Pöhlker et al. 139 

(2016) presented the climatology of CCN properties of a remote central Amazonian rain 140 

forest site using 1-year measurements. Che et al. (2017) provided the aerosol-activation 141 

properties in the Yangtze River Delta, China, based on ~1-year measurements. Using 142 

the long-term (of most > 1 year) aerosol and CCN concentration measurements from 143 

12 sites, Schmale et al. (2018) presented the spatial differences in aerosol particle 144 

activation for various regional backgrounds. However, systematic studies focusing on 145 

the seasonal cycle of size-resolved particle activation and respective CCN predictions 146 

are still scarce in the central European continent. Such a study would be of great help 147 

for understanding ACI and narrowing down the regional uncertainties in climate 148 

predictions. 149 



 7 / 73 

 

In this investigation, more than 4-year comprehensive measurements of aerosol 150 

physical, chemical, and activation properties collected at the ACTRIS (Aerosol, Clouds 151 

and Trace Gases Research Infrastructure, http://www.actris.eu/) site Melpitz, Germany, 152 

are utilized. The major objective is to gain insight into the aerosol particle activation 153 

and provide recommendations on methods for NCCN predictions. We present therefore 154 

the long-term observations and seasonal cycles of various particle activation variables 155 

such as CCN number size distribution, NCCN, activation ratio, critical diameter, size-156 

resolved  and mixing state degree. Furthermore, we evaluated the accuracy of NCCN 157 

calculated from five different activation schemes and finally provide recommendations 158 

to use a power-law based parameterization for the dependence of  on particles diameter 159 

for long-termon NCCN prediction at Melpitz and for other rural regions with a similar 160 

aerosol background condition. 161 

2. Methodology 162 

2.1 Experiment details 163 

Atmospheric aerosol measurements were conducted at the Melpitz observatory 164 

(51.54°N, 12.93°E, 86 m above sea level), 50 km to the northeast of Leipzig, Germany. 165 

The aerosol particles observed at Melpitz can be regarded as representative for the 166 

central European rural background conditions (Birmili et al., 2009). The surroundings 167 

of the site are mostly pastures and forests without significant sources of anthropogenic 168 

emissions. More detailed descriptions of the Melpitz site can be found in, for example, 169 

in Poulain et al. (2020). 170 

This study focuses on the physicochemical properties and the activation ability of 171 

aerosol particles using the data collected at Melpitz from August 2012 to October 2016. 172 

Figure 1 demonstrates shows the experimental setup. All instruments were in the same 173 

container laboratory and utilized the same air inlet. Ambient aerosol particles were first 174 
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pretreated through a PM10 Anderson inlet and an automatic aerosol diffusion dryer kept 175 

the relative humidity in sampling lines at a relative humidity less than 40% (Tuch et al., 176 

2009) following the ACTRIS recommendations. Subsequently, the aerosol flow was 177 

divided into the different instruments using an isokinetic splitter. Particle number size 178 

distributions (PNSD) were measured using a Dual-mobility particle size spectrometer 179 

(D-MPSS, TROPOS-type; Birmili et al., 1999; Wiedensohler et al., 2012) within the a 180 

diameter ranging range from of 5 –to 800 nm. An aerosol chemical speciationspecies 181 

monitor (ACSM, Aerodyne Inc; Ng et al., 2011) was used to measure the chemical 182 

compositions of the near-PM1 non-refractory submicron aerosol particulate 183 

matterparticles (nitrate, sulfate, chloride, ammonium, and organics). A multi-angle 184 

absorption photometer (MAAP, model 5012, Thermo Scientific; Petzold and 185 

Schönlinner, 2004) was used to measure the particle light absorption coefficients and 186 

to estimate the equivalent black carbon (eBC) mass concentration. For simultaneous 187 

measurement of particle and CCN number size distributions, dried aerosol particles 188 

were passed through the bipolar charger to establish charge equilibrium (Wiedensohler, 189 

1988) and then through a differential mobility analyzer (DMA) for selecting a 190 

monodisperse particle fraction; . after After the DMA, the flow was divided into two 191 

parts, respectivelysplit to passed through a condensation particle counter (CPC, model 192 

3010, TSI) to measure the total number concentration of the selected monodisperse 193 

condensation nuclei (NCN) and through a cloud condensation nuclei counter (CCNC, 194 

model 100, Droplet Measurement Technologies; Roberts and Nenes, 2005) to measure 195 

the NCCN. Thus, the size dependent activated fraction (AF, NCCN/NCN) curve, i.e., the AF 196 

at a certain diameter (Dp) of dry particles, could be obtained. The losses in both 197 

instruments were checked and it was corrected for in the inversion routine. The coupling 198 

between size selection and CCNC was programmed in a way that the size resolved 199 
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measurements started only after the temperature and thereby the SS of the CCNC was 200 

stabilized. As the diameter scan started after SS stabilization, the measurement itself 201 

was the same length at all SS conditions. At fully stabilized CCNC conditions we did 202 

one Dp scan at per SS setting. A total of five different SS conditions was set in the CCNC 203 

instrument (0.1%, 0.2%, 0.3%, 0.5%, and 0.7%). A complete SS cycle lasted ~2.5 hours.  204 

and the slight variations in the 2.5h total SS cycle was only due to the waiting time until 205 

the temperature of the CCNC was stabilized. 206 

All the instrumentation was frequently calibrated within the framework of the 207 

European Center for Aerosol Calibration (ECAC, https://www.actris-ecac.eu/). The 208 

ACSM was regularly calibrated according to the manufacturer’s recommendations with 209 

350 nm monodispersed ammonium nitrate and ammonium sulfate particles (Freney et 210 

al., 2019). The D-MPSS was calibrated following the recommendations in 211 

Wiedensohler et al. (2018). Throughout the campaign, the CCNC was regularly 212 

calibrated once a year following the procedures outlined in Rose et al. (2008) with using 213 

the E-AIM model (Clegg et al. 1998). The measurement uncertainties of these 214 

instruments should be noted. The uncertainty in the MAAP is within 10% (Müller et al., 215 

2011), and those in the D-MPSS and CCNC are both on the order of 10% (Wiedensohler 216 

et al., 2018; Rose et al., 2008). For the SS setting in CCNC, Gysel and Stratmann (2013) 217 

pointed out that an achievable accuracy in SS is 10 % (relative) at SS > 0.2%, and less 218 

than 0.02 % (absolute) at the lower SS. For the ACSM data, the uncertainty in 219 

determining the total non-refractory mass is 9%.; Wwhile for the individual chemical 220 

components, the uncertaintyit is 15% for nitrate, 28% for sulfate, 36% for ammonium, 221 

and 19% for organic matter (Crenn et al., 2015). 222 

Due to instrument failures and maintenance operations, missing measurements 223 

occurred during the campaign. Effective data coverage is shown in Figure S1 in 224 
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Supporting Information (SI)in Figure 2. Overall, the CCNC, D-MPSS, and ACSM-225 

MAAP captured 45578 AF curves, 103052 PNSDs, and 26876-hour aerosol chemical 226 

measurements, which covered 63%, 92%, and 77% of the campaign time, respectively. 227 

For 42% of the time all these instruments were measuring together. 228 

2.2 Methods 229 

Each AF curve (NCCN/NCN vs. Dp) was firstly corrected for multiply charged 230 

particles. Multiply (mostly doubly) charged particles appear in the AF curve as a plateau 231 

or shoulder at small diameters because they have the same electrical mobility diameter 232 

as singly charged smaller particles ; thus, they are falsely selected in the DMA (Rose et 233 

al., 2008; Henning et al., 2014). To correct for this, the fraction of multiple charged 234 

particles as determined from the D-MPSS measurements was subtracted from each 235 

value of NCCN/NCN in AF.For this was corrected by subtracting the multiply charged 236 

particle fraction as determined from the D-MPSS measurements from each value of 237 

NCCN/NCN in AF. The PNSD from the D-MPSS measurements (5 to 800 nm) are needed 238 

as the DMA-CCNC size range does not cover the large particle fraction, which is 239 

essential for the correction. Subsequently, we obtained the corrected AF curves.  240 

Each corrected AF curve was fitted with a sigmoid function, 241 

𝐴𝐹 = a + b/ (1 + exp⁡(−
𝐷𝑝 − 𝐷𝑐

𝜎𝑠
)) (1) 

where a is the offset from 0 in the y direction and b is the height of the upper plateau of 242 

the sigmoidal function, Dc is the critical diameter, and s is a measure for the width of 243 

the sigmoid function.where a and b are the lower and upper limits for calculating critical 244 

diameters (Dc) at the set-nominal SS, and s is a measure for the width of the sigmoid 245 

function. This AF fit was multiplied with the PNSD to gain the CCN number size 246 

distribution and by integrating the total number of CCN, i.e., NCCN. 247 
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The critical diameter (Dc) of dry particles, , and mixing state at each SS condition 248 

can be derived from the AF fit results. Affected by aerosol mixing, the AF rises 249 

gradually from 0 to the max (~1) rather than displaying an intermittent mutation. Dc is 250 

defined as the diameter of the dry particles from which 50% of the particles are activated 251 

at the given SS.  252 

The shape of the AF curve, i.e., the relative width of the AF, represents the degree 253 

of external mixture, which can be quantified by the ratio of (D75 − D25)/Dc (Jurányi et 254 

al., 2013). D75 and D25 are the diameters at which 75% and 25% of the particles are 255 

activated at the given SS. Internal mixture implies that all particles with any given  256 

equal dry size have equal  with (D75 − D25)/Dc = 0, whereas a distribution of different 257 

 at a given particle size can be observed for externally mixed aerosol with higher (D75 258 

− D25)/Dc values. Note that the particle composition varying at different sizes is not 259 

defined as external mixing in this study. Jurányi et al. (2013) confirmed the reliability 260 

of this approach by comparing the  distributions derived from parallel monodisperse 261 

CCN measurements and HTDMA measurements.  262 

According to the derivation of  -Köhler theory (Petters and Kreidenweis, 2007), 263 

the  can be calculated from Dc at a given SS: 264 

𝜅 =
4𝐴3

27𝐷𝑐
3ln⁡2(1 + 𝑆𝑆/100)

 (2a) 

with 265 

𝐴 =
4𝜎s/a𝑀𝑤

𝑅𝑇𝜌𝑤
 (2b) 

where s/a is the droplet surface tension (assumed to be that of pure water, 0.0728 Nm−2), 266 

Mw the molecular weight of water, R the universal gas constant, T the absolute 267 

temperature, w the density of water, and A can be considered a function of T. Thus, the 268 
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size-resolved  (pair of  and Dc) can be obtained at each SS cycle. Our monodisperse 269 

CCN measurements provide the size-resolved  within Dp (Dc) of ~40−200 nm, which 270 

depends largely on the SS setting of 0.1% to 0.7%. Note that equation 2a is an 271 

approximation of  -Köhler equation and when  is less than 0.2, it causes a slight bias 272 

in calculating  (Petters and Kreidenweis, 2007). Additionally, the debate about the 273 

importance of s/a changes and the connected bulk/surface partitioning on activation of 274 

aerosols is on ongoing (e.g., Ovadnevaite et al., 2017; Vepsäläinen et al., 2022), which 275 

is not focused on in this study. 276 

Besides deriving it from the monodisperse CCN measurements,  can be 277 

determined derived from the ACSM and MAAP chemical composition measurements 278 

(chem) using the Zdanovskii–Stokes–Robinson (ZSR) mixing rule (Zdanovskii, 1948; 279 

Stokes and Robinson, 1966) combined with -Köhler theory: 280 

𝜅𝑐ℎ𝑒𝑚 =⁡∑𝜀𝑖𝜅𝑖
𝑖

 (3) 

where i and i mean the  and volume fraction for each component, respectively, and 281 

i is the number of the component in the mixture. The i was derived from its measured 282 

component i mass concentration and density (i). A simple ion-pairing scheme (Gysel 283 

et al., 2007) was used in this study with the i and i values listed in Table 1 (Wu et al., 284 

2015). Note that aA  of 0.1 is used for particulate organics (Dusek et al., 2010; Gunthe 285 

et al., 2009, 2011).; Ffor black carbon, we use a  of 0 (Rose et al., 2011; Schmale et 286 

al., 2018). 287 

The CCN number size distribution is a part of the particle number size distribution 288 

(PNSD), which approximately corresponds to the part of PNSD with Dp > Dc when 289 

assuming particles to be internally mixed (Figure S2 in SI). The assumption of the 290 

internal mixing could be reasonable because the median values of the parameter b and 291 
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(D75 − D25)/Dc are 1.0 and 0.18. Thus, Dc plays a critical role on diagnosing NCCN in 292 

models, which can be derived from  parameterization at a given SS. When  is obtained, 293 

Dc(, SS) is calculated from equation 2a. When  is given, we can predict the NCCN at 294 

each SS. Thereto, Dc(, SS) is calculated from equation 2a. And, assuming an internal 295 

mixture, the predicted NCCN is the integration of the PNSD from Dc, that is, 296 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝑁𝐶𝐶𝑁 = ∫ 𝑃𝑁𝑆𝐷(𝐷𝑝)𝑑𝐷𝑝

800

𝐷𝑐

 (4) 

3. Results 297 

3.1 Aerosol activation characteristics  298 

As SS increases, the CCN number size distribution broadens towards smaller 299 

particle sizes (Figure S3 in SI), causing an increase in NCCN and activation ratio (AR, 300 

i.e., ratio of NCCN to total aerosol number concentration with a diameter range of 10 to 301 

800 nm, Naero). At Melpitz, the median NCCN and AR increases from 399 to 2144 cm-3 302 

and 0.10 to 0.48 when SS increases from 0.1% to 0.7%. As shown in Figure 2, the NCCN 303 

measured at Melpitz is slightly higher than that measured in more remote rural 304 

background stations, e.g., in Vavihill, Sweden (Fors et al., 2011), Hyytiälä, Finland 305 

(Paramonov et al., 2015), Southern Great Plains, USA (Liu and Li, 2014), 306 

Mahabaleshwar, India (Singla et al., 2017). However, compared to the NCCN measured 307 

in polluted regions (e.g., Rose et al., 2010; Deng et al., 2011; Kim et al., 2014; Varghese 308 

et al., 2016), the Melpitz NCCN is much lower.  309 

Figure 3a presents the NCCN vs. SS and AR vs. SS relationships at each season and 310 

all datasets at Melpitz. The two relationships are similar, and both can be fitted well 311 

with using a power-law function (Twomey, 1959). The fit was also performed with an 312 

error function (Pöhlker et al., 2018) and the fitted parameters are in the SI (Table S2). 313 

Over the whole period, the median values of the slope parameter and the coefficient in 314 
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the NCCN-SS power-law fit are 2851 cm-3 and 0.75, respectively, which are within the 315 

range of values for continental aerosol (slope parameter of 600–3500 cm−3 and 316 

coefficient of 0.4–0.9) reported in Seinfeld and Pandis (2016). The slope parameters in 317 

the power-law fitting represent the sensitivity of the NCCN and AR to the variation in SS, 318 

which are highest in summer and lowest in winter. The seasonal variations of NCCN and 319 

AR at SS = 0.1% and 0.7% are shown in Figure 3b. In summer, the median NCCN and 320 

AR are both lowest at SS = 0.1%, which contributed to the largest sensitivity of NCCN 321 

and AR to SS, i.e., the largest slope parameter in the power-law fitting among the four 322 

seasons. Additionally, the shape of the PNSD contributed to explain the sensitivity of 323 

NCCN and AR to SS. The PNSD in summer was steepest in the 40-200 nm size range 324 

among the four seasons (Figure S4 in SI). Thus, in summer, a small shift in Dc will 325 

change the NCCN and AR much more than those in winter where the PNSD looks broader, 326 

causing the strong sensitivity of NCCN and AR to SS. 327 

To explain the seasonal variations in aerosol activation characteristics, we 328 

investigated the PNSD and chemical compositions as shown in Figure 4. In summer, 329 

affected by the frequent NPF events (Ma et al., 2015; Wang et al., 2017), the Aitken-330 

mode particles with Dp < 100 nm accounted for the largest portion of the PNSD (Figure 331 

S4 in SI), resulting in the highest Naero and the smallest geometric mean diameter 332 

(𝐺𝑀𝐷 = exp⁡(
∑ 𝑛𝑖×𝑙𝑛𝐷𝑖𝑖

𝑁𝑎𝑒𝑟𝑜
)) among the four seasons. Additionally, in summer, there was 333 

the lowest bulk chem with median value of 0.24 corresponding to the highest organic 334 

mass fraction (56% of total mass), which could be related to the strong formation of the 335 

secondary organic aerosol (SOA). Therefore, the NCCN and AR both kept relatively low 336 

values in summer, especially at low SS conditions (e.g., at SS = 0.1%). On the contrary 337 

in winter, the relatively low number concentration of Aitken-mode particles caused the 338 

lowest Naero and the largest GMD among the four seasons, which could be owing to the 339 



 15 / 73 

 

rare NPF events. Meanwhile, in winter, low temperatures favored the particulate phase 340 

of nitrate (Poulain et al., 2011), causing the highest nitrate mass fraction (31% of total 341 

mass) among the four seasons, which might explain the highest chem (median value of 342 

0.34). Taking all three together, the lowest Naero, the largest GMD, as well as the highest 343 

chem, contribute to the highest AR value in winter at each SS condition. The 344 

relationships between chem and each particle component, and the correlations among 345 

seasonal median values of Naero, GMD, and chem are in SI (Text S1, Figures S5 and S6).  346 

Figure 3a presents the time series of the mean CCN number size distribution at 347 

each SS condition. As SS increases, CCN number size distribution broadens towards 348 

smaller particle sizes, causing an increase in NCCN and activation ratio (AR, i.e., ratio 349 

of NCCN to total aerosol number concentration with diameter ranging from 10 to 800 nm, 350 

Naero). At Melpitz, the mean NCCN is 513, 1102, 1466, 2020, and 2477 cm-3 at SS of 0.1%, 351 

0.2%, 0.3%, 0.5%, and 0.7%, respectively. The mean AR ranged from 0.11 to 0.52 at 352 

SS = 0.1% to 0.7%. As shown in Table 2, the mean NCCN measured at Melpitz is 353 

generally higher than that measured in more remote rural background stations. For 354 

instance, as SS increased from 0.1% to 1.0%, the mean NCCN increased from 362 to 1795 355 

cm-3 in Vavihill, Sweden (Fors et al., 2011) and 274 to 1128 cm-3 in Hyytiälä, Finland 356 

(Paramonov et al., 2015); in Southern Great Plains, USA, the mean NCCN at SS = 0.4% 357 

was 1248 cm-3 (Liu and Li, 2014); the mean NCCN increased from 118 to 1826 cm-3 as 358 

SS increased from 0.1% to 0.94% in Mahabaleshwar, India (Singla et al., 2017). 359 

However, the mean NCCN measured at Melpitz is far lower than that measured in 360 

polluted regions. For example, in a rural site of Guangzhou, China, the mean NCCN 361 

increased from 995 to 10731 cm-3 as SS increased from 0.068% to 0.67% (Rose et al., 362 

2010); higher NCCN was observed in Wuqing, China, with the mean NCCN of 2192–12963 363 

cm-3 at SS = 0.056–0.7% (Deng et al., 2011); in an urban site of Seoul, Korea, the mean 364 
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NCCN increased from 4145 to 6067 cm-3 as SS increased from 0.4% to 0.8% (Kim et al., 365 

2014); in a polluted continental site of Mahabubnagar, India, the mean NCCN at SS = 1.0% 366 

was ~5400 cm-3 (Varghese et al., 2016). 367 

At Melpitz, aerosol activation characteristics are highly variable across seasons. 368 

At SS = 0.1%, CCN number size distribution is wider in spring and winter than in 369 

summer and autumn; the mean NCCN at SS = 0.1% is 585, 347, 440, and 681 cm-3 in 370 

spring, summer, autumn, and winter, respectively. The mean NCCN at SS = 0.1% in 371 

winter is almost twice as high as that found in summer. The highest mean AR at SS = 372 

0.1% was 0.18 observed in winter, whereas the lowest mean AR (0.06) was observed 373 

in summer. In spring and autumn, the mean AR at SS = 0.1% is 0.1. As SS increases, 374 

CCN number size distribution gradually peaks in summer, especially at SS = 0.5% and 375 

0.7%. At SS = 0.7%, the mean NCCN is 2622, 2530, 2222, and 2495 cm-3, and the mean 376 

AR is 0.49, 0.41, 0.51, and 0.68 in spring, summer, autumn, and winter, respectively.  377 

The AR-SS and NCCN-SS relationships in each season and all datasets are shown in 378 

Figures 3b and 3c. The two relationships are similar, and both can be fitted well with 379 

using the power-law function (Twomey, 1959) and the error function (Pöhlker et al., 380 

2018). The fit results are shown in Table 3. The error function fits the relationships 381 

better than the power-law function because of more parameters. The power parameter 382 

in the power-law function means the change rate of the controlled variable with the 383 

independent variable, that is the slope in a log-log coordinate system, so it is also called 384 

the slope parameter. In the power-law fits of the two relationships, the slope parameters 385 

are highest in summer and lowest in winter. Therefore, AR and NCCN are most sensitive 386 

to SS in summer, whereas the opposite is true in winter. The coefficients in the power-387 

law fits represent the AR and NCCN at SS = 1%. The coefficient in AR-SS fit is highest 388 

in winter (0.89) and lowest in summer (0.61). However, the coefficient in NCCN-SS fit 389 
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is highest in summer (3951 cm-3) and lowest in autumn (3136 cm-3). Over the whole 390 

period, the mean values of the slope parameter and the coefficient in the NCCN-SS power-391 

law fit are 3497 cm-3 and 0.81, respectively, which are within the range of values for 392 

continental aerosol (slope parameter of 600–3500 cm−3 and coefficient of 0.4–0.9) 393 

reported in Seinfeld and Pandis (2016).  394 

CCN number size distribution is a part of the particle number size distribution 395 

(PNSD), which approximately corresponds to the part of PNSD with Dp > Dc when 396 

assuming particles to be internally mixed. The schematic diagram in Appendix A shows 397 

the relationship between the PNSD and the CCN number size distribution. Aerosol 398 

chemical composition determines the  through equation 3, thereby changing Dc at a 399 

given SS condition through equation 2a. Thus, we present the time series of the PNSD 400 

and chemical compositions in Figure 4 to explain the variations in aerosol activation 401 

characteristics.  402 

In summer, affected by the frequent NPF events (Ma et al., 2015; Wang et al., 403 

2017), the Aitken-mode particles with Dp < 100 nm account for the largest portion of 404 

the PNSD, resulting in the highest Naero with a mean value of 6224 cm-3 and the smallest 405 

geometric mean diameter (𝐺𝑀𝐷 = exp⁡(
∑ 𝑛𝑖×𝑙𝑛𝐷𝑖𝑖

𝑁𝑎𝑒𝑟𝑜
)) with a mean value of 50 nm among 406 

the four seasons. On the contrary, in winter, the mean GMD increases to 58 nm, which 407 

is the largest among the four seasons, and the Naero decreases to the lowest with a mean 408 

value of 3686 cm-3 because of the rare NPF events. During the NPF events, only a part 409 

of newly formed particles grows to sizes larger than Dc (e.g., ~55 nm at SS = 0.7%), 410 

whereas most of the new particles are still unactivated at SS ≤ 0.5%. Therefore, CCN 411 

number size distribution gradually peaks as SS increases in summer, whereas AR keeps 412 

a minimum even at relatively high SS conditions as shown in Figure 3a. In winter, the 413 

lowest Naero and the largest GMD contribute to the highest AR at each SS condition.  414 
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Figure 4b shows the average changes of the aerosol particle chemical compositions 415 

over a year and the estimated bulk chem of submicron aerosol particles. At Melpitz, the 416 

mean value of bulk chem is 0.36 with one standard deviation of 0.09 over the whole 417 

period; the seasonal mean chem plus/minus one standard deviation are 0.38± 0.09, 418 

0.29± 0.08, 0.36± 0.08, and 0.40± 0.08 in spring, summer, autumn, and winter, 419 

respectively. Because the chem depends on aerosol particle chemical composition 420 

through equation 3, we examined the correlation between chem and the mass fraction 421 

of each component to explain the variations of chem. As shown in Figures 5a and 5b, a 422 

negative correlation between the chem and the organic mass fraction (forg) was observed, 423 

while an opposite trend was found for the nitrate (fnitrate). Additionally, the chem is not 424 

correlated with the sulfate mass fraction (fsulfate) and the BC mass fraction (fBC), as 425 

shown in Figures 5c and 5d.  426 

In summer, there is the lowest bulk chem with 0.29±0.08 corresponding to the 427 

highest forg (56% of total mass on average), which could be related to the strong 428 

formation of the secondary organic aerosol. In winter, low temperatures favor the 429 

particulate phase of nitrate (Poulain et al., 2011) with a mean fnitrate of 31%, which might 430 

explain the highest chem (0.40± 0.08). According to equation 2a, Dc increases as 431 

 decreases at a given SS condition. Thus, the lowest chem results in the narrowest CCN 432 

number size distribution and a decrease in NCCN in summer, especially at relatively low 433 

SS conditions (e.g., 0.1% and 0.2%) as shown in Figure 3a.  434 

3.2 Size-resolved particle hygroscopicity factor and mixing state 435 

The hygroscopicity factor and the mixing state directly influence the Dc and the 436 

shape of the AF curve, thereby changing the NCCN at a given SS condition. Affected by 437 

the variations of particle composition, tThese two parameters are not constant and both 438 
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vary with particle size and season. 439 

Figure 6a 5a presents monthly median values of chem monthly averages of and 440 

 calculated from monodisperse CCN measurements (CCN) at SS of 0.1% and 0.7%. 441 

Their each SS condition, and their seasonal mean median values are summarized in 442 

Table 42. At Melpitz, the median CCN decreased from 0.27 to 0.19 as SS increased from 443 

0.1% to 0.7%, which was less than the median bulk chem of 0.3. The seasonal variation 444 

of CCN at SS of 0.1% is similar to that of chem, whereas the seasonal trend in CCN is 445 

much weaker at SS = 0.7%. Essentially, the relationship between CCN and SS is 446 

determined by the CCN vs. Dp relationship. The CCN at SS of 0.1% and 0.7% 447 

correspond to the median Dc (i.e., Dp) of 176 and 54 nm, respectively. As the ACSM is 448 

sensitive to particle mass rather than number concentration, the bulk composition is 449 

dominated by the contribution of the larger particles. In the median volume size 450 

distribution of particle, the peak diameter was at ~300 nm (Poulain et al., 2020). Thus, 451 

chem may be representative for the larger particles rather than for the smaller particles. 452 

Owing to the positive correlation between  and Dp (Figure 6a), the chem representing 453 

for the larger particles could be greater than the CCN for the smaller particles. Figure 454 

5b depicts the monthly variation of Dc at SS of 0.1% and 0.7%, which shows the 455 

opposite trend to CCN(SS) because of the negative correlation of Dc
3(SS) vs. (SS) 456 

shown in equation 2a. Compared to the Dc at lower SS conditions (e.g., 0.1%), Dc has a 457 

more significant seasonal trend at higher SS conditions (e.g., 0.7%). At SS = 0.7%, the 458 

low CCN caused the large Dc in summer, whereas the high CCN caused the small Dc in 459 

spring and winter. 460 

At Melpitz, the mean CCN plus/minus one standard deviation over all datasets are 461 

0.28± 0.08, 0.28± 0.10, 0.24± 0.10, 0.21± 0.09, and 0.20± 0.09 at SS = 0.1%, 0.2%, 462 
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0.3%, 0.5%, and 0.7%, respectively, where the mean CCN were all less than the mean 463 

bulk chem of 0.36. The seasonal variation of CCN at each SS condition is similar to that 464 

of chem. In summer, CCN is lowest among the four seasons, with mean values of 0.23, 465 

0.25, 0.21, 0.19, and 0.19 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. The 466 

highest CCN at each SS condition was observed in winter, with mean values of 0.32, 467 

0.32, 0.28, 0.23, and 0.21 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. CCN 468 

in spring are slightly lower than that in winter, with mean values of 0.31, 0.32, 0.27, 469 

0.22, and 0.21 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. In autumn, the 470 

mean CCN are 0.27, 0.26, 0.22, 0.19, and 0.19 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 471 

0.7%, respectively, which is slightly higher than that observed in summer.  472 

Figure 6b presents the monthly variation of Dc at each SS condition, which shows 473 

the opposite trend to CCN - SS because of the negative correlation of Dc
3 vs.  shown 474 

in equation 2a. The seasonal mean Dc are shown in Table 4. The mean Dc plus/minus 475 

one standard deviation over the whole period are 177±19, 112±14, 91±15, 67±9, and 476 

54±8 nm at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. The largest Dc at 477 

each SS condition were observed in summer, with mean values of 187, 116, 94, 69, and 478 

55 nm at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. Followed by autumn 479 

and spring, the smallest Dc at each SS condition was observed in winter, with mean 480 

values of 168, 107, 86, 64, and 53 nm at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, 481 

respectively.  482 

The monthly average trend of the external-mixing degree ((D75 – D25)/Dc) is shown 483 

in Figure 6c5c. The degree of external mixture is quantified by the ratio of (D75 – 484 

D25)/Dc. The seasonal mean (D75 – D25)/Dc are presented in Table 4. Jurányi et al. (2013) 485 

pointed out that the (D75 – D25)/Dc ranged from 0.08 to 0.12 for ammonium sulfate 486 

calibration measurements at SS = 0.1−1.0%, which indicated an internal mixture within 487 



 21 / 73 

 

measurement accuracy. For our measurements, the medianmean (D75 – D25)/Dc over all 488 

datasets range from 0.17 15 to 0.25 20 at SS = 0.1−0.7%. The median (D75 – D25)/Dc 489 

was low in summer and spring and high in winter and autumn. The results tend to 490 

indicate that the aerosol particles at Melpitz were more internally mixed in summer and 491 

spring whereas less internally mixed in winter and autumn.In summer, (D75 – D25)/Dc 492 

is lowest ranging from 0.14 to 0.18 at SS = 0.1−0.7%, implying that aerosol particles 493 

were extremely close to being internally mixed. Followed by spring and autumn, the 494 

highest (D75 – D25)/Dc was observed in winter with values ranging from 0.24 to 0.36 at 495 

SS = 0.1−0.7%. Therefore, the results tend to indicate that the aerosol particles were 496 

less internally mixed in winter among the four seasons at Melpitz. In non‐urban location 497 

In summer, the less contribution from anthropogenic emissions and the faster aging 498 

process as well as SOA formation caused by atmospheric chemistry certainly contribute 499 

to make particles more internally mixed. Changes in organic aerosol (OA) composition 500 

can be found in Crippa et al. (2014), Poulain et al. (2014), and Chen et al. (2022). In 501 

cold seasons, the local pollution (100 km around) is dominated by liquid fuel, biomass, 502 

and coal combustions mostly for house heating (van Pinxteren et al., 2016). During 503 

winter long-range transport from the eastern wind bring to the station continental air 504 

masses which are strongly influence by anthropogenic emissions (in opposition to 505 

western marine air masses). These particles are a mixture of different anthropogenic 506 

sources emitted all along the transport as well as including some local and regional 507 

sources (most house heating). All of them at different aging state cause the overall 508 

particles more externally mixed. s, initially externally mixed aerosol particles become 509 

an internal mixture on a time scale of ~1 day (Fierce et al., 2016). In winter, the 510 

relatively stable weather patterns increase the persistence of aerosol (> 5 days) at 511 

Melpitz (Schmale et al., 2018). When tracking an aerosol cluster, the prolonged mixing 512 
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time should promote the aging process, leading to an internal mixture. However, we 513 

observed a less internally mixed aerosol particle population in winter. A plausible 514 

explanation is mixing in of local pollution. 515 

As mentioned above, CCN (and (D75 – D25)/Dc) vs. Dp relationships determine the 516 

relationship between CCN (and (D75 – D25)/Dc) and SS. Monodisperse CCN 517 

measurements provide the size-resolved  and (D75 – D25)/Dc. At a given SS condition, 518 

CCN represents the  of particles at Dp = Dc, and the same is true for (D75 – D25)/Dc. 519 

Essentially, the relationship between CCN and SS is determined by the CCN vs. Dp 520 

relationship. Identically, the relationship between (D75 – D25)/Dc and SS depends on the 521 

(D75 – D25)/Dc vs. Dp relationship. Monodisperse CCN measurements provide the size-522 

resolved  and (D75 – D25)/Dc. At a given SS condition, CCN represents the  of particles 523 

at Dp = Dc, and the same is true for (D75 – D25)/Dc. It should be noted that our 524 

monodisperse CCN measurements only provide the size-resolved  and (D75 – D25)/Dc 525 

within Dp of ~40−200 nm. As shown in Figure 7a6a, CCN increases with Dp at Dp range 526 

of ~40 to 100 nm, whereas CCN almost stays constant at Dp of 100 to 200 nm for all 527 

seasons. Additionally, the increase CCN with Dp varies with season. The CCN vs. Dp 528 

relationship is fitted by a power-law function at each season. Fit results are presented 529 

in Table 5. In summer, there is the lowest slope parameter of 0.19 in the CCN vs. Dp 530 

power-law fit, meaning that the CCN is least sensitive to Dp. Compared to the cold 531 

seasons, the anthropogenic emissions linked to house heating strongly reduce in 532 

summer which affect the smaller particles, and the dominant small particles (Dp < 100 533 

nm) are associated to NPF and the SOA formation. NPF is a complex process which 534 

depends on the availability of condensing material (H2SO4 and organic), as well as pre-535 

existing particles (coagulation and condensation sink parameters). Therefore, same 536 
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condensing material on the gas phase can either condense on pre-existing particles 537 

(usually larger than 100 nm and then detected by ACSM) or lead to NPF formation. A 538 

direct consequence of it is a probable smaller effect of the size dependent chemical 539 

composition of the particles. This might explain why CCN at SS of 0.1% and 0.7 % are 540 

closer, i.e., the weaker sensitive of CCN to Dp in summer.meaning that the difference 541 

between the CCN at different particle sizes is smallest among the four seasons. Followed 542 

by autumn with the slope parameter of 0.31, the slope parameter is highest in spring 543 

and winter of 0.36−0.37. Therefore, the CCN is most sensitive to Dp in spring and winter. 544 

Figure 7b 6b presents the (D75 – D25)/Dc vs. Dp relationship. As particle size increases, 545 

(D75 – D25)/Dc decreases at Dp of ~40 to 200 nm for all seasons, meaning that small 546 

particles are less internally mixed. The reason is that during the aerosol aging process, 547 

not only particle size increases but  becomes more uniform. The (D75 – D25)/Dc vs. Dp 548 

relationship is also fitted well by the a power-law function at each season, with fit 549 

results shown in Table 5. The lowest absolute value of the slope parameter was observed 550 

in summer, indicating that the degree of external mixture was least sensitive to Dp, 551 

which could be related to the less mixing between the local emissions and long-range 552 

transport particles in summer. The highest absolute value of the slope parameter was 553 

observed in autumn of 0.42, followed by winter of 0.30 and spring of 0.26, and the 554 

lowest was 0.20 observed in summer. Thus, the difference between the degree of 555 

external mixture at different particle sizes is largest in autumn, followed by winter and 556 

spring, and is smallest in summer.  557 

3.3 NCCN prediction at Melpitz 558 

NCCN plays an important role in modeling the formation and evolution of clouds 559 

(Zhao et al., 2012; Fan et al., 2012, 2018). In tThis section, we evaluates the accuracy 560 

of NCCN predicted from five different schemes. Table 6 3 introduces the five schemes, 561 
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which can be summarized into two categories of NCCN prediction approach. From 562 

polydisperse CCN measurements, the NCCN (AR) and SS relationships can be obtained, 563 

and their fitting results can be used to predict NCCN at the given SS conditions, which 564 

belongs to the 1st category, corresponding to the N1 and N2 schemes in Table 3, 565 

respectively.The fit results of NCCN - SS relationship and AR - SS relationship can predict 566 

NCCN at the given SS conditions, which belongs to the 1st category approach, 567 

corresponding to the 1st and 2nd schemes in Table 6, respectively. Compared to CCN 568 

measurements, it is generally more common and simpler to obtain the PNSD 569 

measurements.; Tthus, we usually predict NCCN using the real-time PNSD combined 570 

with the parameterized  (Dc)CCN activity, which belongs to the 2nd category approach. 571 

The 2nd category includes the last three schemes (K1, K2, and K3) in Table 3, but they 572 

vary in assuming . The last three schemes in Table 6 belong to the 2nd category 573 

approach, but they vary in assuming . The 3rd K1 scheme uses a fixed  of 0.3 without 574 

temporal and size-dependent variations, as recommended for continental aerosol 575 

(Andreae and Rosenfeld., 2008), which is also the median value of chem over all data 576 

setting at Melpitz. The 4th K2 scheme uses the bulk chem calculated from aerosol 577 

chemical composition, which is also non-size-dependent but changes over time. The 5th 578 

K3 scheme uses the   - Dp power-law fit results shown in Table 5Figure 6a, which are 579 

size-dependent without temporal variations at each season. Applying the  - Dp power-580 

law equation into equation 2a, Dc can be derived as function of SS,  581 

𝐷𝑐 = (
4 × 𝐴3

27 × 𝑐𝑜𝑒𝑓 × ln⁡2(1 + 𝑆𝑆/100)
)

1
𝑠𝑙𝑜𝑝𝑒+3

 (5) 

where the slope and coef represent the slope parameter and the coefficient in  - Dp 582 

power-law fit. Subsequently, the predicted NCCN can be calculated through equation 4. 583 

The 2nd categorylast three schemes all assumed that aerosol particles are internally 584 
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mixed at a particular Dp, as used in many previous NCCN prediction studies (e.g., Deng 585 

et al., 2013; Pöhlker et al., 2016; Wang et al., 2018a).  586 

The prediction results are shown in Figure 87. The linear equation (y = kx) is used 587 

to fit the relationship between the predicted NCCN and the measured one, and its slope 588 

represents the mean ratio of the predicted NCCN to the measured NCCN. To make the 589 

results of the predictions comparable for all regression schemes, we also applied a linear 590 

regression to the 1st scheme and forced the linear regression through zero for all 591 

schemes. The relative deviation (RD) equals the ratio of the absolute difference between 592 

the predicted NCCN and the measured one to the measured NCCN, 593 

𝑅𝐷 =
|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝑁𝐶𝐶𝑁 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁡𝑁𝐶𝐶𝑁|

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁡𝑁𝐶𝐶𝑁
. (6) 

The median RD was used to quantify the deviation between predictions and 594 

measurements of each scheme. The slope and median RD shown in Figure 7 are both 595 

calculated from all five SS conditions for each season. As shown in Figure 7, the N1 596 

and N2 schemes only provide rough estimates of the NCCN which is reflected in the high 597 

median RD. The results for N1 and N2 schemes are similar in that they both predict the 598 

overall mean NCCN well (slopes of approximately 1.0) but with large median RDs. 599 

Compared to N1 scheme, the N2 scheme is better because of the lower median RD. 600 

Compared to the 1st category (the N1 and N2 schemes), the 2nd category (the K1, K2, 601 

and K3 schemes) predicts NCCN better because of the lower median RD. The results for 602 

K1 and K2 are similar in that they both overestimate NCCN by approximately 10% 603 

(slopes of approximately 1.1) with similar median RDs. The reason for the NCCN 604 

overestimation is that the constant  of 0.3 and the real-time bulk chem are both greater 605 

than the CCN at each season. In winter, the CCN was highest and the difference between 606 

the CCN and the parameterized  in K1 and K2 scheme was lowest, causing the best 607 
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prediction of NCCN among the four seasons. Owing to the largest difference between the 608 

CCN and the parameterized , the NCCN prediction was worst in summer for K1 scheme 609 

and in autumn for K2 scheme. The K3 scheme appears to be the best one for NCCN 610 

prediction among the five schemes which is reflected in the lowest median RDs and the 611 

fit slope of ~1.0 for different seasons. The evaluations of the five schemes for the NCCN 612 

prediction at each SS condition and each season are provided in Figure S7 in SI.  613 

i.e., RD = (predicted NCCN – measured NCCN)/measured NCCN; a large RD represents a 614 

large deviation between prediction and measurement. The slope and RD shown in 615 

Figure 8 are both calculated from all five SS conditions for each season. As shown in 616 

Figure 8, the 1st and 2nd schemes only provide rough estimates of the NCCN on account 617 

of the pretty high RD ranging from 64% to 136%. Compared to the 1st category 618 

approach (the 1st and 2nd schemes), the 2nd category approach (the 3rd, 4th, and 5th 619 

schemes) predicts NCCN better. The predicted NCCN correlates well with the measured 620 

one for the 3rd, 4th, and 5th schemes with R2 > 0.97; but NCCN is generally overestimated 621 

for the 3rd and 4th schemes because the fit slopes range from 1.03 to 1.17 for different 622 

seasons. The 5th scheme appears to be the best one for NCCN prediction among the five 623 

schemes on account of the lowest RD ranging from 11% to 17% and the fit slope of ~1 624 

for different seasons. It should be noted that the fit slope shown in Figure 8 represents 625 

the average over all five SS conditions, which could obscure the performance at each 626 

SS condition. Thus, Figure 9 further evaluates the five schemes for the NCCN prediction 627 

at each SS condition. 628 

The K3 scheme provides an improved prediction of NCCN, which is obvious when 629 

compared to N1 and N2 schemes. Compared to K1 and K2 schemes, the K3 scheme 630 

reduced approximately 10% overestimation of NCCN because the fitting slope decreased 631 

~0.1 on average. We simply evaluate the effects of the 10% overestimation in NCCN on 632 



 27 / 73 

 

predictions of cloud radiative forcing and precipitation. The methods are in Text S2 in 633 

SI and Wang et al. (2019). Essentially, an overestimation of NCCN leads to overestimate 634 

the number concentration of cloud droplet (NC) in models. Theoretically, it can reduce 635 

3.2% overestimation of cloud optical thickness, corresponding to global average 636 

difference of 1.28 Wm-2 when assuming the cloud shortwave cooling effect of 40 Wm-637 

2 (Lee et al., 1997), which amounts to approximately one-third of the direct radiative 638 

forcing from a doubling CO2. Additionally, the overestimation in NCCN (and NC) leads 639 

to underestimate the strength of the autoconversion process in cloud (Liu et al., 2006), 640 

thereby suppressing precipitation. Therefore, although ACSM measurements can derive 641 

chem and thus predict NCCN, the monodisperse CCN measurements are still important 642 

to obtain the  - Dp relationship and thus improve the predictions of NCCN (and NC) and 643 

climate. 644 

Figure 8 compared the  - Dp relationship measured at different regions. The  - 645 

Dp relationship measured at Melpitz is similar to that measured at other rural regions 646 

with similar  - Dp power-law fitting results, e.g., the Vavihill station in Sweden (Fors 647 

et al., 2011) and the Xinken station in China (Eichler et al., 2008). Therefore, the  - Dp 648 

power-law fit measured at Melpitz could be applied to predict NCCN for these rural 649 

regions. However, it may cause considerable deviations for different aerosol 650 

background regions, e.g., the suburb stations in Xingtai, China (Wang et al., 2018a) and 651 

in Paris, France (Mazoyer et al., 2019), the coast of Barbados (Kristensen et al., 2016), 652 

the amazon rainforest (Pöhlker et al., 2016), and the urban stations in Budapest, 653 

Hungary (Salma et al., 2021) and in Shanghai, China (Ye et al., 2013), because their  654 

- Dp relationships are different from that measured at Melpitz. 655 

When using the NCCN - SS power-law fit (the 1st scheme) to predict NCCN, it causes 656 

significant overestimations of NCCN at SS = 0.1% with median values ranging from 3% 657 
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to 29% for different seasons and causes less than 21% underestimations in median at 658 

other larger SS conditions. Additionally, the prediction results are much uncertain at a 659 

given SS condition and season, especially at SS = 0.1%. For instance, one-quarter of the 660 

predicted NCCN are twice higher than the measured values at SS = 0.1% for all datasets. 661 

Thus, this scheme can only be used to provide rough estimations of NCCN. 662 

When using the real-time Naero combined with AR - SS power-law fit (the 2nd 663 

scheme) to predict NCCN, the performances are slightly better than those of the 1st 664 

scheme. The median overestimations of NCCN are less than 17% at SS = 0.1% for all 665 

seasons, while the median underestimations of NCCN range from 12% to 35% at SS = 666 

0.2%−0.7% for all seasons. Similarly, the prediction results remain a high uncertainty 667 

at a given SS condition and season. Thus, this scheme also provides rough estimations 668 

on NCCN. 669 

When assuming the real-time PNSD combined with a constant  of 0.3 (the 3rd 670 

scheme) to predict NCCN, it causes overestimations of NCCN in most cases. The median 671 

of the overestimation ranges from -3% to 30% at SS = 0.1%−0.7% for different seasons. 672 

As shown in Figure 7a, a constant  of 0.3 is almost greater than the CCN of all particles 673 

with the diameter ranging from ~40 to 200 nm, except for the accumulation-mode 674 

particles (Dp of 100 to 200 nm) in spring and winter. Therefore, besides the well-675 

predicted NCCN at SS = 0.1% and 0.2% in spring and winter, NCCN is overestimated at 676 

assuming a constant  of 0.3 as shown in Figure 9c. The largest overestimation occurs 677 

at SS = 0.1% in summer (30% in median) because of the low CCN (0.22 in average) 678 

combined with the low measured NCCN (347 cm-3 in average). Although the largest 679 

median overestimation reaches to 30%, which is numerically similar to the largest 680 

median overestimation of the 1st scheme (29%) and the largest median underestimation 681 

of the 2nd scheme (35%), the uncertainties of the 3rd scheme are much lower than those 682 
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of the 1st and 2nd schemes. For example, when using 3rd scheme, one-quarter of the ratio 683 

of the predicted NCCN to the measured NCCN are larger than 1.31 at SS = 0.1% for all 684 

datasets as shown in Figure 9c, while the ratio is ~2.0 for both the results of 1st and 2nd 685 

scheme as shown in Figures 9a and 9b. Thus, the 3rd scheme has better predictions on 686 

NCCN compared to the 1st and 2nd schemes.  687 

When assuming the real-time PNSD combined with the real-time bulk chem (the 688 

4th scheme) to predict NCCN, it also causes clear overestimations of NCCN in most cases, 689 

like the prediction results calculated from the 3rd scheme. The median overestimations 690 

are within 7% to 21% at SS = 0.1%−0.7% for different seasons. The reason for the 691 

overestimation is that the chem is greater than CCN  measured at all the five SS 692 

conditions. For instance, the mean CCN over all datasets ranges from 0.20 to 0.28 at SS 693 

= 0.1%−0.7%, whereas the mean chem over all datasets is 0.36. The largest 694 

overestimation also occurs at SS = 0.1% in summer with 21% in median. Compared to 695 

the 3rd scheme, the uncertainty of the NCCN prediction at a given SS condition and season 696 

is lower in the 4th scheme. Considering the median overestimations of the predicted 697 

NCCN at different seasons and SS conditions and the uncertainty of the predicted NCCN at 698 

each given season and SS condition, we conclude that the performances of the 4th 699 

scheme are better than the 3rd scheme. 700 

When assuming the real-time PNSD combined with the  - Dp power-law fit (the 701 

5th scheme) to predict NCCN, it can predict the NCCN well at each SS condition for all 702 

seasons. At SS = 0.1%, it causes less than 10% overestimation in median for NCCN 703 

prediction for all seasons; at SS = 0.2%−0.7%, the median overestimation ranges from 704 

-3% to 6% for all seasons. The uncertainty of the NCCN prediction at a given SS condition 705 

and season is also smallest among the five schemes, especially at relatively high SS 706 

conditions (e.g., 0.5% and 0.7%). For instance, at SS = 0.7% for all datasets, when using 707 
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the 5th scheme, one-quarter of the ratio of the predicted NCCN to the measured NCCN are 708 

larger than 1.10, while the ratio ranges from 1.18 to 1.38 for other four schemes. 709 

Therefore, the 5th scheme provides the best NCCN prediction among the five schemes. 710 

Overall, the performance for NCCN prediction is gradually getting better from the 711 

1st to the 5th scheme shown in Table 6. The classic NCCN - SS and AR - SS power-law fits 712 

shown in Table 3 can only be used to provide rough estimates of the NCCN. At Melpitz, 713 

using a constant  of 0.3 or the bulk chem both causes significant overestimations of 714 

NCCN with about 30% in median, especially at SS = 0.1% in summer. The  - Dp power-715 

law fit at each season shown in Table 5 is recommended applying for NCCN prediction 716 

at Melpitz, which can narrow down the prediction deviation (ratio of the predicted NCCN 717 

to the measured NCCN minus 1) within 10% in median. Additionally, as shown in Figure 718 

10, the  - Dp power-law fit measured at Melpitz is similar to that measured at other 719 

rural and continental regions with similar aerosol background conditions, e.g., the 720 

Vavihill station in Sweden (Fors et al., 2011) and the Xinken station in China (Eichler 721 

et al., 2008), and is also valid for some urban (Ye et al., 2013) and suburb regions 722 

(Mazoyer et al., 2019). Therefore, the  - Dp power-law fit measured at Melpitz could 723 

be applied to predict NCCN for these regions. However, it may cause considerable 724 

deviations for different aerosol background regions, e.g., the polluted suburb station in 725 

Xingtai, China (Wang et al., 2018a), the coast of Barbados (Kristensen et al., 2016), the 726 

amazon rainforest (Pöhlker et al., 2016), and the urban station in Budapest, Hungary 727 

(Salma et al., 2021), because their  - Dp relationships are different from that measured 728 

at Melpitz. 729 

Additionally, it should be noted that the main size dependence of  occurs at Dp of 730 

~40 to 100 nm as shown in Figure 7a, which would be for SS larger than 0.2%. At Dp 731 

of 100 to 200 nm corresponding to SS less than 0.2%,  almost stays constant. The mean 732 
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value of  is close to 0.3 for spring and winter, and that’s where deviations in Figure 9c 733 

are small. However, the mean value of  overestimates the  for SS larger than 0.2% at 734 

each season. We further compare the NCCN predictions between using the seasonally 735 

mean value of  over Dp of 100 to 200 nm and the  - Dp power-law fit. As shown in 736 

Figure 11, at SS = 0.1 and 0.2%, the seasonally mean  value over Dp of 100 to 200 nm 737 

and  - Dp power-law fit both predict the NCCN well at each season, while the mean  738 

value leads to significant overestimation of NCCN within 10% on average at SS = 0.3, 739 

0.5, and 0.7%. Therefore, to predict the NCCN at a relatively low SS of less than 0.2% 740 

(e.g., in fog and shallow stratiform cloud), the mean  value over Dp of 100 to 200 nm 741 

also works well. The mean value plus/minus one standard deviation are 0.32±0.09, 742 

0.24±0.07, 0.26±0.09, 0.32±0.10 and 0.28±0.09 for spring, summer, autumn, winter, 743 

and all datasets, respectively. 744 

4. Conclusions 745 

Aerosol particle activation plays an important role in determining NCthe number 746 

concentration of cloud droplets, thereby affecting cloud microphysics, precipitation 747 

processes, radiation, and climate. To reduce the uncertainties and gain more confidence 748 

in the simulations on AIEs, long-term measurements on of aerosol activation 749 

characteristics are essential; . Hhowever, they are still rarely reported. Based on more 750 

than 4-year comprehensive measurements conducted at the central European ACTRIS 751 

site Melpitz, Germany, this study presents a systematic seasonal analysis of aerosol 752 

activation characteristics and NCCN predictions.  753 

Over the whole period at Melpitz, the mean median NCCN and AR increased from 754 

399 to 2144 cm-3 and 0.10 to 0.48513 to 2477 cm-3 and 0.11 to 0.52 with SS increasing 755 

from 0.1% to 0.7%, respectively. Aerosol activation characteristics are highly variable 756 

across seasons, especially at relatively low SS conditions. For instance at SS = 0.1%, 757 
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the median NCCN and AR in winter are 1.6 and 2.3 times higher than the summer values, 758 

respectively. Aerosol particle activation depends on its physical and chemical properties. 759 

In summer, the highest Naero, smallest GMD, steepest PNSD in 40-200 nm size range, 760 

and lowest chem all contribute to the lowest AR and NCCN among the four seasons, and 761 

the reverse holds true in winter. 762 

 At SS = 0.1%, the seasonal mean NCCN is 681 cm-3 in winter, which is almost 763 

twice higher than the summer value (347 cm-3); the seasonal mean AR is 0.18 in winter, 764 

which is three times higher than the summer value (0.06). Aerosol particle activation 765 

depends on its physical and chemical properties. Affected by the frequent NPF events, 766 

in summer, the mean Naero is highest (6224 cm-3) and the mean GMD is smallest (50 767 

nm) among the four seasons. On the contrary in winter, the mean Naero is lowest (3686 768 

cm-3) and the mean GMD is largest (58 nm). In summer, the mean forg (56%) is highest 769 

among the four seasons, corresponding to the lowest chem with a mean value of 0.29; 770 

in winter, the mean fnitrate (36%) is highest among the four seasons, which might explain 771 

the highest mean chem (0.40). Therefore, in winter, the highest chem, largest GMD, and 772 

the lowest Naero cause the highest AR at each SS condition among the four seasons. 773 

Both  and the mixing state are size-dependent, thereby varying with SS. The 774 

median CCN decreases from 0.27 to 0.19 as SS increases from 0.1% to 0.7%, which 775 

was less than the median bulk chem. The mean  is 0.28, 0.28, 0.24, 0.21, and 0.20 at 776 

SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. Dc depends on  at a given SS 777 

conditioThe seasonal trend of CCN was similar to that of chem, especially at relatively 778 

low SS conditions. The lowest CCN and chem were observed in summer, which related 779 

to the highest organics mass fraction in particles. Aerosol particles were more internally 780 

mixed in summer and spring whereas less internally mixed in winter and autumn. In 781 

cold seasons, the increasing anthropogenic emissions linked to house heating mixed 782 
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with the aged particles from long-range transport, which could decrease the degree of 783 

internal mixing of particles. As Dp increases, CCN increases at Dp range of ~40 to 100 784 

nm and almost stays constant at Dp range of 100 to 200 nm, whereas the (D75 – D25)/Dc 785 

monotonically decreases. The relationships of (D75 – D25)/Dc vs. Dp and  vs. Dp are 786 

both fitted well by a power-law function for each season.  787 

The mean Dc is 177, 112, 91, 67, and 54 nm at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 788 

0.7%, respectively. For different seasons, the seasonal mean  varies from 0.23 to 0.32 789 

at SS = 0.1%, and 0.19 to 0.21 at SS = 0.7%; the seasonal mean Dc varies from 168 nm 790 

to 187 nm at SS = 0.1%, and 53 nm to 55 nm at SS = 0.7%. The degree of external 791 

mixture is quantified by the (D75 – D25)/Dc, which ranges from 0.17 to 0.25 in average 792 

over the whole period at SS = 0.1−0.7%. In summer, aerosol particles were extremely 793 

close to being internally mixed with (D75 – D25)/Dc ranging from 0.14 to 0.18 at SS = 794 

0.1−0.7%; in winter, particles were less internally mixed among the four seasons with 795 

(D75 – D25)/Dc ranging from 0.24 to 0.36 at SS = 0.1−0.7%. As Dp increases,  increases 796 

at Dp of ~40 to 100 nm and almost stays constant at Dp of 100 to 200 nm), and (D75 – 797 

D25)/Dc decreases for all seasons. The relationships of (D75 – D25)/Dc vs. Dp and  vs. 798 

Dp are both fitted well by the power-law function for each season. 799 

Five activation schemes are evaluated on the NCCN predictions. Compared to using 800 

the classic NCCN - SS or AR - SS power-law fits to predict NCCN, the prediction is better 801 

by using the real-time PNSD combined with the parameterized , including a constant 802 

 of 0.3, the bulk chem, and the  - Dp power-law fit. However, assuming a constant  803 

of 0.3 recommended for continental aerosol (Andreae and Rosenfeld., 2008) or the bulk 804 

chem calculated from aerosol chemical composition both cause significant 805 

overestimations of the NCCN with approximately 10% in median for all SS conditions, 806 

which theoretically cause 3.2% overestimation of cloud optical thickness, amounting to 807 
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approximately one-third of the direct radiative forcing from a doubling CO2 (Lee et al., 808 

1997). And, the strength of the autoconversion process in cloud could be 809 

underestimated (Liu et al., 2006). with about 30% in median, especially at SS = 0.1% 810 

in summer. Generally, the performances of the latter (the bulk chem) are slightly better 811 

than the former (a constant  of 0.3) on account of the lower uncertainty at each given 812 

season and SS condition. Size-resolved  improves the NCCN prediction. We recommend 813 

applying the  - Dp power-law fit for NCCN prediction, which obtains the best prediction 814 

among the five schemes.  815 

The  - Dp power-law fit presented in this study could apply to other rural regions. 816 

However, it may cause considerable deviations for different aerosol background regions. 817 

For instance, using the  - Dp power-law fit measured in urban Budapest (Salma et al., 818 

2021) for predicting Melpitz NCCN, it could cause a 39% underestimation of NCCN in 819 

median for all SS conditions. Additionally, the seasonal difference of the  - Dp 820 

relationship needs to be considered carefully for NCCN prediction. At Melpitz, if the  - 821 

Dp power-law fit measured in summer was used for predicting NCCN in winter, it could 822 

cause a 13% underestimation of NCCN in median for all SS conditions. Although the  - 823 

Dp relationships are similar measured in rural stations, but when comparing the different 824 

urban stations (e.g., shanghai vs. Budapest in Figure 8), these relationships are clearly 825 

different and the reasons for the difference are still unclear. Thus, long-term 826 

monodisperse CCN measurements are still needed not only to obtain the  - Dp 827 

relationships for different regions and for different seasons, but furtherly investigate the 828 

reasons for the difference of the  - Dp relationships measured at same type of regions. 829 

Finally for the purpose of predicting NCCN, the measurements of monodisperse CCN 830 

and particle chemical compositions are more expected, compared to the polydisperse 831 
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CCN measurements. 832 

At Melpitz, using the real-time PNSD combined with the  - Dp power-law fit 833 

could narrow down the uncertainty of NCCN prediction within 10% in median for all SS 834 

conditions (0.1−0.7%) and seasons. The  - Dp power-law fit presented in this study 835 

could apply to other rural and continental regions with similar aerosol background 836 

conditions. To our knowledge, the   - Dp power-law fit is the first time applied to 837 

predict NCCN. Additionally, the mean  value over Dp of 100 to 200 nm also works well 838 

to predict NCCN at a relatively low SS of less than 0.2%. 839 

  840 
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Appendix B Notation list 841 

A  comprehensive parameter for s/a, Mw, R, T, and w in equation (2b) 

a  lower limit for calculating critical diameters at the set-nominal 

supersaturations in equation (1) 

ACI  aerosol and cloud interactions 

ACSM  aerosol chemical species monitor 

ACTRIS  Aerosol, Clouds and Trace Gases Research Infrastructure 

AF  activated fraction, i.e., NCCN/NCN 

AIEs  aerosol indirect effects 

AR  activation ratio, i.e., NCCN/Naero 

b  upper limit for calculating critical diameters at the set-nominal 

supersaturations in equation (1) 

BC  black carbon 

CN  condensation nuclei 

CCN  cloud condensation nuclei 

CCNC  cloud condensation nuclei counter 

coef  coefficient in  - Dp power-law fit 

CPC  condensation particle counter 

Dp  diameter of the dry particle 

Dc  critical diameter of the dry particle 

DX  D at which X % of the particles are activated 

(D75 − D25)/Dc  degree of external mixture 

D-MPSS  Dual-mobility particle size spectrometer  

DMA  differential mobility analyzer 

eBC  equivalent black carbon 

fBC  mass fraction of BC in submicron aerosol 

fnitrate  mass fraction of nitrate in submicron aerosol 

forg  mass fraction of organics in submicron aerosol 

fsulfate  mass fraction of sulfate in submicron aerosol 

GMD  geometric mean diameter of PNSD 

Mw  molecular weight of water 

Naero  number concentration of aerosol with a Dp ranging range of 10 to 800 nm 

NC  number concentration of cloud droplet 

NCN  number concentration of CN 

NCCN  number concentration of CCN 

NPF  new particle formation 

OA  organic aerosol 

PM10  particulate matter with the Dp < 10 m 

PNSD  particle number size distribution 

R  universal gas constant 

R2  coefficient of determination 

RD  relative deviation between the predicted NCCN and the measured one 

SI  Supporting information 
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SS  supersaturation 

SOA  secondary organic aerosol 

T  temperature 

s  represent the shape of the sigmoid function 

s/a  droplet surface tension 

κ  hygroscopicity factor of aerosol particle 

κi  κ of each component 

CCN   calculated from the monodisperse CCN measurements 

chem   calculated from the aerosol chemical measurements 

i  volume fraction of each component  

w  density of the liquid water 
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 1268 

Figure 1. Schematic diagram of the experimental setup. D-MPSS — Dual-mobility particle size 1269 

spectrometer, ACSM — aerosol chemical species monitor, MAAP — multi-angle absorption 1270 

photometer, DMA — differential mobility analyzer, CPC — condensation particle counter, CCNC 1271 

— cloud condensation nuclei counter. 1272 
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 1274 

Figure 2. Coverage of the effective data represented by the gray columns. 1275 

 1276 

Figure 2. Relationship between CCN number concentration (NCCN) and supersaturation (SS) 1277 

measured at Melpitz and other stations. 1278 

 1279 

  1280 
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 1281 

Figure 3. Seasonal variations of (a) CCN number size distributions and activation ratios (AR) at five 1282 

different supersaturation (SS) conditions, (b) relationship between AR and SS for different seasons, 1283 

and (c) relationship between CCN number concentration (NCCN) and SS for different seasons. Error 1284 

bar means one standard deviation. Red lines and blue lines are the fittings for AR vs. SS and NCCN 1285 

vs. SS with using the power-law function and the error function, respectively. Fitting results are 1286 

shown in Table 3.  1287 
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 1288 

Figure 3. (a) Relationships between CCN number concentration (NCCN) and supersaturation (SS), 1289 

and relationship between activation ratios (AR) and SS for different seasons. (b) Seasonal trends of 1290 

NCCN and AR at SS = 0.1% and 0.7%. Dots represent the median values of NCCN and AR. Shaded 1291 

areas represent the values in the range from 25th to 75th percent. Red lines are power-law fittings for 1292 

NCCN (and AR) vs. SS. Two parameters of the fitting results are shown in brackets.  1293 

 1294 

1295 



 54 / 73 

 

1296 



 55 / 73 

 

 1297 

Figure 4. Seasonal variations of (a) aerosol particle number size distribution (dNaero/dlogDp vs. Dp, 1298 

Dp is particle diameter), (b) total aerosol number concentration with a Dp range of 10 to 800 nm 1299 

(Naero) and geometric mean diameter of the particles (GMD), and (c) mass concentration and ratio 1300 

of each component in aerosol particle with Dp less than 1 m and the hygroscopicity factor 1301 

calculated from the chemical composition (chem). Dots represent the median values. Shaded areas 1302 
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represent the values in the range from 25th to 75th percent.Seasonal variations of (a) aerosol physical 1303 

and (b) chemical properties. dNaero/dlogD represents the aerosol number concentration at each bin, 1304 

GMD is the geometric mean diameter of the particles, Naero means total aerosol number 1305 

concentration with diameter ranging 10 to 800 nm, chem is the hygroscopicity factor calculated from 1306 

the chemical composition. Error bar is one standard derivation.  1307 

 1308 

Figure 5. Relationships between (a) aerosol hygroscopicity factor calculated from the chemical 1309 

composition (chem) and mass fraction of organics (forg) in submicron aerosol, (b) chem vs. mass 1310 

fraction of nitrate (fnitrate), (c) chem vs. mass fraction of nitrate (fsulfate), and (d) chem vs. mass fraction 1311 
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of black carbon (fBC). Color bar represents the probability density function (PDF). Black lines are 1312 

linear fit lines. 1313 

 1314 

Figure 5. Monthly variations of (a) hygroscopicity factor calculated from monodisperse CCN 1315 

measurements (CCN) at supersaturation (SS) of 0.1% and 0.7%, and hygroscopicity factor calculated 1316 

from particle chemical composition (chem), (b) critical diameter of dry particle for activation (Dc) 1317 

at SS = 0.1% and 0.7%, and (c) the degree of external mixture ((D75 – D25)/Dc) at SS = 0.1% and 1318 

0.7%. The definitions of D75 and D25 are the Dp at which 75% and 25% of the particles are activated 1319 

at the given SS, respectively. Dots represent the median values. Shaded areas represent the values in 1320 

the range from 25th to 75th percent. 1321 

  1322 
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 1323 

Figure 6. Monthly average of (a) hygroscopicity factor calculated from monodisperse CCN 1324 

measurements (CCN), (b) critical diameter of dry particle for activation (Dc), and (c) the degree of 1325 

external mixture ((D75 – D25)/Dc) at five different supersaturation (SS) conditions. The definitions 1326 

of D75 and D25 are the Dp at which 75% and 25% of the particles are activated at the given SS, 1327 

respectively. Error bar is one standard derivation.  1328 
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 1330 

Figure 7. (a) Relationship between the particle diameter (Dp) and hygroscopicity factor calculated 1331 

from monodisperse CCN measurements (CCN), and (b) Dp vs. degree of external mixture ((D75 – 1332 

D25)/Dc) at each season. The definitions of D75 and D25 are the Dp at which 75% and 25% of the 1333 

particles are activated at the given SS, respectively. Red and blue lines are power-law fits for CCN 1334 

vs. Dp and (D75 – D25)/Dc vs. Dp. 1335 

 1336 

Figure 6. (a) Relationship between the hygroscopicity factor calculated from monodisperse CCN 1337 

measurements (CCN) and particle diameter (Dp), and (b) degree of external mixture ((D75 – D25)/Dc) 1338 
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vs. Dp at each season. The definitions of D75 and D25 are the Dp at which 75% and 25% of the 1339 

particles are activated at the given SS, respectively. Red lines are power-law fits. Dots represent the 1340 

median values. Shaded areas represent the values in the range from 25th to 75th percent. 1341 
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 1343 

Figure 8. Predicted vs. measured CCN number concentration (NCCN) for different seasons. The 1344 

Predicted NCCN is calculated from five different schemes with a detailed introduction shown in Table 1345 

6. Color bar represents the different supersaturation (SS) conditions. Black lines are the linear fits. 1346 

The slope and R2 of the linear regression and the relative deviation (RD) of the predicted NCCN (RD= 1347 

(predicted NCCN – measured NCCN)/measured NCCN) are shown in each panel. Each row represents 1348 

the results at the same scheme in different seasons; each column represents the results at different 1349 

schemes in the same season. 1350 
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 1351 

Figure 7. Predicted vs. measured CCN number concentration (NCCN) for different seasons. The 1352 

Predicted NCCN is calculated from five different schemes with a detailed introduction shown in Table 1353 

3. Color bar represents the different supersaturation (SS) conditions. Black lines are the linear fits. 1354 

The slope and R2 of the linear regression and the median relative deviation (RD) between the 1355 

predicted and measured NCCN are shown in each panel. Each row represents the results using the 1356 

same scheme in different seasons. Each column represents the results using different schemes in the 1357 

same season. 1358 
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 1360 

Figure 9. Statistics of the ratio of predicted CCN number concentration (NCCN) to the measured one 1361 

at different supersaturation (SS) conditions for each season and all datasets. The (a), (b), (c), (d), and 1362 

(e) represent the prediction results from the 1st, 2nd, 3rd, 4th, and 5th scheme, respectively.  1363 
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 1365 

 1366 

Figure 810. Relationships between the particle hygroscopicity factor () and diameter (Dp) observed 1367 

at different aerosol background regions. Lines are the power-law fits of  vs. Dp. 1368 
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 1370 

Figure 11. Predicted vs. measured CCN number concentration (NCCN) at different supersaturation 1371 

(SS) conditions for different seasons. (a) represents the results at SS = 0.1 and 0.2%; (b) shows the 1372 

results at SS = 0.3, 0.5, and 0.7%. Red cross represents the predicted NCCN using mean 1373 

hygroscopicity factor () over particle diameter (Dp) of 100 to 200 nm, while the blue cross 1374 

represents the predicted NCCN using power-law fit of  and Dp. Red and blue lines are the linear fits. 1375 
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Table 1. Densities (ρ) and hygroscopicity factor (κ) for each component.  1377 

Species NH4NO3 (NH4)2SO4 NH4HSO4 H2SO4 Organics BC 

 (kg m-3) 1720 1769 1780 1830 1400 1700 

 0.67 0.61 0.61 0.92 0.1 0 
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Table 2. Summary of CCN number concentration (NCCN) at different supersaturation (SS) conditions 1379 

measured at different locations.  1380 

Location 

(coordinates; a.m.s.l) 
Type Period SS (%) 

Mean NCCN 

(cm-3) 
Reference 

Melpitz, Germany 

(51.5°N, 12.9°E; 86 m) 

rural, 

continental 

Aug. 

2012–Oct. 

2016 

0.1 513 

Present 

study 

0.2 1102 

0.3 1466 

0.5 2020 

0.7 2477 

Vavihill, Sweden 

(56.0°N, 13.2 °E; 172 m) 
rural 

May 2008–

Jul 2010 
0.1–1.0 362–1795 

Fors et al., 

2011 

Southern Great Plains, 

USA  

(36.6°N, 97.5°W; 320 m) 

rural, 

agricultural 

Sep. 2006–

Apr. 2011 
0.4 1248 

Liu and Li, 

2014 

Hyytiälä, Finland 

(61.9°N, 24.3°E; 181 m) 
rural 

Feb. 2009–

Dec. 2012 
0.1–1.0 274–1128 

Paramonov 

et al., 2015 

Mahabaleshwar, India 

 (17.9°N, 73.7°E; ~490 

m) 

rural Jun. 2015 
0.1–

0.94 
118–1826 

Singla et 

al., 2017 

Guangzhou, China 

(23.6°N, 113.1°E; ~21 m) 
rural Jul. 2006 

0.068–

0.67 
995–10731 

Rose et al., 

2010 

Wuqing, China 

(39.4°N, 117.0°E; 7.4 m) 
suburban 

Dec. 

2009–Jan. 

2010 

0.056–

0.7 
2192–12963 

Deng et al., 

2011 

Seoul, Korea 

(37.6°N, 127.0°E; ~38 m) 
urban 2004–2010 0.4–0.8 4145–6067 

Kim et al., 

2014 

Mahabubnagar, India 

(17.7°N, 78.9°E; ~490 m) 

polluted 

continental 
Oct. 2011 1.0 ~5400 

Varghese et 

al., 2016 
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Table 3. Power-law function fits and error function fits for the relationships between activation ratio (AR) vs. supersaturation (SS), and CCN number concentration 1382 

(NCCN) vs. SS for different seasons. 1383 

Season 
AR vs. SS NCCN vs. SS 

Power-law Error Function Power-law Error Function 

Spring 
AR =0.66SS0.73,  

R2=0.98 

AR 

=0.5+0.50erf(ln(SS/0.72)/2.33), 

R2=0.998 

NCCN =3679SS0.76,  

R2=0.97 

NCCN 

=2637+2637erf(ln(SS/0.72)/2.33), 

R2=0.998 

Summer 
AR =0.61SS0.97,  

R2=0.97 

AR 

=0.51+0.51erf(ln(SS/1.04)/2.15), 

R2=0.997 

NCCN =3951SS1.01,  

R2=0.96 

NCCN 

=3162+3162erf(ln(SS/1.04)/2.15), 

R2=0.997 

Autumn 
AR =0.71SS0.79,  

R2=0.98 

AR 

=0.56+0.56erf(ln(SS/0.84)/2.29), 

R2=0.999 

NCCN =3136SS0.81,  

R2=0.98 

NCCN 

=2433+24336erf(ln(SS/0.84)/2.29), 

R2=0.999 

Winter 
AR =0.89SS0.63,  

R2=0.96 

AR 

=0.44+0.44erf(ln(SS/0.29)/1.83), 

R2=0.999 

NCCN =3325SS0.64,  

R2=0.96 

NCCN 

=1624+1624erf(ln(SS/0.29)/1.83), 

R2=0.999 

All  
AR =0.59SS0.71,  

R2=0.98 

AR 

=0.40+0.40erf(ln(SS/0.59)/2.25), 

R2=0.998 

NCCN =3497SS0.81,  

R2=0.98 

NCCN 

=2199+2199erf(ln(SS/0.59)/2.25), 

R2=0.998 

 1384 
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 1385 

Table 4. At each supersaturation (SS) condition, seasonal mean values of the hygroscopicity factor 1386 

calculated from monodisperse CCN measurements (CCN), the critical diameter of dry particle for 1387 

activation (Dc), and the degree of external mixture ((D75 – D25)/Dc). The unit of Dc is nm.  1388 

Parameters SS (%) All datasets Spring Summer Autumn Winter 

CCN 

0.1 0.28 0.31 0.23 0.27 0.32 

0.2 0.28 0.32 0.25 0.26 0.32 

0.3 0.24 0.27 0.21 0.22 0.28 

0.5 0.21 0.22 0.19 0.19 0.23 

0.7 0.20 0.21 0.19 0.19 0.21 

Dc 

0.1 177 169 187 178 168 

0.2 112 107 116 115 107 

0.3 91 87 94 93 86 

0.5 67 65 69 69 64 

0.7 54 53 55 55 53 

(D75 – D25) 

/Dc 

0.1 0.17 0.14 0.14 0.19 0.24 

0.2 0.20 0.16 0.16 0.23 0.27 

0.3 0.21 0.17 0.15 0.25 0.29 

0.5 0.23 0.18 0.17 0.28 0.31 

0.7 0.25 0.20 0.18 0.30 0.36 
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Table2. Seasonal median values of hygroscopicity factor derived from the chemical composition 1390 

(chem), hygroscopicity factor derived from monodisperse CCN measurements (CCN), the critical 1391 

diameter of dry particle for activation (Dc), and the degree of external mixture ((D75 – D25)/Dc) at 1392 

each supersaturation (SS) condition. The unit of Dc is nm.  1393 

Parameters SS (%) All datasets Spring Summer Autumn Winter 

chem - 0.30 0.32 0.24 0.31 0.34 

CCN 

0.1 0.27 0.31 0.22 0.26 0.29 

0.2 0.27 0.32 0.23 0.24 0.30 

0.3 0.23 0.26 0.20 0.21 0.27 

0.5 0.19 0.22 0.18 0.18 0.22 

0.7 0.19 0.20 0.18 0.17 0.20 

Dc 

0.1 176 167 187 177 170 

0.2 111 104 116 114 106 

0.3 89 85 93 92 84 

0.5 67 64 69 69 64 

0.7 54 53 55 55 53 

(D75 – D25) 

/Dc 

0.1 0.15 0.13 0.12 0.18 0.19 

0.2 0.18 0.15 0.14 0.22 0.23 

0.3 0.19 0.15 0.14 0.24 0.23 

0.5 0.20 0.15 0.14 0.25 0.25 

0.7 0.20 0.17 0.15 0.27 0.27 
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Table 5. Power-law fit results in Figure 7. The unit of particle diameter (Dp) is nm. 1395 

 CCN vs. Dp (D75 – D25)/Dc vs. Dp 

All datasets y = 0.07 x0.27, R2 = 0.76 y = 0.92 x-0.33, R2 = 0.99 

Spring y = 0.05 x0.37, R2 = 0.76 y = 0.55 x-0.26, R2 = 0.97 

Summer y = 0.09 x0.19, R2 = 0.56 y = 0.39 x-0.20, R2 = 0.95 

Autumn y = 0.05 x0.31, R2 = 0.88 y = 1.70 x-0.42, R2 = 0.99 

Winter y = 0.05 x0.36, R2 = 0.82 y = 1.10 x-0.30, R2 = 0.95 
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Table 63. Introduction of five activation schemes. The meaning of the abbreviation can be found in 1397 

Notation list. 1398 

Category Scheme Introduction 

1st category: 

NCCN - SS or AR - SS 

empirical fit 

N11st  NCCN - SS power-law fits shown in Table 3Figure 3a 

N22nd  

Real-time Naero combined with AR - SS power-law 

fits shown in Figure 3aTable 3 

2nd category: 

Real-time PNSD 

combined with the 

parameterized  

K13rd  Real-time PNSD combined with a constant  of 0.3 

K24th  

Real-time PNSD combined with the real-time bulk 

chem 

K35th  

Real-time PNSD combined with  - Dp power-law 

fits shown in Table 5Figure 6a 

 1399 
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Appendix A 1401 

 1402 

Figure A1. Schematic diagram for the relationship among the particle number size distribution 1403 

(PNSD), CCN number size distribution (CCN NSD) at internally mixing, and the CCN NSD at 1404 

externally mixing. 1405 

 1406 


