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We thank both reviewers for providing useful comments to the submitted manuscript. We 
also thank Janne Hakkarainen for spotting a typo in Appendix B that we have now fixed. 
Below we detail our responses to individual comments and, if relevant, how we altered the 
revised manuscript. 

Response to reviewer 1 
 

Our initial response was in late June 2022. Here we include more detailed responses 

Major comments 

A crucial aspect of this work that is missing is the evaluation. There seems to be no 
evaluation of the results using independent observations or techniques like k-fold 
cross validation. The work addresses an important and timely topic but, in this 
reviewer’s opinion, the main claims in the manuscript (that the growth is driven by 
emissions, not chemistry) do not seem supported by their numerical experiments. 

We have indirectly evaluated our results for 2020 by inferring methane emissions using the 
NOAA surface data, which provide consistent results on global and continental spatial scales. 
We will make this point clearer in the revised manuscript. When we first responded to this 
comment in June 2022, we did not have access to NOAA data for all sites in 2021.  

We have now evaluated our posterior emissions using independent TCCON XCH4 
measurements (v GGG2020) for 2020 (Figure C1) and the first half of 2021 (not shown). We 
find that the annual mean model minus TCCON XCH4 values for 2020 are within 10 ppb for 
16 (out of 18) sites with standard deviation between 5 and 18 ppb but typically < 10ppb. This 
is consistent with our evaluation of data from 2009-2019 (Feng et al, 2022), building on 
previous studies that have included substantial evaluation using a range of in situ and 
remote sensing data. Our preliminary analysis of an incomplete year of TCCON data in 2021 
shows similar model performance. To address this point, we have added Appendix C that 
includes a figure showing the mean comparison statistics. 

The suggestion to use k-fold cross validation is interesting. We have used this method in 
other less computationally intensive applications but to our knowledge it has not been used 
to evaluate a global inversion. We are unconvinced this will add much to our narrative, 
especially given the focus of the review is on 2020. 

The major concern this reviewer has with the manuscript is that the title and central 
claims don’t seem supported by their data. The main scientific claim (and their final 
conclusion) is that the record-breaking methane growth rates in 2020 and 2021 were 
driven by emissions, not chemistry. This claim certainly seems plausible (if not likely), 
but their experiments do not seem suficient to justify that claim. In this reviewer’s 
opinion, the ideal way to conclude as to the relative importance of emissions and 
chemistry would be to include both emissions and OH in the state vector for their 
EnKF. That would result provide a straight forward assessment of the relative role of 
each process. 

The sensitivity experiment we used to quantify the impact of OH is admittedly a brute-force 
approach but in the absence of rigorous constraints on OH concentrations we felt this was a 
transparent approach that is easy to understand.  As part of our revision, we performed new 
experiments that assume that the OH reduction in 2020 roughly followed the observed 
temporal and spatial changes for tropospheric ozone (Ziemke et al., 2022). Again, we find 
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that increased emissions largely explain the large global mean growth of atmospheric 
methane in 2020. This is described in Appendix D. 

An alternative way would indeed be to include both emissions of methane and OH in the 
state vector, and this is what we have done in the revised manuscript. These additional 
calculations are described in Appendices D and E and summarized in the main text.  

We have conducted new experiments by including monthly scaling factors for OH 
concentrations over 18 global regions as part of state vector (Appendix E). The resulting 
emission increase between 2019 and 2020, is now about 25% smaller than our control run 
that solves for methane emission estimates using OH climatology. This result is consistent 
with emissions being primarily responsible for the anomalous global atmospheric methane 
growth rate in 2020. As the reviewer will be aware there are also still gross assumptions 
associated with this OH-methane emission inversion and the resulting posterior results do 
not provide a “straightforward assessment” of OH changes due to the limited information 
content of the satellite and in situ atmospheric methane data. Methane inversions that also 
estimate OH, typically quantify OH on large spatial scales and therefore will be unable to 
identify localized changes in OH that we anticipate happened during the Covid-related 
lockdowns.  

The ideal approach would be to include the methane emissions in a state vector as part of a 
full-chemistry data assimilation system that also consider more appropriate constraints on 
OH. But of course, this problem becomes progressively more complex (non-linear) and more 
intractable (associated with more chemistry constituents and more data).   

See also our response below, which discusses larger OH perturbations. 

The argument presented in this manuscript, as this reviewer interpreted it, is as 
follows: 

the authors conducted a global inversion at 2◦ × 2.5◦ resolution with an EnKF from 
2019-2022. This inversion assumes constant OH fields for the 3-year window. The 
authors find changes in the magnitude and spatial patterns of methane emissions. the 
authors compared these emission changes to rainfall, GRACE groundwater, and 
temperature. The largest correlations were 0.5-0.6 (representing 25–35% of the 
variability). the authors conducted a second global inversion with the same setup but 
reduced  OH by 5% through 2020,  where the largest COVID changes occurred.  

We are certainly more confident in the geographical distribution of emissions rather than 
their attribution. A more detailed study about the attribution of those emissions will be 
forthcoming but it is outside the scope of this current study. 

Saying that, the spatial and seasonal variations in tropical methane emissions are consistent 
with those reported for earlier years (e.g., Lunt et al, 2019, 2021; Feng et al 2022; Wilson et 
al, 2021) that showed the response of methane emissions was consistent with microbial 
sources. However, we think imperfect attribution does not detract from our key message: 
large emissions are predominantly responsible for anomalous atmospheric growth rates in 
2020 and 2021. 

The authors show the difference in emissions resulting from these cases but it is not 
clear to this reviewer which result is better. The differences seem to be central to their 
conclusions as indicated in the last two lines of their abstract (“Based on a sensitivity 
study for which we assume a conservative 5% decrease in hydroxyl concentrations in 
2020...we find that the global increase in our a posteriori emissions in 2020 is ∼22% 
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lower than our control calculation. We conclude therefore that most of the observed 
increase in atmospheric methane during 2020 and 2021 is due to increased 
emissions.”) but I could not discern how they concluded why one was better than the 
other. Specifically, it is unclear why the control calculation is the correct answer here. 

We did not conclude one was better than the other. We concluded that a 5% drop in OH was 
too large using our perturbation approach, which described only 22% of the emission from 
our control run. Consequently, most of the atmospheric growth in 2020 and 2021 was due to 
emissions.  

Our additional sensitivity calculations, including an OH inversion, are all consistent with our 
original hypothesis about increasing emissions in 2020 being the most likely culprit for the 
unprecedented global atmospheric methane growth rate. We will also put this discussion in 
the context of higher, localized reductions in OH as raised as a discussion point by this 
reviewer (see below). 

Evaluation and/or overfitting 

Two common methods for evaluating the performance of optimization schemes are to: 
1) evaluate against independent observations or 2) perform k-fold cross validation. 
Neither of these were included here. This is something that should be included for all 
their cases with an inversion analysis to ensure that one is not overfitting for a 
particular inversion 

This study is a two-year extension of recent work (Feng et al, 2022), including substantial 
evaluation of the results that build on previous studies. In an earlier response (see above) 
we have described our evaluation with TCCON data for 2020. We have also indirectly 
evaluated our 2020 results using an inversion constrained by NOAA data that leads to 
consistent results. 

Since we use an ensemble Kalman filter the error characterization is a natural extension of 
our analysis. Using the cost function weights, we find no evidence to suggest we have 
overfitted the data. We have added text to that effect in the revised manuscript. 

OH is inconsistent with other work 

The authors chose a 5% reduction in OH based on Laughner et al. (2021). However, 
Laughner et al. (2021) was a review/synthesis paper that took global mean OH 
changes from Miyazaki et al. (2021; doi:10.1126/sciadv.abf7460) and used them in a 
box model. This reviewer wonders how large the global mean OH changes are in this 
manuscript from Feng et al.? My suspicion is that they are quite a bit smaller than 
what was reported in Miyazaki et al. and Laughner et al Additionally, the OH chemistry 
is highly non-linear and Miyazaki et al. discuss how OH and ozone actually increase in 
some regions despite the NOx reductions. Using OH fields from Miyazaki et al. would 
be a much better way of testing if the OH simulated in that work impacted the 
methane burden. Essentially, this reviewer does not think the OH sensitivity run 
designed here accurately portrays the OH changes that others have found. Data 
supporting the choice of OH runs used here would help assuage these concerns. 

Our sensitivity experiments are designed to examine how large-scale reductions in OH 
(associated with Covid-19 lockdowns) affects our methane emission estimates inferred from 
atmospheric methane measurements. 

First, it was remiss of us not to include Miyazaki et al, 2021 for which we apologize. This 
primary reference was added to the revised manuscript. Figure S8A from this paper shows 
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localized OH reductions of 15-20% for May 2020, although the authors note that this 
reduction can be as large as 30% on a grid basis. This represents one of the early months of 
the shutdown when we expect the largest reduction in emissions, so we expect global mean 
annual changes to be smaller. We also note that Miyazaki et al, 2021 (as with others) do not 
consider the coincident changes in non-methane hydrocarbons (NMHCs) that will also affect 
non-linear ozone chemistry, including the production and loss of OH. Large coincident 
reductions in formaldehyde, for instance, a proxy of NMHCs, have since been reported in 
other studies (e.g., Sun et al, 2021).  

We did a number of simulations in preparation for this manuscript. We used 1% and 5% 
global reductions in OH but penalized regions that would not have been impacted by 
reductions in nitrogen oxide emissions from Covid. We instead chose to reduce OH only 
over regions where there are substantial anthropogenic CO2 emissions, resulting in a 
distribution similar to Miyazaki et al, 2021.  

In response to this reviewer comment, we prepared a calculation in which we decrease OH 
by an additional 25% of eastern China for March 2020 (the peak of emission reductions). We 
find that this month-long perturbation can explain an additional 0.26 Tg of methane 
emissions for 2020, providing some indication of how a larger, localized reduction in OH will 
impact global changes in methane emission estimates. In the revised manuscript, we have 
reported the result of an additional calculation (Appendix D) that adopts an OH reduction 
pattern following changes in tropospheric ozone (Ziemke et al, 2022). We find the result is 
similar to the results from our other sensitivity test – the emissions needed to explain the 
atmospheric growth of methane in 2020 is about 25% lower than our control when we 
consider a drop in OH.  

We have added a broader discussion of this kind of OH perturbation (Appendix D) and now 
included an OH inversion (Appendix E) in the revised manuscript. However, we hasten to 
add that this reviewer comment should be tempered by the uncertainties associated with 
previous studies that do not accurately describe the photochemical perturbation associated 
with the Covid-19 shutdowns. We added text that describes caveats associated with both 
approaches. 

GOSAT proxy observations 

The authors use GOSAT proxy observations. This means that the methane 
concentrations will be dependent on the CO2 concentrations. However, it seems like 
the authors use CO2 simulations with monthly emissions through 2019. Therefore the 
CO2 could lead to a bias in their methane concentrations during COVID due to the 
reduction in CO2 emissions. This would be most pronounced in urban areas. 

As described in Parker et al., 2020, the GOSAT data use an ensemble of CO2 models based 
on atmospheric in situ inversions. For recent years, when updated model inversions based 
on in situ observations are not typically readily available on the timescales required for data 
processing, we have used CO2 values from previous years that have been incremented by 
the NOAA global growth rate. To ensure that this does not introduce an error due to model 
CO2 values, an inversion is performed that directly uses the XCH4/XCO2 ratio, without 
relying (explicitly or implicitly) on the model CO2. We have clarified this point in the revised 
manuscript. 

3.7. This reviewer was also very confused by the description of the data used in 
places. For example, when describing a sensitivity study the authors mention using 
proxy GOSAT XCH4 data (Line 90) but the main inversions also seem to use proxy 
GOSAT data. 
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We use two approaches: 1) the proxy ratio (XCH4/XCO2) directly without need to assume a 
prior model for XCO2 to multiply out to obtain XCH4, which is described in Feng et al, 2022; 
and 2) the proxy methane XCH4. In addition, we have also assimilated in situ methane data 
in both approaches. As a result, we find both approaches lead to generally consistent results. 
We will amend the text to make this point clearer.  

Minor Comments: 

Oversight of previous work 

The authors seem to have overlooked important recent literature on this topic includ- 
ing, for example, McNorton et al. (2022; doi:10.5194/acp-22-5961-2022) who used 
TROPOMI data to constrain methane emissions during COVID. 

An egregious oversight that we have now addressed in the revised manuscript.  

The authors don’t seem to have reported uncertainties. It’s clear what changes are 
actually substantial or within the noise. For example, the abstract lists changes of -3 
Tg and -5 Tg as “substantial” in the abstract (Line 18). These don’t seem particularly 
large. The text later claims that their work is within the uncertainty of another paper 
(Line 119), so it would be good to see uncertainties reported throughout. 

Good point. We have now included the uncertainties for our regional changes in posterior 
emission estimates. 

Error correlations 

Where do the temporal and spatial prior error correlations come from? It seems that 
the authors use spatial correlation lengths of 300 km and 1 month. Are these 
important in the spatial patterns found here?  

These are based on our previously published studies for which we show that using these 
correlation length scales are not important to the large-scale emission distribution we report 
in this manuscript.  

Introduction 

 This reviewer is a bit confused by the list of citations in the intro. Specifically, Lines 
34-35. The authors claim there is an intense debate on the role of fast growth in 2020 
and 2021. They then claim that work has shown the importance of regional anomalies 
in the tropics. But many of these studies are from earlier than the time period being 
discussed.  

The underlying reasons for these anomalous growth rates in 2020 and 2021 are currently 
subject to intense debate with some studies attributing most of the growth in 2020 to a 
reduction in the hydroxyl radical (OH) sink of methane due to global-scale reductions in 
nitrogen oxides due to pandemic-related industry shutdowns (Laughner et al. 2021). On the 
face of it, this appears to be a reasonable explanation, but recent studies have used satellite 
observations of atmospheric methane to reveal regional hotspots over the tropics that are 
responding to changes in climate and have global significance (Pandey et al. 2021; Lunt et 
al. 2019; 2021; Pandey et al. 2017; Feng et al. 2022; Palmer et al. 2021; Wilson et al. 2020). 

The reviewer is correct. In the revised manuscript, we clarify the argument being outlined 
here. We focused on 2020 but we should have discussed the broader OH/emission 
argument, and the different data being used to make those points.  
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Correlative data  

The authors show plots of the changes in correlative data, but don’t show spatial 
correla- tions. In this reviewer’s opinion, it would be helpful to show a map with the 
correlation between the emission anomalies and the correlative data. The manuscript 
currently requires the reader to make the connection themself.  

We report correlations between different regions, as this reviewer has noted. We found that 
spatial distributions are more difficult to report based on two years of data, due to the coarse 
spatial resolution of our posterior emission estimates and due to regional time lags 
associated with rainfall and methane emissions. Consequently, we decided it would not be a 
useful addition to the manuscript. We explain in the revised manuscript why we do not 
include this figure.  
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Response to review comment 2 
 
General:  
 
Feng et al attempts to attribute the stunning increases in the methane growth rate 
from 2020-2021 using satellite observations of methane in conjunction with surface 
data.  The subject is very timely and worth getting out into the community for further 
analysis and discussion.  However, there are a number of issues that the authors 
need to address, which are incorporated into the annotated text of the paper.   In 
particular, there are no uncertainty estimates of the fluxes, no real explanation of the 
Eastern African increase, and an unrealistic description of OH change.  Spending 
more time on these elements will strengthen the paper and adding credibility to the 
results.  
 
OH reduction is still challenging to quantify due to lack of (direct) observations.  In the 
revised manuscript (Appendix D), we include additional inversion experiments based on 
different assumptions on 2020 OH reduction. In Appendix E, we estimate OH scaling factors 
(with the surface emissions of methane) from methane concentration observations.  Our 
results all suggest that increased emissions in 2020 are primarily responsible for the large 
increase in the global atmospheric growth rate of methane. 
 
Recent regional inversions based on both GOSAT and TROPOMI data also show large 
emission from Africa in 2020/2021 (not shown), and they are consistent with changes in 
hydrological data and land surface data. Further research is needed to understand the 
physical mechanisms responsible for the Eastern African emission changes, which is the 
outside the scope of this manuscript.  
 
By how much? 
 
By using a higher bias correction, we reduced the model overestimate compared to HIPPO 
aircraft data by about 5ppb in earlier years (2010-2011) prior to our experiment period.  
    
For both CO2 and CH4, or just CH4? 
 
It is just for CO2  prior emission.  For anthropogenic CH4 emission, we have used EDGAR 
v4.32. We have restructured the paragraph so that the reader can easily find details about 
the CO2 and methane prior inventories.  
 
Olsen and Randerson is a downscaling technique. What biospheric model did you use? 
 
We used the results from the NASA CASA model (Randerson et al., 1996) which we now 
clarify. 
 
A 5% reduction is not that conservative. The spatial pattern of OH reduction is quite 
important. Miyazaki et al, 2021 (Science Advances) shows that the global mean 
reduction in OH is about 4%. However, the reductions can be substantially higher, 
(>30%) locally. These will directly affect the methane inferences, especially over 
Europe and parts of Asia. Please review the paper and perform a sensitivity analysis 
closer to reported spatial changes in OH. 

 
In our revised manuscript we performed two additional inversions with different (assumed) 
temporal and spatial patterns for the reduced OH, including  
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1) a higher (25%) OH reduction over China in March 2020.  
2) global reduction pattern following observed ozone changes   

 
We could expect, however, that the CO2 emission in 2020 and 2021 to be different 
than 2019. Not sure how this really addresses the OH issue. As noted next, the 
Miyazaki et al, 2021 provides a more observationally constrained pattern of OH. 
 
Here we use CO2 emission as proxy spatial pattern for the reduction of OH due to reduced 
human activity by COVID lockdown. In the revised manuscript we tested different 
assumptions for the OH reduction pattern and conducted a new inversion experiment by 
including OH scaling factors to the methane emission state vector to inferred from methane 
observations.  
 
To echo our response to a similar comment from Reviewer 1, there are no effective 
constraints to provide accurate estimates for the spatial and temporal change in OH during 
the Covid lockdown.  

 
Is this a correlation in flux or concentration space? If it is the former, where did 300km 
come from? 
 
It is for surface emissions. We take this value from a previous study (Feng et al., 2022). It 
has no significant impact on the estimated global change of methane emissions between 
2019 and 2020.  
 
You should be able to calculate the simulated atmospheric CH4 growth rate for 2020 
and 2021 from your inversion. You should add that to the table (1). 
 
Good point. We estimate the global growth rate in 2019 is 6.7 ppb/yr, and 15.6 ppb/yr in 
2020 from the simulation forced by posterior methane emissions inferred from GOSAT. 
There will be differences between the global growth rate inferred from GOSAT data and in 
situ data due to differences in geographical coverage.  

 
The box-model approach carries its own assumptions, and can’t be really used to 
validate the CH4 topdown estimates. 
 
We use this model to show that based on a mass balance argument, satellite column XCH4 
data show a larger net emission change between 2019 and 2020 compared to values 
inferred from the coarser in situ surface data.  

   
Based upon NOx emission changes during 2020-2021, we would not expect CH4 
lifetime to be fixed. 
 
Please see our response to the previous question. Here we only the model to quantify the 
net emission change from mass balance. We agree that the methane lifetime may very well 
be different in 2020, and the implications of that our conclusions have been discussed in 
Appendix D and E.    
 
There are no uncertainty estimates in this calculation. I can not assess whether these 
changes are tatistically significant or not. Uncertainty estimates need to be added to 
these flux estimates. These could be done through comparison with other inversions 
or independent observations. 

 
We have added the uncertainties to regional fluxes.  

 



 9 

It looks like the increases in SA in 2021 are an acceleration of the 2020 increases. 
What is going on there? 

 
It is an interesting observation. Currently, we do not have sufficient independent data to 
explain this change.  

  
How is anomalous defined here? The temperature variations need to be calculated 
relative to the long term temperature variability to assess whether they are not within 
climatology. 
 
Those anomalies have been calculated based on the mean between 2010-2021 when 
GRACE data are available. 

 
Please put plots of those regressions in the supplemental. 
 
Good suggestion. We add the plot Figure A6 for correlation between monthly flux anomaly 
and GRACE LWE anomaly during 2018-2021.  

 
Cooper didn’t discuss NOx emissions, only concentrations. The impact on OH would 
need to be calculated separately and would be affected by other reactive species, e.g., 
ozone. 

 
The reviewer is right.  We have clarified this point and the impact on OH being more 
complicated. 
  
It’s hard to see the differences in a spatial plot. Please make a difference plot using 
the regions used in Fig. For 2020 and 2021 between the proxy retrieval and the 
simultaneous estimate. 
 
We have added a new plot (Figure A7) in the revised manuscript, following this suggestion 

 
The implication of East Africa as the single largest driver of the methane growth rate 
is puzzling. Yes, there is a correlation with water anomalies, but it’s not the largest 
driver of methane in driver. A more plausible set of physical mechanisms needs to be 
proposed for why we could expect this region as a dominant driver. 

 
This result is consistent with (and builds on) a number of preceding studies that have shown 
the relationship with rainfall, river flow down the Nile, and changes in the extent of the Sudd 
wetland. We have added Figure A6 that shows the strong relationship between liquid water 
equivalent anomalies inferred from GRACE and methane flux anomalies over the region. 
High resolution inversions enabled by TROPOMI have also highlighted that South Sudan is 
a globally significant source of atmospheric methane.  

 
This is not clear to me at all that this is a valid assumption. The OH responses will 
depend on the regional NOx emission reductions and the timing of those reductions, 
in part because it will also affect ozone production. There are better sources for OH 
than this crude assumption. 
 

We have now included an additional experiment that uses a different assumption to define 
the OH reduction pattern and have also included an OH inversion that infers scaling factors 
and methane emission estimates from atmospheric methane data. Our results all confirm the 
dominant role of increased emissions in explaining observed global growth of atmospheric 
methane.  
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