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Abstract.

The availability of formaldehyde (HCHO) (a proxy for volatile organic compound
reactivity) and nitrogen dioxide (NO2) (a proxy for nitrogen oxides) tropospheric columns from
Ultraviolet-Visible (UV-Vis) satellites has motivated many to use their ratios to gain some insights
into the near-surface ozone sensitivity. Strong emphasis has been placed on the challenges that
come with transforming what is being observed in the tropospheric column to what is actually in
the planetary boundary layer (PBL) and near the surface; however, little attention has been paid to
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other sources of error such as chemistry, spatial representation, and retrieval uncertainties. Here
we leverage a wide spectrum of tools and data to quantify those errors carefully.

Concerning the chemistry error, a well-characterized box model constrained by more than
500 hours of aircraft data from NASA’s air quality campaigns is used to simulate the ratio of the
chemical loss of HO>+RO> (LROx) to the chemical loss of NOx (LNOx). Subsequently, we
challenge the predictive power of HCHO/NO: ratios (FNRs), which are commonly applied in
current research, at detecting the underlying ozone regimes by comparing them to LROx/LNOx.
FNRs show a strongly linear (R?>=0.94) relationship to LROx/LNOX, but only in the logarithmic
scale. Following the baseline (i.e., In(LROx/LNOx) = -1.0+0.2) with the model and mechanism
(CBO06, 12) used for segregating NOx-sensitive from VOC-sensitive regimes, we observe a broad
range of FNR thresholds ranging from 1 to 4. The transitioning ratios strictly follow a Gaussian
distribution with a mean and standard deviation of 1.8 and 0.4, respectively. This implies that FNR
has an inherent 20% standard error (1-sigma) resulting from not accurately describing the ROx-
HOx cycle. We calculate high ozone production rates (PO3) dominated by large HCHOXNO>
concentration levels, a new proxy for the abundance of ozone precursors. The relationship between
PO3; and HCHO*NO; becomes more pronounced when moving towards NOx-sensitive regions
due to non-linear chemistry; our results indicate that there is fruitful information in the
HCHOxNO> metric that has not been utilized in ozone studies. The vast amount of vertical
information on HCHO and NO; concentration from the air quality campaigns enables us to
parameterize the vertical shapes of FNRs using a second-order rational function permitting an
analytical solution for an altitude adjustment factor to partition the tropospheric columns to the
PBL region. We propose a mathematical solution to the spatial representation error based on
modeling isotropic semivariograms. Based on summertime averaged data, Ozone Monitoring
Instrument (OMI) loses 12% of spatial information at its native resolution with respect to a high-
resolution sensor like TROPOspheric Monitoring Instrument (TROPOMI) (>5.5%3.5 km?). A
pixel with a grid size of 216 km? fails at capturing ~65% of the spatial information in FNRs at a
50 km length scale comparable to the size of a large urban center (e.g., Los Angeles). We
ultimately leverage a large suite of in-situ and ground-based remote sensing measurements to draw
the error distributions of daily TROPOMI and OMI tropospheric NO2 and HCHO columns. At a
68% confidence interval (1 sigma), errors pertaining to daily TROPOMI observations, either
HCHO or tropospheric NO; columns, should be above 1.2-1.5x10'¢ molec.cm™ to attain 20-30%
standard error in the ratio. This level of error is almost non-achievable with OMI, given its large
error in HCHO.

The satellite column retrieval error is the largest contributor to the total error (40-90%) in
the FNRs. Due to a stronger signal in cities, the total relative error (<50%) tends to be mild,
whereas areas with low vegetation and anthropogenic sources (e.g., Rocky Mountains) are
markedly uncertain (>100%). Our study suggests that continuing development in the retrieval
algorithm and sensor design and calibration is essential to be able to advance the application of
FNRs beyond a qualitative metric.

1. Introduction

Accurately representing the near-surface ozone (O3) sensitivity to its two major precursors,
nitrogen oxides (NOx) and volatile organic compounds (VOCs), is an imperative step in
understanding non-linear chemistry associated with ozone production rates in the atmosphere.
While it is often tempting to characterize an airshed as NOx or VOC-sensitive, both conditions are
expected as VOC-sensitive (ozone production rates sensitive to VOC) conditions near NOx
sources transition to NOx-sensitive (ozone production rates sensitive to NOx) conditions
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downwind as NOx dilutes. Thus, reducing the footprint of ozone production can mostly be
achieved through NOx reductions. VOCs are key to determining both the location and peak in
ozone production, which varies nonlinearly to the NOx abundance. Thus, knowledge of the relative
levels of NOx and VOCs informs the trajectory of ozone production and expectations of where
peak ozone will occur as emissions change. While a large number of surface stations regularly
monitor the near-surface ambient nitrogen dioxide (NO2) concentrations, the measurements of
several VOCs with different reactivity rates with respect to hydroxyl (OH) are not routinely
available. As such, our knowledge of where and when ozone production rates are elevated, and
their quantitative dependence on a long list of ozone precursors, is fairly limited, except for
observationally-rich air quality campaigns. This limitation has prompted several studies, such as
Sillman et al. (1990), Tonnesen and Dennis (2000a,b), and Sillman and He (2002), to investigate
if the ratio of certain measurable compounds can diagnose ozone regimes meaning if the ozone
production rate is sensitive to NOx (i.e., NOx-sensitive) or VOC (i.e., VOC-sensitive). Sillman
and He (2002) suggested that H,O»/HNO3 was a robust, measurable ozone indicator as this ratio
could well describe the chemical loss of HO>+RO> (LROX) to the chemical loss of NOx (LNOx)
controlling the O3-NOx-VOC chemistry (Kleinman et al., 2001). Nonetheless, both H2O> and
HNO3 measurements are limited to a few spatially-sparse air quality campaigns.

Formaldehyde (HCHO) is an oxidation product of VOCs, and its relatively short lifetime
(~1-9 hr) makes the location of its primary and secondary sources rather identifiable (Seinfield and
Pandis, 2006; Fried et al., 2020). Fortunately, monitoring HCHO abundance in the atmosphere has
been a key goal of many Ultraviolet-Visible (UV-Vis) viewing satellites for decades (Chance et
al., 1991; Chance et al., 1997; Chance et al., 2000; Gonzalez Abad et al., 2015; De Smedt et al.,
2008, 2012, 2015, 2018, 2021) with reasonable spatial coverage. Additionally, the strong
absorption of NO» in the UV-Vis range has permitted measurements of NO2 columns from space
(Martin et al., 2002; Boersma et al., 2004, 2007, 2018).

Advancements in satellite remote-sensing of these two key compounds have encouraged
many studies to elucidate if the ratio of HCHO/NO: (hereafter FNR) could be a robust ozone
indicator (Tonnensen and Dennis, 2000b; Martin et al., 2004; Duncan et al., 2010). Most studies
using the satellite-based FNR columns attempted to provide a qualitative view of the underlying
chemical regimes (e.g., Choi et al., 2012; Choi and Souri, 2015a,b; Jin and Holloway, 2015; Souri
et al., 2017; Jeon et al., 2018; Lee et al., 2021). Relatively few studies (Duncan et al., 2010; Jin et
al., 2017; Schroeder et al., 2017; Souri et al., 2020) have carefully tried to provide a quantitative
view of the usefulness of the ratio. For the most part, the inhomogeneous vertical distribution of
FNR in columns has been emphasized. Jin et al. (2017) and Schroeder et al. (2017) showed that
differing vertical shapes of HCHO and NO: can cause the vertical shape of FNR not to be
consistent throughout the troposphere leading to a variable relationship between what is being
observed from the satellite and what is actually occurring in the lower atmosphere. Jin et al. (2017)
calculated an adjustment factor to translate the column to the surface using a relatively coarse
global chemical transport model. The adjustment factor showed a clear seasonal cycle stemming
from spatial and temporal variability associated with the vertical sources and sinks of HCHO and
NOz, in addition to the atmospheric dynamics. In a more data-driven approach, Schroeder et al.
(2017) found that the detailed differences in the boundary layer vertical distributions of HCHO
and NO> lead to a wide range of ambiguous ratios. Additionally, ratios were shown to shift on high
ozone days, raising questions regarding the value of satellite averages over longer timescales. Our
research aims to put together an integrated and data-driven mathematical formula to translate the
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tropospheric column to the planetary boundary layer (PBL), exploiting the abundant aircraft
measurements available during ozone seasons.

Using observationally-constrained box models, Souri et al. (2020) demonstrated that there
was a fundamentally inherent uncertainty related to the ratio originating from the chemical
dependency of HCHO on NOx (Wolfe et al., 2016). In VOC-rich (poor) environments, the
transitioning ratios from NOx-sensitive to VOC-sensitive occurred in larger (smaller) values than
the conventional thresholds defined in Duncan et al. (2010) due to an increased (dampened) HCHO
production induced by NOx. To account for the chemical feedback and to prevent a wide range of
thresholds on segregating NOx-sensitive from VOC-sensitive regions, Souri et al. (2020)
suggested using a first-order polynomial matched to the ridgeline in P(Os) isopleths. Their study
illuminated the fact that the ratio suffers from an inherit chemical complication. However, Souri
et al. (2020) did not quantify the error, and their work was limited to a subset of atmospheric
conditions. To challenge the predictive power of FNR from a chemistry perspective, we will take
advantage of a large suite of datasets to make maximum use of varying meteorological and
chemical conditions.

Not only are satellite-based column measurements unable to resolve the vertical
information of chemical species in the tropospheric column, but they are also unable to resolve the
horizontal spatial variability due to their spatial footprint. The larger the footprint is, the more
horizontal information is blurred out. For instance, Souri et al. (2020) observed a substantial spatial
variance (information) in FNR columns at the spatial resolution of 250x250 m? observed by an
airborne sensor over Seoul, South Korea. It is intuitively clear that a coarse-resolution sensor
would lose a large degree of spatial variance (information). This error, known as the spatial
representation error, has not been studied with respect to FNR. We will leverage what we have
learned from Souri et al. (2022), which modeled the spatial heterogeneity in discrete data using
geostatistics, to quantify the spatial representation error in the ratio over an urban environment.

A longstanding challenge is to have a reliable estimate of the satellite retrieval errors of
tropospheric column NO; and HCHO. Significant efforts have been made recently to assemble,
analyze, and estimate the retrieval errors for two key satellite sensors, TROPOspheric Monitoring
Instrument (TROPOMI) and Ozone Monitoring Instrument (OMI), using various in-situ
measurements (Verhoelst et al., 2021; Vigouroux et al., 2020, Choi et al., 2020; Laughner et al.,
2019; Zhu et al., 2020). This study will exploit paired comparisons from some of these new studies
to propagate individual uncertainties in HCHO and NO to the FNR errors.

The overarching science goal of this study is to address the fact that the accurate diagnosis
of surface O3 photochemical regimes is impeded by numerous uncertainty components, which will
be addressed in the current paper, and can be classified into four major categories: 1) inherent
uncertainties associated with the approach of FNRs to diagnose local O3 production and sensitivity
regimes, ii) translation of tropospheric column satellite retrievals to represent PBL- or surface-
level chemistry, iii) spatial representativity of ground pixels of satellite sensors, and iv)
uncertainties associated with satellite-retrieved column-integrated concentrations of HCHO and
NOz. We will address all of these sources of uncertainty using a broad spectrum of data and tools.

Our paper is organized into the following sections. Section 2 describes the chemical box
model setup and data applied. Sections 3.1 to 3.4 deal with the chemistry aspects of FNRs and
show the results from a box model. Section 3.5 introduces a data-driven framework to transform
the FNR tropospheric columns to the PBL region. Section 3.6 offers a new way to quantify the
spatial representation error in satellites. Section 3.7 deals with the satellite error characterization
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and its impacts on the ratio. Section 3.8 summarizes the fractional contribution of each error to the
combined error. Finally, Section 4 provides a summary and conclusions of the study.

2. Photochemical Box Modeling and Aircraft Data Used

To quantify the uncertainty of FNR from a chemistry perspective and to obtain several
imperative parameters, including the calculated ozone production rates and the loss of NOx (LNOx)
and ROy (LROy), we utilize the Framework for 0-D Atmospheric Modeling (FOAM) v4 (Wolfe et
al., 2016). We adopt the Carbon Bond 6 (CB06, r2) chemical mechanism, and heterogenous
chemistry is not considered in our simulations. The model is initialized with the measurements of
several compounds, many of which constrain the model by being held constant for each timestep
(see Table 1).

Figure 1 shows the map of data points from Deriving Information on Surface Conditions
from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ)
Baltimore-Washington (2011), DISCOVER-AQ Houston-Texas (2013), DISCOVER-AQ
Colorado (2014), and Korea United States Air Quality Study (KORUS-AQ) (2016).
Meteorological inputs come from the observed pressure, temperature, and relative humidity. The
measurements of photolysis rates are not available for all photolysis reactions; therefore, our initial
guess of those rates comes from a look-up-table populated by the National Center for Atmospheric
Research (NCAR) Tropospheric Ultraviolet And Visible (TUV) model calculations. These values
are a function of solar zenith angle, total ozone column density, surface albedo, and altitude. We
set the total ozone column and the surface albedo to fixed numbers of 325 (Dobson) DU and 0.15,
respectively. The initial guess is then corrected by applying the ratio of observed photolysis rates
of NO+hv (jNO,) and/or Os+hv (jO'D) to the calculated ones to all j-values (i.e., wavelength-
independent). If both observations of jNO> and jO'D are available, the correction factor is
averaged. The KORUS-AQ campaign is the only one that provides jO'D measurements; therefore,
the use of the wavelength-independent correction factor based on the ratio of observed to
calculated jNO; values for all j-value is a potential source of error in the model especially when
aerosols are present. The model calculations are based on the observations merged to a temporal
resolution varying from 10 to 15 seconds. Each calculation was run for five consecutive days with
an integration time of 1 hour to approach diel steady state. We test the number of solar cycles
against ten days on the KORUS-AQ setup and observe no noticeable difference in simulated OH
and HCHO (Figure S1), indicating that five solar cycles suffice. Some secondarily-formed species
must be unconstrained for the purpose of model validation. Therefore, the concentrations of several
secondarily-formed compounds, such as HCHO and PAN, are unconstrained. Nitric oxide (NO)
and NO; are also allowed to cycle while their sum (i.e., NOXx) is constrained. Because the model
does not consider various physical loss pathways, including deposition and transport, which vary
by time and space, we oversimplify their physical loss through a first-order dilution rate set to
1/86400-1/43200 s! (i.e., 24- or 12-hr lifetime), which in turn prevents relatively long-lived
species from accumulating over time. Our decision on unconstraining HCHO, a pivotal compound
impacting the simulation of HOx, may introduce some systematic biases in the simulation of
radicals determining ozone chemistry (Schroeder et al., 2020). Therefore, to mitigate the potential
bias in HCHO, we set the dilution factor to maintain the campaign-averaged bias in the simulated
HCHO with respect to observations of less than 5%. However, it is essential to recognize that
HCHO can fluctuate freely for each point measurement because the dilution constraint is set to a
fixed value for an individual campaign. Each time tag is independently simulated, meaning we do
not initialize the next run using the simulated values from the previous one; this in turn, permits
parallel computation. Regarding the KORUS-AQ campaign where HOx observations were
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available, we only ran the model for data points with HOx measurements. Similar to Souri et al.
(2020), we filled gaps in VOC observations with a bilinear interpolation method with no
extrapolation allowed. In complex polluted atmospheric conditions such as that over Seoul, South
Korea, Souri et al. (2020) observed that this simple treatment yielded comparable results with
respect to the NASA LaRC model (Schroeder et al. 2020), which incorporated a more
comprehensive data harmonization. Table 1 lists the major configuration along with the
observations used for the box model.

Several parameters are calculated based on the box model outputs. LROx is defined through
the sum of primarily radical-radical reactions:

LROy = kyo,+Ho, [HO,]* + Z kro,,+mo,[ RO2;][HO,]

2 ()
+ > Knoyeeron[ROz)
where £ is the reaction rate constant. LNOx mainly occurs via the NO>+OH reaction:
LNO, = koy+no,+m[OH][NO,][M] (2)

where M is a third body. We calculate P(O3) by subtracting the ozone loss pathways dictated by
HOx (HO+HO,), NO»+OH, O3 photolysis, ozonolysis, and the reaction of O('D) with water vapor
from the formation pathways through the removal of NO via HO> and ROx:

P(03) = kno,+no[HO,][NO] + Z kro,+n0[ RO2;][NO]

— Kon+no,+m[OH][NO,][M] — P(RONO;) — kyo,+0,[HO,][05] 3)
~ kon+0, [OH1[03] = ko ( 1p)411,0[0( *D)][H,0] — L(Os
+ alkenes)

3. Results and Discussion
3.1.  Box Model Validation

There are uncertainties associated with the box model (e.g., Brune et al., 2022; Zhang et
al., 2021; Lee et al., 2021), which can be attributed to: 1) the lack of inclusion of physical processes
such as entrainment/detrainment and diffusion, ii) discounting the heterogeneous chemistry, iii)
invalid assumption of the diel steady state in areas close to large emission sources or in
photochemically less active environments (Thornton et al., 2002; Souri et al., 2021), iv) errors in
the chemical mechanism and v) errors in the measurements. These limitations necessitate a
thorough validation of the model using unconstrained observations. While models have been
known for a long time not to be 100% accurate (Box, 1976), it is important to characterize whether
the model can effectively represent reality. For instance, if the simulated HCHO is poorly
correlated with observations and/or displayed large magnitude biases, it will be erroneous to
assume that the sources of HCHO, along with relevant chemical pathways, are appropriate. It is
important to acknowledge that the VOC constraints for these model calculations are incomplete,
especially for the DISCOVER-AQ campaigns, which lacked comprehensive VOC observations.
Nevertheless, we will show that the selected VOCs are sufficient to reproduce a large variance
(>70%) in observed HCHO.

We diagnose the performance of the box model by comparing the simulated values of five
compounds to observations: HCHO, NO, NO2, PAN, hydroperoxyl radical (HOz), and OH. Figure
2 depicts the scatterplot of the comparisons along with several statistics. HCHO observations are
usually constrained in box models to improve the representation of HO» (Schroeder et al., 2017;
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Souri et al.,, 2020; Brune et al., 2022); however, this constraint may mask the realistic
characterization of the chemical mechanism with respect to the treatment of VOCs. Additionally,
it is important to know if the sources of HCHO are adequate. Therefore, we detach the model from
this constraint to perform a more fair and stringent validation.

Concerning HCHO, our model does have considerable skill at reproducing the variability
of observed HCHO (R?=0.73). To evaluate if this agreement is accidentally caused by the choice
of the dilution factor and to identify if our VOC treatment is inferior compared to the one adopted
in the NASA LaRC (Schroeder et al., 2021), we conducted three sets of sensitivity tests for the
KORUS-AQ campaign, including ones with and without considering a dilution factor and another
one without HNO3 and H>O: constraints (Figure S2). The lack of consideration of a dilution factor
results in no difference in the variance in HCHO captured by our model (R?=0.81). Our model
without the dilution factor is still skillful at replicating the magnitude of HCHO with less than 12%
bias. This is why the optimal dilution factor for each campaign is within 12 hr to 24 hr, which is
not different from other box modeling studies (e.g., Brune et al., 2022; Miller and Brune, 2022).
We observe no difference in the simulated HCHO when HNOs; and H>O; values are not
constrained. The unconstrained NASA LaRC setup oversampled at 10-sec frequency captures 86%
variance in the measurements, only slightly (6%) outperforming our result. However, the
unconstrained NASA LaRC setup greatly underestimates the magnitude of HCHO compared to
our model results.

The model performs well with regard to the simulation of NO (R?=0.89) and NO, (R?=0.99)
in the logarithmic scale. Immediately evident is the underestimation of NO in highly polluted
regions, contrary to an overestimation in clean ones. This discrepancy leads to an underestimation
(overestimation) of NO/NO; in polluted (clean) regions. The primary drivers of NO/NO; are jNO»
and O3, both of which are constrained in the model. What can essentially deviate the partitioning
between NO and NO: from that of observations in polluted areas is the assumption of the diel
steady state, which is rarely strictly valid where measurements are close to large emitters. The
overestimation of NO in low NOx areas is often blamed on the lack of chemical sink pathways of
NO in chemical mechanisms (e.g., Newland et al., 2021). The relatively reasonable performance
of PAN (R?=0.63) is possibly due to constraining some of the oxygenated VOCs, such as
acetaldehyde. Xu et al. (2021) observed a strong dependency of PAN concentrations on NO/NO»
ratios. Smaller NO/NO; ratios are usually associated with larger PAN mixing ratios because NO
can effectively remove peroxyacetyl radicals. We observe an overestimated PAN (0.27 ppbv),
possibly due to an underestimation of NO/NO,. Moreover, we should not rule out the impact of
the first-order dilution factor, which was only empirically set in this study. For instance, if we
ignore the dilution process for the KORUS-AQ campaign, the bias of the model in terms of PAN
will increase by 33% resulting in poor performance (R?>=0.40) (Figure S3). We notice that this
poor performance primarily occurs for high altitude measurements where PAN is thermally stable
(Figure S4); therefore, this does not impact the majority of rapid atmospheric chemistry occurring
in the lower troposphere, such as the formation of HCHO. Schroeder et al. (2020) found that proper
simulation of PAN in the polluted PBL during KORUS-AQ required a first-order loss rate based
on thermal decomposition at the average PBL temperature, which was more realistic than the
widely varying local PAN lifetimes associated with temperature gradients between the surface and
the top of the PBL. This solution is computationally equivalent to the dilution rate used in this
study.

KORUS-AQ was the only field campaign providing OH and HO: measurements.
Concerning HO», former studies such as Schroeder et al. (2017), Souri et al. (2020), and Brune et
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al. (2022) managed to reproduce HO, mixing ratios with R? ranging from 0.6 to 0.7. The
performance of our model (R?>=0.66) is similar to these past studies, with nearly negligible biases
(<1%). One may argue that the absence of the HO: uptake by aerosols is contributing to some of
the discrepancies we observe in the HO> comparison. Brune et al. (2022) provided compelling
evidence showing that considering the HO; uptake made their results significantly inconsistent
with the observations suggesting that the HO> uptake might have been inconsequential during the
campaign. Our model manages to reproduce 64% of the variance of observed OH outperforming
the simulations presented in Souri et al. (2020) and Brune et al. (2022) by >10%. The slope (=
1.03) is not too far from the identity line, indicating that our box model systematically
overestimates OH by 0.62 10° cm. This may be attributed to a missing OH sink in the mechanism
or the lack of inclusion of some VOCs. A sensitivity test involving removing the first-order
dilution process demonstrates that the simulation of HOx is rather insensitive to this parameter
(Figure S5). In general, the model performance is consistent, or outperforms, results from recent
box modeling studies, indicating that it is at least roughly representative of the real-world ozone
chemistry and sensitivity regimes.

3.2.  Can HCHO/NO: ratios fully describe the HOx-ROx cycle?

Kleinman et al. (2001) demonstrated that LROx/LNOx is the most robust ozone regime
indicator. Thus, the predictive power of FNR at detecting the underlying chemical conditions can
be challenged by comparing FNR to LROx/LNOx. Ideally, if they show a strong degree of
correspondence (i.e., R*=1.0), we can confidently say that FNR can realistically portray the
chemical regimes. Any divergence of these two quantities indicates the inadequacy of the FNR
indicator. Souri et al. (2020) observed a strong linear relationship between the logarithmic
transformed FNR and those of LROx/LNOx. Our analysis in this study will be based on the
simulated values to ensure that the relationship is coherent based on a realization from the well-
characterized box model. As pointed out by Schroeder et al. (2017) and Souri et al. (2020), a
natural logarithm of LROX/LNOx roughly equal to -1.0 (i.e., LROx/LNOx = 0.35-0.37)
perceptibly separates VOC-sensitive from NOx-sensitive regimes, which would make this
threshold the baseline of our analysis.

Figure 3 demonstrates the log-log relationship of LROx/LNOx and FNR, and P(O3), from
all four air quality campaigns. The log-log relationships from each individual campaign are shown
in Figure S6-S9. We overlay the LROx/LNOx baseline threshold along with two commonly used
thresholds for FNR suggested by Duncan et al. (2010); they defined the VOC-sensitive regimes if
FNR<I and the NOy-sensitive ones if FNR>2. Any region undergoing a value between these
thresholds is unlabeled and considered to be in a transitional regime. The size of each data point
is proportional to the HCHOXNO; concentration magnitude. One striking finding from this plot is
that there is indeed a strong linear relationship between the logarithmic-transformed LROx/LNOx
and FNR (R?=0.91). A strong linear relationship between the two quantities in the log-log scale
indicates a power law dependence (i.e., y=ax®). A strong power law dependency means that these
two quantities have a poor correlation at their low and high values. This is mainly caused by the
fact that HCHO does not fully describe VOC reactivity rates in environments with high and low
VOC concentrations (Souri et al., 2020). The question is, what range of FNR will fall in
In(LROX/LNOx) = -1.0+0.2? Following the baseline, the transitioning ratios follow a normal
distribution with a mean of 1.8, a standard deviation of 0.4, and a range from 1 to 4 (Figure S10).
We define the chemical error in the application of FNR to separate the chemical regimes as the
relative error standard deviation (i.e., o/p) of the transitioning ratios leading to ~ 20%. These
numbers are based on a single model realization and can change if a different mechanism is used;
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nonetheless, the model has considerable skill at reproducing many different unconstrained
compounds, especially OH, suggesting that it is a rather reliable realization. Comparing the
transitioning FNRs to the NO> concentrations suggests no correlation (7=0.02), whereas there is a
linear correlation between the transitioning ratios and the HCHO concentrations (7=0.56). This
tendency reinforces the study of Souri et al. (2020), who, primarily due to the HCHO-NO>
feedback, observed a larger FNR threshold in VOC-rich environments to be able to detect the
chemical regimes.

3.3. Large POs rates occur in regions with large HCHO*NO: concentrations when
moving toward NOx-sensitive regions

A striking and perhaps intuitive tendency observed from Figure 3 is that large POs rates
are mostly tied to higher HCHOXNO>. But this relationship gradually weakens as we move
towards VOC-sensitive regions (smaller LROx/LNOx ratios). This is a textbook example of non-
linear ozone chemistry. In VOC-sensitive areas, PO3 can be strongly inhibited by NO>+OH and
the formation of organic nitrates despite the abundance of the precursors. In the application of
remote-sensing of ozone precursors, the greatest unused metric describing the mass of the ozone
precursors is HCHOXNO;. However, this metric should only be used in conjunction with FNR. To
demonstrate this, based on what the baseline (LROX/LNOx) suggests against thresholds on FNRs
defined by Duncan et al. (2010), we group the data into four regions: NOx-sensitive — NOx-
sensitive, NOx-sensitive—transitional, VOC-sensitive—transitional, and VOC-sensitive—VOC-
sensitive. A different perspective on this categorization is that the transitional regimes are a weaker
characterization of the main regime; for instance, NOx-sensitive—transitional regions are less NOx-
sensitive than NOx-sensitive — NOx-sensitive. Subsequently, the cumulative distribution functions
(CDFs) of PO3 and HCHOXNO; with respect to the aforementioned groups are calculated, which
is shown in Figure 4. Regarding NOx-sensitive—NOx-sensitive regions, we see the PO3 CDF very
quickly converging to the probability of 100%, indicating that the distribution of POj is skewed
towards very low values. The median of POs for this particular regime (where CDF = 50%) is only
0.25 ppbv/hr. This agrees with previous studies such as Martin et al. (2002), Choi et al. (2012), Jin
et al. (2017), and Souri et al. (2017), reporting that NOx-sensitive regimes dominate in pristine
areas. The PO3; CDFs between NOx-sensitive—transitional and VOC-sensitive—VOC-sensitive
are not too distinct, whereas their HCHOxNO> CDFs are substantially different. The non-linear
ozone chemistry suppresses PO3 in highly VOC-sensitive areas such that those values are not too
different from those in mildly polluted areas (NOx-sensitive—transitional). Perhaps the most
interesting conclusion from this figure is that elevated PO3 values (median = 4.6 ppbv/hr), a factor
of two larger than two previous regimes, are mostly found in VOC-sensitive—transitional. This is
primarily due to two causes: 1) this particular regime is not strongly inhibited by the nonlinear
chemistry, particularly NO>+OH, and ii) it is associated with abundant precursors evident in the
median of HCHOxNO: being three times as large of those in NOx-sensitive—transitional. This
tendency illustrates the notion of non-linear chemistry and how this may affect regulations. Simply
knowing where the regimes are might not suffice to pinpoint the peak of POs, as this analysis
suggests that we need to consider both FNR and HCHOxNQO2; both metrics are readily accessible
from satellite remote-sensing sensors.

3.4.  Can we estimate PO; using the information from HCHO/NO; and HCHO*XNQO;?

It may be advantageous to construct an empirical function fitted to these two quantities and
elucidate the maximum variance (information) we can potentially gain to recreate PO3. After
several attempts, we found a bilinear function (z=aotaixtazytasxy) to be a good fit without
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overparameterization. Due to presence of extreme values in both FNR and HCHOxNO,, we use a
weighted least squares method for the curve fitting based on the distance of the fitted curve to the
data points (known as bi-squares weighting). The best fit with R? equals to 0.94 and an RMSE of
0.60 ppbv/hr is:

PO; =0.74—-0.09x — 0.02 y + 0.25xy 4)
where x and y are FNR (unitless) and HCHOXNO, (ppbv?), respectively. The residual of the fit is
shown in Figure S11. The gradients of PO3 with respect to x and y are:

dPO
- > =0.25y — 0.09 )

dPO
3 —0.25x — 0.02 ©6)

dy

An apparent observation arises from these equations that is the derivative of PO3 to each
metric depends on the other one underscoring their interconnectedness. For instance, Eq. (6)
suggests that larger FNRs (x) result in a larger gradient of PO3 to the abundance of HCHOXNO>
(»). In very low FNRs, this gradient can become very small, rendering PO3 insensitive (or in
extreme cases, negatively correlated) to HCHOxNOa.. This analysis provides encouraging results
about the future application of the satellite-derived HCHOXNO.; however, the wide class of
problems relating to the application of satellite-derived FNR columns, such as satellite errors in
columns or the translation between columns to PBL is also present in Eq. (4), even in a more
pronounced way due to HCHOxNO> and HCHO? (= xy). This new perspective on POs estimation
deserves a separate study.

3.5.  Altitude dependency and its parametrization

A lingering concern over the application of satellite-based FNR tropospheric columns is
that the vertical distribution of HCHO and NO; are integrated into columns; thus, this vertical
information is permanently lost. Here, we provide insights into the vertical distribution of FNR
within the tropospheric column. This task requires information about the differences between 1)
the vertical shape of HCHO and that of NO> and ii) the vertical shape in the sensitivity of the
retrievals to the different altitude layers (described as scattering weights). Ideally, if both
compounds show an identically relative shape, the FNR columns will be valid for every air parcel
along the vertical path (i.e., a straight line). Previous studies such as Jin et al. (2017) and Schroeder
et al. (2017) observed a large degree of vertical inhomogeneity in both HCHO and NO;
concentrations suggesting that this ideal condition cannot be met. We do not always have precise
observations of HCHO and NO: vertical distributions, but we can constitute some degree of
generalization by leveraging the measurements made during the aircraft campaigns. As for the
differences in the vertical shapes (i.e., the curvature) of the sensitivity of the retrievals between
HCHO and NO: channels (i.e., ~ 340 nm and ~440 nm), under normal atmospheric and viewing
geometry conditions, several studies such as Nowlan et al. 2018 and Lorente et al. 2017 showed
small differences in the vertical shapes of the scattering weights in the first few kilometers altitude
above the surface where the significant fluctuations in FNRs usually take place. Therefore, our
analysis does not consider the varying vertical shapes in the scattering weights. However, this
assumption might not hold for excessive aerosol loading with variable extinction efficiency
between ~340 nm and ~440 nm wavelengths or extreme solar zenith angles.

Figure 5 demonstrates the violin plot of the afternoon (> 12:00 LT) vertical distribution of
HCHO, NO, and FNR observed by NASA’s aircraft during the four field campaigns analyzed in
this study superimposed by the simulated POs rates. The vertical layers are grouped into sixteen
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altitudes ranging from 0.25 km to 7.75 km. Each vertical layer incorporates measurements +0.25
km of the mid-layer height. The observations do not follow a normal distribution, particularly in
the lower parts of the atmosphere; thus, medians are preferred to represent the central tendency.
While the largest POs3 rates tend to occur in areas close to the surface (< 2 km agl), a nonnegligible
fraction of the elevated POs rates are also observed in other parts of the atmosphere, such as in the
free troposphere.

Several intriguing features are observed in Figure 5: First, up to the 5.75 km range, which
encompasses the PBL area and a large portion of the free troposphere, NO: concentrations tend to
decrease quicker than those of HCHO in line with previous studies such as Schroeder et al. (2017),
Jin et al. (2017), Chan et al. (2019), and Ren et al. (2022). Second, above 5.75 km, HCHO levels
off, whereas NO> shows an increasing trend. Finally, due to their different vertical shapes, we
observe nonuniformities in the vertical distribution of FNR: they become more NOx-sensitive with
altitude up to a turning point at 5.75 km and then shift back to the VOC-sensitive direction.

It is attractive to model these shapes and apply parameterizations to understand how their
shapes will complicate the use of tropospheric column retrieval from satellites. First order rational
functions are a good candidate to use. Concerning the vertical dependency of HCHO and NO., we
find reasonable fit (R?>=0.73) as:

HCHO,NO, = 2274 )
z+a,
where z is altitude in km. a; (i=0,1,2) are fitting parameters. From this equation it is determined
that FNRs follow a second order rational function:

() = HCHO boz? + b,z + b, (8)
I@) =80, = b2+ bz + bs
where b; (i=0, ..., 5) are fitting parameters. One can effortlessly fit this function to different bounds

of the vertical distribution of FNR such as the 25" and 75" percentiles, and subsequently estimate
the first moment of the resultant polygon along z divided by the total area bounded to the polygon
(the centroid, G) via:
1 z2
G(21,27) = 24 f2(@7stn — [ (2)25en dz
z1
where 4 is the area of the polygon bounded by the 75" percentiles, f(2),stn, and the 25%
percentiles (f(z),5¢,) of FNR (shown in Figure 5 as solid black lines). We define an altitude
adjustment factor (faqj) such that one can translate an observed FNR tropospheric column ratios,
such as those retrieved from satellites, to a defined altitude and below that point (z7) through:
_G(0,2) (10)

fagj = G(0,8 km)
where zt can be interchanged to match the PBLH. This definition is more beneficial than using the
entire tropospheric column to the surface conversion (e.g., Jin et al., 2017) because ozone can form
in various vertical layers. Using the observations collected during the campaign, we estimate Eq.
(10) along with +1c boundaries shown in Figure 6. To determine the adjustment factor error, we
reestimate Eq.9 with =16 level in the coefficients obtained from Eq.8. The resultant error is shown
in the dashed red line in Figure 6. This error results from uncertainties associated with assuming
that the second-order rational function can explain the vertical distribution of FNRs. The shape of
the resulting adjustment factor is in line with the vertical distribution of FNR (see Figure 5): the
adjustment factor curve closer to the surface has values smaller than one, increases to values larger
than one in the mid-troposphere, and finally, converges to one near the top of measured
concentrations. If one picks out an altitude pertaining to a PBLH, one can easily apply faqj to the

€))
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observed FNR columns to estimate the corresponding ratio for that specific PBLH. A more evolved
PBLH (i.e., a large zf) results in stronger vertical mixing, rendering faqj closer to one. The standard
error deviation of this conversion is around 19%. The relatively low fluctuations in the adjustment
factor around one suggest that under the observed atmospheric conditions (clear-sky afternoon
summers), the columnar tropospheric ratios do not poorly represent the chemical conditions in the
PBL region.

It is beneficial to model this curve to make this data-driven conversion easier for future

applications. A second-order polynomial can well describe (R?=0.97) this curve:

faaj = azf + bz, + a=-0.01,b =0.15,¢c = 0.78 (11)
Although Eq. (11) does not include observations above 8 km, the area bounded between f(z) 5.,
and f (Z),s., in higher altitudes is too small to make a noticeable impact on this adjustment factor.

One may object that since we estimated the adjustment factor based on two boundaries
(25" and 75" percentiles) of the data, we are no longer really dealing with 50% of features
observed in the vertical shapes of FNR. This valid critique can be overcome by gradually relaxing
the lower and upper limits and examining the resulting change in fa¢j. When we reduce the lower
limit in Eq. (9) from the 25" to 1° percentiles, the optimal curve is similar to the one shown in
Figure 6 (Figure S12). However, when we extend the upper limit from the 75% percentile to greater
values, we see the fit becoming less robust above the 80" percentile, indicating that the formulation
applies to ~80% of the data. The reason behind the poor representation of the adjustment factor
for the upper tail of the population is the extremely steep turning point between 5.5 and 6.0 km,
necessitating a higher-order rational function to be used for Eq. (7) and Eq. (8). We prefer to limit
this analysis to both boundaries and the order defined in Eq. (8) and Eq. (9) because extreme value
predictions usually lack robustness.

A caveat with these results is that our analysis is limited to afternoon observations because
we focus on afternoon low-orbiting sensors such as OMI and TROPOMI. Nonetheless, Schroeder
et al. (2017) and Crawford et al. (2021) observed large diurnal variability in these profiles due to
diurnal variability in sinks and sources of NO> and HCHO and atmospheric dynamics. The diurnal
cycle has an important implication for geostationary satellites such as Tropospheric Emissions
indeed: Monitoring of Pollution (TEMPO) (Chance et al., 2019). Limiting the observations to
morning time results in a smaller adjustment factor for altitudes close to the surface resulting from
steeper vertical gradients of HCHO/NO:> (Figures S13 and S14). This tendency agrees with Jin et
al. (2017), who observed a larger deviation from one in an adjustment factor used for the column-
surface conversion in winter.

Another important caveat with our analysis is that it is based upon four air quality
campaigns in warm seasons that avoid times/areas with convective transport; as such, our analysis
needs to be made aware of the vertical shapes of FNR during convective activities and cold
seasons. However, a few compelling assumptions can minimize these oversights: first, it is very
atypical to encounter elevated ozone production rates during cold seasons with few exceptions
(Ahmadov et al., 2015; Rappengliick et al., 2014); second, the notion of ozone regimes is only
appropriate in photochemically active environments where the ROx-HOx cycle is active; an
example of this can be found in Souri et al. (2021) who observed an enhancement of surface ozone
in central Europe during a lockdown in April 2020 (up to 5 ppbv) compared to a baseline which
was explainable by the reduced Os titration through NO in place of the photochemically induced
production. An exaggerated extension to this example is the nighttime chemistry where NO-Os-
NO: partitioning is the primary driver of negative ozone production rates; at night, the definition
of NOx-sensitive or VOC-sensitive is meaningless, so it is in photochemically less active
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environments; third, it is rarely advisable to use cloudy scenes in satellite UV-Vis gas retrievals
due to the arguable assumption on Lambertian clouds and highly uncertain cloud optical centroid
and albedo; accordingly, atmospheric convection occurring during storms or fires is commonly
masked in satellite-based studies. Therefore, the limitations associated with the adjustment factor
are mild compared to the advantages.

3.6. Spatial Heterogeneity

The spatial representation error resulting from unresolved processes and scales (Jani¢ et
al., 2016; Valin et al., 2011; Souri et al., 2022) refers to the amount of information lost due to
satellite footprint or unresolved inputs used in satellite retrieval algorithms. Unfortunately, this
source of error cannot be determined when we do not know the true state of the spatial variability.
There is, however, a practical way to resolve this by conducting multi-scale intercomparisons of a
coarse spatial resolution output against a finer one. Yet, despite the absence of the truth in this
approach, we tend to find their comparisons useful in giving us an appreciation of the error.

We build the reference data on qualified pixels (qa_value> 0.75) of offline TROPOMI
tropospheric NO; version 2.2.0 (van Geffen et al., 2021; Boersma et al., 2018) and total HCHO
columns version 2.02.01 (De Smedt et al., 2018) oversampled at 3x3 km? in summer 2021 over
the US. Figure 7 shows the map of those tropospheric columns as well as FNR. Encouragingly,
the small footprint and relatively low detection limit of TROPOMI compared to its predecessor
satellite sensors (e.g., OMI) enable us to have possibly one of the finest maps of HCHO over the
US to date. Large values of HCHO columns are found in the southeast due to strong isoprene
emissions (e.g., Zhu et al., 2016; Wells et al., 2020). Cities like Houston (Boeke et al., 2011; Zhu
et al., 2014; Pan et al., 2015; Diao et al., 2016), Kansas City, Phoenix (Nunnermacker et al., 2004),
and Los Angeles (de Gouw et al., 2018) also show pronounced enhancements of HCHO possibly
due to anthropogenic sources. Expectedly, large tropospheric NO> columns are often confined to
cities and some coal-fired power plants along the Ohio River basin. Concerning FNR, low values
dominate cities, whereas high values are found in remote regions. An immediate tendency
observed from these maps is that the length scale of HCHO columns is longer than that of NO,.
This indicates that NO, columns are more heterogeneous. Because of this, we observe a large
degree of spatial heterogeneity with respect to FNRs.

Here we limit our analysis to Los Angeles due to computational costs imposed by the
subsequent experiment. To quantify the spatial representation errors caused by satellite footprint
size, we upscale the FNRs by convolving the values with four low pass box filters with the size of
13x24, 36x36, 108x108, and 216x216 km?, shown in the first column of Figure 8. Subsequently,
to extract the spatial variance (information), we follow the definition of the experimental
semivariogram (Matheron, 1963):

1
y(h) = N Z [Z(x) — Z(x)]? (12)
|xi—xj|—|h|55

where Z(x;) (and Z (xj)) is discrete pixels of FNRs, N(k) is the number of paired pixels separated
by the vector of A. The |.| operator indicates the length of a vector. The condition of |xi — xj| —
|h| < € is to permit certain tolerance for differences in the length of the vector. Here, we ignore
the directional dependence in y(h) which makes the vector of & scalar (% = |h|). Moreover, we bin
y values in 100 evenly-spaced intervals ranging from 0 to 5 degrees. To remove potential outliers
(such as noise), it is wise to model the semivariogram using an empirical regression model. To
model the semivariogram, we follow the stable Gaussian function used by Souri et al. (2022):
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y(h) = s(1— e_(g)co): co=1.5 (13)
where 7 and s are fitting parameters. For the most part, geophysical quantities become spatially
uncorrelated at a certain distance called the range, and the variance associated with that distance
is called the sill. The fitting parameters, , and s, describe these two quantities as long as the stable
Gaussian function can well fit to the shape of semivariogram. The semivariograms, and the fits,
associated with each map are depicted in the second column of Figure 8.

The modeled semivariograms suggest that a coarser field comes with a smaller sill,
implying a loss in the spatial information (variance). The length scale (i.e., the range) only sharply
increases at coarser footprints (>36x36 km?). This indicates that several coarse-resolution satellite
sensors, such as OMI (13x24 km?), are rather able to determine the length scales of FNR over a
major city such as Los Angeles. By leveraging the modeled semivariograms, we can effortlessly
determine the spatial representation error for specific scale (e.g., /=10 km) through

2y = 1- Y
Vre f (h)
where y(h) and y,.¢(h) are the modeled semivariogram of the target and the reference fields (3x3
km?). This equation articulates the amount of information lost in the target field compared to the
reference. Accordingly, the proposed formulation of the spatial representation error is relative.
Figure 9 depicts the representation errors for various footprints. For the most part, the OMI nadir
pixel (13x24 km?) only has a ~12% loss of the spatial variance. On the contrary, a grid box with a
size of 216x216 km? fails at capturing ~65% of the spatial information in FNR with a 50 km length
scale comparable to the extent of Los Angeles. The advantage of our method is that we can
mathematically describe the spatial representation error as a function of the length of our target.
The present method can be easily applied to other atmospheric compounds and locations. We have
named this method SpaTial Representation Error EstimaTor (STREET) which is publicly available
as an open-source package (Souri, 2022).

An oversight in the above experiment lies in its lack of appreciation of unresolved physical
processes in the satellite measurements: a weak sensitivity of some retrievals to the near-surface
pollution due to the choice of spectral windows used for fitting (Yang et al., 2014), using 1-D air
mass factor calculation instead of 3-D (Schwaerzel et al., 2020), and neglecting aerosol effect on
the light path are just a few examples to point out. To account for the unresolved processes, one
can recalculate Egs. (12)-(14) using outputs from different retrieval frameworks, which is beyond
the scope of this study.

(14)

3.7.  Satellite errors
3.7.1. Concept

Two types of retrieval errors can affect our analysis: systematic errors (bias) and
unsystematic ones (random errors). In theory, it is very compelling to understand their differences.
In reality, the distinction between random and systematic errors is not as clear-cut as it seems. For
example, one may wish to establish the credibility of a satellite retrieval by comparing it to a sky-
radiance measurement over time. Because each measurement is made at a different time, their
comparison is not a repetition of the same experiment; each time, the atmosphere differs in some
aspects, so each comparison is unique. Adding more sky-radiance measurements will add new
experiments. For each paired data point, many unique issues contribute differently to errors; as
such, our problem is grossly under-determined (i.e., more unknowns for a given observation).
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Here, we do not attempt to separate random from systematic errors in the subsequent analysis,
thereby limiting this study to the total uncertainty.

We focus on analyzing the statistical errors drawn from the differences between the
benchmark and the retrievals on daily basis. Two sensors are used for this analysis: TROPOMI
and OMI. To propagate individual uncertainties in HCHO and NO; to FNRs, we follow an
analytical approach involving Jacobians of the ratio to HCHO and NO.. Assuming that errors in
HCHO and NO; are uncorrelated, the relative error of the ratio can be estimated by:

o OHCHO \° (UNOZ)Z
_ + 15
ratio \[(HCHO) NO, (13)
where oycpo and oy, are total uncertainties of HCHO and NO> observations. It is important to

recognize that the errors in HCHO and NO; are not strictly uncorrelated due to assumptions made
in their air mass factor calculations.

3.7.2. Error Distributions in TROPOMI and OMI

We begin our analysis with the error distribution of daily TROPOMI tropospheric NO:
columns (v1.02.02) against 22 MAX-DOAS instruments from May to September in 2018-2021.
The data are paired based on the criteria defined in Verhoelst et al. (2021). The spatial locations
of the stations are mapped in Figure S15. Figure 10a shows the histogram of the TROPOMI minus
the MAX-DOAS instruments. The first observation from this distribution is that it is skewed
towards lower differences, evident in the skewness parameter around -4.6. As a result of the
skewness, the median should better represent the central tendency which is around -1x10'°
molec./cm?. In general, TROPOMI tropospheric NO, columns show a low bias. We fit a normal
distribution to the data using the non-linear Levenberg-Marquardt method. This fitted normal
distribution (R*=0.94) is used to approximate oyo, for different confidence intervals, and to
minimize blunders. To understand how much of these disagreements are caused by systematic
errors as opposed to random errors, we redo the histogram using monthly-based observations
(Figure S16). A slight change in the dispersions between the daily and the monthly-basis analysis
indicates the significance of unresolved systematic (or relative) biases. This tendency suggests that
when conducting the analysis on a monthly basis, the relative bias cannot be mitigated by
averaging. Verhoelst et al. (2021) rigorously studied the potential root cause of some discrepancies
between MAX-DOAS and TROPOMI. An important source of error stems from the fundamental
differences in the vertical sensitivities of MAX-DOAS (more sensitive to the lower tropospheric
region) and TROPOMI (more sensitive to the upper tropospheric area). This systematic error can
only be mitigated using reliably high-resolution vertical shape factors instead of spatiotemporal
averaging of the satellite data.

The error analysis for OMI follows the same methods applied for TROPOMI; however,
with different benchmarks. We follow the comparisons made between the operational product
version 3.1 and measured columns derived from NCAR’s NO> measurements integrated along
aircraft spirals during four NASA’s air quality campaigns. More information regarding this data
comparison can be found in Choi et al. (2020). Figure 10b shows the histogram of OMI minus the
integrated spirals. Compared to TROPOMI, the OMI bias is worse by a factor of two. The standard
deviation calculated from a Gaussian fit (2.31x10"> molec./cm?) is not substantially different from
that of TROPOMI (2.11x10'> molec./cm?).

As for the error distribution of TROPOMI HCHO columns (version 1.1.(5-7)), we use 24
FTIR measurements during the same time period based on the criteria specified in Vigouroux et
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al. (2020). The stations are mapped in Figure S15. The frequency of the paired data is daily. Figure
11a depicts the error distribution. The distribution is slightly broader compared to that of NO3,
manifested in a larger standard deviation 4.32x10' molec./cm?. This is primarily due to two facts:
1) HCHO optical depths generally peak in the UV range (<380 nm), where the large optical depths
of ozone and Rayleigh scattering result in weaker and noisier signals (Gonzalez Abad et al., 2019),
and 1i) the broader and stronger NO; optical depths in the ViS range (400-500 nm), where the
signal-to-noise ratio is typically more outstanding, permit better quality retrievals. Similar to the
NO, we fit a normal distribution (R?=0.90) to specify gy for different confidence intervals.

Concerning OMI HCHO columns from SAO version 3 (Gonzalez Abad et al., 2015), we
follow the intercomparison approach proposed in Zhu et al. (2020). Based on this approach, the
benchmarks come from GEOS-Chem simulated HCHO columns corrected by in-situ aircraft
measurements. The measurements were made during ozone seasons from KORUS-AQ,
DISCOVERs, FRAPPE, NOMADSS, and SENEX campaigns (see Table 1 in Zhu et al. 2020).
OMI values ranging from -0.5x10'> molec./cm? and 1.0x10'7 molec./cm? with effective cloud
fraction between 0.0 and 0.3, and SZA between 0 and 60 degrees are only considered in the
comparison. Any pixels from OMI and grid boxes from the corrected GEOS-Chem simulation that
fall into a polygon enclosing the campaign domain are used to create the error distribution shown
in Figure 11b. The distribution has much denser data because the model output covers a large
portion of the satellite swath. The error distribution suggests that OMI HCHO is inferior to
TROPOMI evident in larger bias and standard deviation. The OMI bias is twice as large as that of
TROPOMI. De Smedt et al. (2021) observed the same level of bias from their comparisons of
OMI/TROPOMI with MAX-DOAS instruments (see Table 3 in their paper). Moreover, their OMI
vs MAX-DOAS comparisons were severely scattered. Likewise, we observe the standard deviation
of OMI from the fitted Gaussian function to be roughly five times as large of that TROPOMI. This
can be primarily due to a weaker signal-to-noise (and sensor degradation) in OMLI. It is because of
this reason that OMI HCHO should be averaged over several months. Another possible reason for
the large standard deviation is the fact that the benchmark arises from a modeling experiment
whose ability at resolving spatiotemporal variations in HCHO may be uncertain. This partly leads
to the performance of OMI to look poor.

3.7.3. The impact of retrieval error on the ratio

Following Eq. (15), we calculate the standard error for a wide range of NO, and HCHO
columns at a 68% confidence interval (1 sigma) for both TROPOMI and OMI derived from the
fitted Gaussian function to the histograms; the standard errors are shown in Figure 12. We observe
smaller errors to be associated with larger tropospheric column concentrations. As for TROPOMI,
either daily HCHO or tropospheric NO» columns should be above 1.2-1.5x10'¢ molec./cm? to
achieve 20-30% standard error. The TROPOMI errors start diminishing the application of FNR
when both measurements are below this threshold. Regarding OMI, it is nearly impossible to get
the standard error below of 20-30% given its problematically large HCHO standard deviation. For
50% error, the daily HCHO columns should be above 3.2x10'¢ molec./cm?. This range of error
can also be achieved if OMI tropospheric NO: columns are above 8x10'5 molec./cm?,

3.8. The fractional errors to the combined error

The ultimate task is to compile the aforementioned errors to gauge how each individual
source of error contributes to the overall error. Although each error is different in nature, combined
they explain the uncertainties of one quantity (FNR) and can be roughly considered independent;
therefore, the combined error is given by:
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Ototal = \/O-COIZPBL + O-SpatialRep + ORetreival (16)

Ocorzppy 1S the error in the adjustment-factor defined in this study. We calculated a 26% standard
error for a wide range of PBLHs. Therefore, 0,;,p5, €quals to 26% of the observed ratio (i.e.,
magnitude dependent). Oy 4¢iqirep 1S more complex. It is a function of the footprint of the satellite
(or a model), the spatial variability of the reference field, which varies from environment to
environment, and the length scale of our target (e.g., a district, a city, or a state). Eq. (14) explicitly
quantifies this error. The product of the square root of that value and the observed ratio defines

Ospatiairep- 11€ last error depends on the magnitude of HCHO and NO; tropospheric columns. It

can be estimated from Eq. (15) times the observed ratio. We did not include the chemistry error in
Eq. (16) because it was suited only for segregating the chemical conditions; it does not describe
the level of uncertainties that comes with the observed columnar ratio. Figure 13 shows the total
relative error given the observed TROPOMI ratio seen in Figure 7. We consider the OMI spatial
representation error (13% variance loss) for this case that was computed in a city environment.
The retrieval errors are based on TROPOMI sigma values. Areas associated with relatively small

errors (<50%) are mostly seen in cities due to a stronger signal (smaller og,treipqr)- Places with
low vegetation and anthropogenic sources (i.e., Rocky Mountains) possess the largest errors
(>100%).

To produce some examples of the fractional errors to the combined error, we focus on two
different environments with two different sets of HCHO and NO; columns. One represents a
heavily polluted area, and the other one is a moderately polluted region. We also include two
footprints: OMI (13x24 km?) and a 108x108 km? pixel. Finally, we calculate the percentage of
each error component for both OMI and TROPOMI sensors. Figure 14 shows the pie charts
describing the percentage of each individual error to the total error for TROPOMI. Unless the
footprint of the sensor is coarse enough (e.g., 108 km?) to give rise to the spatial representation
error dominance, the retrieval error stands out. New satellites are not expected to have very large
footprints; as such, retrieval errors appear to be the major obstacle to using FNR in a robust
manner. Figure 15 shows the same calculation but using OMI errors; the retrieval errors massively
surpass other errors. This motivates us to do one more experiment; we recalculate the HCHO error
distribution in OMI using monthly-averaged data instead of daily (Figure S17). This experiment
suggests a standard deviation of 9.4 x10'> molec./cm?, with which we again observe the retrieval
error to be the largest contributor (>80%) of the combined error (Figure S18). A recent study
(Johnson et al., 2022) also suggests that retrieval errors can result in considerable disagreement
between FNRs from various sensors and retrieval frameworks.

4. Summary

The main goal of this study was to characterize the errors associated with the ratio of
satellite-based HCHO to NO columns, which has been widely used for ozone sensitivity studies.
From the realization of the complexity of the problem, we now know that four major errors should
be carefully quantified so that we can reliably represent the underlying ozone regimes. The errors
are broken down into 1) the chemistry error, ii) the column to the PBL translation, iii) the spatial
representation error, and iv) the retrieval error. Each error has its own dynamics and has been
tackled differently by leveraging a broad spectrum of tools and data.

The chemistry error refers to the predictive power of the HCHO/NO: ratio (hereafter FNR)
in describing the HOx-ROx cycle, which can be well explained by the ratio of the chemical loss
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of HO>+RO: (LROXx) to the chemical loss of NOx (LNOx). Because those chemical reactions are
not directly observable, we set up a chemical box model constrained with a large suite of in-situ
aircraft measurements collected during DISCOVER-AQs and KORUS-AQ campaigns (~ 500 hr
of flight). Our box model showed a reasonable performance at recreating some unconstrained key
compounds such as OH (R?=0.64, bias=17%), HO> (R?>=0.66, bias<1%), and HCHO (R?=0.73).
Subsequently, we compared the simulated FNRs to LROX/LNOx. They showed a high degree of
correspondence (R?=0.93) but only in the logarithmic scale; this indicated that FNRs do not fully
describe the HOx-ROx cycle (i.e., the sensitivity of 0ozone production rates to NOx and VOC) for
heavily polluted environments and pristine ones. Following a robust baseline indicator
(In(LROx/LNOx) = -1.0 + 0.2) segregating NOx-sensitive from VOC-sensitive regimes, we
observed a diverse range of FNR ranging from 1 to 4. These transitioning ratios had a Gaussian
distribution with a mean of 1.8 and a standard deviation of 0.4. This implied that the relative
standard error associated with the ratio from the chemistry perspective at a 68% confidence interval
was 20%. Although this threshold with its error was based on a single model realization and can
be different for a different chemical mechanism, it provided a useful universal baseline derived
from various chemical and meteorological conditions. At a 68% confidence level, any uncertainty
beyond 20% in the ozone regime identification from FNRs likely originates from other sources of
error, such as the retrieval error.

Results from the box model showed that ozone production rates in extremely polluted
regions (VOC-sensitive) were not significantly different from those in pristine ones (NOx-
sensitive) due to non-linear chemical feedback mostly imposed by NO>+OH. Indeed, the largest
PO; rates (median = 4.6 ppbv/hr) were predominantly seen in VOC-sensitive regimes tending
towards the transitional regime. This was primarily caused by the abundance of ozone precursors
(i.e., HCHOXNO) and the diminished negative chemical feedback. We also revealed that
HCHOxNO:> could be used as a sensible proxy for the ozone precursors’ abundance. In theory,
this metric, in conjunction with the ratio, provided reasonable estimates of PO; rates (RMSE =
+0.60 ppbv/hr).

We then analyzed the afternoon vertical distribution of HCHO, NO», and their ratio
observed from aircraft during the air quality campaigns binned to the near-surface to 8 km. For
altitudes below 5.75 km, HCHO concentration steadily decreased with altitude but at a lower rate
than NO,. Above that altitude, NO, concentrations stabilized and slightly increased due to
lightning and stratospheric sources. The dissimilarity between the vertical shape of NO> versus
HCHO resulted in a rather non-linear shape of FNR. This non-linear shape necessitated a
mathematical formulation to transform an observed columnar ratio to a ratio at a desired vertical
height expanding from the surface. We fit a second-order rational function to the profile and
formulated the altitude adjustment factor, which followed a second-order polynomial function
starting from values below 1 for lower altitudes, following values above 1 for some high altitudes,
and finally converging to 1 at 8 km. This behavior means that the ozone regime tends to get pushed
slightly towards the VOC-sensitive regime near the surface for a given tropospheric columnar
ratio. This tendency was more pronounced in morning times when the non-linear shape of FNRs
was stronger. This data-driven adjustment factor exclusively derived from afternoon aircraft
profiles during warm seasons in non-convective conditions had a standard error of 19%.

An important error in the satellite-based observations stemmed from unresolved spatial
variability in trace gas concentrations within a satellite pixel (Souri et al., 2022; Tang et al., 2021).
The amount of unresolved spatial variability (the spatial representation error) can in principle be
modeled if we base our reference on a distribution map made from a high spatial resolution dataset.
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We modeled semivariograms (or spatial auto-correlation) computed for a reference map of FNR
observed by TROPOMI at 3x3 km? over Los Angeles. Subsequently, we coarsened the map to
13x24, 36x36, 108x108, and 216x216 km? and modeled their semivariograms. As for 13x24 km?,
which is equivalent to the OMI nadir spatial resolution, around 12% of spatial information
(variance) was lost due to its footprint. The larger the footprint, the bigger the spatial representation
error. For instance, a grid box with a size of 216x216 km? lost 65% of the spatial information in
the ratio at a 50 km length scale. Our method is compelling to understand and easy to apply for
other products and different atmospheric environments. Based on this approach, we developed an
open-source package called SpaTial Representation Error EstimaTor (STREET) (Souri, 2022).

We presented estimates of retrieval errors associated with daily TROPOMI and OMI
tropospheric NO> columns by comparing them against a large suite of MAX-DOAS (Verhoelst et
al. 2021) and vertically-integrated measurements from aircraft spirals (Choi et al., 2020). Both
products were smaller than the benchmark. Furthermore, they show a relatively consistent
dispersion at a 68% confidence level (~2x10!° molec./cm?) suggested by fitting a normal function
(R?>0.9) to their error distributions. As for daily TROPOMI and OMI HCHO products, we used
global FTIR observations (Vigouroux et al., 2020) and data-constrained GEOS-Chem outputs from
multiple campaigns (Zhu et al., 2020), respectively. TROPOMI HCHO indeed outperforms OMI
HCHO with respect to bias and dispersion on a daily basis. The standard deviation of OMI HCHO
was found to be roughly five times as large compared to TROPOMI. While this error can be partly
reduced by oversampling over a span of a month or a season, it is critical to recognize that ozone
events are episodic; thus, daily observations should be the standard mean for understanding the
chemical pathways for the formation of tropospheric ozone. After combining the daily biases from
both HCHO and NO; TROPOMI comparisons, we concluded that either daily HCHO or
tropospheric NO2 columns should be above 1.2-1.5x10'¢ molec./cm? to achieve 20-30% standard
error in the ratio. Due to the large error in daily OMI HCHO, it was nearly impossible to achieve
20-30% standard error given the observable range of HCHO and NO; columns over our planet. To
reach 50% error using daily OMI data, HCHO columns should be above 3.2x10'® molec./cm? or
tropospheric NO, columns should be above 8x10!°> molec./cm?.

To build intuition in the significance of the errors above, we finally calculated the
combined error in the ratio by linearly combining the root sum of the squares of the TROPOMI
retrieval errors, the spatial representation error pertaining to OMI nadir footprint over a city-like
environment, and the altitude adjustment error for a wide range of observed HCHO and NO:
columns over the US. These observations were based on the TROPOMI in the summertime of
2021. The total errors were relatively mild (<50%) in cities due to a stronger signal, whereas they
easily exceeded 100% in regions with low vegetation and anthropogenic sources (i.e., Rocky
Mountains). The retrieval error was the dominant source of the combined error (40-90%).

All of these aspects highlight the necessity of improving the trace gas satellite retrieval
algorithms in conjunction with sensor calibration, although with the realization that a better
retrieval is somewhat limited by the advancements made in other disciplines, such as atmospheric
modeling and molecular spectroscopy.
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Tablel. The box model configurations and inputs.

Temporal resolution of samples 10-15 sec
Time steps 1 hour
Number of solar cycles 5

Dilution constant

1/86400 -1/43200 (s)

Meteorological Inputs

Pressure, Temperature, and Relative Humidity

Photolysis frequencies estimates

LUT based on the NCAR TUV model calculations

Photolysis frequencies
constraints (campaign#1)

Measured jNO; (1-4) and jO'D (4)

Compounds (Instrument#t,
campaign#}) used for
constraining the box model

Ha(1, 4)§, CO (4, 1-4), NO« (2, 1-4), O3 (2, 1-4), SO2 (6, 4) , CH4
(4, 1-4), HNO3 (10, 1-4), Isoprene (9, 1-4), Monoterpenes (9, 1-
4), Acetone (9, 1-4), Ethylene (1, 4), Ethane (1, 4), Methanol (9,
1-4), Propane (1, 4), Benzene (1 or 9, 2-4), Xylene (1 or 9, 1 and
4), Toluene (1 or 9, 1-4), Glyoxal (8, 4), Acetaldehyde (9, 1-4),

Methyl vinyl ketone (9, 1-4), Methyl Ethyl Ketone (9, 2-4),
Propene (1 or 9, 2 and 4), Acetic acid (9, 2-4), Glycolaldehyde
(5,4), H02(5,4)

Unconstrained compounds
(Instrument#7, campaign#7)
used for validation

HO, (3, 4), OH (3, 4), NO (2, 1-4), NO: (2, 1-4), PAN (10, 1-4),
HCHO (7, 1-4)

Chemical Mechanism

CB06

1 (1) UC Irvine’s Whole Air Sampler (WAS), (2) NCAR 4-Channel Chemiluminescence, (3) Penn
State's Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), (4) NASA Langley's DACOM
tunable diode laser spectrometer, (5) Caltech's single mass analyzer, (6) Georgia Tech's ionization
mass spectrometer, (7) The University of Colorado at Boulder's the Compact Atmospheric Multi-

species Spectrometer (CAMS),

(8) Korean Airborne Cavity Enhances Spectrometer, (9)

University of Innsbruck's PTR-TOF-MS instrument, and (10) University of California, Berkeley's

TD-LIF.

i (1) DISCOVER-Baltimore-Washington, (2) DISCOVER-Texas-Houston, (3) DISCOVER-

Colorado, and (4) KORUS-AQ

§ In the absence of measurements,

a default value of 550 ppbv is specified.

30




1266

1267
1268

1269
1270
1271
1272
1273

8 e T
-106 -104 -102 124126128130132134
Lon Lon

Figure 1. The spatial distributions of aircraft measurements collected during NASA’s a)
DISCOVER-AQ Houston-Texas, b) DISCOVER-AQ Baltimore-Washington, c) DISCOVER-AQ
Colorado, and d) KORUS-AQ. The duration of each campaign is based on how long the aircraft
was in the air.
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1277  Figure 2. The comparisons of the observed concentrations of several critical compounds to those
1278  simulated by our FOAM box model. Each subplot contains mean bias (MB), mean absolute bias
1279  (MAB), and root mean square error (RMSE). The least-squares fit to the paired data, along with
1280  the coefficient of determination (R?) are also individually shown for each compound. Note that we
1281  do not account for the observations errors in the x-axis. The concentrations of NO and NO> are
1282 log-transformed.
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Figure 3. The scatterplot of natural logarithm-transformed of HCHO/NO:> versus LROx/LNOx
based on the simulated values performed by the FOAM box model. The heat color indicates the
calculated ozone production rates (POs). The size of each data point is proportional to
HCHOXNO:a. The black line is the baseline separator of NOx-sensitive (above the line) and VOC-
sensitive (below the line) regimes. We overlay HCHO/NO>=1 and HCHO/NO>=2 as red and
purple lines, respectively. The dashed dark green line indicates the least-squares fit to the paired
data. The HCHO/NO; = 1.8 with a 20% error is the optimal transitioning point based on this result.
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Figure 4. Cumulative distribution functions of PO; and HCHOXNO; simulated by the box model
constrained by NASA’s aircraft observations. Four regions are shown: NOx-sensitive — NOx-sensitive,
NOx-sensitive—transitional, VOC-sensitive—transitional, and VOC-sensitive—VOC-sensitive. The first
name of the regime is based on the baseline (In(LROx/LNOx)=-1.0), whereas the second one follows those
defined in Duncan et al. (2010): VOC-sensitive if HCHO/NO<I, transitional if 1<HCHO/NO»<2, and
NOx-sensitive if HCHO/NO2>2.
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1302 Figure 5. The violin plots of the afternoon vertical distribution of HCHO, NO>, and HCHO/NO>
1303 observations collected during DISCOVER-AQ Texas, Colorado, Maryland, and KORUS-AQ campaigns.
1304 The violin plots demonstrate the distribution of data (i.e., a wider width means a higher frequency). White
1305 dots show the median. A solid black line shows both the 25th and 75th percentiles. The heatmap denotes
1306 the simulated ozone production rates.
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Figure 6. The adjustment factor is the ratio of the centroid of the polygon bounding 25" and 75"
percentiles of the observed HCHO/NO: columns by NASA’s aircraft between the surface to 8 km
to the ones between the surface and the desired altitude. This factor can be easily applied to the
observed HCHO/NO> columns to translate the value to the desired altitude stretching down to the
surface (i.e., PBLH). The optimal curve follows a quadratic function formulated in Eq.11.
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Figure 7. Oversampled TROPOMI total HCHO columns (top), tropospheric NO» columns
(middle), and the ratio (bottom) at 3x3 km? from June till August 2021 over the US. The ratio map
is derived from the averaged maps shown in the top and middle panels.
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Figure 8. The first column represents the spatial map of HCHO/NO: ratios over Los Angeles from
June till August 2021 at different spatial resolutions. To upscale each map to a coarser footprint,
we use an ideal box filter tailored to the target resolution. The second column shows the
semivariograms corresponding to the left map along with the fitted curve (red line). The sill and the
range are computed based on the fitted curve. The x-axis in the semivariogram is in degrees (1
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Figure 9. The spatial representation errors quantified based on the proposed method in this study.
The error explains the spatial loss (or variance) due to the footprint of a hypothetical sensor at
different length scales. To put this error in perspective, a grid box with 216x216 km? will naturally
lose 65% of the spatial variance existing in the ratio at the scale of Los Angeles, which is roughly
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Figure 10. The histogram of the differences between TROPOMI and OMI and benchmarks. MAX-
DOAS and integrated aircraft spirals are the TROPOMI and the OMI benchmarks, respectively.
The data curation and relevant criteria on how they have been paired can be found in Verholest et
al. (2021) and Choi et al. (2020). The statistics in green are based on all data, whereas those in
pink are based on the fitted Gaussian function.
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Figure 11. The histogram of the differences between TROPOMI and OMI and benchmarks. FTIR
and corrected GEOS-Chem simulations are the TROPOMI and the OMI benchmarks. The data
curation and relevant criteria on how they have been paired can be found in Vigouroux et al. (2021)
and Zhu et al. (2020). The statistics in green color are based on all data, whereas those in pink are

based on the fitted Gaussian function.
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Figure 12. The contour plots of the relative errors in TROPOMI (left) and OMI (right) based on
dispersions derived from Figures 10 and 11. The errors used for these estimates are based on daily

observations.
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Figure 13. The total relative error for observed TROPOMI HCHO/NO: ratios considering the
daily TROPOMI retrieval errors (oyo,= 2.11x10"° molec./cm* and oycyo= 2.97x10"
molec./cm?), the spatial representation pertaining to OMI footprint over a city environment (13%
loss in the spatial variance), and the column to the PBL translation parameterization (26%)
proposed in this study. Please note that the observed FNR is based on mean values from June to
August 2021, while the uncertainties used for error calculation are on a daily-basis.
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Figure 14. The fractional errors of retrieval (blue), column to PBL translation (green), and spatial
representation (yellow) of the total error budget for different concentrations and footprints based
on TROPOMI sigma values. The retrieval error used for the error budget is on a daily basis.
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