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Abstract. The global atmospheric methane growth rates reported by NOAA for 2020 and 2021 are the largest since systematic 

measurements began in 1983. To explore the underlying reasons for these anomalous growth rates we use newly available 

methane data from the Japanese Greenhouse gases Observing SATellite (GOSAT) to estimate methane surface emissions. 

Relative to baseline values in 2019,  we find a significant global increase in methane emission of 27.0±11.3 Tg and 20.8±11.4 

Tg is needed to reproduce observed atmospheric methane in 2020 and 2021, respectively, assuming fixed climatological values 15 

for OH. We see the largest annual increases in methane emissions during 2020 over Eastern Africa (14±3 Tg), tropical Asia 

(3±4 Tg), tropical South America (5±4 Tg), and temperate Eurasia (3±3 Tg), and the largest reductions over China (-6±3 Tg) 

and India (-2±3 Tg). We find comparable emission changes in 2021, relative to 2019, except for tropical and temperate South 

America where emissions increased by 9±4 Tg and 4±3 Tg, respectively, and for temperate North America where emissions 

increased by 5±2 Tg.  The elevated contributions we saw in 2020 over the western half of Africa (-5±3 Tg) are substantially 20 

reduced in 2021, compared to our 2019 baseline. We find statistically significant positive correlations between anomalies of 

tropical methane emissions and groundwater, consistent with recent studies that have highlighted a growing role for microbial 

sources over the tropics. Emission reductions over India and China are expected in 2020 due to the Covid-19 shutdown but 

continued in 2021, which we do not currently understand. To investigate the role of reduced OH concentrations during Covid-

19 lockdowns in 2020 on the elevated atmospheric methane growth in 2020/2021, we extended our inversion state vector to 25 

include monthly scaling factors for OH concentrations over six latitude bands. During 2020, we find that tropospheric OH 

reduced by 1.4±1.7% relative to the corresponding 2019 baseline value. The corresponding revised global growth of a 

posteriori methane emissions in 2020 decreased by 34% to 17.9±13.2 Tg, relative to the a posteriori value that we inferred 

using fixed climatological OH values, consistent with sensitivity tests using the OH climatology inversion using reduced values 

for OH. The counter statement is that 66% of the global increase in atmospheric methane during 2020 was due to increased 30 

emissions, particularly from tropical regions. Regional flux differences between the joint methane-OH inversion and the OH 

climatology inversion in 2020 are typically much smaller than 10%. We find during 2021 that OH reduced by a much smaller 
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amount than in 2020, representing about 10% of the growth of atmospheric methane in that year. We conclude therefore that 

most of the observed increase in atmospheric methane during 2020 and 2021 is due to increased emissions, with a significant 

contribution from reduced levels of OH.  35 

1 Introduction 

The atmospheric growth rate of methane in the 21st century has defied a definitive explanation: following a period of near-zero 

growth during 2000-2007 (Rigby et al. 2008) growth rates have accelerated, with values reported by NOAA for 2020 

(15.19±0.41 ppb) and 2021 (18.12±0.47 ppb) exceeding all prior values since their records began in 1983. The underlying 

reasons for these anomalous growth rates in 2020 and 2021 are currently subject to intense debate with some studies attributing 40 

most of the growth in 2020 to a reduction in the hydroxyl radical (OH) sink of methane due to global-scale reductions in 

nitrogen oxides due to pandemic-related industry shutdowns (Laughner et al. 2021). On the face of it, this appears to be a 

reasonable explanation, but recent studies have used satellite observations of atmospheric methane to reveal regional hotspots 

over the tropics that are responding to changes in climate and have global significance (Pandey et al. 2021; Lunt et al. 2019; 

2021; Pandey et al. 2017; Feng, Palmer, Zhu, et al. 2022; Palmer et al. 2021; Wilson et al. 2020). Here, we use satellite 45 

observation of methane from the Japanese Greenhouse gases Observing SATellite (GOSAT) to document global and regional 

changes in emissions, extending a recent study (Feng, Palmer, Zhu, et al. 2022). In the next section we describe the data and 

methods used to infer methane emissions. In section 3 we describe our results and conclude the study in section 4. 

2 Data and Methods 

We follow closely the methodology from a recent study (Feng, Palmer, Zhu, et al. 2022) in which we simultaneously infer 50 

methane and CO2 fluxes in 2020 and 2021 by directly assimilating proxy GOSAT XCH4:XCO2 retrievals (X denotes 

atmospheric column-averaged dry-air mole fraction). These data are anchored by surface methane and CO2 measurements 

from an in situ observation network. The main advantage of this approach is that it does not rely on assumed model CO2 

concentrations to extract XCH4 from the proxy ratio. For the sake of brevity, we include only details relevant to the calculations 

shown here.     55 

2.1 GOSAT methane proxy data  

We use version 9.0 of the proxy GOSAT XCH4:XCO2 retrievals  from the University of Leicester (R. J. Parker et al. 2020; R. 

Parker and Boesch 2020), including both nadir observations over land and glint observations over the ocean. Analyses have 

shown that these retrievals have a bias of 0.2%, with a single-sounding precision of ~0.72%. We globally remove a slightly 

larger 0.3% bias from the GOSAT proxy data to improve the comparison with independent in situ observations (Feng et al. 60 

2017; Feng, Palmer, Parker, et al. 2022). We assume that each single GOSAT proxy XCH4:XCO2 ratio retrieval has an 
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uncertainty of 1.2% to account for possible model errors, including the errors in atmospheric chemistry and transport, which 

helps to prevent model overfitting to observations. 

2.2 In situ data  

To anchor the GOSAT proxy ratio observations (Fraser et al. 2014b), we also ingest simultaneously the CO2 and methane mole 65 

fraction data at surface-based sites, chosen from the NOAA compilation of the multi-laboratory in-situ measurements (Di Sarra 

et al. 2021; 2022; Cox et al. 2021; Cox, Di Sarra, Karion, et al. 2022).  We include the same subset of the surface sites used 

by a recent study that documented year to year variations of methane emissions during 2010-2019 (Feng, Palmer, Zhu, et al. 

2022). We assume uncertainties of 0.5 ppm and 8 ppb for these in situ observations of CO2 and methane respectively (Feng, 

Palmer, Zhu, et al. 2022). We take advantage of the latest CO2 (GLOBALVIEWplus v8.0 ObsPack) (Cox et al. 2021; Cox, Di 70 

Sarra, Vermeulen, et al. 2022) and methane (GLOBALVIEWplus v5.0 ObsPack) (Di Sarra et al. 2022; 2021) data products to 

study 2020 and 2021. 

2.3 GEOS-Chem atmospheric chemistry transport model  

We use the GEOS-Chem model of atmospheric chemistry and transport at a horizontal resolution of 2° (latitude) × 2.5° 

(longitude), driven by the MERRA2 meteorological reanalyses from the Global Modeling and Assimilation Office Global 75 

Circulation Model based at NASA Goddard Space Flight Center.  

 

Our CO2 and methane model calculations are described in a recent study (Feng, Palmer, Zhu, et al. 2022). The a priori CO2 flux 

inventory includes monthly biomass burning emission (van der Werf et al. 2017); monthly fossil fuel emissions for 2019 in 

the absence of more recent data (Oda and Maksyutov 2021); monthly climatological ocean fluxes (Takahashi et al. 2009); and 80 

3-hourly terrestrial biosphere fluxes (Randerson et al. 1996).  

 

The a priori methane fluxes from nature include monthly wetland emissions, including rice paddies (Bloom et al. 2017); 

monthly fire methane emissions (van der Werf et al. 2017); and termite emissions (Fung et al. 1991). We include emissions 

from geological macroseeps (Kvenvolden and Rogers 2005; Etiope 2015). For a priori anthropogenic emissions we use the 85 

EDGAR v4.32 global emission inventory for 2012 (Janssens-Maenhout et al. 2019) that includes various sources related to 

human activities (e.g., oil and gas industry, coal mining, livestock, and waste).  

 

We use monthly 3-D fields of OH, consistent with observed values for the lifetime of methyl chloroform, from the GEOS-

Chem full chemistry simulation (Mao et al. 2013; Turner et al. 2015) to describe the main oxidation sink of methane. Using 90 

pre-computed fields of OH greatly simplifies our calculations. We examine the sensitivity of our results to different OH 

distributions, as described below. Additionally, in the next section, we describe a joint methane-OH inversion experiment from 
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which we also report results. We also include the net microbial consumption of methane in soil (Fung et al. 1991) and reaction 

with chlorine atoms (Thanwerdas et al. 2019). 

 95 

To explore the sensitivity of our methane emission estimates for 2020 due to inferred reductions in OH due to large-scale 

industrial shutdown due to Covid-19 (Cooper et al. 2022) we also report a posteriori methane emission estimates that assume 

two different OH distributions, guided by observed changes in combustion and in tropospheric ozone. These sensitivity tests 

should not be considered as rigorous as our joint methane-OH inversion, described below, they represent a useful sanity check 

for our understanding.  100 

 

First, we scale down our baseline monthly 3-D OH fields by 5% where combustion emissions of CO2 (Oda and Maksyutov 

2021) were larger than the mean emissions over Africa, resulting in reductions mainly between 15oN and 65oN. Our choice of 

5% represents a reduction based on a recent study (Laughner et al. 2021). A recent study that accounted for reductions in 

nitrogen oxide emissions estimated a global OH reduction of ~4% due to Covid-19 lockdowns in 2020 (Miyazaki et al. 2021), 105 

which showed strong spatial and temporal variations, with localized reductions peaking at 20-30%. In the absence of direct 

measurements of OH and without considering co-reductions in non-methane hydrocarbons, these (and similar) results have 

large uncertainties.  

 

Second, we assume a temporal-spatial distribution to describe the OH reduction in 2020, following a recent study on 110 

tropospheric ozone changes in 2020 and 2021 (Ziemke at al., 2022).  First, we divide the world into regions: northern 

hemisphere (20°N-90°N) and the rest of the world. We assume the reduction in OH in the northern hemisphere starts from the 

boreal Spring of 2020 and peaks during the summer with a magnitude of 9% (blue line, Figure A1), higher than the ozone 

reduction found by Ziemke et al. (2022).  For latitudes south of 20°N the time evolution of the reduction in ozone is less clear 

(Ziemke et al., 2022). We assume for simplicity that the OH reduction at these latitudes (red line, Figure A1) has a smaller 115 

peak value (-2.3%) and with a time lag of one month compared to the northern hemisphere region.  

2.4 Ensemble Kalman filter inverse method  

We use an ensemble Kalman Filter (EnKF) framework to estimate simultaneously CO2 and methane fluxes from satellite 

measurements of the atmospheric CO2 and methane (Feng, Palmer, Zhu, et al. 2022). Our state vector includes monthly scaling 

factors for 487 regional pulse-like basis functions (Figure A2) that describe CO2 and methane fluxes, including 476 land 120 

regions and 11 oceanic regions. We define these land sub-regions by dividing the 11 TransCom–3 land regions into 42 nearly 

equal sub-regions, with the exception for temperate Eurasia that has been divided into 56 sub-regions due to its large landmass. 

We use the 11 oceanic regions defined by the TransCom–3 experiment. We use a 4-month moving lag window to reduce the 

computational costs for projecting the flux perturbation ensemble into observation space long after (>4 months) their 

emissions, beyond which time it is difficult to distinguish between the emitted signal from variations in the ambient background 125 
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atmosphere (Fraser et al. 2014a; Feng et al. 2017). Our a priori fluxes are described above. For simplicity we assume a fixed 

uncertainty of 40% for coefficients corresponding to the a priori CO2 fluxes over each sub-region, and a larger uncertainty 

(60%) for the corresponding methane emissions.  We also assume that a priori errors for the same gas are correlated with a 

spatial correlation length of 300 km and with a temporal correlation of one month.   

 130 

As a sensitivity test, we also report methane fluxes inferred using the same EnKF approach but using the proxy GOSAT XCH4 

data and in situ methane data. These GOSAT XCH4 retrievals are calculated from the XCH4:XCO2 ratio by applying an 

ensemble mean of model XCO2, and then bias-corrected according to comparison with TCCON XCH4 retrievals (R. J. Parker 

et al. 2020).  

 135 

Currently there is no direct observation of the global distribution of atmospheric OH. Indirect constraints on atmospheric OH 

from the changing lifetimes of trace gases such as CO and methane are insufficient to determine 3-D distributions of OH. Here, 

we extend the inversion state vector to infer simultaneously methane emissions (as described above) and six OH scaling factors 

for a priori monthly 3-D OH fields from the atmospheric methane observations (section 2). These scaling factors correspond 

to six latitude bands: 75°S—50°S, 50°S—25°S, 25°S—0°, 0°—25°N, 25°N—50°N, 50°N—75°N. We do not consider scaling 140 

polar OH values. This calculation complements the OH sensitivity experiments described in the previous section.  The Jacobian 

matrix, which describes the sensitivity of model methane concentrations to regional OH fields, is calculated with GEOS-Chem 

forced by a priori methane fluxes from the control run (Table 1) but with the OH climatology reduced by 5% for each of the 

six regions. To reduce the computational cost of this calculation, we use the same four-month lag window for the OH scaling 

factor estimates as for the methane emission estimates. So that each monthly OH scaling factor will be constrained only by 145 

observations in the subsequent four months, but its impact will remain for the entire experimental period. We used the OH 

climatology as our a priori and assume a uniform 3% uncertainty for each of the six regions so that the 2-sigma range covers 

possible OH changes that span ±6%. We use such a simple linearization scheme to adjust surface methane emissions and the 

monthly tropospheric OH by optimally fitting model calculations to atmospheric methane observations. We conduct the joint 

inversion for 2018 to 2021, including the six monthly OH scaling factors and methane emissions, and use the same atmospheric 150 

methane data used by the control calculation.  

2.5 Correlative data  

To help interpret the changes in methane emission estimates we use additional datasets that are relevant to microbial or 

pyrogenic production of methane. We use monthly surface temperature fields at a spatial resolution of 2ox2.5o from the 

Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA2) developed by the Global Modeling 155 

and Assimilation Office, NASA Goddard Space Flight Center (Bosilovich et al., 2015). Precipitation data are taken from the 

NOAA CMAP (CPC Merged Analysis of Precipitation) long-term global rainfall dataset (Xie and Arkin 1997) that provides 

near-global monthly coverage at a spatial resolution of 2.5o × 2.5o, from 1979 to near-present. In addition, we use monthly total 
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water storage (liquid water equivalent depth, LWE) on a 1o × 1o global grid from the NASA/DLR Gravity Recovery and 

Climate Experiment Follow-on (GRACE-FO) (Landerer et al. 2020). Finally, we explore monthly biomass burning emissions 160 

from the Global Fire Emissions Database (GFED v4) (van der Werf et al. 2017). 

3 Results 

Table 1 summarizes our global emission estimates inferred from GOSAT for 2020 and 2021; and for 2019, which we use as 

our baseline year throughout this study (Figure A3). The largest change in our global a posteriori emissions, corresponding to 

the OH climatology, occurs during 2019—2020 (27.0 Tg) from 583.7 to 610.7 Tg/yr. Our a posteriori emission estimates for 165 

2019 and 2020 are within 2% of values reported by an independent study (Qu et al. 2022), consistent with our reported 

uncertainties. These elevated emissions are sustained, but not further increased, during 2021 (604.5 Tg/yr).  

 

The 27.0 Tg emission increase in 2020 and the lack of further emissions growth in 2021 may appear inconsistent with the 

NOAA global annual mean growth rates of 15.19±0.41 ppb 18.12±0.47 ppb in 2020 and 2021, respectively (Table 1). Based 170 

on these reported atmospheric growth rates, and after considering the effects of methane sinks, we find that a one-box model 

calculation predicts an increase in emissions of 12.6 Tg between 2019 and 2020 and a further 15.1 Tg increase in 2021 (see 

Appendix B). These calculations use annual mean values that effectively represent the emissions increase between the middle 

of each successive year rather than the beginning and end. After considering the increases in monthly mean NOAA data, we 

find that the simple box model predicts a similar increase in emissions between December 2019 (583.7 Tg/yr ) and December 175 

2020 (610.1 Tg /yr ) of 26.4 Tg /yr , with emissions thereafter stabilizing, with mean emissions of 610.1 Tg/yr in 2021. The 

resulting a posteriori model atmospheric methane concentrations agree well with the assimilated in situ data, as expected, but 

also reproduce the spatial and temporal variations of methane reported by the independent TCCON measurement network. As 

such, we conclude that the global mean emission results inferred from GOSAT are consistent with those inferred from NOAA 

surface data over multi-year periods, assuming a fixed methane atmospheric lifetime. 180 

 

Figure 1b shows the broad geographical breakdown for our reported global changes in methane emissions. Relative to 2019, 

we find widespread increased emissions during 2020 except for China and India. Relative to baseline values in 2019 we see 

the largest annual increases in methane emissions during 2020 over Eastern Africa (14±3 Tg), tropical South America (5±3 

Tg), tropical Asia (3±3 Tg), and temperate Eurasia (3±3 Tg), and the largest reductions over China (-6±3 Tg) and India (-2±3 185 

Tg). We find comparable emission changes in 2021, relative to 2019, except for tropical and temperate South America where 

emissions increased by 9±4 Tg and 4±3 Tg, respectively, and for temperate North America where emissions increased by 5±2 

Tg. Our results are broadly consistent with a recent study that showed that methane emissions inferred from TROPOMI were 

significantly higher in the first half of 2020 than during 2019 (McNorton et al. 2022). This study focused mainly on major 

countries, while we find the largest changes are over tropical latitudes where emissions in the second half of 2020 make 190 

significant contributions (Figure A4).  
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Figure 2 shows the distribution of methane emissions from 2020 and 2021 and the relative changes from our 2019 baseline 

year (Figure A3a). During 2020, there are significant decreases (20-30%) over the manufacturing regions such as eastern 

China, India, central America, and eastern Europe. There are also significant increases across Eastern Africa (30-40%), eastern 195 

North America (30%), and maritime Southeast Asia (30%). During 2021, we see similar changes in emissions, but they are 

typically exaggerated. There is more of a pronounced increase over Eastern Africa (>50%), southern Brazil (50%), and eastern 

North America (up to 40%), and large decreases over eastern China (-50%) and western Russia (-50%). During 2021 there is 

also a large decrease over equatorial West Africa and eastern Europe (Figure 1b). There are substantial seasonal changes in 

methane emissions (Figure A4) that are broadly consistent with seasonal changes in temperature and rainfall (not shown). 200 

Using methane columns determined by the proxy data, assuming model values for CO2 (R. J. Parker et al. 2020), we find 

results for 2020 and 2021 that are generally within ten percent of the values we report using the proxy data directly (Figure A5 

and Figure A6).  

 

Figure 3 shows different annual surface temperature warming patterns in 2020 and 2021. During 2020 the high northern 205 

latitudes are dominated by summer warming over Siberia (2-3 K on an annual scale) that has been linked to greenhouse gas 

emissions (Ciavarella et al. 2021) and surface temperatures over Alaska were 2-3 K cooler than baseline values in 2019, where 

there were comparatively small changes in groundwater (< 5 cm). North America, western Europe and Scandinavia also 

experienced anomalously warm annual mean temperatures (typically within ±2 K of 2019 values). There were smaller changes 

in temperatures at low latitudes (typically ±1 K of 2019 values), but larger increases in groundwater (±10-20 cm) associated 210 

with higher changes in rainfall (Figure A7), particularly over Eastern Africa and eastern Brazil. During 2021, high northern 

latitudes were cooler than 2019 (<2-3 K) except for the contiguous US and Canada (higher than 2019 values by 2-3 K). 

Midlatitudes and low latitudes generally did not experience the warm temperatures of 2020. Elevated groundwater was 

sustained in 2021 over East and Southern Africa, eastern tropical South America (principally Brazil but stretching up to 

Venezuela), central America, India, maritime Southeast Asia, and north and southeast Australia. Groundwater decreased over 215 

the contiguous US, part of tropical South America and parts of Eurasia. We find generally stronger annual and seasonal 

relationships between methane emission anomalies and hydrological anomalies (rainfall and groundwater) for 2020 and 2021 

(Figure 3) than for temperature anomalies. Particularly, we find statistically significant large-scale positive correlations 

(typically 0.6-0.9; p<0.001) for all seasons between methane and groundwater anomalies over Eastern Africa, tropical South 

America, and tropical Asia (Figure 4), but no significant correlation between methane and surface temperature anomalies (not 220 

shown). This is consistent with recent studies that have highlighted an increasing role for microbial sources in the tropical 

methane budget (Lunt et al. 2019; Feng, Palmer, Zhu, et al. 2022; Wilson et al. 2020). Over North America, we find a 

significant negative correlation (from -0.3 to -0.6; p<0.001) with rainfall during MAM and JJA and a significant positive 

correlation with temperature during JJA (0.4; p < 0.001), which we do not currently understand. Fire emissions did not increase 
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much where we report the largest increases in methane emissions in 2020 or 2021, except over central Canadian provinces. 225 

(Figure A7).  

 

By including OH scaling factors into our state vector, we infer simultaneously OH distributions and methane emissions (section 

2.4). Table 1 reports the resulting annual changes in tropospheric OH. The annual mean a posteriori OH changes relative to 

climatological a priori values are 0.91±1.7%, -0.52±1.7% and 0.62±1.7% for 2019, 2020, and 2021, respectively (Table 1). 230 

These values correspond to a posteriori OH reductions of 1.43% and 0.29% in 2020 and 2021 relative to the 2019 baseline 

year (Figure A3b). Table 1 shows that these reductions in OH correspond to smaller a posteriori methane emissions needed to 

fit the observations, as expected. For 2019 we estimate a 0.3% higher value for the a posteriori methane emission compared 

the OH climatology inversion. In 2020, we require an emission increase of 17.9 Tg relative to 2019, an approximate drop of a 

third in the emission growth needed to reconcile atmospheric observations relative to the OH climatology inversion (Table 1). 235 

However, in 2021 we require only a small emission increase of 0.5 Tg (8%) from 2020 due to a concomitant increase in OH 

compared to a decrease of 6.2 Tg in 2021 for the inversion using OH climatology (Table 1).  

 

Figure 5 shows that annual a posteriori error correlations between the six OH scaling factors and the regional methane emission 

estimates are only weakly correlated (ranging ±0.1, and typically less than ±0.05), suggesting that the GOSAT methane data 240 

support the estimation of OH scaling factors on our large geographical scales. Our joint methane-OH inversion results for 2020 

are consistent with our simpler OH perturbation studies, described in section 2.3, that are reported in Table 2. For these 

sensitivity experiments, we find that we need reduced increases in methane emissions in 2020, ranging between -22.6% and -

27.4%. They provide confidence in our a posteriori emission estimates and in our statement that most of the atmospheric 

methane growth in 2020 was due to an increase in emissions, with the OH reduction associated with the Covid-19 lockdowns 245 

representing approximately 30% of the global atmospheric methane growth. 

 

Figure 1c and Figure 6 show the geographical distribution of methane emissions for 2020 and 2021 corresponding to the joint 

methane-OH inversion and how they differ from a posteriori methane emissions inferred from OH fixed climatology. Figure 

7 shows the corresponding a posteriori methane loss due to OH oxidation from the joint methane-OH inversion relative to the 250 

baseline inversion that uses OH climatology. Strictly speaking, we cannot easily compare results from the two inversions 

because the differences are relative to their own pre-2020 baselines (Figure A3).  The 2019 baseline for the joint methane-OH 

inversion is lower over eastern China, eastern India, and some of boreal Eurasia, and higher over parts of tropical and temperate 

South America and maritime Southeast Asia (Figure A3). Differences between the inversions are typically much smaller than 

10% of the fluxes. Nevertheless, our main conclusions remain robust for both inversions.  255 

 

Eastern Africa remains the biggest contributor to atmospheric methane growth in 2020 and 2021 but with the estimated 

emission increase reduced by ~15%, as expected, given the decrease in OH (Figure 1c). A notable difference includes a large 
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drop in emissions over tropical South America in 2020 but this partially recovers in 2021 (Figure 1c). The difference between 

the two inversions for tropical South America in 2020 can be attributed to a decrease in the methane loss due to OH oxidation 260 

in the north of that region (Figure 7) but also the higher 2019 baseline for the joint methane-OH inversion (Figure A3b) that 

effectively reduces the emission increase needed to reconcile with observations (Figure 6). This argument is also relevant to 

smaller a posteriori methane emissions for the joint methane-OH inversion over Southeast Asia and Southeast Australia 

(Figures 1c, 6, A3). A lower 2019 baseline over China and India for the joint methane-OH inversion (Figure A3) results in 

small reductions in a posteriori methane emissions needed to reconcile with observations (Figures 1c, 6). A similar argument 265 

associated with a lower 2019 baseline value for the joint methane-OH inversion helps to explain the increase in a posteriori 

methane emissions over temperate North America and Europe in both years (Figures 1c, 6). 

 

Our a posteriori emission estimates from our baseline inversion that uses climatological OH values and from joint methane-

OH inversion are consistent with independent observations from the TCCON network (Figures C1 and C2).  A posteriori 270 

methane emission estimates for the joint methane-OH inversion generally has slightly smaller differences at southern and 

northern midlatitude latitude sites (within 1 ppb) but does slightly worse (within 3 ppb) for the Bremen (Br), Karlsruhe (Ka), 

and Paris sites. Both inversions have comparable standard deviation about the mean differences that are typically within 10 

ppb. 

4 Concluding Remarks 275 

We reported regional emission estimates of methane during 2020 and 2021, two years with record-breaking atmospheric 

growth rates, inferred from satellite observations of methane from the Japanese Greenhouse gases Observing SATellite. For 

our control inversion we used fixed climatological OH values. Substantial, widespread reductions in nitrogen oxides during 

2020 associated with the shutdown of manufacturing and other industries will have perturbed atmospheric concentrations of 

the OH loss of methane. A reduction in OH could also help explain, in principle, the record-breaking atmospheric increase in 280 

methane. To address this point, we also report a posteriori zonal mean OH scaling factors that form part of a joint methane-

OH inversion. Generally, we find our results from the joint-OH inversion are broadly consistent with our idealized sensitivity 

calculations that describe changes in OH informed by distributions in anthropogenic emission and the response of tropospheric 

ozone, resulting in a reduced emission growth of 17.9 Tg/yr in 2020 that represents 66% of our baseline inversion. 

 285 

We find that emissions from Eastern Africa, tropical South America, and temperate North America play a significant role in 

determining the global atmospheric growth rate of methane in one or both years. The contribution from Eastern Africa 

dominates the global growth and is consistent with previous studies that have reported emissions from recent years (Feng, 

Palmer, Zhu, et al. 2022; Pandey et al. 2021; Lunt et al. 2021a; 2019), ranging from 13 to 14 Tg in 2020 and 2021, relative to 

the 2019 baseline year. The magnitude of this increase in regional emission is reduced by approximately ~15% due to a 4% 290 

reduction in OH, as expected. The influence of tropical South America and temperate North America is sensitive to the OH 
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distribution, particularly during 2020. The joint methane-OH inversion results in a substantial decrease in emissions over 

tropical South America but this largely recovers by 2021. We find that the joint-OH inversion leads to an increase in northern 

midlatitude methane emissions from temperate North America, temperate Eurasia, and Europe due to a 0.3% increase in OH. 

We also find that adjusting OH results in smaller emissions reductions from China in 2020 and 2021 and a smaller increase in 295 

emissions from Southeast Asia. We find statistically significant positive correlations between tropical methane emission and 

hydrological anomalies, consistent with recent studies that have highlighted a growing role for microbial sources over the 

tropics (Lunt et al. 2019; Feng, Palmer, Zhu, et al. 2022; Wilson et al. 2020).  

 

Our results are broadly consistent with a recent study of the 2020 period (Qu et al. 2022), including the magnitude of change 300 

associated with a change in OH, albeit concluded using an independent method. Recent work that used in situ methane data 

reported a smaller increase in methane emissions during 2020 (Peng et al. 2022), consistent with poor data coverage over the 

tropics as we explain in Appendix B. Their estimate for the Covid-19-related OH reduction during 2020 (1.6%) is consistent 

with our estimate but because they used only surface data in their inversion, they underestimated the atmospheric methane 

growth from 2019 to 2020 (Table 1) and consequently overestimated the influence of reduced OH on the atmospheric growth 305 

rate of methane during 2020.  

 

Our study highlights the tremendous value of using satellite observations to understand rapid changes in atmospheric methane. 

They provide crucial information not only to identify regional column hotspots associated with emissions but also provide 

correlative information to help attribute those hotspots to specific anthropogenic or natural emissions.  Our study also illustrates 310 

the importance of simultaneously estimating methane emissions and changes in OH to improve quantitative knowledge of 

changes in methane emissions, which is necessary to attribute global atmospheric growth to individual source regions.  

 

Data availability. The University of Leicester GOSAT Proxy v9.0 XCH4 data are available from the Centre for Environmental 

Data Analysis data repository at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb. Precipitation, temperature, and 315 

the GRACE datasets are available at http://grace.jpl.nasa.gov. The community-led GEOS-Chem model of atmospheric 

chemistry and model is maintained centrally by Harvard University (http://geos-chem.seas.harvard.edu), and is available on 

request. The ensemble Kalman filter code is publicly available as PyOSSE (https://www.nceo.ac.uk/data-tools/atmospheric-

tools/). The TCCON data were obtained from the TCCON Data Archive hosted by CaltechDATA at https://tccondata.org. CH4 

GLOBALVIEWplus v5.0 ObsPack is available from https://search.datacite.org/works/10.25925/20221001, and CO2 320 

GLOBALVIEWplus v8.0 ObsPack is available from https://search.datacite.org/works/10.25925/20220808.  
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Figures 

 

 

Figure 1 Large-scale geographical regions a) for which we report methane changes (TgCH4/yr) in 2020 and 2021 b) differences 

between a posteriori emissions from 2020 and 2021 relative to inversion-specific baselines for 2019.  Geographical regions, 520 

informed by TransCom-3 experiments (Gurney et al. 2004), include boreal North America (BNA), temperate North America 

(TNA), central America (Cam), tropical South America (TrSA),  temperature South America (TSA), Europe (Eur), western 

Africa (WAf), eastern Africa (EAf), boreal Eurasia (BEr), temperate Eurasia (TEr), India (IND), China (CHN), tropical Asia 

(TrAs), and Australia (Aus). Panel c) is the same as b) but for a posteriori methane emission from the joint methane-OH 

inversion.  525 
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Figure 2 Global a posteriori emissions of methane (g/m2/yr) inferred from GOSAT methane:CO2 column ratio data for 2020 

(panel a) and 2021 (panel b) and how they differ from the baseline year of 2019, described in terms of absolute (panels c and 

d, respectively) and percentage values (panels e and f, respectively).  

 530 
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Figure 3 Global annual mean surface temperature and GRACE liquid water equivalent (LWE) anomalies in 2020 (panel a and 

c) and 2021 (panels b and d) relative to values in 2019. 

  535 
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Figure 4 Scatter plot of monthly GRACE-FP LWE anomalies (cm) and methane flux anomalies, 2018-2021, over a) Tropical 

South America, b) Eastern Africa, and c) Tropical Asia. Red lines denote the linear regression. Numbers atop of each panel 

denote the Pearson correlation coefficient r and the p-value. 
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Figure 5: A posteriori error correlation between OH scaling factors for six latitude bands (75°S—50°S, 50°S—25°S, 25°S—

0°, 0°—25°N, 25°N—50°N, 50°N—75°N) and emissions for 13 regions (Figure 1). 545 
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Figure 6: Annual mean difference of a posteriori methane emissions between the control inversion that uses OH climatology 

and the joint OH-Flux inversion that estimates OH scaling factors for a 2020 and b 2021.  550 
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Figure 7: Annual mean difference of a posteriori methane loss due to OH oxidation (2020-2021) between the control inversion 

that uses OH climatology and the joint OH-Flux inversion that estimates OH scaling factors.  
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Tables 

 Global annual methane emissions (Tg/yr) 

 2019 2020 2021 

GOSAT methane inversion 583.7±11.2 610.7±11.3 604.5±11.4 

GOSAT methane-OH inversion 

Corresponding OH change (%) 

585.3±13.1 

+0.91±1.7% 

603.2±13.2 

-0.52±1.7% 

603.7±13.2 

+0.62±1.7% 

In situ  588.9±18.1 601.4±18.6 -- 

 

NOAA atmospheric growth rate 
(ppb/yr)  

9.67±0.60 15.19±0.41 18.12±0.47 

Table 1 Global annual emission estimates of methane (Tg/yr) inferred from GOSAT (2019-2021) and in situ (2019-2020) atmospheric 
measurements of methane. The annual atmospheric methane growth rate (ppb/yr) for 2019 to 2022 reported by NOAA is also shown.  560 

  



25 
 

 

 

Experiment OH Field 2019-2020 emission increase 
(Tg/yr)  

[% difference from control] 

Control Run Fixed OH climatology 27.0±7.1 [--] 

5% OH reduction Reduction of 5% OH over regions 
with high fossil CO2 emission 

20.9±7.1 [-22.6] 

Ozone-like OH reduction OH reduction following observed 
ozone change (Ziemke et al. 2022) 

19.6±7.1 [-27.4] 

Joint methane-OH inversion 18 OH scaling factors for a priori 
monthly 3-D OH fields inferred 
from atmospheric methane 
observations 

20.5±7.3 [-24.1] 

Table 2:  Numerical experiments that explore the influence of assumed OH distributions on a posteriori methane emission estimates.   
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Appendix A: Supplementary Figures 

 

 
Figure A1 Assumed temporal distribution for OH reduction (%) in the northern hemisphere (20°N-90°N, blue line) and the rest of the world 

(red line) for our sensitivity calculation. 570 
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Figure A2 Basis functions that describe the 487 regions where we estimate methane emissions, including 476 land regions and 11 oceanic 
regions. 
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Figure A3  Global a posteriori emissions of methane (g/m2/yr) inferred from GOSAT methane:CO2 column ratio data for the baseline year 575 
of 2019, corresponding to a OH climatology  (Feng, Palmer, Zhu, et al. 2022) and b the joint methane-OH inversion. Panel c shows the 
difference of a posteriori emissions of methane corresponding to joint methane-OH inversion minus OH climatology.  
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Figure A4 Global seasonal a posteriori emissions of methane (g/m2/yr) inferred from GOSAT methane:CO2 column ratio data for 2020 580 
(l.h.s. panels) and 2021 (r.h.s. panels) relative to the baseline year of 2019, described in terms of absolute values. Seasons are based on 
rainfall changes over the tropics. 

 

 

 585 
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Figure A5 Global a posteriori emissions of methane (g/m2/yr) inferred from GOSAT methane column data for 2020 (panel a) and 2021 
(panel b).  
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Figure A6 As Figure 1b but for an inversion that uses GOSAT proxy XCH4 and in situ methane data.  
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 595 

Figure A7 Global annual mean NOAA CMAP precipitation (mm/month/yr) and GFED fire emission (kgC/m2/yr) anomalies in 2020 (panel 
a and c) and 2021 (panels b and d) relative to values in 2019.  
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Appendix B: Description of box model calculation 

To calculate global emissions of methane from the NOAA global mean data we use a simple one-box model. In this model, the change in 600 
global mean methane concentration over time is given by: 

𝒅𝑩
𝒅𝒕 = 𝑸− 𝒌𝑩 

where B is the atmospheric mass of methane in Tg, k is the loss rate given as 1/lifetime and Q is the emissions rate. From this, after 

integration, the annual emissions rate can be calculated as: 

 605 

𝑸𝒕 =	
𝒌(𝑩𝒕 −	𝑩𝒕"𝟏 ∙ 𝒆"𝒌)

(𝟏 − 𝒆"𝒌)  

The loss rate was tuned to match a steady state concentration of 1775 ppb during 2000-2006 based on constant emissions of 530 Tg yr-1 

during this period. We calculated the rolling 12-month annual emissions to track the progression of global emissions between 2019 and 

2021. We used the difference between the atmospheric concentration in January 2019 and January 2020, February 2019 to February 2020, 

etc. to calculate the change in emissions in the intervening 12 months. Figure B1 shows the increase in emissions throughout 2020 followed 610 
by more variable month-to-month changes in 2021. The large increase in emissions primarily occurs in 2020, with emissions at the 12-month 

period ending in Dec 2020 being 27 Tg yr-1 larger than the emissions one year earlier. In contrast if emissions are calculated using annual 

mean concentrations, it appears as if there is a larger emission increase in 2021. The box model results show that the highly simplified 

calculation based on global average data is consistent with the more complex inverse modelling approach applied to the GOSAT data. 

 615 
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Figure B1 Global box model methane emission estimates between 2011 and 2021, respectively. Emission estimates are based on NOAA 
global mean surface data. The blue line denotes the rolling 12-month annual emissions, and the orange line denotes the emissions based on 
annual mean concentrations. 620 
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Appendix C: Evaluation of a posteriori flux estimates 

We indirectly evaluate our a posteriori methane fluxes by comparing the GEOS-Chem methane distribution, driven by the a posteriori 

fluxes, with independent XCH4 retrievals from Total Carbon Column Observing Network (TCCON) of Fourier transform spectrometers 

(Wunch et al., 2011). We use bias-corrected TCCON XCH4 data from the latest GGG2020 public release of the TCCON data set from 2019 625 
to 2021, including updates until October 2022.  For a comprehensive description of the network and the available data from each TCCON 

site, we refer the reader to the TCCON project page. Here we use a subset of available TCCON data, dependent on their availability between 

2018 and 2021 (Buschmann et al. 2022; De Mazière et al. 2022; García et al. 2022; Hase et al. 2022; Kivi, Heikkinen, and Kyrö 2022; Liu 

et al. 2022; Morino, Ohyama, et al. 2022b; Morino, Velazco, et al. 2022; Morino, Ohyama, et al. 2022a; Notholt et al. 2022; Petri et al. 2022; 

Pollard, Robinson, and Shiona 2022; Warneke et al. 2022; Shiomi et al. 2022; Té, Jeseck, and Janssen 2022; Wennberg, Wunch, et al. 2022; 630 
Wennberg, Roehl, Wunch, Blavier, et al. 2022; Wennberg, Roehl, Wunch, Toon, et al. 2022; Wunch et al. 2022; Zhou et al. 2022). For 

further details about the data we direct the reader to the TCCON project page: http://tccondata.org/. 

Figure C1 shows the mean and standard deviation of the differences between our a posteriori model simulation and TCCON GGG2020 data 

in 2019 and 2020. The a posteriori model simulation is driven by our a posteriori methane emission estimates. We sample the associated 

model 3-D atmospheric methane distributions at the time and location of each TCCON site used. We then convolve the sampled vertical 635 
profile with site- and time-dependent TCCON instrument averaging kernels, which describes the altitude-dependent instrument sensitivity 

to changes in atmospheric methane concentration.  Figure C2 shows the same statistical comparison but using the a posteriori methane 

emission estimates inferred with the OH scaling factors, as described in section 2.4. 

We do not report results for 2021 due to data availability; for data that are available, we find the mean statistics (not shown) are similar to 

those we report here for 2019 and 2020. For most sites, we find the mean bias is typically smaller than ±10 ppb and the standard deviation 640 
has a range 5-15 ppb with typically values smaller than 10 ppb. We find the largest differences at northern high latitudes where the model 

has a large overestimate (~10 ppb), consistent with previous studies (Feng et al., 2017, 2022), due to poor coverage of GOSAT data during 

the boreal winter and to model error. 
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Figure C1 Statistical comparison of the GEOS-Chem a posteriori methane distribution and TCCON XCH4 data (v GGG2020) in 2019 and 
2020. Red upward triangles denote the mean bias and the blue bars denote the corresponding 1s values. 

 

Figure C2 The same as Figure C1 but for the inversion that also includes OH scaling factors.   650 

 

 


