1	Aerosol activation characteristics and prediction at the	
2	central European ACTRIS research station Melpitz,	
3	Germany	
4	Yuan Wang ^{1,2,3*} , Silvia Henning ^{1*} , Laurent Poulain ¹ , Chunsong Lu ² , Frank	
5	Stratmann ¹ , Yuying Wang ² , Shengjie Niu ^{2,4} , Mira L. Pöhlker ¹ , Hartmut Herrmann ¹ ,	
6	and Alfred Wiedensohler ¹	
7	1. Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany.	
8	2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,	
9	Nanjing University of Information Science and Technology, 210044 Nanjing, China.	
10	3. Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, 730000	
11	Lanzhou, China.	
12	4. College of Safety Science and Engineering, Nanjing Tech University, 210009 Nanjing, China.	
13	*Correspondence: Yuan Wang (wang_yuan@lzu.edu.cn) and Silvia Henning (henning@tropos.de)	
14	Abstract: Understanding aerosol particle activation is essential for evaluating aerosol	
15	indirect effects (AIEs) on climate. Long-term measurements on of aerosol particle	
16	activation help to understand the AIEs and narrow down the uncertainties of AIEs	
17	simulation; <u>. Hhowever</u> , they are still scarce. In this study, more than 4-year aerosol	
18	comprehensive measurements were utilized at the central European research station	
19	Melpitz, Germany, to gain insight into the aerosol particle activation and provide	
20	recommendations on improving the prediction of number concentration of cloud	
21	condensation nuclei (CCN, N _{CCN}). As supersaturation (SS) increases from 0.1% to 0.7%,	
22	the median N_{CCN} increases from 399 to 2144 cm ⁻³ , which represents 10% to 48% of the	
23	total particle number concentration with a diameter range of 10 - 800 nm, while the	
24	median hygroscopicity factor (κ) and critical diameter (D_c) decrease from 0.27 to 0.19	
25	and from 176 to 54 nm, respectively. Aerosol particle activation is highly variable	
26	across seasons, especially at low SS conditions. At $SS = 0.1\%$, the median N_{CCN} and $1 / 73$	

27	activation ratio (AR) in winter are 1.6 and 2.3 times higher than the summer values,
28	respectively. Both κ and the mixing state are size dependent. As the particle diameter
29	(D_p) increases, κ increases at D_p of ~40 to 100 nm and almost stays constant at D_p of
30	100 to 200 nm, whereas the degree of the external mixture keeps decreasing at D_p of
31	~40 to 200 nm. The relationships of κ vs. D_p and degree of mixing vs. D_p were both
32	fitted well by a power-law function. Size-resolved κ improves the N_{CCN} prediction. We
33	recommend applying the κ - D_p power-law fit for N_{CCN} prediction at Melpitz, which
34	performs better than using the constant κ of 0.3 and the κ derived from particle chemical
35	compositions and much better than using the N_{CCN} (AR) vs. SS relationships. The κ -
36	D_p power-law fit measured at Melpitz could be applied to predict N_{CCN} for other rural
37	regions. For the purpose of improving the prediction of N _{CCN} , long-term monodisperse
38	<u>CCN</u> measurements are still needed to obtain the κ - D_p relationships for different
39	regions and their seasonal variations. The overall characteristics of aerosol particle
40	activation at Melpitz are first summarized. For supersaturation (SS) levels of 0.1%,
41	0.2%, 0.3%, 0.5%, and 0.7%, the mean cloud condensation nuclei (CCN) number
42	concentration (N_{CCN}) increases with the increase of SS from 513 to 2477 cm ⁻³ , which
43	represents 11% to 52% of the total particle number concentration with diameter ranging
44	from 10 to 800 nm, while the hygroscopicity factor (κ) and the critical diameter (D_e)
45	decrease from 0.28 ± 0.08 (mean value \pm one standard deviation) to 0.20 ± 0.09 and
46	from 177 ± 19 to 54 ± 8 nm, respectively. Aerosol particle activation is highly variable
47	across seasons, especially at low SS conditions. At $SS = 0.1\%$, the seasonal mean N_{CCN}
48	is 681 cm ⁻³ in winter, which is almost twice higher than the summer value (347 cm ⁻³);
49	the seasonal mean activation ratio (AR) in winter (0.18) is three times higher than the
50	summer one. Subsequently, size dependency of both κ and the state of mixing were

investigated. As the particle diameter (D_p) increases, κ increases at D_p of ~40 to 100 nm 51 and almost stays constant at D_{t} of 100 to 200 nm, whereas the degree of the external 52 mixture keeps decreasing at D_{μ} of ~40 to 200 nm. The relationships of κ vs. D_{μ} and 53 mixture degree vs. D_n were both fitted well by the power-law function for each season. 54 Finally, we recommend applying the κ - D_{p} power-law fit for N_{CCN} prediction, which 55 can narrow down the median uncertainty within 10% for different SS conditions and 56 seasons at Melpitz; it also could be applied to predict N_{CCN} at other rural and continental 57 regions with a similar aerosol background. Additionally, the mean κ value over D_p of 58 100 to 200 nm also works well on the N_{CCN} prediction when SS is less than 0.2%. 59

60

1. Introduction

The specific subset of aerosol particles that serves as nuclei for the condensation 61 62 of water vapor, forming cloud droplets at a given supersaturation (SS) condition, is known as cloud condensation nuclei (CCN). Aerosol particle activation affects the 63 aerosol and cloud interactions (ACI), thereby changing the cloud microstructure (Zhao 64 et al., 2012; Jia et al., 2019; Wang et al., 2019), precipitation (Khain, 2009; Wang et al., 65 2011; Fan et al., 2012, 2018), radiation (Twomey, 1974, 1977; Albrecht, 1989; Zhao 66 and Garrett, 2015), and by these effects the global climate (Ramanathan et al., 2001; 67 Rosenfeld et al., 2019). The latest sixth assessment report from IPCC (2021) pointed 68 69 out that aerosol indirect effects (AIEs) remain the most considerable uncertainty in 70 assessing the anthropogenic contribution to present and future climate change.

The ambient *SS* and aerosol activation ability are both important for predicting the number concentration of activated cloud droplets. The classical Köhler theory (Köhler, 1936), combining the Raoult law with the Kelvin effect, illustrates that the aerosol particle activation depends on particle size, chemical composition and the given *SS*. <u>Petters and Kreidenweis (2007) parameterized the Raoult term with a single</u>

hygroscopicity factor κ to capture the water activity without needing to know anything 76 about the dissolved compounds. Petters and Kreidenweis (2007) utilized a single 77 hygroscopicity factor κ to describe the CCN activity at each particle diameter $(D_p)_{\tau}$, 78 which facilitates studying the activation process without considering the complex 79 chemical compositions of aerosol particles (McFiggans et al., 2006). -Different 80 perspectives have been presented on the influence of particle size and composition on 81 82 the CCN activation. In terms of a single aerosol particle, the actual particle size plays a more important role than the chemical composition for activation because of the 83 84 different range in which κ and particle diameter (D_p) vary and the reciprocal relationship between κ and the third power of the critical $D_p (D_c^3) \mathcal{D}_p^3$ at a given SS. As for a 85 population of aerosol particles, Dusek et al. (2006) concluded that particle number size 86 distribution (PNSD) matters more than the chemical composition distribution, which 87 has been supported by many experiments. Even sometimes, assuming a constant κ still 88 predicted CCN number concentration (N_{CCN}) well (e.g., Sihto et al., 2011; Wang et al., 89 2018a). Andreae and Rosenfeld (2008) reviewed the previous studies on aerosol particle 90 activation and recommended that for modeling purposes, the global κ values of 0.3 ± 0.1 91 and 0.7±0.2 can be representative for continental and marine aerosol, respectively, 92 which has been widely used to predict N_{CCN} . The regional variability should be 93 94 underlined emphasized because the mean κ measured in urban, rural, and forest exhibits significant differences. For instance, Sihto et al. (2011) suggested an average κ of 0.18 95 to predict the CCN activation well in boreal forest conditions in Hyytiälä, Finland; . a 96 97 A fixed κ of 0.31 suffices to calculate the N_{CCN} in a suburban site located in the center 98 of the North China Plain (Wang et al., 2018a);). the The mean κ is 0.5 in a near-coast 99 background station (CESAR Tower) in Netherlands (Schmale et al., 2018).; the The median κ ranges from 0.02 to 0.16 at SS = 0.1–1.0% in an urban background site in 100

Budapest, Hungary (Salma et al., 2021). Therefore, the assumption of a constant $\kappa =$ 101 0.3 may not be appropriate when trying to predict N_{CCN} for different continental regions. 102 103 Additionally, some experiments, especially conducted on more diverse particulate sources, have indicated chemistry does play an important role in N_{CCN} variability (e.g., 104 Nenes et al., 2002; Petters and Kreidenweis, 2007; Rose et al., 2010). Not only the bulk 105 chemical composition with a constant κ should be considered for N_{CCN} prediction, but 106 107 the size-resolved chemical composition (Deng et al., 2011; Wu et al., 2016) and the mixing state should be applied (Su et al., 2010; Zhang et al., 2014). Information on the 108 109 organic aerosol fraction improves N_{CCN} prediction considerably (Poulain et al., 2010; Zhang et al., 2016; Kuang et al., 2020). Freshly formed particles are about 1 nm in 110 diameter (Kulmala et al., 2012); they, which must grow to tens of nanometers in 111 diameter to serve as the effective CCN at a relatively high SS of ~1% (Dusek et al., 112 2006) and even larger than 200 nm to be efficient at SS less than 0.1% (Deng et al., 113 2013). Aerosol chemical composition changes during the growing and aging processes. 114 For instance, κ increases with particle size caused by photochemical processes which 115 enhancing secondary inorganic species formation and going along with an increase in 116 particle size (Massling et al., 2009; Zhang et al., 2017; Wang et al., 2018b). On the other 117 118 hand, in sulfate dominated new particle formation (NPF) events with subsequent particle growth by condensation of organic vapors, the κ of small particles may exceed 119 the κ of the larger ones (Wang et al., 2018a). If the κ of organic aerosol increases from 120 0.05 to 0.15, the global average aerosol radiative forcing would decrease by $\sim 1 \text{ W m}^{-2}$, 121 which is in the same order of magnitude as the overall climate forcing of anthropogenic 122 aerosol during the industrialization period (Rastak et al., 2017). 123

124 To obtain the regional parameters of aerosol particle activation, extensive field 125 campaigns have been conducted worldwide. Besides the significant difference in spatial,

5 / 73

also the temporal variations of aerosol activation characteristics are essential for N_{CCN} 126 prediction (Andreae and Rosenfeld, 2008). Most of the observations lasted 1-2 months 127 or even less; , they mainly focused focusing on the effects of short-term weather 128 processes or pollution events on aerosol particle activation, such as the effects of the 129 summer monsoon (Jayachandran et al., 2020), wet removal (Croft et al., 2009), NPF 130 events (Dusek et al., 2010; Wu et al., 2015), biomass burning (Rose et al., 2010), and 131 132 aerosol particle aging as well as oxidation processes (Zhang et al., 2016, 2017). The long-term CCN measurements (of at least one full year) are still rarely reported, 133 134 resulting in insufficient knowledge concerning the seasonal and annual cycles of aerosol particle activation, which are also critical for model predictions and evaluations. 135 Burkart et al. (2011) reported the particle activation in the urban background aerosol of 136 Vienna, Austria, based on 11-month aerosol and CCN concentration measurements. 137 Paramonov et al. (2015) reported a synthesis of CCN measurements within the 138 EUCAARI network using the long-term data collected at 14 locations. Pöhlker et al. 139 (2016) presented the climatology of CCN properties of a remote central Amazonian rain 140 forest site using 1-year measurements. Che et al. (2017) provided the aerosol-activation 141 properties in the Yangtze River Delta, China, based on ~1-year measurements. Using 142 the long-term (of most > 1 year) aerosol and CCN concentration measurements from 143 12 sites, Schmale et al. (2018) presented the spatial differences in aerosol particle 144 activation for various regional backgrounds. However, systematic studies focusing on 145 the seasonal cycle of size-resolved particle activation and respective CCN predictions 146 are still scarce in the central European continent. Such a study would be of great help 147 for understanding ACI and narrowing down the regional uncertainties in climate 148 predictions. 149

In this investigation, more than 4-year comprehensive measurements of aerosol 150 physical, chemical, and activation properties collected at the ACTRIS (Aerosol, Clouds 151 and Trace Gases Research Infrastructure, http://www.actris.eu/) site Melpitz, Germany, 152 are utilized. The major objective is to gain insight into the aerosol particle activation 153 and provide recommendations on methods for N_{CCN} predictions. We present therefore 154 the long-term observations and seasonal cycles of various particle activation variables 155 156 such as <u>CCN number size distribution</u>, N_{CCN}, activation ratio, critical diameter, sizeresolved κ and mixing state-degree. Furthermore, we evaluated the accuracy of N_{CCN} 157 calculated from five different activation schemes and finally provide recommendations 158 159 to use a power-law based parameterization for the dependence of κ on particles diameter for long-termon N_{CCN} prediction at Melpitz and for other rural regions with a similar 160 aerosol background condition. 161

162 **2. Methodology**

163 2.1 Experiment details

Atmospheric aerosol measurements were conducted at the Melpitz observatory (51.54°N, 12.93°E, 86 m above sea level), 50 km to the northeast of Leipzig, Germany. The aerosol particles observed at Melpitz can be regarded as representative for the central European rural background conditions (Birmili et al., 2009). The surroundings of the site are mostly pastures and forests without significant sources of anthropogenic emissions. More detailed descriptions of the Melpitz site can be found-in, for example, in Poulain et al. (2020).

This study focuses on the physicochemical properties and the activation ability of aerosol particles using the data collected at Melpitz from August 2012 to October 2016. Figure 1 demonstrates shows the experimental setup. All instruments were in the same container laboratory and utilized the same air inlet. Ambient aerosol particles were first

pretreated through a PM₁₀ Anderson inlet and an automatic aerosol diffusion dryer kept 175 the relative humidity in sampling lines at a relative humidity less than 40% (Tuch et al., 176 2009) following the ACTRIS recommendations. Subsequently, the aerosol flow was 177 divided into the different instruments using an isokinetic splitter. Particle number size 178 distributions (PNSD) were measured using a Dual-mobility particle size spectrometer 179 (D-MPSS, TROPOS-type; Birmili et al., 1999; Wiedensohler et al., 2012) within the a 180 181 diameter ranging range from of 5 -to 800 nm. An aerosol chemical speciationspecies monitor (ACSM, Aerodyne Inc; Ng et al., 2011) was used to measure the chemical 182 compositions of the near-PM₁—non-refractory submicron aerosol particulate 183 matterparticles (nitrate, sulfate, chloride, ammonium, and organics). A multi-angle 184 absorption photometer (MAAP, model 5012, Thermo Scientific; Petzold and 185 Schönlinner, 2004) was used to measure the particle light absorption coefficients and 186 187 to estimate the equivalent black carbon (eBC) mass concentration. For simultaneous measurement of particle and CCN number size distributions, dried aerosol particles 188 were passed through the bipolar charger to establish charge equilibrium (Wiedensohler, 189 1988) and then through a differential mobility analyzer (DMA) for selecting a 190 191 monodisperse particle fraction; . after After the DMA, the flow was divided into two parts, respectively split to passed through a condensation particle counter (CPC, model 192 193 3010, TSI) to measure the total number concentration of the selected monodisperse condensation nuclei (N_{CN}) and through a cloud condensation nuclei counter (CCNC, 194 model 100, Droplet Measurement Technologies; Roberts and Nenes, 2005) to measure 195 the N_{CCN} . Thus, the size dependent activated fraction (AF, N_{CCN}/N_{CN}) curve, i.e., the AF 196 197 at a certain diameter (D_p) of dry particles, could be obtained. The losses in both instruments were checked and it was corrected for in the inversion routine. The coupling 198 between size selection and CCNC was programmed in a way that the size resolved 199

200 measurements started only after the temperature and thereby the *SS* of the CCNC was 201 stabilized. As the diameter scan started after *SS* stabilization, the measurement itself 202 was the same length at all *SS* conditions. At fully stabilized CCNC conditions we did 203 one D_p scan at per *SS* setting. A total of five different *SS* conditions was set in the CCNC 204 instrument (0.1%, 0.2%, 0.3%, 0.5%, and 0.7%). A complete *SS* cycle lasted ~2.5 hours-205 and the slight variations in the 2.5h total *SS* cycle was only due to the waiting time until 206 the temperature of the CCNC was stabilized.

All the instrumentation was frequently calibrated within the framework of the 207 208 European Center for Aerosol Calibration (ECAC, https://www.actris-ecac.eu/). The ACSM was regularly calibrated according to the manufacturer's recommendations with 209 350 nm monodispersed ammonium nitrate and ammonium sulfate particles (Freney et 210 al., 2019). The D-MPSS was calibrated following the recommendations in 211 Wiedensohler et al. (2018). Throughout the campaign, the CCNC was regularly 212 calibrated once a year following the procedures outlined in Rose et al. (2008) with using 213 214 the E-AIM model (Clegg et al. 1998). The measurement uncertainties of these instruments should be noted. The uncertainty in the MAAP is within 10% (Müller et al., 215 2011), and those in the D-MPSS and CCNC are both on the order of 10% (Wiedensohler 216 et al., 2018; Rose et al., 2008). For the SS setting in CCNC, Gysel and Stratmann (2013) 217 pointed out that an achievable accuracy in SS is 10 % (relative) at SS > 0.2%, and less 218 219 than 0.02 % (absolute) at the lower SS. For the ACSM data, the uncertainty in determining the total non-refractory mass is 9%.; Wwhile for the individual chemical 220 components, the uncertaintyit is 15% for nitrate, 28% for sulfate, 36% for ammonium, 221 222 and 19% for organic matter (Crenn et al., 2015).

Due to instrument failures and maintenance operations, missing measurements occurred during the campaign. Effective data coverage is shown in Figure S1 in

9 / 73

Supporting Information (SI) in Figure 2. Overall, the CCNC, D-MPSS, and ACSM MAAP captured 45578 AF curves, 103052 PNSDs, and 26876-hour aerosol chemical
 measurements, which covered 63%, 92%, and 77% of the campaign time, respectively.
 For 42% of the time all these instruments were measuring together.

229 2.2 Methods

Each AF curve $(N_{CCN}/N_{CN} \text{ vs. } D_p)$ was firstly corrected for multiply charged 230 231 particles. Multiply (mostly doubly) charged particles appear in the AF curve as a plateau or shoulder at small diameters because they have the same electrical mobility diameter 232 233 as singly charged smaller particles; thus, they are falsely selected in the DMA (Rose et al., 2008; Henning et al., 2014). To correct for this, the fraction of multiple charged 234 particles as determined from the D-MPSS measurements was subtracted from each 235 value of N_{CCN}/N_{CN} in AF.For this was corrected by subtracting the multiply charged 236 particle fraction as determined from the D-MPSS measurements from each value of 237 N_{CCN}/N_{CN} in AF. The PNSD from the D-MPSS measurements (5 to 800 nm) are needed 238 as the DMA-CCNC size range does not cover the large particle fraction, which is 239 essential for the correction. Subsequently, we obtained the corrected AF curves. 240

Each corrected AF curve was fitted with a sigmoid function,

$$AF = a + b / \left(1 + \exp\left(-\frac{D_p - D_c}{\sigma_s}\right)\right)$$
(1)

242 where *a* is the offset from 0 in the y direction and *b* is the height of the upper plateau of 243 the sigmoidal function, D_c is the critical diameter, and σ_s is a measure for the width of 244 the sigmoid function. where *a* and *b* are the lower and upper limits for calculating critical 245 diameters (D_e) at the set-nominal *SS*, and σ_s is a measure for the width of the sigmoid 246 function. This AF fit was multiplied with the PNSD to gain the CCN number size 247 distribution and by integrating the total number of CCN, i.e., N_{CCN} . The critical diameter (D_c) of dry particles, κ , and mixing state at each SS condition can be derived from the AF fit results. Affected by aerosol mixing, the AF rises gradually from 0 to the max (~1) rather than <u>displaying</u> an intermittent mutation. D_c is defined as the diameter of the dry particles from which 50% of the particles are activated at the given SS.

The shape of the AF curve, i.e., the relative width of the AF, represents the degree 253 of external mixture, which can be quantified by the ratio of $(D_{75} - D_{25})/D_c$ (Jurányi et 254 al., 2013). D₇₅ and D₂₅ are the diameters at which 75% and 25% of the particles are 255 activated at the given SS. Internal mixture implies that all particles with any given 256 257 equal dry size have equal κ with $(D_{75} - D_{25})/D_c = 0$, whereas a distribution of different 258 κ at a given particle size can be observed for externally mixed aerosol with higher (D_{75} $(-D_{25})/D_c$ values. Note that the particle composition varying at different sizes is not 259 defined as external mixing in this study. Jurányi et al. (2013) confirmed the reliability 260 of this approach by comparing the κ distributions derived from parallel monodisperse 261 CCN measurements and HTDMA measurements. 262

According to the derivation of κ -Köhler theory (Petters and Kreidenweis, 2007), the κ can be calculated from D_c at a given SS:

$$\kappa = \frac{4A^3}{27D_c{}^3\ln^2(1+SS/100)}$$
(2a)

265 with

$$A = \frac{4\sigma_{\rm s/a}M_w}{RT\rho_w} \tag{2b}$$

where $\sigma_{s/a}$ is the droplet surface tension (assumed to be that of pure water, 0.0728 Nm⁻²), M_w the molecular weight of water, *R* the universal gas constant, *T* the absolute temperature, ρ_w the density of water, and *A* can be considered a function of *T*. Thus, the 269 size-resolved κ (pair of κ and D_c) can be obtained at each SS cycle. Our monodisperse CCN measurements provide the size-resolved κ within D_p (D_c) of ~40–200 nm, which 270 depends largely on the SS setting of 0.1% to 0.7%. Note that equation 2a is an 271 approximation of κ -Köhler equation and when κ is less than 0.2, it causes a slight bias 272 in calculating κ (Petters and Kreidenweis, 2007). Additionally, the debate about the 273 274 importance of $\sigma_{s/a}$ changes and the connected bulk/surface partitioning on activation of aerosols is on ongoing (e.g., Ovadnevaite et al., 2017; Vepsäläinen et al., 2022), which 275 276 is not focused on in this study.

277 Besides deriving it from the monodisperse CCN measurements, κ can be 278 determined-derived from the ACSM and MAAP chemical composition measurements 279 (κ_{chem}) using the Zdanovskii–Stokes–Robinson (ZSR) mixing rule (Zdanovskii, 1948; 280 Stokes and Robinson, 1966) combined with κ -Köhler theory:

$$\kappa_{chem} = \sum_{i} \varepsilon_i \kappa_i \tag{3}$$

where κ_i and ε_i mean the κ and volume fraction for each component, respectively, and *i* is the number of the component in the mixture. The ε_i was derived from its measured component *i* mass concentration and density (ρ_i). A simple ion-pairing scheme (Gysel et al., 2007) was used in this study with the κ_i and ρ_i values listed in Table 1 (Wu et al., 2015). Note that aA κ of 0.1 is used for particulate organics (Dusek et al., 2010; Gunthe et al., 2009, 2011)₂; Ffor black carbon, we use a κ of 0 (Rose et al., 2011; Schmale et al., 2018).

288 The CCN number size distribution is a part of the particle number size distribution 289 (PNSD), which approximately corresponds to the part of PNSD with $D_p > D_c$ when 290 assuming particles to be internally mixed (Figure S2 in SI). The assumption of the 291 internal mixing could be reasonable because the median values of the parameter *b* and 292 12 / 73 292 $(D_{75} - D_{25})/D_c$ are 1.0 and 0.18. Thus, D_c plays a critical role on diagnosing N_{CCN} in 293 models, which can be derived from κ parameterization at a given SS. When κ is obtained, 294 $D_c(\kappa, SS)$ is calculated from equation 2a. When κ is given, we can predict the N_{CCN} at 295 each SS. Thereto, $D_c(\kappa, SS)$ is calculated from equation 2a. And, assuming an internal 296 mixture, the predicted N_{CCN} is the integration of the PNSD from D_c , that is,

$$Predicted N_{CCN} = \int_{D_c}^{800} PNSD(D_p) dD_p$$
(4)

297 **3. Results**

298 **3.1 Aerosol activation characteristics**

As SS increases, the CCN number size distribution broadens towards smaller 299 particle sizes (Figure S3 in SI), causing an increase in N_{CCN} and activation ratio (AR, 300 301 i.e., ratio of N_{CCN} to total aerosol number concentration with a diameter range of 10 to 800 nm, Naero). At Melpitz, the median N_{CCN} and AR increases from 399 to 2144 cm⁻³ 302 and 0.10 to 0.48 when SS increases from 0.1% to 0.7%. As shown in Figure 2, the N_{CCN} 303 304 measured at Melpitz is slightly higher than that measured in more remote rural 305 background stations, e.g., in Vavihill, Sweden (Fors et al., 2011), Hyytiälä, Finland (Paramonov et al., 2015), Southern Great Plains, USA (Liu and Li, 2014), 306 307 Mahabaleshwar, India (Singla et al., 2017). However, compared to the N_{CCN} measured in polluted regions (e.g., Rose et al., 2010; Deng et al., 2011; Kim et al., 2014; Varghese 308 et al., 2016), the Melpitz N_{CCN} is much lower. 309 Figure 3a presents the N_{CCN} vs. SS and AR vs. SS relationships at each season and 310 all datasets at Melpitz. The two relationships are similar, and both can be fitted well 311

- 312 with using a power-law function (Twomey, 1959). The fit was also performed with an
- 313 error function (Pöhlker et al., 2018) and the fitted parameters are in the SI (Table S2).
- 314 Over the whole period, the median values of the slope parameter and the coefficient in

the N_{CCN}-SS power-law fit are 2851 cm⁻³ and 0.75, respectively, which are within the 315 range of values for continental aerosol (slope parameter of 600-3500 cm⁻³ and 316 317 coefficient of 0.4-0.9) reported in Seinfeld and Pandis (2016). The slope parameters in the power-law fitting represent the sensitivity of the N_{CCN} and AR to the variation in SS, 318 319 which are highest in summer and lowest in winter. The seasonal variations of N_{CCN} and 320 AR at SS = 0.1% and 0.7% are shown in Figure 3b. In summer, the median N_{CCN} and 321 AR are both lowest at SS = 0.1%, which contributed to the largest sensitivity of N_{CCN} 322 and AR to SS, i.e., the largest slope parameter in the power-law fitting among the four 323 seasons. Additionally, the shape of the PNSD contributed to explain the sensitivity of N_{CCN} and AR to SS. The PNSD in summer was steepest in the 40-200 nm size range 324 among the four seasons (Figure S4 in SI). Thus, in summer, a small shift in D_c will 325 change the N_{CCN} and AR much more than those in winter where the PNSD looks broader, 326 causing the strong sensitivity of N_{CCN} and AR to SS. 327 328 To explain the seasonal variations in aerosol activation characteristics, we 329 investigated the PNSD and chemical compositions as shown in Figure 4. In summer, affected by the frequent NPF events (Ma et al., 2015; Wang et al., 2017), the Aitken-330 331 mode particles with $D_p \le 100$ nm accounted for the largest portion of the PNSD (Figure S4 in SI), resulting in the highest Naero and the smallest geometric mean diameter 332 $(GMD = \exp(\frac{\sum_{i} n_i \times lnD_i}{N_{aero}}))$ among the four seasons. Additionally, in summer, there was 333 334 the lowest bulk κ_{chem} with median value of 0.24 corresponding to the highest organic mass fraction (56% of total mass), which could be related to the strong formation of the 335 secondary organic aerosol (SOA). Therefore, the N_{CCN} and AR both kept relatively low 336 values in summer, especially at low SS conditions (e.g., at SS = 0.1%). On the contrary 337 in winter, the relatively low number concentration of Aitken-mode particles caused the 338 lowest Naero and the largest GMD among the four seasons, which could be owing to the 339

340	rare NPF events. Meanwhile, in winter, low temperatures favored the particulate phase
341	of nitrate (Poulain et al., 2011), causing the highest nitrate mass fraction (31% of total
342	mass) among the four seasons, which might explain the highest κ_{chem} (median value of
343	0.34). Taking all three together, the lowest Naero, the largest GMD, as well as the highest
344	κ_{chem} , contribute to the highest AR value in winter at each SS condition. The
345	relationships between κ_{chem} and each particle component, and the correlations among
346	seasonal median values of Naero, GMD, and Kchem are in SI (Text S1, Figures S5 and S6).
347	Figure 3a presents the time series of the mean CCN number size distribution at
348	each SS condition. As SS increases, CCN number size distribution broadens towards
349	smaller particle sizes, causing an increase in N _{CCN} and activation ratio (AR, i.e., ratio
350	of N_{CCN} to total aerosol number concentration with diameter ranging from 10 to 800 nm,
351	N_{aero}). At Melpitz, the mean N_{CCN} is 513, 1102, 1466, 2020, and 2477 cm ⁻³ at SS of 0.1%,
352	0.2%, 0.3%, 0.5%, and 0.7%, respectively. The mean AR ranged from 0.11 to 0.52 at
353	$SS = 0.1\%$ to 0.7%. As shown in Table 2, the mean N_{CCN} measured at Melpitz is
354	generally higher than that measured in more remote rural background stations. For
355	instance, as SS increased from 0.1% to 1.0%, the mean N _{CCN} increased from 362 to 1795
356	cm ⁻³ in Vavihill, Sweden (Fors et al., 2011) and 274 to 1128 cm ⁻³ in Hyytiälä, Finland
357	(Paramonov et al., 2015); in Southern Great Plains, USA, the mean N_{CCN} at $SS = 0.4\%$
358	was 1248 cm ⁻³ (Liu and Li, 2014); the mean N_{CCN} increased from 118 to 1826 cm ⁻³ as
359	SS increased from 0.1% to 0.94% in Mahabaleshwar, India (Singla et al., 2017).
360	However, the mean N_{CCN} measured at Melpitz is far lower than that measured in
361	polluted regions. For example, in a rural site of Guangzhou, China, the mean N _{CCN}
362	increased from 995 to 10731 cm ⁻³ as SS increased from 0.068% to 0.67% (Rose et al.,
363	2010); higher N _{CCN} was observed in Wuqing, China, with the mean N _{CCN} of 2192–12963
364	cm^{-3} at $SS = 0.056 + 0.7\%$ (Deng et al., 2011); in an urban site of Seoul, Korea, the mean

365 N_{CCN} increased from 4145 to 6067 cm⁻³ as SS increased from 0.4% to 0.8% (Kim et al., 366 2014); in a polluted continental site of Mahabubnagar, India, the mean N_{CCN} at SS = 1.0%367 was ~5400 cm⁻³ (Varghese et al., 2016).

At Melpitz, aerosol activation characteristics are highly variable across seasons. 368 At SS = 0.1%, CCN number size distribution is wider in spring and winter than in 369 summer and autumn; the mean N_{CCN} at SS = 0.1% is 585, 347, 440, and 681 cm⁻³ in 370 371 spring, summer, autumn, and winter, respectively. The mean N_{CCN} at SS = 0.1% in winter is almost twice as high as that found in summer. The highest mean AR at SS = 372 373 0.1% was 0.18 observed in winter, whereas the lowest mean AR (0.06) was observed in summer. In spring and autumn, the mean AR at SS = 0.1% is 0.1. As SS increases, 374 CCN number size distribution gradually peaks in summer, especially at SS = 0.5% and 375 0.7%. At SS = 0.7%, the mean N_{CCN} is 2622, 2530, 2222, and 2495 cm⁻³, and the mean 376 AR is 0.49, 0.41, 0.51, and 0.68 in spring, summer, autumn, and winter, respectively. 377 The AR-SS and N_{CCN}-SS relationships in each season and all datasets are shown in 378 379 Figures 3b and 3c. The two relationships are similar, and both can be fitted well with using the power-law function (Twomey, 1959) and the error function (Pöhlker et al., 380 2018). The fit results are shown in Table 3. The error function fits the relationships 381 better than the power-law function because of more parameters. The power parameter 382 in the power-law function means the change rate of the controlled variable with the 383 384 independent variable, that is the slope in a log-log coordinate system, so it is also called the slope parameter. In the power-law fits of the two relationships, the slope parameters 385 are highest in summer and lowest in winter. Therefore, AR and N_{CCN} are most sensitive 386 387 to SS in summer, whereas the opposite is true in winter. The coefficients in the powerlaw fits represent the AR and N_{CCN} at SS = 1%. The coefficient in AR-SS fit is highest 388 in winter (0.89) and lowest in summer (0.61). However, the coefficient in N_{CCN}-SS fit 389

is highest in summer (3951 cm⁻³) and lowest in autumn (3136 cm⁻³). Over the whole period, the mean values of the slope parameter and the coefficient in the N_{CCN} -SS powerlaw fit are 3497 cm⁻³ and 0.81, respectively, which are within the range of values for continental aerosol (slope parameter of 600–3500 cm⁻³ and coefficient of 0.4–0.9) reported in Seinfeld and Pandis (2016).

CCN number size distribution is a part of the particle number size distribution 395 396 (PNSD), which approximately corresponds to the part of PNSD with $D_p > D_{\varepsilon}$ when assuming particles to be internally mixed. The schematic diagram in Appendix A shows 397 398 the relationship between the PNSD and the CCN number size distribution. Aerosol chemical composition determines the κ through equation 3, thereby changing D_e at a 399 400 given SS condition through equation 2a. Thus, we present the time series of the PNSD and chemical compositions in Figure 4 to explain the variations in aerosol activation 401 characteristics. 402

In summer, affected by the frequent NPF events (Ma et al., 2015; Wang et al., 403 2017), the Aitken-mode particles with $D_{p} < 100$ nm account for the largest portion of 404 the PNSD, resulting in the highest N_{acro} with a mean value of 6224 cm⁻³ and the smallest 405 geometric mean diameter (*GMD* = exp $\left(\frac{\sum_{t} n_t \times lnD_t}{N_{norm}}\right)$) with a mean value of 50 nm among 406 the four seasons. On the contrary, in winter, the mean GMD increases to 58 nm, which 407 is the largest among the four seasons, and the N_{aero} decreases to the lowest with a mean 408 value of 3686 cm⁻³ because of the rare NPF events. During the NPF events, only a part 409 of newly formed particles grows to sizes larger than D_e (e.g., ~55 nm at SS = 0.7%), 410 whereas most of the new particles are still unactivated at $SS \leq 0.5\%$. Therefore, CCN 411 number size distribution gradually peaks as SS increases in summer, whereas AR keeps 412 a minimum even at relatively high SS conditions as shown in Figure 3a. In winter, the 413 lowest N_{aero} and the largest GMD contribute to the highest AR at each SS condition. 414

415 Figure 4b shows the average changes of the aerosol particle chemical compositions over a year and the estimated bulk κ_{chem} of submicron aerosol particles. At Melpitz, the 416 mean value of bulk κ_{chem} is 0.36 with one standard deviation of 0.09 over the whole 417 period; the seasonal mean κ_{chem} plus/minus one standard deviation are 0.38 ± 0.09 , 418 0.29 ± 0.08 , 0.36 ± 0.08 , and 0.40 ± 0.08 in spring, summer, autumn, and winter, 419 respectively. Because the *k*_{chem} depends on aerosol particle chemical composition 420 through equation 3, we examined the correlation between κ_{ehem} and the mass fraction 421 of each component to explain the variations of κ_{ehem} . As shown in Figures 5a and 5b, a 422 negative correlation between the κ_{chem} and the organic mass fraction (f_{org}) was observed, 423 while an opposite trend was found for the nitrate ($f_{nitrate}$). Additionally, the κ_{chem} is not 424 correlated with the sulfate mass fraction $(f_{sulfate})$ and the BC mass fraction (f_{BC}) , as 425 shown in Figures 5c and 5d. 426

In summer, there is the lowest bulk $\kappa_{\rm ehem}$ with 0.29±0.08 corresponding to the 427 highest fore (56% of total mass on average), which could be related to the strong 428 formation of the secondary organic aerosol. In winter, low temperatures favor the 429 430 particulate phase of nitrate (Poulain et al., 2011) with a mean f_{nitrate} of 31%, which might explain the highest κ_{chem} (0.40 \pm 0.08). According to equation 2a, D_e increases as 431 κ decreases at a given SS condition. Thus, the lowest κ_{ehem} results in the narrowest CCN 432 433 number size distribution and a decrease in N_{CCN} in summer, especially at relatively low SS conditions (e.g., 0.1% and 0.2%) as shown in Figure 3a. 434

435 **3.2 Size-resolved particle hygroscopicity factor and mixing state**

436 The hygroscopicity factor and the mixing state directly influence the D_c and the 437 shape of the AF curve, thereby changing the N_{CCN} at a given SS condition. Affected by 438 the variations of particle composition, tThese two parameters are not constant and both 439 vary with particle size and season.

Figure 6a-5a presents monthly median values of κ_{chem} -monthly averages of and 440 κ calculated from monodisperse CCN measurements ($\kappa_{\rm CCN}$) at SS of 0.1% and 0.7%. 441 Their each SS condition, and their seasonal mean median values are summarized in 442 Table 42. At Melpitz, the median κ_{CCN} decreased from 0.27 to 0.19 as SS increased from 443 0.1% to 0.7%, which was less than the median bulk κ_{chem} of 0.3. The seasonal variation 444 of $\kappa_{\rm CCN}$ at SS of 0.1% is similar to that of $\kappa_{\rm chem}$, whereas the seasonal trend in $\kappa_{\rm CCN}$ is 445 much weaker at SS = 0.7%. Essentially, the relationship between $\kappa_{\rm CCN}$ and SS is 446 447 determined by the $\kappa_{\rm CCN}$ vs. D_p relationship. The $\kappa_{\rm CCN}$ at SS of 0.1% and 0.7% correspond to the median D_c (i.e., D_p) of 176 and 54 nm, respectively. As the ACSM is 448 449 sensitive to particle mass rather than number concentration, the bulk composition is dominated by the contribution of the larger particles. In the median volume size 450 distribution of particle, the peak diameter was at ~300 nm (Poulain et al., 2020). Thus, 451 $\kappa_{\rm chem}$ may be representative for the larger particles rather than for the smaller particles. 452 Owing to the positive correlation between κ and D_p (Figure 6a), the κ_{chem} representing 453 for the larger particles could be greater than the $\kappa_{\rm CCN}$ for the smaller particles. Figure 454 5b depicts the monthly variation of D_c at SS of 0.1% and 0.7%, which shows the 455 opposite trend to $\kappa_{\rm CCN}(SS)$ because of the negative correlation of $D_c^{3}(SS)$ vs. $\kappa(SS)$ 456 shown in equation 2a. Compared to the D_c at lower SS conditions (e.g., 0.1%), D_c has a 457 more significant seasonal trend at higher SS conditions (e.g., 0.7%). At SS = 0.7%, the 458 low $\kappa_{\rm CCN}$ caused the large D_c in summer, whereas the high $\kappa_{\rm CCN}$ caused the small D_c in 459 spring and winter. 460 At Melpitz, the mean $\kappa_{\rm CCN}$ plus/minus one standard deviation over all datasets are 461

461 At Melpitz, the mean κ_{CCN} plus/minus one standard deviation over all datasets are 462 $0.28 \pm 0.08, 0.28 \pm 0.10, 0.24 \pm 0.10, 0.21 \pm 0.09, \text{ and } 0.20 \pm 0.09 \text{ at } SS = 0.1\%, 0.2\%,$

0.3%, 0.5%, and 0.7%, respectively, where the mean $\kappa_{\rm CCN}$ were all less than the mean 463 bulk k_{chem} of 0.36. The seasonal variation of k_{CCN} at each SS condition is similar to that 464 465 of κ_{chem} . In summer, κ_{CCN} is lowest among the four seasons, with mean values of 0.23, 0.25, 0.21, 0.19, and 0.19 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. The 466 highest $\kappa_{\rm CCN}$ at each SS condition was observed in winter, with mean values of 0.32, 467 468 0.32, 0.28, 0.23, and 0.21 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. K_{CCN} in spring are slightly lower than that in winter, with mean values of 0.31, 0.32, 0.27, 469 470 0.22, and 0.21 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. In autumn, the mean κ_{CCN} are 0.27, 0.26, 0.22, 0.19, and 0.19 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 471 0.7%, respectively, which is slightly higher than that observed in summer. 472

473 Figure 6b presents the monthly variation of D_e at each SS condition, which shows the opposite trend to $\kappa_{\rm CCN}$ - SS because of the negative correlation of D_e^3 vs. κ shown 474 in equation 2a. The seasonal mean D_e are shown in Table 4. The mean D_e plus/minus 475 one standard deviation over the whole period are 177 ± 19 , 112 ± 14 , 91 ± 15 , 67 ± 9 , and 476 54 ± 8 nm at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. The largest D_e at 477 each SS condition were observed in summer, with mean values of 187, 116, 94, 69, and 478 55 nm at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. Followed by autumn 479 480 and spring, the smallest D_e at each SS condition was observed in winter, with mean values of 168, 107, 86, 64, and 53 nm at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, 481 respectively. 482

The monthly average trend of the external-mixing degree $((D_{75} - D_{25})/D_c)$ is shown in Figure 6e5c. The degree of external mixture is quantified by the ratio of $(D_{75} - D_{25})/D_c$. D_{25}/D_c . The seasonal mean $(D_{75} - D_{25})/D_c$ are presented in Table 4. Jurányi et al. (2013) pointed out that the $(D_{75} - D_{25})/D_c$ ranged from 0.08 to 0.12 for ammonium sulfate calibration measurements at SS = 0.1-1.0%, which indicated an internal mixture within 20 / 73

488	measurement accuracy. For our measurements, the <u>median</u> $(D_{75} - D_{25})/D_c$ over all
489	datasets range from $0.17-15$ to $0.25-20$ at $SS = 0.1-0.7\%$. The median $(D_{75} - D_{25})/D_c$
490	was low in summer and spring and high in winter and autumn. The results tend to
491	indicate that the aerosol particles at Melpitz were more internally mixed in summer and
492	spring whereas less internally mixed in winter and autumn. In summer, $(D_{75} - D_{25})/D_e$
493	is lowest ranging from 0.14 to 0.18 at $SS = 0.1-0.7\%$, implying that aerosol particles
494	were extremely close to being internally mixed. Followed by spring and autumn, the
495	highest $(D_{75} - D_{25})/D_e$ was observed in winter with values ranging from 0.24 to 0.36 at
496	SS = 0.1 - 0.7%. Therefore, the results tend to indicate that the aerosol particles were
497	less internally mixed in winter among the four seasons at Melpitz. In non-urban location
498	In summer, the less contribution from anthropogenic emissions and the faster aging
499	process as well as SOA formation caused by atmospheric chemistry certainly contribute
500	to make particles more internally mixed. Changes in organic aerosol (OA) composition
501	can be found in Crippa et al. (2014), Poulain et al. (2014), and Chen et al. (2022). In
502	cold seasons, the local pollution (100 km around) is dominated by liquid fuel, biomass,
503	and coal combustions mostly for house heating (van Pinxteren et al., 2016). During
504	winter long-range transport from the eastern wind bring to the station continental air
505	masses which are strongly influence by anthropogenic emissions (in opposition to
506	western marine air masses). These particles are a mixture of different anthropogenic
507	sources emitted all along the transport as well as including some local and regional
508	sources (most house heating). All of them at different aging state cause the overall
509	particles more externally mixed. s, initially externally mixed aerosol particles become
510	an internal mixture on a time scale of ~1 day (Fierce et al., 2016). In winter, the
511	relatively stable weather patterns increase the persistence of aerosol (> 5 days) at
512	Melpitz (Schmale et al., 2018). When tracking an aerosol cluster, the prolonged mixing
1	

time should promote the aging process, leading to an internal mixture. However, we
observed a less internally mixed aerosol particle population in winter. A plausible
explanation is mixing in of local pollution.

516	As mentioned above, κ_{CCN} (and $(D_{75} - D_{25})/D_c$) vs. D_p relationships determine the
517	relationship between κ_{CCN} (and $(D_{75} - D_{25})/D_c$) and SS. Monodisperse CCN
518	measurements provide the size-resolved κ and $(D_{75} - D_{25})/D_c$. At a given SS condition,
519	<u>$\kappa_{\rm CCN}$ represents the κ of particles at $D_p = D_c$, and the same is true for $(D_{75} - D_{25})/D_c$.</u>
520	Essentially, the relationship between κ_{CCN} and SS is determined by the κ_{CCN} vs. D_p
521	relationship. Identically, the relationship between $(D_{75} - D_{25})/D_e$ and SS depends on the
522	$(D_{75} - D_{25})/D_e$ vs. D_p relationship. Monodisperse CCN measurements provide the size-
523	resolved κ and $(D_{75} - D_{25})/D_{\epsilon}$. At a given SS condition, κ_{CCN} represents the κ of particles
524	at $D_p = D_e$, and the same is true for $(D_{75} - D_{25})/D_e$. It should be noted that our
525	monodisperse CCN measurements only provide the size-resolved κ and $(D_{75}-D_{25})/D_e$
526	within D_p of $\sim 40-200$ nm. As shown in Figure 7a6a, κ_{CCN} increases with D_p at D_p range
527	of ~40 to 100 nm, whereas κ_{CCN} almost stays constant at D_p of 100 to 200 nm for all
528	seasons. Additionally, the increase κ_{CCN} with D_p varies with season. The κ_{CCN} vs. D_p
529	relationship is fitted by a power-law function at each season. Fit results are presented
530	in Table 5. In summer, there is the lowest slope parameter of 0.19 in the $\kappa_{\rm CCN}$ vs. D_p
531	power-law fit, meaning that the κ_{CCN} is least sensitive to D_p . Compared to the cold
532	seasons, the anthropogenic emissions linked to house heating strongly reduce in
533	summer which affect the smaller particles, and the dominant small particles ($D_p < 100$
534	nm) are associated to NPF and the SOA formation. NPF is a complex process which
535	depends on the availability of condensing material (H ₂ SO ₄ and organic), as well as pre-
536	existing particles (coagulation and condensation sink parameters). Therefore, same

537	condensing material on the gas phase can either condense on pre-existing particles
538	(usually larger than 100 nm and then detected by ACSM) or lead to NPF formation. A
539	direct consequence of it is a probable smaller effect of the size dependent chemical
540	composition of the particles. This might explain why κ_{CCN} at SS of 0.1% and 0.7% are
541	closer, i.e., the weaker sensitive of κ_{CCN} to D_p in summer meaning that the difference
542	between the <i>k</i> _{CCN} at different particle sizes is smallest among the four seasons. Followed
543	by autumn with the slope parameter of 0.31, the slope parameter is highest in spring
544	and winter of 0.36–0.37. Therefore, the κ_{CCN} is most sensitive to D_p in spring and winter.
545	Figure 7b-6b presents the $(D_{75} - D_{25})/D_c$ vs. D_p relationship. As particle size increases,
546	$(D_{75} - D_{25})/D_c$ decreases at D_p of ~40 to 200 nm for all seasons, meaning that small
547	particles are less internally mixed. The reason is that during the aerosol aging process,
548	not only particle size increases but κ becomes more uniform. The $(D_{75} - D_{25})/D_c$ vs. D_p
549	relationship is also fitted well by the <u>a</u> power-law function at each season, with fit
550	results shown in Table 5. The lowest absolute value of the slope parameter was observed
551	in summer, indicating that the degree of external mixture was least sensitive to D_{p_1}
552	which could be related to the less mixing between the local emissions and long-range
553	transport particles in summer. The highest absolute value of the slope parameter was
554	observed in autumn of 0.42, followed by winter of 0.30 and spring of 0.26, and the
555	lowest was 0.20 observed in summer. Thus, the difference between the degree of
556	external mixture at different particle sizes is largest in autumn, followed by winter and
557	spring, and is smallest in summer.

558

3.3 N_{CCN} prediction at Melpitz

 N_{CCN} plays an important role in modeling the formation and evolution of clouds (Zhao et al., 2012; Fan et al., 2012, 2018). In tThis section, we evaluates the accuracy of N_{CCN} predicted from five different schemes. Table 6-3 introduces the five schemes,

23 / 73

562 which can be summarized into two categories of N_{CCN} prediction approach. From polydisperse CCN measurements, the N_{CCN} (AR) and SS relationships can be obtained, 563 and their fitting results can be used to predict N_{CCN} at the given SS conditions, which 564 belongs to the 1st category, corresponding to the N1 and N2 schemes in Table 3, 565 respectively. The fit results of N_{CCN}-SS relationship and AR - SS relationship can predict 566 N_{CCN} at the given SS conditions, which belongs to the 1st category approach, 567 corresponding to the 1st and 2nd schemes in Table 6, respectively. Compared to CCN 568 measurements, it is generally more common and simpler to obtain the PNSD 569 measurements.; Tthus, we usually predict N_{CCN} using the real-time PNSD combined 570 with the parameterized κ (*D_c*)CCN activity, which belongs to the 2nd category approach. 571 The 2nd category includes the last three schemes (K1, K2, and K3) in Table 3, but they 572 vary in assuming κ . The last three schemes in Table 6 belong to the 2nd category 573 approach, but they vary in assuming κ . The 3^{rd} -K1 scheme uses a fixed κ of 0.3 without 574 temporal and size-dependent variations, as recommended for continental aerosol 575 (Andreae and Rosenfeld., 2008), which is also the median value of κ_{chem} over all data 576 setting at Melpitz. The 4th–K2 scheme uses the bulk κ_{chem} calculated from aerosol 577 chemical composition, which is also non-size-dependent but changes over time. The 5th 578 579 K3 scheme uses the κ - D_p power-law fit results shown in Table 5 Figure 6a, which are size-dependent without temporal variations at each season. Applying the κ - D_p power-580 law equation into equation 2a, D_c can be derived as function of SS, 581

$$D_c = \left(\frac{4 \times A^3}{27 \times coef \times \ln^2(1 + SS/100)}\right)^{\frac{1}{slope+3}}$$
(5)

582 where the *slope* and *coef* represent the slope parameter and the coefficient in $\kappa - D_p$ 583 power-law fit. Subsequently, the predicted N_{CCN} can be calculated through equation 4. 584 The <u>2nd categorylast three schemes all</u> assume<u>d</u> that aerosol particles are internally 24 / 73 mixed at a particular D_p , as used in many previous N_{CCN} prediction studies (e.g., Deng et al., 2013; Pöhlker et al., 2016; Wang et al., 2018a).

The prediction results are shown in Figure 87. The linear equation (y = kx) is used to fit the relationship between the predicted N_{CCN} and the measured one, and its slope represents the mean ratio of the predicted N_{CCN} to the measured N_{CCN} . To make the results of the predictions comparable for all regression schemes, we also applied a linear regression to the 1st scheme and forced the linear regression through zero for all schemes. The relative deviation (RD) equals the ratio of the absolute difference between the predicted N_{CCN} and the measured one to the measured N_{CCN} ,

$$RD = \frac{|predicted N_{CCN} - measured N_{CCN}|}{measured N_{CCN}}.$$
 (6)

594 The median RD was used to quantify the deviation between predictions and measurements of each scheme. The slope and median RD shown in Figure 7 are both 595 calculated from all five SS conditions for each season. As shown in Figure 7, the N1 596 597 and N2 schemes only provide rough estimates of the N_{CCN} which is reflected in the high median RD. The results for N1 and N2 schemes are similar in that they both predict the 598 overall mean N_{CCN} well (slopes of approximately 1.0) but with large median RDs. 599 Compared to N1 scheme, the N2 scheme is better because of the lower median RD. 600 Compared to the 1st category (the N1 and N2 schemes), the 2nd category (the K1, K2, 601 602 and K3 schemes) predicts N_{CCN} better because of the lower median RD. The results for K1 and K2 are similar in that they both overestimate N_{CCN} by approximately 10% 603 (slopes of approximately 1.1) with similar median RDs. The reason for the N_{CCN} 604 overestimation is that the constant κ of 0.3 and the real-time bulk κ_{chem} are both greater 605 than the $\kappa_{\rm CCN}$ at each season. In winter, the $\kappa_{\rm CCN}$ was highest and the difference between 606 607 the $\kappa_{\rm CCN}$ and the parameterized κ in K1 and K2 scheme was lowest, causing the best 608prediction of N_{CCN} among the four seasons. Owing to the largest difference between the609 κ_{CCN} and the parameterized κ , the N_{CCN} prediction was worst in summer for K1 scheme610and in autumn for K2 scheme. The K3 scheme appears to be the best one for N_{CCN} 611prediction among the five schemes which is reflected in the lowest median RDs and the612fit slope of ~1.0 for different seasons. The evaluations of the five schemes for the N_{CCN}

613 prediction at each SS condition and each season are provided in Figure S7 in SI.–

i.e., $RD = (|predicted N_{CCN}| - measured N_{CCN}|)/measured N_{CCN}; a large RD represents a$ 614 large deviation between prediction and measurement. The slope and RD shown in 615 Figure 8 are both calculated from all five SS conditions for each season. As shown in 616 Figure 8, the 1st and 2nd schemes only provide rough estimates of the N_{CCN} on account 617 of the pretty high RD ranging from 64% to 136%. Compared to the 1st category 618 approach (the 1st and 2nd schemes), the 2nd category approach (the 3rd, 4th, and 5th 619 schemes) predicts N_{CCN} better. The predicted N_{CCN} correlates well with the measured 620 one for the 3^{rd} , 4^{th} , and 5^{th} schemes with $R^2 > 0.97$; but N_{CCN} is generally overestimated 621 for the 3rd and 4th schemes because the fit slopes range from 1.03 to 1.17 for different 622 seasons. The 5th scheme appears to be the best one for N_{CCN} prediction among the five 623 schemes on account of the lowest RD ranging from 11% to 17% and the fit slope of ~-1 624 for different seasons. It should be noted that the fit slope shown in Figure 8 represents 625 the average over all five SS conditions, which could obscure the performance at each 626 SS condition. Thus, Figure 9 further evaluates the five schemes for the N_{CCN} prediction 627 at each SS condition. 628

629 The K3 scheme provides an improved prediction of N_{CCN} , which is obvious when 630 compared to N1 and N2 schemes. Compared to K1 and K2 schemes, the K3 scheme 631 reduced approximately 10% overestimation of N_{CCN} because the fitting slope decreased 632 -0.1 on average. We simply evaluate the effects of the 10% overestimation in N_{CCN} on

633	predictions of cloud radiative forcing and precipitation. The methods are in Text S2 in
634	SI and Wang et al. (2019). Essentially, an overestimation of N _{CCN} leads to overestimate
635	the number concentration of cloud droplet (N_C) in models. Theoretically, it can reduce
636	3.2% overestimation of cloud optical thickness, corresponding to global average
637	difference of 1.28 Wm ⁻² when assuming the cloud shortwave cooling effect of 40 Wm ⁻
638	² (Lee et al., 1997), which amounts to approximately one-third of the direct radiative
639	forcing from a doubling CO ₂ . Additionally, the overestimation in N_{CCN} (and N_{C}) leads
640	to underestimate the strength of the autoconversion process in cloud (Liu et al., 2006),
641	thereby suppressing precipitation. Therefore, although ACSM measurements can derive
642	κ_{chem} and thus predict N_{CCN} , the monodisperse CCN measurements are still important
643	to obtain the κ - D_p relationship and thus improve the predictions of N_{CCN} (and N_C) and
644	<u>climate.</u>
645	Figure 8 compared the κ - D_p relationship measured at different regions. The κ -
646	D_p relationship measured at Melpitz is similar to that measured at other rural regions
647	with similar κ - D_p power-law fitting results, e.g., the Vavihill station in Sweden (Fors
648	et al., 2011) and the Xinken station in China (Eichler et al., 2008). Therefore, the κ - D_p
649	power-law fit measured at Melpitz could be applied to predict N _{CCN} for these rural
650	regions. However, it may cause considerable deviations for different aerosol
651	background regions, e.g., the suburb stations in Xingtai, China (Wang et al., 2018a) and
652	in Paris, France (Mazoyer et al., 2019), the coast of Barbados (Kristensen et al., 2016),
653	the amazon rainforest (Pöhlker et al., 2016), and the urban stations in Budapest,
654	Hungary (Salma et al., 2021) and in Shanghai, China (Ye et al., 2013), because their κ
655	- <i>D_p</i> relationships are different from that measured at Melpitz.
656	When using the N_{CCN} – SS power-law fit (the 1 st scheme) to predict N_{CCN} , it causes
657	significant overestimations of N_{CCN} at $SS = 0.1\%$ with median values ranging from 3%

27 / 73

658to 29% for different seasons and causes less than 21% underestimations in median at659other larger SS conditions. Additionally, the prediction results are much uncertain at a660given SS condition and season, especially at SS = 0.1%. For instance, one-quarter of the661predicted N_{CCN} are twice higher than the measured values at SS = 0.1% for all datasets.662Thus, this scheme can only be used to provide rough estimations of N_{CCN} .

663 When using the real time N_{acro} combined with AR - SS power law fit (the 2nd 664 scheme) to predict N_{CCN} , the performances are slightly better than those of the 1st 665 scheme. The median overestimations of N_{CCN} are less than 17% at SS = 0.1% for all 666 seasons, while the median underestimations of N_{CCN} range from 12% to 35% at SS =667 0.2% - 0.7% for all seasons. Similarly, the prediction results remain a high uncertainty 668 at a given SS condition and season. Thus, this scheme also provides rough estimations 669 on N_{CCN} .

When assuming the real-time PNSD combined with a constant κ of 0.3 (the 3rd 670 scheme) to predict N_{CCN}, it causes overestimations of N_{CCN} in most cases. The median 671 of the overestimation ranges from -3% to 30% at SS = 0.1% - 0.7% for different seasons. 672 As shown in Figure 7a, a constant κ of 0.3 is almost greater than the κ_{CCN} of all particles 673 with the diameter ranging from ~40 to 200 nm, except for the accumulation-mode 674 675 particles (D_p of 100 to 200 nm) in spring and winter. Therefore, besides the wellpredicted N_{CCN} at SS = 0.1% and 0.2% in spring and winter, N_{CCN} is overestimated at 676 assuming a constant κ of 0.3 as shown in Figure 9c. The largest overestimation occurs 677 at SS = 0.1% in summer (30% in median) because of the low κ_{CCN} (0.22 in average) 678 combined with the low measured N_{CCN} (347 cm⁻³ in average). Although the largest 679 680 median overestimation reaches to 30%, which is numerically similar to the largest median overestimation of the 1st scheme (29%) and the largest median underestimation 681 of the 2nd scheme (35%), the uncertainties of the 3rd scheme are much lower than those 682

683 of the 1st and 2nd schemes. For example, when using 3rd scheme, one-quarter of the ratio 684 of the predicted N_{CCN} to the measured N_{CCN} are larger than 1.31 at SS = 0.1% for all 685 datasets as shown in Figure 9c, while the ratio is ~2.0 for both the results of 1st and 2nd 686 scheme as shown in Figures 9a and 9b. Thus, the 3rd scheme has better predictions on 687 N_{CCN} compared to the 1st and 2nd schemes.

When assuming the real-time PNSD combined with the real-time bulk κ_{chem} (the 688 4th scheme) to predict N_{CCN}, it also causes clear overestimations of N_{CCN} in most cases, 689 like the prediction results calculated from the 3rd scheme. The median overestimations 690 are within 7% to 21% at SS = 0.1%-0.7% for different seasons. The reason for the 691 overestimation is that the $\kappa_{\rm chem}$ is greater than $\kappa_{\rm CCN}$ measured at all the five SS 692 conditions. For instance, the mean $\kappa_{\rm CCN}$ over all datasets ranges from 0.20 to 0.28 at SS 693 = 0.1%-0.7%, whereas the mean κ_{chem} over all datasets is 0.36. The largest 694 overestimation also occurs at SS = 0.1% in summer with 21% in median. Compared to 695 the 3^{rd} scheme, the uncertainty of the N_{CCN} prediction at a given SS condition and season 696 is lower in the 4th scheme. Considering the median overestimations of the predicted 697 N_{CCN} at different seasons and SS conditions and the uncertainty of the predicted N_{CCN} at 698 each given season and SS condition, we conclude that the performances of the 4th 699 scheme are better than the 3rd scheme. 700

When assuming the real-time PNSD combined with the $\kappa - D_p$ power-law fit (the 5th-scheme) to predict N_{CCN} , it can predict the N_{CCN} well at each SS condition for all seasons. At SS = 0.1%, it causes less than 10% overestimation in median for N_{CCN} prediction for all seasons; at SS = 0.2% - 0.7%, the median overestimation ranges from -3% to 6% for all seasons. The uncertainty of the N_{CCN} prediction at a given SS condition and season is also smallest among the five schemes, especially at relatively high SS conditions (e.g., 0.5% and 0.7%). For instance, at SS = 0.7% for all datasets, when using 708the 5th scheme, one-quarter of the ratio of the predicted N_{CCN} to the measured N_{CCN} are709larger than 1.10, while the ratio ranges from 1.18 to 1.38 for other four schemes.710Therefore, the 5th scheme provides the best N_{CCN} -prediction among the five schemes.

711 Overall, the performance for N_{CCN} prediction is gradually getting better from the 1^{st} to the 5th scheme shown in Table 6. The classic N_{CCN} - SS and AR - SS power-law fits 712 shown in Table 3 can only be used to provide rough estimates of the N_{CCN}. At Melpitz, 713 using a constant κ of 0.3 or the bulk κ_{chem} both causes significant overestimations of 714 N_{CCN} with about 30% in median, especially at SS = 0.1% in summer. The $\kappa - D_p$ power-715 law fit at each season shown in Table 5 is recommended applying for N_{CCN} prediction 716 at Melpitz, which can narrow down the prediction deviation (ratio of the predicted N_{CCN} 717 to the measured N_{CCN} minus 1) within 10% in median. Additionally, as shown in Figure 718 719 10, the κ - D_p power-law fit measured at Melpitz is similar to that measured at other rural and continental regions with similar aerosol background conditions, e.g., the 720 Vavihill station in Sweden (Fors et al., 2011) and the Xinken station in China (Eichler 721 et al., 2008), and is also valid for some urban (Ye et al., 2013) and suburb regions 722 (Mazoyer et al., 2019). Therefore, the κ - D_p power-law fit measured at Melpitz could 723 be applied to predict N_{CCN} for these regions. However, it may cause considerable 724 725 deviations for different aerosol background regions, e.g., the polluted suburb station in Xingtai, China (Wang et al., 2018a), the coast of Barbados (Kristensen et al., 2016), the 726 amazon rainforest (Pöhlker et al., 2016), and the urban station in Budapest, Hungary 727 (Salma et al., 2021), because their κ - D_p relationships are different from that measured 728 729 at Melpitz.

Additionally, it should be noted that the main size dependence of κ occurs at D_p of -40 to 100 nm as shown in Figure 7a, which would be for SS larger than 0.2%. At D_p of 100 to 200 nm corresponding to SS less than 0.2%, κ almost stays constant. The mean

value of κ is close to 0.3 for spring and winter, and that's where deviations in Figure 9c 733 are small. However, the mean value of κ overestimates the κ for SS larger than 0.2% at 734 each season. We further compare the N_{CCN} predictions between using the seasonally 735 mean value of κ over D_p of 100 to 200 nm and the κ - D_p power-law fit. As shown in 736 737 Figure 11, at SS = 0.1 and 0.2%, the seasonally mean κ value over D_{t} of 100 to 200 nm 738 and κ - D_p power-law fit both predict the N_{CCN} well at each season, while the mean κ value leads to significant overestimation of N_{CCN} within 10% on average at SS = 0.3, 739 740 0.5, and 0.7%. Therefore, to predict the N_{CCN} at a relatively low SS of less than 0.2% (e.g., in fog and shallow stratiform cloud), the mean κ value over D_p of 100 to 200 nm 741 also works well. The mean value plus/minus one standard deviation are 0.32±0.09, 742 0.24+0.07, 0.26+0.09, 0.32+0.10 and 0.28+0.09 for spring, summer, autumn, winter, 743 and all datasets, respectively. 744

745 **4. Conclusions**

746 Aerosol particle activation plays an important role in determining N_{c} the number concentration of cloud droplets, thereby affecting cloud microphysics, precipitation 747 processes, radiation, and climate. To reduce the uncertainties and gain more confidence 748 749 in the simulations on AIEs, long-term measurements on of aerosol activation characteristics are essential. Hhowever, they are still rarely reported. Based on more 750 751 than 4-year comprehensive measurements conducted at the central European ACTRIS site Melpitz, Germany, this study presents a systematic seasonal analysis of aerosol 752 activation characteristics and N_{CCN} predictions. 753

Over the whole period at Melpitz, the mean-median N_{CCN} and AR increased from 399 to 2144 cm⁻³ and 0.10 to 0.48513 to 2477 cm⁻³ and 0.11 to 0.52 with SS increasing from 0.1% to 0.7%, respectively. Aerosol activation characteristics are highly variable across seasons, especially at relatively low SS conditions. For instance at SS = 0.1%, 31 / 73 758the median N_{CCN} and AR in winter are 1.6 and 2.3 times higher than the summer values,759respectively. Aerosol particle activation depends on its physical and chemical properties.760In summer, the highest N_{aero} , smallest *GMD*, steepest PNSD in 40-200 nm size range,761and lowest κ_{chem} all contribute to the lowest AR and N_{CCN} among the four seasons, and762the reverse holds true in winter.

At SS = 0.1%, the seasonal mean N_{CCN} is 681 cm⁻³ in winter, which is almost 763 twice higher than the summer value (347 cm⁻³); the seasonal mean AR is 0.18 in winter, 764 which is three times higher than the summer value (0.06). Aerosol particle activation 765 depends on its physical and chemical properties. Affected by the frequent NPF events, 766 in summer, the mean N_{aero} is highest (6224 cm⁻³) and the mean GMD is smallest (50 767 nm) among the four seasons. On the contrary in winter, the mean N_{aero} is lowest (3686 768 cm^{-3}) and the mean GMD is largest (58 nm). In summer, the mean forg (56%) is highest 769 among the four seasons, corresponding to the lowest κ_{chem} with a mean value of 0.29; 770 in winter, the mean fnitrate (36%) is highest among the four seasons, which might explain 771 the highest mean κ_{ehem} (0.40). Therefore, in winter, the highest κ_{chem} , largest *GMD*, and 772 the lowest N_{aero} cause the highest AR at each SS condition among the four seasons. 773

Both κ and the mixing state are size-dependent, thereby varying with SS. The 774 median $\kappa_{\rm CCN}$ decreases from 0.27 to 0.19 as SS increases from 0.1% to 0.7%, which 775 776 was less than the median bulk κ_{chem} . The mean κ is 0.28, 0.28, 0.24, 0.21, and 0.20 at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 0.7%, respectively. D_e depends on κ at a given SS 777 conditio The seasonal trend of $\kappa_{\rm CCN}$ was similar to that of $\kappa_{\rm chem}$, especially at relatively 778 low SS conditions. The lowest κ_{CCN} and κ_{chem} were observed in summer, which related 779 to the highest organics mass fraction in particles. Aerosol particles were more internally 780 mixed in summer and spring whereas less internally mixed in winter and autumn. In 781 cold seasons, the increasing anthropogenic emissions linked to house heating mixed 782

783 with the aged particles from long-range transport, which could decrease the degree of 784 internal mixing of particles. As D_p increases, κ_{CCN} increases at D_p range of ~40 to 100 785 nm and almost stays constant at D_p range of 100 to 200 nm, whereas the $(D_{75} - D_{25})/D_c$ 786 monotonically decreases. The relationships of $(D_{75} - D_{25})/D_c$ vs. D_p and κ vs. D_p are 787 both fitted well by a power-law function for each season.

The mean D_e is 177, 112, 91, 67, and 54 nm at SS = 0.1%, 0.2%, 0.3%, 0.5%, and 788 0.7%, respectively. For different seasons, the seasonal mean κ varies from 0.23 to 0.32 789 790 at SS = 0.1%, and 0.19 to 0.21 at SS = 0.7%; the seasonal mean D_e varies from 168 nm to 187 nm at SS = 0.1%, and 53 nm to 55 nm at SS = 0.7%. The degree of external 791 mixture is quantified by the $(D_{75} - D_{25})/D_e$, which ranges from 0.17 to 0.25 in average 792 over the whole period at SS = 0.1 - 0.7%. In summer, aerosol particles were extremely 793 close to being internally mixed with $(D_{75} - D_{25})/D_e$ ranging from 0.14 to 0.18 at SS = 794 795 0.1-0.7%; in winter, particles were less internally mixed among the four seasons with $(D_{75}-D_{25})/D_e$ ranging from 0.24 to 0.36 at SS = 0.1-0.7%. As D_p increases, κ increases 796 at D_p of ~40 to 100 nm and almost stays constant at D_p of 100 to 200 nm), and (D_{75} — 797 D_{25}/D_e decreases for all seasons. The relationships of $(D_{75} - D_{25})/D_e$ vs. D_p and κ vs. 798 D_p are both fitted well by the power-law function for each season. 799

Five activation schemes are evaluated on the N_{CCN} predictions. Compared to using 800 801 the classic N_{CCN} - SS or AR - SS power-law fits to predict N_{CCN} , the prediction is better by using the real-time PNSD combined with the parameterized κ , including a constant 802 κ of 0.3, the bulk κ_{chem} , and the κ - D_p power-law fit. However, assuming a constant κ 803 804 of 0.3 recommended for continental aerosol (Andreae and Rosenfeld., 2008) or the bulk κ_{chem} calculated from aerosol chemical composition both cause significant 805 overestimations of the N_{CCN} with approximately 10% in median for all SS conditions, 806 which theoretically cause 3.2% overestimation of cloud optical thickness, amounting to 807

808	approximately one-third of the direct radiative forcing from a doubling CO ₂ (Lee et al.,
809	1997). And, the strength of the autoconversion process in cloud could be
810	underestimated (Liu et al., 2006). with about 30% in median, especially at $SS = 0.1\%$
811	in summer. Generally, the performances of the latter (the bulk κ_{chem}) are slightly better
812	than the former (a constant κ of 0.3) on account of the lower uncertainty at each given
813	season and SS condition. Size-resolved κ improves the N_{CCN} prediction. We recommend
814	applying the κ - D_p power-law fit for N_{CCN} prediction, which obtains the best prediction
815	among the five schemes.
816	The κ - D_p power-law fit presented in this study could apply to other rural regions.
817	However, it may cause considerable deviations for different aerosol background regions.
818	For instance, using the κ - D_p power-law fit measured in urban Budapest (Salma et al.,
819	2021) for predicting Melpitz N_{CCN} , it could cause a 39% underestimation of N_{CCN} in
820	median for all SS conditions. Additionally, the seasonal difference of the κ - D_p
821	relationship needs to be considered carefully for N_{CCN} prediction. At Melpitz, if the κ -
822	D_p power-law fit measured in summer was used for predicting N_{CCN} in winter, it could
823	cause a 13% underestimation of N_{CCN} in median for all SS conditions. Although the κ -
824	D_p relationships are similar measured in rural stations, but when comparing the different
825	urban stations (e.g., shanghai vs. Budapest in Figure 8), these relationships are clearly
826	different and the reasons for the difference are still unclear. Thus, long-term
827	monodisperse CCN measurements are still needed not only to obtain the κ - D_p
828	relationships for different regions and for different seasons, but furtherly investigate the
829	reasons for the difference of the κ - D_p relationships measured at same type of regions.
830	Finally for the purpose of predicting N _{CCN} , the measurements of monodisperse CCN
831	and particle chemical compositions are more expected, compared to the polydisperse

832 <u>CCN measurements.</u>

At Melpitz, using the real-time PNSD combined with the $\kappa - D_p$ power-law fit could narrow down the uncertainty of N_{CCN} prediction within 10% in median for all *SS* conditions (0.1–0.7%) and seasons. The $\kappa - D_p$ power-law fit presented in this study could-apply to other rural and continental regions with similar aerosol background conditions. To our knowledge, the $\kappa - D_p$ power-law fit is the first time applied to predict N_{CCN} . Additionally, the mean κ value over D_p of 100 to 200 nm also works well to predict N_{CCN} at a relatively low *SS* of less than 0.2%.

840

841 Appendix **B**-Notation list

A	comprehensive parameter for $\sigma_{s/a}$, M_w , R , T , and ρ_w in equation (2b)
а	lower limit for calculating critical diameters at the set-nominal
	supersaturations in equation (1)
ACI	aerosol and cloud interactions
ACSM	aerosol chemical species monitor
ACTRIS	Aerosol, Clouds and Trace Gases Research Infrastructure
AF	activated fraction, i.e., N _{CCN} /N _{CN}
AIEs	aerosol indirect effects
AR	activation ratio, i.e., N _{CCN} /N _{aero}
b	upper limit for calculating critical diameters at the set-nominal
	supersaturations in equation (1)
BC	black carbon
CN	condensation nuclei
CCN	cloud condensation nuclei
CCNC	cloud condensation nuclei counter
coef	coefficient in κ - D_p power-law fit
CPC	condensation particle counter
D_p	diameter of the dry particle
D_c	critical diameter of the dry particle
D_X	D at which X % of the particles are activated
$(D_{75} - D_{25})/D_c$	degree of external mixture
D-MPSS	Dual-mobility particle size spectrometer
DMA	differential mobility analyzer
eBC	equivalent black carbon
f_{BC}	mass fraction of BC in submicron aerosol
$f_{nitrate}$	mass fraction of nitrate in submicron aerosol
f_{org}	mass fraction of organics in submicron aerosol
fsulfate	mass fraction of sulfate in submicron aerosol
GMD	geometric mean diameter of PNSD
M_{w}	molecular weight of water
Naero	number concentration of aerosol with <u>a</u> D_p ranging range of 10 to 800 nm
$\underline{N_C}$	number concentration of cloud droplet
N_{CN}	number concentration of CN
N_{CCN}	number concentration of CCN
NPF	new particle formation
<u>OA</u>	organic aerosol
PM_{10}	particulate matter with the $D_p < 10 \ \mu m$
PNSD	particle number size distribution
R	universal gas constant
R^2	coefficient of determination
RD	relative deviation between the predicted N_{CCN} and the measured one
<u>SI</u>	Supporting information
SS	supersaturation
---------------------	--
<u>SOA</u>	secondary organic aerosol
Т	temperature
σ_{s}	represent the shape of the sigmoid function
$\sigma_{ m s/a}$	droplet surface tension
κ	hygroscopicity factor of aerosol particle
κ_i	κ of each component
KCCN	κ calculated from the monodisperse CCN measurements
$\kappa_{\rm chem}$	κ calculated from the aerosol chemical measurements
\mathcal{E}_i	volume fraction of each component
$ ho_w$	density of the liquid water

- 843 Data availability.
- 844 The data used in this study are available from Silvia Henning (<u>henning@tropos.de</u>)
- upon request and <u>https://doi.org/10.1594/PANGAEA.938215</u>.
- 846 *Author contributions.*
- 847 AW, SH and LP designed the research. SH and LP collected the data at Melpitz. YW
- 848 performed the data analysis and prepared the paper. All co-authors contributed to
- 849 interpretation of the results as well as paper review and editing.
- 850 *Competing interests.*
- 851 The authors declare that they have no conflict of interest.
- 852 Acknowledgments.
- 853 This research has been supported by the H2020 research infrastructures (grant nos.

ACTRIS (262254) and ACTRIS-2 (654109)), the European Cooperation in Science and

- 855 Technology (grant no. COLOSSAL CA16109), the German Federal Environment
- 856 Ministry (BMU) grants F&E 370343200 (German title: "Erfassung der Zahl feiner und
- ultrafeiner Partikel in der Außenluft"), 2008–2010, and F&E 371143232 (German title:
- 858 "Trendanalysen gesundheitsgefährdender Fein- und Ultrafeinstaubfraktionen unter
- 859 Nutzung der im German Ultrafine Aerosol Network (GUAN) ermittelten

860 Immissionsdaten durch Fortführung und Interpretation der Messreihen"), 2012-

861 2014. This research has received funding from the Deutsche Forschungsgemeinschaft

862 (DFG, German Research Foundation, HE 6770/2), the National Natural Science

- 863 Foundation of China under grant numbers 42205072, 42075066, 42075063, 42175099,
- and 42005067. The China Scholarship Council (no.202008320513) is acknowledged
- 865 for supporting Yuan Wang financially. We thank Achim Grüner and René Rabe for the
- 866 careful maintenance of the measurements on site.

868 **References**

- Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923), 1227–
 1230, https://doi.org/10.1126/ science.245.4923.1227, 1989.
- Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and
 sources of cloud-active particles, Earth-Sci. Rev., 89, 13–41,
 https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
- Birmili, W., Stratmann, F., and Wiedensohler, A.: Design of a DMA-based size spectrometer for a
 large particle size range and stable operation, J. Aerosol Sci., 30, 549–553,
 https://doi.org/10.1016/S0021-8502(98)00047-0, 1999.
- Birmili, W., Weinhold, K., Nordmann, S., Wiedensohler, A., Spindler, G., Müller, K., Herrmann, H.,
 Gnauk, T., Pitz, M., Cyrys, J., Flentje, H., Nickel, C., Kuhlbusch, T. A. J., and Löschau, G.:
 Atmospheric aerosol measurements in the German Ultrafine Aerosol Network (GUAN): Part
 1 soot and particle number size distribution, Gefahrst. Reinh. Luft., 69, 137–145, 2009.
- Burkart, J., Steiner, G., Reischl, G., and Hitzenberger, R.: Longterm study of cloud condensation
 nuclei (CCN) activation of the atmospheric aerosol in Vienna, Atmos. Environ., 45, 5751–5759,
 https://doi.org/10.1016/j.atmosenv.2011.07.022, 2011.
- Che, H., Zhang, X., Zhang, L., Wang, Y., Shen, X., Ma, Q., Sun, J., Zhong, J.: Prediction of sizeresolved number concentration of cloud condensation nuclei and long-term measurements of
 their activation characteristics, Sci. Rep., 7, 5819, https://doi.org/10.1038/s41598-017-059983, 2017.
- Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J., Atabakhsh, S., Aurela, M., 888 889 Baltensperger, U., Bougiatioti, A., Brito, J. F. D., Ceburnis, D., Chazeau, B., Chebaicheb, H., Daellenbach, K. R., Ehn, M., Haddad, I. E., Eleftheriadis, K., Favez, O., Flentje, H., Font, A., 890 891 Fossum, K., Freney, E., Gini, M., Green, D. C., Heikkinen, L., Herrmann, H., Kalogridis, A., 892 Keernik, H., Lhotka, R., Lin, C., Lunder, C., Maasikmets, M., Manousakas, M. I., Marchand, 893 N., Marin, C., Marmureanu, L., Mihalopoulos, N., Močnik, G., Necki, J., O'Dowd, C., 894 Ovadnevaite, J., Peter, T., Petit, J., Pikridas, M., Platt, S.M., Pokorná, P., Poulain, L., Priestman, M., Riffault, V., Rinaldi, M., Różański, K., Schwarz, J., Sciare, J., Simon, L., Skiba, A., 895 Slowik, J. G., Sosedova, Y., Stavroulas, I., Styszko, K., Teinemaa, E., Timonen, H., Tremper, 896 A., Vasilescu, J., Via, M., Vodička, P., Wiedensohler, A., Zografou, O., Minguillón, M.C., 897 898 Prévôt, A.S.H.: European aerosol phenomenology – 8: Harmonised source apportionment of 899 organic aerosol using 22 Year-long ACSM/AMS datasets, Environ. Int., 166, 107325, 2002. 900 Clegg, S., Brimblecombe, P., and Wexler, A.: Thermodynamic model of the system H+ - NH4+ -SO42- - NO3- - H2O at tropospheric temperatures. J. Phys. Chem. A, 102, 2137-2154,1998. 901 902 Crenn, V., Sciare, J., Croteau, P. L., Verlhac, S., Fröhlich, R., Belis, C. A., Aas, W., Äijälä, M.,
- 903 Alastuey, A., Artiñano, B., Baisnée, D., Bonnaire, N., Bressi, M., Canagaratna, M., Canonaco,
- 904 F., Carbone, C., Cavalli, F., Coz, E., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V.,
- 905 Heikkinen, L., Herrmann, H., Lunder, C., Minguillón, M. C., Močnik, G., O'Dowd, C. D.,

907	Sarda-Estève, R., Slowik, J. G., Setyan, A., Wiedensohler, A., Baltensperger, U., Prévôt, A. S.
908	H., Jayne, J. T., and Favez, O.: ACTRIS ACSM intercomparison - Part 1: Reproducibility of
909	concentration and fragment results from 13 individual Quadrupole Aerosol Chemical
910	Speciation Monitors (Q-ACSM) and consistency with co-located instruments, Atmos. Meas.
911	Tech., 8, 5063-5087, https://doi.org/10.5194/amt-8-5063-2015, 2015.
912	Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G., Ceburnis, D.,
913	Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz,
914	L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A., Kortelainen, AM., Kulmala,
915	M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., O'Dowd, C., Ovadnevaite, J., Pandis,
916	S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D.
917	R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components derived from 25 AMS
918	data sets across Europe using a consistent ME-2 based source apportionment approach, Atmos.
919	Chem. Phys., 14, 6159-6176, https://doi.org/10.5194/acp-14-6159-2014, 2014.
920	Croft, B., Lohmann, U., Martin, R. V., Stier, P., Wurzler, S., Feichter, J., Posselt, R., and Ferrachat,
921	S.: Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM,
922	Atmos. Chem. Phys., 9, 4653–4675, https://doi.org/10.5194/acp-9-4653-2009, 2009.
923	Deng, Z. Z., Zhao, C. S., Ma, N., Liu, P. F., Ran, L., Xu, W. Y., Chen, J., Liang, Z., Liang, S., Huang,
924	M. Y., Ma, X. C., Zhang, Q., Quan, J. N., Yan, P., Henning, S., Mildenberger, K., Sommerhage,
925	E., Schäfer, M., Stratmann, F., and Wiedensohler, A.: Size-resolved and bulk activation
926	properties of aerosols in the North China Plain, Atmos. Chem. Phys., 11, 3835-3846,
927	https://doi.org/10.5194/acp-11-3835-2011, 2011.
928	Deng, Z. Z., Zhao, C. S., Ma, N., Ran, L., Zhou, G. Q., Lu, D. R., and Zhou, X. J.: An examination
929	of parameterizations for the CCN number concentration based on in situ measurements of
930	aerosol activation properties in the North China Plain, Atmos. Chem. Phys., 13, 6227-6237,
931	https://doi.org/10.5194/acp-13-6227-2013, 2013.
932	Dusek, U., Frank, G., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F.,
933	Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters more than chemistry for
934	cloud-nucleating ability of aerosol particles. Science, 312(5778): 1375-1378, DOI:
935	10.1126/science.1125261, 2006.
936	Dusek, U., Frank, G., Curtius, J., Drewnick, F., Schneider, J., Kürten, A., Rose, D., Andreae, M. O.,
937	Borrmann, S., Pöschl, U.: Enhanced organic mass fraction and decreased hygroscopicity of
938	cloud condensation nuclei (CCN) during new particle formation events, Geophys. Res. Lett.
939	37 (3), doi: 10.1029/2009GL040930, 2010.
940	Eichler, H., Cheng, Y. F., Birmili, W., Nowak, A., Wiedensohler, A., Brüggemann, E., Gnauk, T.,
941	Herrmann, H., Althausen, D., Ansmann, A., Engelmann, R., Tesche, M., Wendisch, M., Zhang,
942	Y. H., Hu, M., Liu, S., and Zeng, L. M.: Hygroscopic properties and extinction of aerosol
943	particles at ambient relative humidity in South-Eastern China, Atmos. Environ., 42, 6321–6334,

Ovadnevaite, J., Petit, J.-E., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A.,

906

40 / 73

- Fan, J., Leung, L. R., Li, Z., Morrison, H., Chen, H., Zhou, Y., Qian, Y., and Wang, Y.: Aerosol
 impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics,
 J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537, 2012.
- Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., Martin, S. T., Yang,
 Y., Wang, J., Artaxo, P., Barbosa, H. M. J., Braga, R. C., Comstock, J. M., Feng, Z., Gao, W.,
 Gomes, H. B., Mei, F., Pöhlker, C., Pöhlker, M. L., Pöschl, U., and Souza, R. A. F.: Substantial
 convection and precipitation enhancements by ultrafine aerosol particles, Science, 359(6374),
 411–418, DOI: 10.1126/science.aan8461, 2018.
- 953 Fierce, L., Riemer, N., and Bond, T. C.: Toward reduced representation of mixing state for
 954 simulating aerosol effects on climate, Bull. Am. Meteorol. Soc., 98(5), 971–980,
 955 https://doi.org/10.1175/BAMS-D-16-0028.1, 2016.
- Fors, E. O., Swietlicki, E., Svenningsson, B., Kristensson, A., Frank, G. P., and Sporre, M.:
 Hygroscopic properties of the ambient aerosol in southern Sweden a two year study, Atmos.
 Chem. Phys., 11, 8343–8361, https://doi.org/10.5194/acp-11-8343-2011, 2011.
- 959 Freney, E., Zhang, Y., Croteau, P., Amodeo, T., Williams, L., Truong, F., Petit, J.-E., Sciare, J., Sarda-960 Esteve, R., Bonnaire, N., Arumae, T., Aurela, M., Bougiatioti, A., Mihalopoulos, N., Coz, E., Artinano, B., Crenn, V., Elste, T., Heikkinen, L., Poulain, L., Wiedensohler, A., Herrmann, H., 961 962 Priestman, M., Alastuey, A., Stavroulas, I., Tobler, A., Vasilescu, J., Zanca, N., Canagaratna, 963 M., Carbone, C., Flentje, H., Green, D., Maasikmets, M., Marmureanu, L., Minguillon, M. C., 964 Prevot, A. S. H., Gros, V., Jayne, J., and Favez, O.: The second ACTRIS inter-comparison 965 (2016) for Aerosol Chemical Speciation Monitors (ACSM): Calibration protocols and 53, 966 instrument performance evaluations, Aerosol Sci. Tech., 830-842, 967 https://doi.org/10.1080/02786826.2019.1608901, 2019.
- 968 Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., 969 Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in pristine tropical 970 rainforest air of Amazonia: size-esolved measurements and modeling of atmospheric aerosol 971 composition and CCN 9. 7551-7575, activity, Atmos. Chem. Phys., 972 https://doi.org/10.5194/acp-9-7551-2009, 2009.
- Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata,
 M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Pöschl, U.:
 Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of
 Beijing, Atmos. Chem. Phys., 11, 11023–11039, https://doi.org/10.5194/acp-11-11023-2011,
 2011.
- Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P.
 I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition
 and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–
 6144, doi:10.5194/acp-7-6131-2007, 2007.

⁹⁴⁴ https://doi.org/10.1016/j.atmosenv.2008.05.007, 2008.

- Gysel, M. and Stratmann, F.: WP3 NA3: In-situ chemical, physical and optical properties of
 aerosols, Deliverable D3.11: Standardized protocol for CCN measurements, Tech. rep., http://
 https://actris-ecac.eu/ccn-nc.html, 2013.
- Henning, S., Dieckmann, K., Ignatius, K., Schäfer, M., Zedler, P., Harris, E., Sinha, B., van
 Pinxteren, D., Mertes, S., Birmili, W., Merkel, M., Wu, Z., Wiedensohler, A., Wex, H.,
 Herrmann, H., and Stratmann, F.: Influence of cloud processing on CCN activation behaviour
 in the Thuringian Forest, Germany during HCCT-2010, Atmos. Chem. Phys., 14, 7859–7868,
 https://doi.org/10.5194/acp-14-7859-2014, 2014.
- IPCC.: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
 Sixth Assessment Report of the Intergovernmental Panel on Climate Change, (p. 1796),
 Cambridge University Press. In Press, 2021.
- Jayachandran, V. N., Varghese, M., Murugavel, P., Todekar, K. S., Bankar, S. P., Malap, N., Dinesh,
 G., Safai, P. D., Rao, J., Konwar, M., Dixit, S., and Prabha, T. V.: Cloud condensation nuclei
 characteristics during the Indian summer monsoon over a rain-shadow region, Atmos. Chem.
 Phys., 20, 7307–7334, https://doi.org/10.5194/acp-20-7307-2020, 2020.
- Jia, H., Ma, X., Yu, F., Liu, Y., Yin, Y.: Distinct impacts of increased aerosols on cloud droplet
 number concentration of stratus/stratocumulus and cumulus. Geophys. Res. Lett., 46(22):
 13517–13525, https://doi.org/10.1029/2019GL085081, 2019.
- Jurányi, Z., Tritscher, T., Gysel, M., Laborde, M., Gomes, L., Roberts, G., Baltensperger, U., and
 Weingartner, E.: Hygroscopic mixing state of urban aerosol derived from size-resolved cloud
 condensation nuclei measurements during the MEGAPOLI campaign in Paris, Atmos. Chem.
 Phys., 13, 6431–6446, https://doi.org/10.5194/acp-13-6431-2013, 2013.
- 1004 Khain, P. A.: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical
 1005 review, Environ. Res. Lett., 4(1), 015004, DOI: 10.1088/1748-9326/4/1/015004, 2009.
- Kim, J. H., Yum, S. S., Shim, S., Kim, W. J., Park, M., Kim, J.-H., Kim, M.-H., and Yoon, S.-C.: On
 the submicron aerosol distributions and CCN number concentrations in and around the Korean
 Peninsula, Atmos. Chem. Phys., 14, 8763–8779, https://doi.org/10.5194/acp-14-8763-2014,
 2014.
- 1010 Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Trans Farad Soc, 32, 1152–1161,
 1011 https://doi.org/10.1039/TF9363201152, 1936.
- Kristensen, T. B., Müller, T., Kandler, K., Benker, N., Hartmann, M., Prospero, J. M., Wiedensohler,
 A., and Stratmann, F.: Properties of cloud condensation nuclei (CCN) in the trade wind marine
 boundary layer of the western North Atlantic, Atmos. Chem. Phys., 16, 2675–2688,
 https://doi.org/10.5194/acp-16-2675-2016, 2016.
- Kuang, Y., He, Y., Xu, W., Zhao, P., Cheng, Y., Zhao, G., Tao, J., Ma, N., Su, H., Zhang, Y., Sun, J.,
 Cheng, P., Yang, W., Zhang, S., Wu, C., Sun, Y., and Zhao, C.: Distinct diurnal variation in
 organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol, Atmos.
 Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020, 2020.

- Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., Dal Maso, M.,
 Aalto, P. P., Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and
 Kerminen, V.-M.: Measurement of the nucleation of atmospheric aerosol particles, Nat.
 Protocols, 7, 1651–1667, https://doi.org/10.1038/nprot.2012.091, 2012.
- Lee, W., Iacobellis, S. F., and Somerville, R. C. J.: Cloud Radiation Forcings and Feedbacks:
 General Circulation Model Tests and Observational Validation, Journal of Climate, 10(10),
 2479-2496, 1997.
- Liu, Y., Daum, P. H., McGraw, R., and Miller, M.: Generalized threshold function accounting for
 effect of relative dispersion on threshold behavior of autoconversion process, Geophys. Res.
 Lett., 33(11), L11804, 2006.
- Liu, J. and Li, Z.: Estimation of cloud condensation nuclei concentration from aerosol optical
 quantities: influential factors and uncertainties, Atmos. Chem. Phys., 14, 471–483,
 https://doi.org/10.5194/acp-14-471-2014, 2014.
- Ma, N. and Birmili, W.: Estimating the contribution of photochemical particle formation to ultrafine
 particle number averages in an urban atmosphere, Sci. Total Environ., 512/513, 154–166,
 https://doi.org/10.1016/j.scitotenv.2015.01.009, 2015
- Massling, A., Stock, M., Wehner, B., Wu, Z. J., Hu, M., Brueggemann, E., Gnauk, T., Herrmann, H.,
 and Wiedensohler, A.: Size segregated water uptake of the urban submicrometer aerosol in
 Beijing, Atmos. Environ., 43, 1578–1589, https://doi.org/10.1016/j.atmosenv.2008.06.003,
 2009.
- Mazoyer, M., Burnet, F., Denjean, C., Roberts, G. C., Haeffelin, M., Dupont, J.-C., and Elias, T.:
 Experimental study of the aerosol impact on fog microphysics, Atmos. Chem. Phys., 19, 4323–
 4344, https://doi.org/10.5194/acp-19-4323-2019, 2019.
- McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S.,
 Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C.D., Snider,
 J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm
 cloud droplet activation, Atmos. Chem. Phys., 6, 2593-2649, https://doi.org/10.5194/acp-62593-2006, 2006.
- Müller, T., Henzing, J. S., de Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., Bizjak, M., 1048 1049 Collaud Coen, M., Engström, J. E., Gruening, C., Hillamo, R., Hoffer, A., Imre, K., Ivanow, P., Jennings, G., Sun, J. Y., Kalivitis, N., Karlsson, H., Komppula, M., Laj, P., Li, S.-M., Lunder, 1050 1051 C., Marinoni, A., Martins dos Santos, S., Moerman, M., Nowak, A., Ogren, J. A., Petzold, A., 1052 Pichon, J. M., Rodriquez, S., Sharma, S., Sheridan, P. J., Teinilä, K., Tuch, T., Viana, M., Virkkula, A., Weingartner, E., Wilhelm, R., and Wang, Y. O.: Characterization and 1053 1054 intercomparison of aerosol absorption photometers: result of two intercomparison workshops, 1055 Atmos. Meas. Tech., 4, 245-268, https://doi.org/10.5194/amt-4-245-2011, 2011
- 1056 Nenes, A., Charlson, R. J., Facchini, M. C., Kulmalam M., Laaksonen, A., and Seinfeld, J. H.: Can
 1057 chemical effects on cloud droplet number rival the first indirect effect? Geophys. Res. Lett.,

- 1058 29(17): 29-1-29-4, doi:10.1029/2002GL015295, 2002.
- 1059 Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne, J. T.: An Aerosol Chemical Speciation 1060 1061 Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of 1062 45, 780-794. Ambient Aerosol, Aerosol Sci. Tech., 1063 https://doi.org/10.1080/02786826.2011.560211, 2011.
- Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G., Ceburnis, D., Decesari, S.,
 Rinaldi, M., Hodas, N., Facchini, M. C., Seinfeld, J. H. and O' Dowd, C.: Surface tension
 prevails over solute effect in organic-influenced cloud droplet activation, Nature, 546(7660),
 637–641, doi:10.1038/nature22806, 2017.
- Paramonov, M., Kerminen, V.-M., Gysel, M., Aalto, P. P., Andreae, M. O., Asmi, E., Baltensperger, 1068 1069 U., Bougiatioti, A., Brus, D., Frank, G. P., Good, N., Gunthe, S. S., Hao, L., Irwin, M., Jaatinen, 1070 A., Jurányi, Z., King, S. M., Kortelainen, A., Kristensson, A., Lihavainen, H., Kulmala, M., 1071 Lohmann, U., Martin, S. T., McFiggans, G., Mihalopoulos, N., Nenes, A., O'Dowd, C. D., 1072 Ovadnevaite, J., Petäjä, T., Pöschl, U., Roberts, G. C., Rose, D., Svenningsson, B., Swietlicki, 1073 E., Weingartner, E., Whitehead, J., Wiedensohler, A., Wittbom, C., and Sierau, B.: A synthesis 1074 of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network, 1075 Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, 2015.
- Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth
 and cloud condensation nuclei activity, Atmos. Chem. Phys., 7, 1961-1971,
 https://doi.org/10.5194/acp-7-1961-2007, 2007.
- Petzold, A. and Schönlinner, M.: Multi-angle absorption photometry a new method for the
 measurement of aerosol light absorption and atmospheric black carbon, J. Aerosol Sci., 35,
 421–441, https://doi.org/10.1016/j.jaerosci.2003.09.005, 2004.
- Poulain, L., Wu, Z., Petters, M. D., Wex, H., Hallbauer, E., Wehner, B., Massling, A., Kreidenweis,
 S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and CCN
 activation for secondary organic aerosols Part 3: Influence of the chemical composition on
 the hygroscopic properties and volatile fractions of aerosols, Atmos. Chem. Phys., 10, 3775–
 3785, https://doi.org/10.5194/acp-10-3775-2010, 2010.
- Poulain, L., Spindler, G., Birmili, W., Plass-Dülmer, C., Wiedensohler, A., and Herrmann, H.:
 Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research
 station Melpitz, Atmos. Chem. Phys., 11, 12579–12599, https://doi.org/10.5194/acp-11-125792011, 2011.
- Poulain, L., Birmili, W., Canonaco, F., Crippa, M., Wu, Z. J., Nordmann, S., Spindler, G., Prévôt, A.
 S. H., Wiedensohler, A., and Herrmann, H.: Chemical mass balance of 300 °C non-volatile
 particles at the tropospheric research site Melpitz, Germany, Atmos. Chem. Phys., 14, 10145–
 1094 10162, https://doi.org/10.5194/acp-14-10145-2014, 2014.
- 1095 Poulain, L., Spindler, G., Grüner, A., Tuch, T., Stieger, B., van Pinxteren, D., Petit, J.-E., Favez, O.,

- Herrmann, H., and Wiedensohler, A.: Multi-year ACSM measurements at the central European
 research station Melpitz (Germany) Part 1: Instrument robustness, quality assurance, and
 impact of upper size cutoff diameter, Atmos. Meas. Tech., 13, 4973–4994,
 https://doi.org/10.5194/amt-13-4973-2020, 2020.
- Pöhlker, M. L., Pöhlker, C., Ditas, F., Klimach, T., Hrabe de Angelis, I., Araújo, A., Brito, J.,
 Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Kesselmeier, J., Könemann, T., Lavrič,
 J. V., Martin, S. T., Mikhailov, E., Moran-Zuloaga, D., Rose, D., Saturno, J., Su, H., Thalman,
 R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O., and Pöschl,
 U.: Long-term observations of cloud condensation nuclei in the Amazon rain forest Part 1:
 Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction,
 Atmos. Chem. Phys., 16, 15709–15740, https://doi.org/10.5194/acp-16-15709-2016, 2016.
- 1107 Pöhlker, M. L., Ditas, F., Saturno, J., Klimach, T., Hrabě de Angelis, I., Araùjo, A. C., Brito, J., 1108 Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Holanda, B. A., Kandler, K., 1109 Kesselmeier, J., Könemann, T., Krüger, O. O., Lavrič, J. V., Martin, S. T., Mikhailov, E., 1110 Moran-Zuloaga, D., Rizzo, L. V., Rose, D., Su, H., Thalman, R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O., Pöschl, U., and Pöhlker, C.: Long-term 1111 1112 observations of cloud condensation nuclei over the Amazon rain forest - Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols, 1113 1114 Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, 2018.
- 1115 Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the
 hydrological cycle, Science, 294(5549), 2119–2124. https://doi.org/10.1126/science.1064034,
 1117 2001.
- Rastak, N., Pajunoja, A., Acosta Navarro, J. C., Ma, J., Song, M., Partridge, D. G., Kirkevåg, A.,
 Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A., Cerully, K., Bougiatioti, A., Liu, P., Krejci, R.,
 Petäjä, T., Percival, C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A., Martin,
 S., Jimenez, J. L., Collins, D. R., Topping, D. O., Bertram, A. K., Zuend, A., Virtanen, A., and
 Riipinen, I.: Microphysical explanation of the RH-dependent water affinity of biogenic organic
 aerosol and its importance for climate, Geophys. Res. Lett., 44, 5167–5177,
 https://doi.org/10.1002/2017gl073056, 2017.
- Roberts, G. C., and Nenes, A.: A continuous-flow streamwise thermal-gradient CCN chamber for
 atmospheric measurements, Aerosol Sci. Tech., 39(3), 206–221,
 https://doi.org/10.1080/027868290913988, 2005.
- Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.:
 Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei
 counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol
 particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179,
 https://doi.org/10.5194/acp-8-1153-2008, 2008.
- 1133 Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O.,

- and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the
 mega-city Guangzhou, China Part 1: Size-resolved measurements and implications for the
 modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365–
 3383, https://doi.org/10.5194/acp-10-3365-2010, 2010.
- Rose, D., Gunthe, S. S., Su, H., Garland, R. M., Yang, H., Berghof, M., Cheng, Y. F., Wehner, B.,
 Achtert, P., Nowak, A., Wiedensohler, A., Takegawa, N., Kondo, Y., Hu, M., Zhang, Y.,
 Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning
 smoke near the megacity Guangzhou, China Part 2: Size-resolved aerosol chemical
 composition, diurnal cycles, and externally mixed weakly CCN-active soot particles, Atmos.
 Chem. Phys., 11, 2817–2836, https://doi.org/10.5194/acp-11-2817-2011, 2011
- Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T., and Yu, S.: Aerosol-driven droplet
 concentrations dominate coverage and water of oceanic low-level clouds, science, 363(6427),
 DOI: 10.1126/science.aav0566, 2019.
- Salma, I., Thén, W., Vörösmarty, M., and Gyöngyösi, A. Z.: Cloud activation properties of aerosol
 particles in a continental Central European urban environment, Atmos. Chem. Phys., 21,
 11289–11302, https://doi.org/10.5194/acp-21-11289-2021, 2021.
- Salma, I., Thén, W., Vörösmarty, M., and Gyöngyösi, A. Z.: Cloud droplet activation in a continental
 Central European urban environment, Atmos. Chem. Phys. Discuss.,
 https://doi.org/10.5194/acp-2021-305, in review, 2021.
- Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., 1153 Pöhlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, 1154 1155 S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P., Äijälä, M., Bukowiecki, N., Ehn, M., Frank, G., Fröhlich, R., Frumau, A., Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., 1156 1157 Kulmala, M., Mihalopoulos, N., Nenes, A., O'Dowd, C., Petäjä, T., Picard, D., Pöhlker, C., 1158 Pöschl, U., Poulain, L., Prévôt, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., 1159 Wiedensohler, A., Ogren, J., Matsuki, A., Yum, S. S., Stratmann, F., Baltensperger, U., and 1160 Gysel, M.: Long-term cloud condensation nuclei number concentration, particle number size
- 1161distribution and chemical composition measurements at regionally representative observatories,1162Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, 2018.
- Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate
 change, Hoboken: John Wiley and Sons, 2016.
- Sihto, S.-L., Mikkilä, J., Vanhanen, J., Ehn, M., Liao, L., Lehtipalo, K., Aalto, P. P., Duplissy, J.,
 Petäjä, T., Kerminen, V.-M., Boy, M., and Kulmala, M.: Seasonal variation of CCN
 concentrations and aerosol activation properties in boreal forest, Atmos. Chem. Phys., 11,
 13269–13285, https://doi.org/10.5194/acp-11-13269-2011, 2011.
- Singla, V., Mukherjee, S., Safai, P. D., Meena, G. S., Dani, K. K., Pandithurai, G.: Role of organic
 aerosols in CCN activation and closure over a rural background site in Western Ghats, India,
 Atmos. Environ., 158, 148-159, https://doi.org/10.1016/j.atmosenv.2017.03.037, 2017.

- Stokes, R. H. and Robinson, R. A.: Interactions in Aqueous Nonelectrolyte Solutions. I. SoluteSolvent Equilibria, J. Phys. Chem., 70, 2126–2130, DOI: 10.1021/j100879a010, 1966.
- Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae,
 M. O., and Pöschl, U.: Hygroscopicity distribution concept for measurement data analysis and
 modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN
 activation, Atmos. Chem. Phys., 10, 7489–7503, https://doi.org/10.5194/acp-10-7489-2010,
 2010.
- 1179 Twomey, S.: The nuclei of natural cloud formation part II: The supersaturation in natural clouds and
 1180 the variation of cloud droplet concentration, Geofisica Pura e Applicata, 43, 243–249, DOI:
 1181 10.1007/BF01993560, 1959.
- 1182 Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8(12), 1251–1256,
 1183 https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
- 1184
 Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34(7),

 1185
 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
- Tuch, T. M., Haudek, A., Müller, T., Nowak, A., Wex, H., and Wiedensohler, A.: Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites, Atmos. Meas. Tech., 2, 417–422, https://doi.org/10.5194/amt-2-417-2009, 2009.
- van Pinxteren, D., Fomba, K. W., Spindler, G., Müller, K., Poulain, L., Iinuma, Y., Loschau, G.,
 Hausmann, A., and Herrmann, H.: Regional air quality in Leipzig, Germany: detailed source
 apportionment of size-resolved aerosol particles and compar ison with the year 2000, Faraday
 Discuss., 189, 291–315, https://doi.org/10.1039/c5fd00228a, 2016.
- Varghese, M., Prabha, T. V., Malap, N., Resmi, E. A., Murugavel, P., Safai, P. D., Axisa, D.,
 Pandithurai, G., and Dani, K.: Airborne and ground based CCN spectral characteristics:
 Inferences from CAIPEEX–2011, Atmos. Environ., 125, 324–336,
 https://doi.org/10.1016/j.atmosenv.2015.06.041, 2016.
- <u>Vepsäläinen, S., Calderón, S. M., Malila, J., and Prisle, N. L.: Comparison of six approaches to</u>
 predicting droplet activation of surface active aerosol Part 1: moderately surface active
 organics, Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022,
 <u>2022.</u>
- Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., and Zhang, R.: Long-term impacts of aerosols on
 precipitation and lightning over the Pearl River Delta megacity area in China, Atmos. Chem.
 Phys., 11, 12421–12436, https://doi.org/10.5194/acp-11-12421-2011, 2011.
- Wang, Y., Li, Z., Zhang, Y., Du, W., Zhang, F., Tan, H., Xu, H., Fan, T., Jin, X., Fan, X., Dong, Z.,
 Wang, Q., and Sun, Y.: Characterization of aerosol hygroscopicity, mixing state, and CCN
 activity at a suburban site in the central North China Plain, Atmos. Chem. Phys., 18, 11739–
 11752, https://doi.org/10.5194/acp-18-11739-2018, 2018a.
- 1209 Wang, Y., Wu, Z., Ma, N., Wu, Y., Zeng, L., Zhao, C., and Wiedensohler, A.: Statistical analysis and

- parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol
 in Beijing, Atmos. Environ., 175, 184–191, https://doi.org/10.1016/j.atmosenv.2017.12.003,
 2018b.
- Wang, Y., Niu, S., Lv, J., Lu, C., Xu, X., Wang, Y., Ding, J., Zhang, H., Wang, T., and Kang, B.: A
 new method for distinguishing unactivated particles in cloud condensation nuclei
 measurements: Implications for aerosol indirect effect evaluation, Geophys. Res. Lett., 46,
 14,185–14,194, https://doi.org/10.1029/2019GL085379, 2019.
- Wang, Z., Birmili, W., Hamed, A., Wehner, B., Spindler, G., Pei, X., Wu, Z., Cheng, Y., Su, H., and
 Wiedensohler, A.: Contributions of volatile and nonvolatile compounds (at 300°C) to
 condensational growth of atmospheric nanoparticles: An assessment based on 8.5 years of
 observations at the Central Europe background site Melpitz, J. Geophys. Res. Atmos., 122,
 485–497, doi:10.1002/2016JD025581, 2017.
- Wiedensohler, A.: An approximation of the bipolar charge distribution for particles in the submicron size range, J. Aerosol Sci., 19, 387–389, DOI: 10.1016/0021-8502(88)90278-9, 1988.
- Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, 1224 1225 T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, 1226 P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, 1227 C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., 1228 Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., 1229 1230 Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size 1231 spectrometers: harmonization of technical standards and data structure to facilitate high quality 1232 long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 1233 5, 657-685, https://doi.org/10.5194/amt-5-657-2012, 2012.
- Wiedensohler, A., Wiesner, A., Weinhold, K., Birmili, W., Hermann, M., Merkel, M., Muller, T.,
 Pfeifer, S., Schmidt, A., Tuch, T., Velarde, F., Quincey, P., Seeger, S., and Nowak, A.: Mobility
 particle size spectrometers: Calibration procedures and measurement uncertainties, Aerosol Sci.
 Tech., 52, 146–164, https://doi.org/10.1080/02786826.2017.1387229, 2018.
- Wu, Z. J., Poulain, L., Birmili, W., Größ, J., Niedermeier, N., Wang, Z. B., Herrmann, H., and
 Wiedensohler, A.: Some insights into the condensing vapors driving new particle growth to
 CCN sizes on the basis of hygroscopicity measurements, Atmos. Chem. Phys., 15, 13071–
 13083, https://doi.org/10.5194/acp-15-13071-2015, 2015.
- Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler, A., and Hu, M.:
 Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing,
 China, during summertime, Atmos. Chem. Phys., 16, 1123–1138, https://doi.org/10.5194/acp16-1123-2016, 2016.
- Ye, X., Tang, C., Yin, Z., Chen, J., Ma, Z., Kong, L., Yang, X., Gao, W., and Geng, F.: Hygroscopic
 growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign, Atmos.

- 1248 Environ., 64, 263–269, https://doi.org/10.1016/j.atmosenv.2012.09.064, 2013.
- 1249 Zdanovskii, B.: Novyi Metod Rascheta Rastvorimostei Elektrolitovv Mnogokomponentnykh
 1250 Sistema, Zh. Fiz. Khim+, 22, 1478–1485, 1486–1495, 1948.
- Zhang, F., Li, Y., Li, Z., Sun, L., Li, R., Zhao, C., Wang, P., Sun, Y., Liu, X., Li, J., Li, P., Ren, G.,
 and Fan, T.: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC3Exp
 campaign: implications for cloud condensation nuclei parameterization, Atmos. Chem. Phys.,
 14, 13423–13437, https://doi.org/10.5194/acp-14-13423-2014, 2014.
- Zhang, F., Li, Z., Li, Y., Sun, Y., Wang, Z., Li, P., Sun, L., Wang, P., Cribb, M., Zhao, C., Fan, T.,
 Yang, X., and Wang, Q.: Impacts of organic aerosols and its oxidation level on CCN activity
 from measurement at a suburban site in China, Atmos. Chem. Phys., 16, 5413–5425,
 https://doi.org/10.5194/acp-16-5413-2016, 2016.
- Zhang, F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., Sun, Y., Yang, X., and Li, Z.:
 Uncertainty in predicting CCN activity of aged and primary aerosols, J. Geophys. Res. Atmos.,
 122(21): 11,723-11,736, https://doi.org/10.1002/2017JD027058, 2017.
- Zhao, C., Klein, S. A., Xie, S., Liu, X., Boyle, J. S., and Zhang, Y.: Aerosol first indirect effects on
 non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites,
 Geophys. Res. Lett., 39, L08806, https://doi.org/10.1029/2012GL051213, 2012.
- 1265 Zhao, C., and Garrett, T. J.: Effects of Arctic haze on surface cloud radiative forcing, Geophys. Res.
 1266 Lett., 42(2), 557–564, https://dx.doi.org/10.1002/2014GL062015, 2015

Figure 1. Schematic diagram of the experimental setup. D-MPSS — Dual-mobility particle size
 spectrometer, ACSM — aerosol chemical species monitor, MAAP — multi-angle absorption
 photometer, DMA — differential mobility analyzer, CPC — condensation particle counter, CCNC
 — cloud condensation nuclei counter.

1303represent the values in the range from 25^{th} to 75^{th} percent. Seasonal variations of (a) aerosol physical1304and (b) chemical properties. $dN_{aero}/dlogD$ represents the aerosol number concentration at each bin,1305GMD is the geometric mean diameter of the particles, N_{aero} means total aerosol number1306concentration with diameter ranging 10 to 800 nm, κ_{chem} is the hygroscopicity factor calculated from1307the chemical composition. Error bar is one standard derivation.

1309Figure 5. Relationships between (a) aerosol hygroscopicity factor calculated from the chemical1310composition (κ_{chem}) and mass fraction of organics (f_{org}) in submicron aerosol, (b) κ_{chem} vs. mass1311fraction of nitrate ($f_{nitrate}$), (c) κ_{chem} vs. mass fraction of nitrate ($f_{sulfate}$), and (d) κ_{chem} vs. mass fraction

1312 of black carbon (f_{BC}). Color bar represents the probability density function (PDF). Black lines are

Figure 5. Monthly variations of (a) hygroscopicity factor calculated from monodisperse CCN measurements (κ_{CCN}) at supersaturation (SS) of 0.1% and 0.7%, and hygroscopicity factor calculated from particle chemical composition (κ_{chem}), (b) critical diameter of dry particle for activation (D_c) at SS = 0.1% and 0.7%, and (c) the degree of external mixture (($D_{75} - D_{25})/D_c$) at SS = 0.1% and 0.7%. The definitions of D_{75} and D_{25} are the D_p at which 75% and 25% of the particles are activated at the given SS, respectively. Dots represent the median values. Shaded areas represent the values in the range from 25th to 75th percent.

1334particles are activated at the given SS, respectively. Red and blue lines are power-law fits for κ_{CCN} 1335vs. D_{p} and $(D_{75} - D_{25})/D_{e}$ vs. D_{p} .

59 / 73

1					
1339	vs. D_p at each season.	The definitions	of D_{75} and D_{25}	are the D_p at which	75% and 25% of the
	1				

- 1340 particles are activated at the given SS, respectively. Red lines are power-law fits. Dots represent the
- 1341 median values. Shaded areas represent the values in the range from 25th to 75th percent.

1371Figure 11. Predicted vs. measured CCN number concentration (N_{CCN}) at different supersaturation1372(SS) conditions for different seasons. (a) represents the results at SS = 0.1 and 0.2%; (b) shows the1373results at SS = 0.3, 0.5, and 0.7%. Red cross represents the predicted N_{CCN} using mean1374hygroscopicity factor (κ) over particle diameter (D_p) of 100 to 200 nm, while the blue cross1375represents the predicted N_{CCN} using power law fit of κ and D_p . Red and blue lines are the linear fits.1376

1377 Table 1. Densities (ρ) and hygroscopicity factor (κ) for each component.

Species	NH ₄ NO ₃	$(NH_4)_2SO_4$	NH4HSO4	H_2SO_4	Organics	BC
ρ (kg m ⁻³)	1720	1769	1780	1830	1400	1700
К	0.67	0.61	0.61	0.92	0.1	0

1379 Table 2. Summary of CCN number concentration (N_{CCN}) at different supersaturation (SS) conditions

1380 measured at different locations.

Location (coordinates; a.m.s.l)	Type	Period	SS (%)	Mean N _{CCN} - (cm ⁻³)	Reference
Melpitz, Germany - (51.5°N, 12.9°E; 86 m)	rural, continental	Aug 2012 Oct. 2016	0.1 0.2 0.3 0.5 0.7	513 1102 1466 2020 2477	Present study
Vavihill, Sweden (56.0°N, 13.2 °E; 172 m)	rural	May 2008 - Jul 2010	0.1 1.0	362 1795	Fors et al., 2011
Southern Great Plains, USA (36.6°N, 97.5°W; 320 m)	rural, - agricultural	Sep. 2006 - Apr. 2011	0.4	1248	Liu and Li, 201 4
Hyytiälä, Finland - (61.9°N, 24.3°E; 181 m)	rural	Feb. 2009 Dec. 2012	0.1 1.0	274 1128	Paramonov et al., 2015
Mahabaleshwar, India - (17.9°N, 73.7°E; ~490 - m)	rural	Jun. 2015	0.1- 0.94	118–1826	Singla et - al., 2017
Guangzhou, China (23.6°N, 113.1°E; ~21 m)	rural	Jul. 2006	0.068 - 0.67	995-10731	Rose et al., 2010
Wuqing, China (39.4°N, 117.0°E; 7.4 m)	suburban	Dec 2009 Jan 2010	0.056 - 0.7	2192 12963	Deng et al., 2011
Seoul, Korea (37.6°N, 127.0°E; ~38 m)	urban	2004 2010	0.4 0.8	4145 6067	Kim et al., 2014
Mahabubnagar, India (17.7°N, 78.9°E; ~490 m)	polluted continental	Oct. 2011	1.0	~5400	Varghese et al., 2016

1382 Table 3. Power-law function fits and error function fits for the relationships between activation ratio (AR) vs. supersaturation (SS), and CCN number concentration

C	A	R vs. SS	N _{CCN} vs. SS		
Season	Power-law	Error Function	Power-law	Error Function	
Spring	$\frac{AR = 0.66SS^{0.73},}{R^2 = 0.98}$	<i>AR</i> - = 0.5+0.50erf(ln(<i>SS</i>/0.72)/2.33), R²=0.998	N _{CCN} =3679SS ^{0.76} ,- R ² =0.97	<i>N_{CCN}–</i> =2637+2637erf(ln(<i>SS</i> /0.72)/2.33), R ² =0.998	
Summer	AR = 0.61SS ^{0.97} ,- R ² =0.97	<i>AR</i> - =0.51+0.51erf(ln(<i>SS</i> /1.04)/2.15), <u>R²=0.997</u>	$\frac{N_{CCN} = 3951SS^{4.04}}{R^2 = 0.96}$	N_{CCN}- =3162+3162erf(ln(<i>SS</i> /1.04)/2.15), <u>R²=0.997</u>	
Autumn	$\frac{AR = 0.71SS^{0.79},}{R^2 = 0.98}$	<i>AR</i> - =0.56+0.56erf(ln(<i>SS</i> /0.84)/2.29), <u>R²=0.999</u>	N _{CCN} =3136SS ^{0.81} ,- R ² =0.98	N_{CCN}- =2433+24336erf(ln(SS/0.84)/2.29), R ² =0.999	
Winter	<u>AR =0.8955^{0.63},-</u> R²=0.96	<i>AR</i> - =0.44+0.44erf(ln(<i>SS</i> /0.29)/1.83),- <u>R²=0.999</u>	$N_{CCN} = 3325SS^{0.64},$ $R^2 = 0.96$	N_{CCN}- =1624+1624erf(ln(<i>SS</i> /0.29)/1.83), <u>R²=0.999</u>	
All	AR = 0.59SS^{0.71}, - R²=0.98	<i>AR</i> - =0.40+0.40erf(ln(<i>SS</i> /0.59)/2.25), <u>R²=0.998</u>	N_{CCN}=3497SS^{0.81},− R ² =0.98	N _{CCN} - =2199+2199erf(ln(<i>SS</i> /0.59)/2.25), R ² =0.998	

1383 (*N_{CCN}*) vs. *SS* for different seasons.

Parameters	SS (%)	All datasets	Spring	Summer	Autumn	Winter
	0.1	0.28	0.31	0.23	0.27	0.32
	0.2	0.28	0.32	0.25	0.26	0.32
KCCN	0.3	0.24	0.27	0.21	0.22	0.28
	0.5	0.21	0.22	0.19	0.19	0.23
	0.7	0.20	0.21	0.19	0.19	0.21
	0.1	177	169	187	178	168
	0.2	112	107	116	115	107
D_e	0.3	91	87	94	93	86
	0.5	67	65	69	69	64
	0.7	5 4	53	55	55	53
	0.1	0.17	0.14	0.14	0.19	0.2 4
(D_{22}, D_{2})	0.2	0.20	0.16	0.16	0.23	0.27
(D 75 D 25)	0.3	0.21	0.17	0.15	0.25	0.29
i D e	0.5	0.23	0.18	0.17	0.28	0.31
	0.7	0.25	0.20	0.18	0.30	0.36

Table 4. At each supersaturation (SS) condition, seasonal mean values of the hygroscopicity factor

1390Table2. Seasonal median values of hygroscopicity factor derived from the chemical composition1391(κ_{chem}), hygroscopicity factor derived from monodisperse CCN measurements (κ_{CCN}), the critical1392diameter of dry particle for activation (D_c), and the degree of external mixture (($D_{75} - D_{25}$)/ D_c) at

ach supersaturation (SS) condition. The unit of D_c is nm.						
Parameters	<u>SS (%)</u>	All datasets	Spring	Summer	<u>Autumn</u>	Winter
<u>K</u> chem	Ξ	<u>0.30</u>	0.32	0.24	0.31	<u>0.34</u>
	<u>0.1</u>	<u>0.27</u>	<u>0.31</u>	<u>0.22</u>	<u>0.26</u>	<u>0.29</u>
	<u>0.2</u>	<u>0.27</u>	<u>0.32</u>	<u>0.23</u>	<u>0.24</u>	<u>0.30</u>
<u>KCCN</u>	<u>0.3</u>	<u>0.23</u>	<u>0.26</u>	<u>0.20</u>	<u>0.21</u>	<u>0.27</u>
	<u>0.5</u>	<u>0.19</u>	<u>0.22</u>	<u>0.18</u>	<u>0.18</u>	<u>0.22</u>
	<u>0.7</u>	<u>0.19</u>	<u>0.20</u>	<u>0.18</u>	<u>0.17</u>	<u>0.20</u>
	<u>0.1</u>	<u>176</u>	<u>167</u>	<u>187</u>	<u>177</u>	<u>170</u>
	<u>0.2</u>	<u>111</u>	<u>104</u>	<u>116</u>	<u>114</u>	<u>106</u>
\underline{D}_{c}	<u>0.3</u>	<u>89</u>	<u>85</u>	<u>93</u>	<u>92</u>	<u>84</u>
	<u>0.5</u>	<u>67</u>	<u>64</u>	<u>69</u>	<u>69</u>	<u>64</u>
	<u>0.7</u>	<u>54</u>	<u>53</u>	<u>55</u>	<u>55</u>	<u>53</u>
	<u>0.1</u>	0.15	<u>0.13</u>	<u>0.12</u>	<u>0.18</u>	<u>0.19</u>
$(D_{22} - D_{22})$	<u>0.2</u>	<u>0.18</u>	<u>0.15</u>	<u>0.14</u>	0.22	<u>0.23</u>
(D/3 - D/25)	<u>0.3</u>	<u>0.19</u>	<u>0.15</u>	<u>0.14</u>	<u>0.24</u>	<u>0.23</u>
	<u>0.5</u>	<u>0.20</u>	<u>0.15</u>	0.14	0.25	<u>0.25</u>
	<u>0.7</u>	<u>0.20</u>	<u>0.17</u>	<u>0.15</u>	0.27	<u>0.27</u>

	$\kappa_{\rm CCN}$ vs. D_p	(<i>D</i> 75 − <i>D</i> 25)/ <i>D</i> € vs. <i>D</i>
All datasets	$y = 0.07 x^{0.27}, R^2 = 0.76$	$y = 0.92 \cdot x^{-0.33}, R^2 = 0.9$
Spring	$y = 0.05 x^{0.37}, R^2 = 0.76$	$y = 0.55 \text{ x}^{-0.26}, \text{R}^2 = 0.9$
Summer	$y = 0.09 x^{0.19}, R^2 = 0.56$	$y = 0.39 x^{-0.20}, R^2 = 0.9$
Autumn	$y = 0.05 x^{0.31}, R^2 = 0.88$	$y = 1.70 \text{ x}^{-0.42}, \text{R}^2 = 0.9$
Winter	$y = 0.05 x^{0.36}, R^2 = 0.82$	$y = 1.10 \text{ x}^{-0.30}, \text{R}^2 = 0.9$

1395 Table 5. Power-law fit results in Figure 7. The unit of particle diameter (D_p) is nm.

1397 Table-63. Introduction of five activation schemes. The meaning of the abbreviation can be found in

1398 Notation list.

Category	Scheme	Introduction
1 st category:	<u>N1</u> 4 st -	N_{CCN} - SS power-law fits shown in Table 3Figure 3a
N_{CCN} - SS or AR - SS	<u>N2</u> 2 nd -	Real-time N_{aero} combined with AR - SS power-law
empirical fit		fits shown in <u>Figure 3aTable 3</u>
2 nd category:	<u>K1</u> 3 rd -	Real-time PNSD combined with a constant κ of 0.3
2 category.		Real-time PNSD combined with the real-time bulk
Real-time PNSD	<u>K2</u> 4 [#] -	Kchem
combined with the		
parameterized κ	<u>K3</u> 5 th -	Real-time PNSD combined with $K - D_p$ power-law
		fits shown in Table 5Figure 6a

1399
