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Abstract. The global atmospheric methane growth rates reported by NOAA for 2020 and 2021 are the largest since systematic 

measurements began in 1983. To explore the underlying reasons for these anomalous growth rates we use newly available 

methane data from the Japanese Greenhouse gases Observing SATellite (GOSAT) to estimate methane surface emissions. 

Relative to baseline values in 2019 we see the largest annual increases in methane emissions during 2020 over Eastern Africa 

(13 Tg), tropical Asia (4 Tg), tropical South America (3 Tg), and temperate Eurasia (3 Tg), and the largest reductions over 15 

China (-6 Tg) and India (-2 Tg). We find comparable emission changes in 2021, relative to 2019, except for tropical and 

temperate South America where emissions increased to 9 Tg and 5 Tg, respectively, and tropical Asian emissions increased to 

8 Tg.  The elevated contributions we saw in 2020 over the western half of Africa (-5 Tg) and Europe (-3 Tg) are substantially 

reduced in 2021, compared to our 2019 baseline. We find statistically significant positive correlations between anomalies of 

tropical methane emissions and groundwater, consistent with recent studies that have highlighted a growing role for microbial 20 

sources over the tropics. Emission reductions over India and China are expected in 2020 due to the Covid-19 shutdown but 

continued in 2021, which we do not currently understand. Based on a sensitivity study for which we assume a conservative 

5% decrease in hydroxyl concentrations in 2020, due to reduced pollutant emissions during the Covid-19 shutdown, we find 

that the global increase in our a posteriori emissions in 2020 is ~22% lower than our control calculation. We conclude therefore 

that most of the observed increase in atmospheric methane during 2020 and 2021 is due to increased emissions.  25 

1 Introduction 

The atmospheric growth rate of methane in the 21st century has defied a definitive explanation: following a period of near-zero 

growth during 2000-2007 (Rigby et al. 2008) growth rates have accelerated, with values reported by NOAA for 2020 

(15.29±0.38 ppb) and 2021 (16.94±0.38 ppb) exceeding all prior values since their records began in 1983. The underlying 

reasons for these anomalous growth rates in 2020 and 2021 are currently subject to intense debate with some studies attributing 30 
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most of the growth in 2020 to a reduction in the hydroxyl radical (OH) sink of methane due to global-scale reductions in 

nitrogen oxides due to pandemic-related industry shutdowns (Laughner et al. 2021). On the face of it, this appears to be a 

reasonable explanation, but recent studies have used satellite observations of atmospheric methane to reveal regional hotspots 

over the tropics that are responding to changes in climate and have global significance (Pandey et al. 2021; Lunt et al. 2019; 

2021; Pandey et al. 2017; Feng et al. 2022; Palmer et al. 2021; Wilson et al. 2020). Here, we use satellite observation of 35 

methane from the Japanese Greenhouse gases Observing SATellite (GOSAT) to document global and regional changes in 

emissions, extending a recent study (Feng et al. 2022). In the next section we describe the data and methods used to infer 

methane emissions. In section 3 we describe our results and conclude the study in section 4. 

2 Data and Methods 

We follow closely the methodology from a recent study (Feng et al. 2022) so that for the sake of brevity we include only details 40 

relevant to the calculations shown here.  

2.1 GOSAT methane proxy data  

We use version 9.0 of the proxy GOSAT XCH4:XCO2 retrievals (X denotes atmospheric column-averaged dry-air mole 

fraction) from the University of Leicester (R. J. Parker et al. 2020; R. Parker and Boesch 2020), including both nadir 

observations over land and glint observations over the ocean. Analyses have shown that these retrievals have a bias of 0.2%, 45 

with a single-sounding precision of ~0.72%. We globally remove a slightly larger 0.3% bias from the GOSAT proxy data to 

improve the comparison with independent in situ observations. We assume that each single GOSAT proxy XCH4:XCO2 ratio 

retrieval has an uncertainty of 1.2% to account for possible model errors, including the errors in atmospheric chemistry and 

transport. 

2.2 In situ data  50 

To anchor the GOSAT proxy ratio observations (Fraser et al. 2014b), we also ingest simultaneously the CO2 and methane mole 

fraction data at surface-based sites, chosen from the NOAA compilation of the multi-laboratory in-situ measurements (Di Sarra 

et al. 2021; 2022; Cox et al. 2021; 2022).  We include the same subset of the surface sites used by a recent study that 

documented year to year variations of methane emissions during 2010-2019 (Feng et al. 2022). We assume uncertainties of 

0.5 ppm and 8 ppb for these in situ observations of CO2 and methane respectively (Feng et al. 2022).  55 

2.3 GEOS-Chem atmospheric chemistry transport model  

We use the GEOS-Chem model of atmospheric chemistry and transport at a horizontal resolution of 2° (latitude) × 2.5° 

(longitude), driven by the MERRA2 meteorological reanalyses from the Global Modeling and Assimilation Office Global 

Circulation Model based at NASA Goddard Space Flight Center. Our CO2 and methane model calculations are described in 

recent study (Feng et al. 2022). Our a priori CO2 flux inventory includes monthly biomass burning emission (van der Werf et 60 
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al. 2017); monthly fossil fuel emissions for 2019 in the absence of more recent data (Oda and Maksyutov 2021); monthly 

climatological ocean fluxes (Takahashi et al. 2009); and 3-hourly terrestrial biosphere fluxes (Olsen and Randerson 2004). 

Our a priori methane fluxes from nature include monthly wetland emissions, including rice paddies (Bloom et al. 2017); 

monthly fire methane emissions (van der Werf et al. 2017); and termite emissions (Fung et al. 1991). We include emissions 

from geological macroseeps (Kvenvolden and Rogers 2005; Etiope 2015). For a priori anthropogenic emissions we use the 65 

EDGAR v4.32 global emission inventory for 2012 (Janssens-Maenhout et al. 2019) that includes various sources related to 

human activities (e.g., oil and gas industry, coal mining, livestock, and waste). We use monthly 3-D fields of OH, consistent 

with observed values for the lifetime of methyl chloroform, from the GEOS-Chem full chemistry simulation (Mao et al. 2013; 

Turner et al. 2015) to describe the main oxidation sink of methane. Using pre-computed fields of OH greatly simplifies our 

calculations. To explore the sensitivity of our methane emission estimates for 2020 due to inferred reductions in OH due to 70 

large-scale industrial shutdown due to Covid-19 (Cooper et al. 2022), we scale down our baseline monthly 3-D OH fields by 

5% where combustion emissions of CO2 (Oda and Maksyutov 2021) were larger than the mean emissions over Africa, resulting 

in reductions mainly between 15oN and 65oN. Our choice of 5% represents a conservative reduction based on a recent study 

(Laughner et al. 2021). We also include the net microbial consumption of methane in soils (Fung et al. 1991), and reaction 

with chlorine atoms (Thanwerdas et al. 2019). 75 

2.4 Ensemble Kalman filter inverse method  

We use an ensemble Kalman Filter (EnKF) framework to estimate simultaneously CO2 and methane fluxes from satellite 

measurements of the atmospheric CO2 and methane (Feng et al. 2022). Our state vector includes monthly scaling factors for 

487 regional pulse-like basis functions (Figure A1) that describe CO2 and methane fluxes, including 476 land regions and 11 

oceanic regions. We define these land sub-regions by dividing the 11 TransCom–3 land regions into 42 nearly equal sub-80 

regions, with the exception for temperate Eurasia that has been divided into 56 sub-regions due to its large landmass. We use 

the 11 oceanic regions defined by the TransCom–3 experiment. We use a 4-month moving lag window to reduce the 

computational costs for projecting the flux perturbation ensemble into observation space long after (>4 months) their 

emissions, beyond which time it is difficult to distinguish between the emitted signal from variations in the ambient background 

atmosphere (Fraser et al. 2014a; Feng et al. 2017). Our a priori fluxes are described above. For simplicity we assume a fixed 85 

uncertainty of 40% for coefficients corresponding to the a priori CO2 fluxes over each sub-region, and a larger uncertainty 

(60%) for the corresponding methane emissions.  We also assume that a priori errors for the same gas are correlated with a 

spatial correlation length of 300 km and with a temporal correlation of one month.   

 

As a sensitivity test, we also report methane fluxes inferred using the same EnKF approach but using the proxy GOSAT XCH4 90 

data. These GOSAT XCH4 retrievals are calculated from the XCH4:XCO2 ratio by applying an ensemble mean of model XCO2, 

and then bias-corrected according to comparison with TCCON XCH4 retrievals (R. J. Parker et al. 2020). 
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2.5 Correlative data  

To help interpret the changes in methane emission estimates we use additional datasets that are relevant to microbial or 

pyrogenic production of methane. We use monthly surface temperature fields at a spatial resolution of 2ox2.5o from the 95 

Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA2) developed by the Global Modeling 

and Assimilation Office, NASA Goddard Space Flight Center (Bosilovich et al., 2015). Precipitation data are taken from the 

NOAA CMAP (CPC Merged Analysis of Precipitation) long-term global rainfall dataset (Xie and Arkin 1997) that provides 

near-global monthly coverage at a spatial resolution of 2.5o × 2.5o, from 1979 to near-present. In addition, we use monthly total 

water storage (liquid water equivalent depth, LWE) on a 1o × 1o global grid from the NASA/DLR Gravity Recovery and 100 

Climate Experiment Follow-on (GRACE-FO) (Landerer et al. 2020). Finally, we explore monthly biomass burning emissions 

from the Global Fire Emissions Database (GFED v4) (van der Werf et al. 2017). 

2 Results 

Table 1 summarizes our global emission estimates inferred from GOSAT for 2020 and 2021; and for 2019, which we use as 

our baseline year throughout this study (Figure A2). The largest change in our global a posteriori emissions occurs during 105 

2019—2020 (27 Tg) from 583.7 to 610.7 Tg/yr. Our a posteriori emission estimates for 2019 and 2020 are within 2% of values 

reported by an independent study (Qu et al, Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT 

observations, submitted to ERL, 2022, available from their group website https://acmg.seas.harvard.edu/publications-acmg; 

hereinafter denoted as Qu et al, 2022), consistent with our reported uncertainties. These elevated emissions are sustained, but 

not further increased, during 2021 (609.5 Tg/yr).  110 

 

The 27 Tg emission increase in 2020 and the lack of further emissions growth in 2021 may appear inconsistent with the NOAA 

global annual mean growth rates of 15.3 and 16.9 ppb in 2020 and 2021, respectively (Table 1). Based on these reported 

atmospheric growth rates, and after considering the effects of methane sinks, we find that a one-box model calculation predicts 

an increase in emissions of 12.6 Tg between 2019 and 2020 and a further 15.1 Tg increase in 2021 (see Appendix B and Figure 115 

B1). These calculations use annual mean values that effectively represent the emissions increase between the middle of each 

successive year rather than the beginning and end. After considering the increases in monthly mean NOAA data, we find that 

the simple box model predicts a similar increase in emissions between December 2019 (583 Tg yr-1) and December 2020 (610 

Tg yr-1) of 27 Tg yr-1, with emissions thereafter stabilizing, with mean emissions of 610 Tg yr-1 in 2021. As such, we conclude 

that the global mean emission results inferred from GOSAT are consistent with those inferred from NOAA surface data, 120 

assuming a fixed methane atmospheric lifetime. 

 

Figure 1 shows the broad geographical breakdown for our reported global changes in methane emissions. Relative to 2019, we 

find widespread increased emissions during 2020 except for China and India. Relative to baseline values in 2019 we see the 
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largest annual increases in methane emissions during 2020 over Eastern Africa (13 Tg), tropical Asia (4 Tg), tropical South 125 

America (3 Tg), and temperate Eurasia (3 Tg), and the largest reductions over China (-6 Tg) and India (-2 Tg). Emission 

changes relative to 2019 are comparable in 2021, except for tropical and temperate South America increases to 9 Tg and 5 Tg, 

respectively, and tropical Asia increases to 8 Tg.  The elevated contributions we saw in 2020 over the western half of Africa 

(-5 Tg) and Europe (-3 Tg) are substantially reduced in 2021, compared to our 2019 baseline.  

 130 

Figure 2 shows the distribution of methane emissions from 2020 and 2021 and the relative changes from 2019 (Figure A1). 

During 2020, there are significant decreases (20-30%) over the manufacturing regions such as eastern China, India, central 

America, and eastern Europe. There are also significant increases across eastern Africa (30-40%), eastern North America 

(30%), and maritime Southeast Asia (30%). During 2021, we see similar changes in emissions, but they are typically 

exaggerated. There is more of a pronounced increase over East Africa (>50%), southern Brazil (50%), and eastern North 135 

America (up to 40%), and large decreases over eastern China (-50%) and western Russia (-50%). During 2021 there is also a 

large decrease over equatorial West Africa and eastern Europe (Figure 1). There are substantial seasonal changes in methane 

emissions (Figure A3) that are broadly consistent with seasonal changes in temperature and rainfall (not shown). 

 

Figure 3 shows different annual surface temperature warming patterns in 2020 and 2021. During 2020 the high northern 140 

latitudes are dominated by summer warming over Siberia (2-3 K on an annual scale) that has been linked to greenhouse gas 

emissions (Ciavarella et al. 2021) and surface temperatures over Alaska were 2-3 K cooler than baseline values in 2019, where 

there were comparatively small changes in groundwater (< 5 cm). North America, western Europe and Scandinavia also 

experienced anomalously warm annual mean temperatures (typically within ±2 K of 2019 values). There were smaller changes 

in temperatures at low latitudes (typically ±1 K of 2019 values), but larger increases in groundwater (±10-20 cm) associated 145 

with higher changes in rainfall (Figure A4), particularly over East Africa and eastern Brazil. During 2021, high northern 

latitudes were cooler than 2019 (<2-3 K) except for the contiguous US and Canada (higher than 2019 values by 2-3 K). 

Midlatitudes and low latitudes generally did not experience the warm temperatures of 2020. Elevated groundwater was 

sustained in 2021 over East and Southern Africa, eastern tropical South America (principally Brazil but stretching up to 

Venezuela), central America, India, maritime Southeast Asia, and north and southeast Australia. Groundwater decreased over 150 

the contiguous US, part of tropical South America and parts of Eurasia. We find generally stronger annual and seasonal 

relationships between methane emission anomalies and hydrological anomalies (rainfall and groundwater) for 2020 and 2021 

than for temperature anomalies. Particularly, we find statistically significant large-scale positive correlations (typically 0.5-

0.6; p<0.001) for all seasons between methane and groundwater anomalies over Eastern Africa, tropical South America, and 

tropical Asia, but no significant correlation between methane and surface temperature anomalies. This is consistent with recent 155 

studies that have highlighted an increasing role for microbial sources in the tropical methane budget (Lunt et al. 2019; Feng et 

al. 2022; Wilson et al. 2020). Over North America, we find a significant negative correlation (from -0.3 to -0.5; p<0.001) with 

rainfall during MAM and JJA and a significant positive correlation with temperature during JJA (0.3; p < 0.001), which we do 
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not currently understand. Fire emissions did not increase much where we report the largest increases in methane emissions in 

2020 or 2021, except over central Canadian provinces. (Figure A4).  160 

 

To explore the robustness of our results, we explore two sensitivity runs. First, we ran our inversion for 2020 with OH 

concentrations decreased by 5% over regions with large anthropogenic emissions (as described in section 2.3), a conservative 

estimate for the value we expect based on widespread reductions in nitrogen oxide emissions due to shutting manufacturing 

and other industries during Covid-19 lockdowns (Laughner et al. 2021). A reduction in OH, assuming constant emissions, 165 

would lead to an increase in atmospheric methane. Ignoring that possibility would result in a positive bias for reported methane 

emissions estimates. We find that our imposed 5% decrease in OH concentrations results in an emission reduction of 6.0 Tg/yr, 

representing 22% of the emission increase, relative to 2019, in the control run. Figure 4 show that the largest impacts of 

reducing OH on a posteriori methane emissions are of the order of ±10% over regions where there are the largest decreases in 

nitrogen oxide emissions (Cooper et al. 2022), including China, India, Europe, North America. The regions where values are 170 

higher than the control are a consequence of mass balance. Our conservative 5% OH decrease cannot fully explain the increase 

in atmospheric methane, and consequently regions where OH were not decreased have had to compensate. The results for a 

smaller 1% decrease in OH have similar distributions but smaller changes (not shown). Second, we ran an experiment in which 

we used the methane columns determined by the proxy data, assuming model values for CO2 (R. J. Parker et al. 2020). Using 

these data, we find our results for 2020 and 2021 are within a few percent of the values we report using the proxy data directly 175 

(Figure A5). Both sensitivity experiments provide confidence in our emission estimates and that most of the atmospheric 

methane growth in 2020 was due to an increase in emissions. 

 

3 Concluding Remarks 

We reported regional emission estimates of methane during 2020 and 2021, two years with record-breaking atmospheric 180 

growth rates, inferred from satellite observations of methane from the Japanese Greenhouse gases Observing SATellite.  

 

We find in both years that emissions from Eastern Africa, tropical Asia, and tropical South America dominate the global 

atmospheric growth rate, increasing by 11-13 Tg/yr, 4-8 Tg/yr, and 3-9 Tg relative to the 2019 baseline year, respectively. 

During 2020, we also find substantial increased emissions, relative to the 2019 baseline values, from Australia (3 Tg) and 185 

temperate Eurasia (3 Tg).  Emission changes relative to 2019 are comparable in 2021, except for temperate South America 

that increases to 5 Tg and temperate North America that increases to 3 Tg. The elevated contributions we saw in 2020 over the 

western half of Africa (-5 Tg) and Europe (-3 Tg) are substantially reduced in 2021, compared to our 2019 baseline. We find 

statistically significant positive correlations between tropical methane emission and hydrological anomalies, consistent with 

recent studies that have highlighted a growing role for microbial sources over the tropics (Lunt et al. 2019; Feng et al. 2022; 190 
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Wilson et al. 2020). Our results are broadly consistent with a recent study of the 2020 period (Qu et al, 2022), including the 

magnitude of change associated with a change in OH, albeit concluded using an independent method.  

 

Substantial, widespread reductions in nitrogen oxides during 2020 associated with the shutdown of manufacturing and other 

industries will have perturbed atmospheric concentrations of the OH loss of methane. A reduction in OH could also help 195 

explain, in principle, the record-breaking atmospheric increase in methane. Here we explore that issue by scaling back our 

prescribed OH fields by 5% over fossil fuel combustion regions to assess the impact of our reported increases in methane 

emissions. We find a 5% decrease in OH results in an a posteriori emission reduction of 6.0 Tg compared to our control run 

that does not consider a decrease in OH, equivalent to 22% of the emission increase in our control run for 2020. These changes 

are mainly focused over fossil fuel emitting regions, as expected. This result suggests that an increase in emissions was 200 

predominately responsible for the observed growth in atmospheric methane during 2020. 

 

This study highlights the tremendous value of using satellite observations to understand rapid changes in atmospheric methane. 

They provide crucial information not only to identify regional column hotspots associated with emissions but also provide 

correlative information to help attribute those hotspots to specific anthropogenic or natural emissions.   205 

 

Data availability. The University of Leicester GOSAT Proxy v9.0 XCH4 data are available from the Centre for Environmental 

Data Analysis data repository at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb. Precipitation, temperature, and 

the GRACE datasets are available at http://grace.jpl.nasa.gov. The community-led GEOS-Chem model of atmospheric 

chemistry and model is maintained centrally by Harvard University (http://geos-chem.seas.harvard.edu), and is available on 210 

request. The ensemble Kalman filter code is publicly available as PyOSSE (https://www.nceo.ac.uk/data-tools/atmospheric-

tools/). 
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Figures 

 

Figure 1 Large-scale geographical regions a) for which we report methane changes (TgCH4/yr) in 2020 and 2021 b) relative to our 2019 345 
baseline year.  Geographical regions, informed by TransCom-3 experiments (Gurney et al. 2004), include boreal North America (BNA), 
temperate North America (TNA), central America (Cam), tropical South America (TrSA),  temperature South America (TSA), Europe (Eur), 
western Africa (WAf), eastern Africa (EAf), boreal Eurasia (BEr), temperate Eurasia (TEr), India (IND), China (CHN), tropical Asia (TrAs), 
and Australia (Aus). 

a

b
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 350 
Figure 2 Global a posteriori emissions of methane (g/m2/yr) inferred from GOSAT methane:CO2 column ratio data for 2020 (panel a) and 

2021 (panel b) and how they differ from the baseline year of 2019, described in terms of absolute (panels c and d, respectively) and percentage 

values (panels e and f).  
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Figure 3 Global annual mean surface temperature and GRACE liquid water equivalent (LWE) anomalies in 2020 (panel a and c) and 2021 
(panels b and d) relative to values in 2019. 

  

GRACE GRACE

Figure 3

a b

c d

https://doi.org/10.5194/acp-2022-425
Preprint. Discussion started: 17 June 2022
c© Author(s) 2022. CC BY 4.0 License.



15 
 

 360 

Figure 4 Percentage difference in global a posteriori methane emissions inferred from GOSAT for 2020 between a sensitivity run in which 
the OH field was decreased by 5% and the control run (Figure 2).  
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Tables 

 Global annual methane emissions (Tg/yr) 

 2019 2020 2021 

GOSAT 583.7±11.2 610.7±11.3 609.5±12.0 

GOSAT with OH decreased by 5%  604.7±11.3  

In situ  588.9±18.1 601.4±18.6 -- 

 

NOAA atmospheric growth rate 
(ppb/yr)  

9.89±0.64  15.29±0.38  16.94±0.38  

Table 1 Global annual emission estimates of methane (Tg/yr) inferred from GOSAT (2019-2021) and in situ (2019-2020) atmospheric 365 
measurements of methane. The annual atmospheric methane growth rate (ppb/yr) for 2019 to 2022 reported by NOAA is also shown.  
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Appendix A: supplementary figures 

 

Figure A1  Basis functions that describe the 487 regions where we estimate methane emissions, including 476 land regions and 11 oceanic 370 
regions. 
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Figure A2  Global a posteriori emissions of methane (g/m2/yr) inferred from GOSAT methane:CO2 column ratio data for the baseline year 
of 2019 (Feng et al. 2022).  375 
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Figure A3 Global seasonal a posteriori emissions of methane (g/m2/yr) inferred from GOSAT methane:CO2 column ratio data for 2020 
(l.h.s. panels) and 2021 (r.h.s. panels) relative to the baseline year of 2019, described in terms of absolute values. Seasons are based on 
rainfall changes over the tropics. 380 
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Figure A4 Global annual mean NOAA CMAP precipitation (mm/month/yr) and GFED fire emission (kgC/m2/yr) anomalies in 2020 (panel 
a and c) and 2021 (panels b and d) relative to values in 2019.  
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Figure A5 Global a posteriori emissions of methane (g/m2/yr) inferred from GOSAT methane column data for 2020 (panel a) and 2021 
(panel b). 
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Appendix B: Description of box model calculation 390 

To calculate global emissions of methane from the NOAA global mean data we use a simple one-box model. In this model, the change in 
global mean methane concentration over time is given by: 

𝒅𝑩
𝒅𝒕 = 𝑸− 𝒌𝑩 

where B is the atmospheric mass of methane in Tg, k is the loss rate given as 1/lifetime and Q is the emissions rate. From this, after 
integration, the annual emissions rate can be calculated as: 395 

 

𝑸𝒕 =	
𝒌(𝑩𝒕 −	𝑩𝒕"𝟏 ∙ 𝒆"𝒌)

𝒌(𝟏 − 𝒆"𝒌)  

The loss rate was tuned to match a steady state concentration of 1775 ppb during 2000-2006 based on constant emissions of 530 Tg yr-1 
during this period. We calculated the rolling 12-month annual emissions to track the progression of global emissions between 2019 and 
2021. We used the difference between the atmospheric concentration in January 2019 and January 2020, February 2019 to February 2020, 400 
etc. to calculate the change in emissions in the intervening 12 months. Figure B1 shows the increase in emissions throughout 2020 followed 
by more variable month-to-month changes in 2021. The large increase in emissions primarily occurs in 2020, with emissions at the 12-month 
period ending in Dec 2020 being 27 Tg yr-1 larger than the emissions one year earlier. In contrast if emissions are calculated using annual 
mean concentrations, it appears as if there is a larger emission increase in 2021. The box model results show that the highly simplified 
calculation based on global average data is consistent with the more complex inverse modelling approach applied to the GOSAT data. 405 

 

  

https://doi.org/10.5194/acp-2022-425
Preprint. Discussion started: 17 June 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

 

Figure B1 Global box model methane emission estimates between 2011 and 2021, respectively. Emission estimates are based on NOAA 
global mean surface data. The blue line denotes the rolling 12-month annual emissions, and the orange line denotes the emissions based on 410 
annual mean concentrations. 
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