

1 **Characterization of Errors in Satellite-based HCHO/NO₂**
2 **Tropospheric Column Ratios with Respect to Chemistry, Column to**
3 **PBL Translation, Spatial Representation, and Retrieval**
4 **Uncertainties**

5
6
7 Amir H. Souri^{1*}, Matthew S. Johnson², Glenn M. Wolfe³, James H. Crawford⁴, Alan Fried⁵, Armin
8 Wisthaler^{6,7}, William H. Brune⁸, Donald R. Blake⁹, Andrew J. Weinheimer¹⁰, Tijl Verhoelst¹¹,
9 Steven Compernolle¹¹, Gaia Pinardi¹¹, Corinne Vigouroux¹¹, Bavo Langerock¹¹, Sungyeon
10 Choi^{3,12}, Lok Lamsal^{3,13}, Lei Zhu^{14,15}, Shuai Sun^{14,15}, Ronald C. Cohen^{16,17}, Kyung-Eun Min¹⁸,
11 Changmin Cho¹⁸, Sajeev Philip¹⁹, Xiong Liu¹, and Kelly Chance¹

12
13 ¹Atomic and Molecular Physics (AMP) Division, Center for Astrophysics | Harvard & Smithsonian,
14 Cambridge, MA, USA

15 ²Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA

16 ³NASA Goddard Space Flight Center, Greenbelt, MD, USA

17 ⁴NASA Langley Research Center, Hampton, VA, USA

18 ⁵Institute of Arctic & Alpine Research, University of Colorado, Boulder, CO, USA

19 ⁶Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020
20 Innsbruck, Austria

21 ⁷Department of Chemistry, University of Oslo, P.O. box 1033, Blindern, 0315 Oslo, Norway

22 ⁸Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park,
23 PA, USA

24 ⁹Department of Chemistry, University of California, Irvine, CA, USA

25 ¹⁰National Center for Atmospheric Research, Boulder, CO, USA

26 ¹¹Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium

27 ¹²Science Systems and Applications, Inc., Lanham, MD 20706, USA

28 ¹³Universities Space Research Association, Columbia, MD 21046, USA

29 ¹⁴School of Environmental Science and Engineering, Southern University of Science and Technology,
30 Shenzhen, Guangdong, China

31 ¹⁵Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the
32 Greater Bay Area, Shenzhen, Guangdong, China

33 ¹⁶Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA

34 ¹⁷Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA

35 ¹⁸School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology,
36 Gwangju, South Korea

37 ¹⁹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

38
39 * Corresponding Author: ahsouri@cfa.harvard.edu

40
41 **Abstract.**

42 The availability of formaldehyde (HCHO) (a proxy for volatile organic compound
43 reactivity) and nitrogen dioxide (NO₂) (a proxy for nitrogen oxides) tropospheric columns from
44 Ultraviolet-Visible (UV-Vis) satellites has motivated many to use their ratios to gain some insights
45 into the near-surface ozone sensitivity. Strong emphasis has been placed on the challenges that
46 come with transforming what is being observed in the tropospheric column to what is actually in
47 the planetary boundary layer (PBL) and near the surface; however, little attention has been paid to

48 other sources of error such as chemistry, spatial representation, and retrieval uncertainties. Here
49 we leverage a wide spectrum of tools and data to quantify those errors carefully.

50 Concerning the chemistry error, a well-characterized box model constrained by more than
51 500 hours of aircraft data from NASA's air quality campaigns is used to simulate the ratio of the
52 chemical loss of HO_2+RO_2 (LROx) to the chemical loss of NO_x (LNOx). Subsequently, we
53 challenge the predictive power of HCHO/NO_2 ratios (FNRs), which are commonly applied in
54 current research, at detecting the underlying ozone regimes by comparing them to LROx/LNOx.
55 FNRs show a strongly linear ($R^2=0.94$) relationship to LROx/LNOx, but only in the **logarithmic**
56 scale. Following the baseline (i.e., $\ln(\text{LROx}/\text{LNOx}) = -1.0 \pm 0.2$) with the model and mechanism
57 (CB06, r2) used for segregating NO_x -sensitive from VOC-sensitive regimes, we observe a broad
58 range of FNR thresholds ranging from 1 to 4. The transitioning ratios strictly follow a Gaussian
59 distribution with a mean and standard deviation of 1.8 and 0.4, respectively. This implies that FNR
60 has an inherent 20% standard error (1-sigma) resulting from not accurately describing the ROx-
61 HOx cycle. We calculate high ozone production rates (PO_3) dominated by large $\text{HCHO} \times \text{NO}_2$
62 concentration levels, a new proxy for the abundance of ozone precursors. The relationship between
63 PO_3 and $\text{HCHO} \times \text{NO}_2$ becomes more pronounced when moving towards NO_x -sensitive regions
64 due to non-linear chemistry; our results indicate that there is fruitful information in the
65 $\text{HCHO} \times \text{NO}_2$ metric that has not been utilized in ozone studies. The vast amount of vertical
66 information on HCHO and NO_2 concentration from the air quality campaigns enables us to
67 parameterize the vertical shapes of FNRs using a second-order rational function permitting an
68 analytical solution for an altitude adjustment factor to partition the tropospheric columns to the
69 PBL region. We propose a mathematical solution to the spatial representation error based on
70 modeling isotropic semivariograms. **Based on summertime averaged data**, Ozone Monitoring
71 Instrument (OMI) loses 12% of spatial information at its native resolution with respect to a high-
72 resolution sensor like TROPOspheric Monitoring Instrument (TROPOMI) ($>5.5 \times 3.5 \text{ km}^2$). A
73 pixel with a grid size of 216 km^2 fails at capturing $\sim 65\%$ of the spatial information in FNRs at a
74 50 km length scale comparable to the size of a large urban center (e.g., Los Angeles). We
75 ultimately leverage a large suite of in-situ and ground-based remote sensing measurements to draw
76 the error distributions of daily TROPOMI and OMI tropospheric NO_2 and HCHO columns. At a
77 68% confidence interval (1 sigma), errors pertaining to daily TROPOMI observations, either
78 HCHO or tropospheric NO_2 columns, should be above $1.2-1.5 \times 10^{16} \text{ molec.cm}^{-2}$ to attain 20-30%
79 standard error in the ratio. This level of error is almost non-achievable with OMI, given its large
80 error in HCHO .

81 The satellite column retrieval error is the largest contributor to the total error (40-90%) in
82 the FNRs. Due to a stronger signal in cities, the total relative error (<50%) tends to be mild,
83 whereas areas with low vegetation and anthropogenic sources (e.g., Rocky Mountains) are
84 markedly uncertain (>100%). Our study suggests that continuing development in the retrieval
85 algorithm and sensor design and calibration is essential to be able to advance the application of
86 FNRs beyond a qualitative metric.

87 1. Introduction

88 Accurately representing the near-surface ozone (O_3) sensitivity to its two major precursors,
89 nitrogen oxides (NO_x) and volatile organic compounds (VOCs), is an imperative step in
90 understanding non-linear chemistry associated with ozone production rates in the atmosphere.
91 While it is often tempting to characterize an airshed as NO_x or VOC-sensitive, both conditions are
92 expected as VOC-sensitive (ozone production rates sensitive to VOC) conditions near NO_x
93 sources transition to NO_x -sensitive (ozone production rates sensitive to NO_x) conditions

94 downwind as NO_x dilutes. Thus, reducing the footprint of ozone production can mostly be
95 achieved through NO_x reductions. VOCs are key to determining both the location and peak in
96 ozone production, which varies non-linearly to the NO_x abundance. Thus, knowledge of the relative
97 levels of NO_x and VOCs informs the trajectory of ozone production and expectations of where
98 peak ozone will occur as emissions change. While a large number of surface stations regularly
99 monitor the near-surface ambient nitrogen dioxide (NO₂) concentrations, the measurements of
100 several VOCs with different reactivity rates with respect to hydroxyl (OH) are not routinely
101 available. As such, our knowledge of where and when ozone production rates are elevated, and
102 their quantitative dependence on a long list of ozone precursors, is fairly limited, except for
103 observationally-rich air quality campaigns. This limitation has prompted several studies, such as
104 Sillman et al. (1990), Tonnesen and Dennis (2000a,b), and Sillman and He (2002), to investigate
105 if the ratio of certain measurable compounds can diagnose ozone regimes meaning if the ozone
106 production rate is sensitive to NO_x (i.e., NO_x-sensitive) or VOC (i.e., VOC-sensitive). Sillman
107 and He (2002) suggested that H₂O₂/HNO₃ was a robust, measurable ozone indicator as this ratio
108 could well describe the chemical loss of HO₂+RO₂ (LRO_x) to the chemical loss of NO_x (LNO_x)
109 controlling the O₃-NO_x-VOC chemistry (Kleinman et al., 2001). Nonetheless, both H₂O₂ and
110 HNO₃ measurements are limited to a few spatially-sparse air quality campaigns.

111 Formaldehyde (HCHO) is an oxidation product of VOCs, and its relatively short lifetime
112 (~1-9 hr) makes the location of its primary and secondary sources rather identifiable (Seinfeld and
113 Pandis, 2006; Fried et al., 2020). Fortunately, monitoring HCHO abundance in the atmosphere has
114 been a key goal of many Ultraviolet-Visible (UV-Vis) viewing satellites for decades (Chance et
115 al., 1991; Chance et al., 1997; Chance et al., 2000; González Abad et al., 2015; De Smedt et al.,
116 2008, 2012, 2015, 2018, 2021) with reasonable spatial coverage. Additionally, the strong
117 absorption of NO₂ in the UV-Vis range has permitted measurements of NO₂ columns from space
118 (Martin et al., 2002; Boersma et al., 2004, 2007, 2018).

119 Advancements in satellite remote-sensing of these two key compounds have encouraged
120 many studies to elucidate if the ratio of HCHO/NO₂ (hereafter FNR) could be a robust ozone
121 indicator (Tonnesen and Dennis, 2000b; Martin et al., 2004; Duncan et al., 2010). Most studies
122 using the satellite-based FNR columns attempted to provide a qualitative view of the underlying
123 chemical regimes (e.g., Choi et al., 2012; Choi and Souri, 2015a,b; Jin and Holloway, 2015; Souri
124 et al., 2017; Jeon et al., 2018; Lee et al., 2021). Relatively few studies (Duncan et al., 2010; Jin et
125 al., 2017; Schroeder et al., 2017; Souri et al., 2020) have carefully tried to provide a quantitative
126 view of the usefulness of the ratio. For the most part, the inhomogeneous vertical distribution of
127 FNR in columns has been emphasized. Jin et al. (2017) and Schroeder et al. (2017) showed that
128 differing vertical shapes of HCHO and NO₂ can cause the vertical shape of FNR not to be
129 consistent throughout the troposphere leading to a variable relationship between what is being
130 observed from the satellite and what is actually occurring in the lower atmosphere. Jin et al. (2017)
131 calculated an adjustment factor to translate the column to the surface using a relatively coarse
132 global chemical transport model. The adjustment factor showed a clear seasonal cycle stemming
133 from spatial and temporal variability associated with the vertical sources and sinks of HCHO and
134 NO₂, in addition to the atmospheric dynamics. In a more data-driven approach, Schroeder et al.
135 (2017) found that the detailed differences in the boundary layer vertical distributions of HCHO
136 and NO₂ lead to a wide range of ambiguous ratios. Additionally, ratios were shown to shift on high
137 ozone days, raising questions regarding the value of satellite averages over longer timescales. Our
138 research aims to put together an integrated and data-driven mathematical formula to translate the

139 tropospheric column to the planetary boundary layer (PBL), exploiting the abundant aircraft
140 measurements available during ozone seasons.

141 Using observationally-constrained box models, Souri et al. (2020) demonstrated that there
142 was a fundamentally inherent uncertainty related to the ratio originating from the chemical
143 dependency of HCHO on NO_x (Wolfe et al., 2016). In VOC-rich (poor) environments, the
144 transitioning ratios from NO_x-sensitive to VOC-sensitive occurred in larger (smaller) values than
145 the conventional thresholds defined in Duncan et al. (2010) due to an increased (dampened) HCHO
146 production induced by NO_x. To account for the chemical feedback and to prevent a wide range of
147 thresholds on segregating NO_x-sensitive from VOC-sensitive regions, Souri et al. (2020)
148 suggested using a first-order polynomial matched to the ridgeline in P(O₃) isopleths. Their study
149 illuminated the fact that the ratio suffers from an inherit chemical complication. However, Souri
150 et al. (2020) did not quantify the error, and their work was limited to a subset of atmospheric
151 conditions. To challenge the predictive power of FNR from a chemistry perspective, we will take
152 advantage of a large suite of datasets to make maximum use of varying meteorological and
153 chemical conditions.

154 Not only are satellite-based column measurements unable to resolve the vertical
155 information of chemical species in the tropospheric column, but they are also unable to resolve the
156 horizontal spatial variability due to their spatial footprint. The larger the footprint is, the more
157 horizontal information is blurred out. For instance, Souri et al. (2020) observed a substantial spatial
158 variance (information) in FNR columns at the spatial resolution of 250×250 m² observed by an
159 airborne sensor over Seoul, South Korea. It is intuitively clear that a coarse-resolution sensor
160 would lose a large degree of spatial variance (information). This error, known as the spatial
161 representation error, has not been studied with respect to FNR. We will leverage what we have
162 learned from Souri et al. (2022), which modeled the spatial heterogeneity in discrete data using
163 geostatistics, to quantify the spatial representation error in the ratio over an urban environment.

164 A longstanding challenge is to have a reliable estimate of the satellite retrieval errors of
165 tropospheric column NO₂ and HCHO. Significant efforts have been made recently to assemble,
166 analyze, and estimate the retrieval errors for two key satellite sensors, TROPOspheric Monitoring
167 Instrument (TROPOMI) and Ozone Monitoring Instrument (OMI), using various in-situ
168 measurements (Verhoelst et al., 2021; Vigouroux et al., 2020, Choi et al., 2020; Laughner et al.,
169 2019; Zhu et al., 2020). This study will exploit paired comparisons from some of these new studies
170 to propagate individual uncertainties in HCHO and NO₂ to the FNR errors.

171 The overarching science goal of this study is to address the fact that the accurate diagnosis
172 of surface O₃ photochemical regimes is impeded by numerous uncertainty components, which will
173 be addressed in the current paper, and can be classified into four major categories: i) inherent
174 uncertainties associated with the approach of FNRs to diagnose local O₃ production and sensitivity
175 regimes, ii) translation of tropospheric column satellite retrievals to represent PBL- or surface-
176 level chemistry, iii) spatial representativity of ground pixels of satellite sensors, and iv)
177 uncertainties associated with satellite-retrieved column-integrated concentrations of HCHO and
178 NO₂. We will address all of these sources of uncertainty using a broad spectrum of data and tools.

179 Our paper is organized into the following sections. Section 2 describes the chemical box
180 model setup and data applied. Sections 3.1 to 3.4 deal with the chemistry aspects of FNRs and
181 show the results from a box model. Section 3.5 introduces a data-driven framework to transform
182 the FNR tropospheric columns to the PBL region. Section 3.6 offers a new way to quantify the
183 spatial representation error in satellites. Section 3.7 deals with the satellite error characterization

184 and its impacts on the ratio. Section 3.8 summarizes the fractional contribution of each error to the
185 combined error. Finally, Section 4 provides a summary and conclusions of the study.

186 **2. Photochemical Box Modeling and Aircraft Data Used**

187 To quantify the uncertainty of FNR from a chemistry perspective and to obtain several
188 imperative parameters, including the calculated ozone production rates and the loss of NO_x (LNO_x)
189 and RO_x (LRO_x), we utilize the Framework for 0-D Atmospheric Modeling (F0AM) v4 (Wolfe et
190 al., 2016). We adopt the Carbon Bond 6 (CB06, r2) chemical mechanism, and heterogenous
191 chemistry is not considered in our simulations. The model is initialized with the measurements of
192 several compounds, many of which constrain the model by being held constant for each timestep
193 (see Table 1).

194 Figure 1 shows the map of data points from Deriving Information on Surface Conditions
195 from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ)
196 Baltimore-Washington (2011), DISCOVER-AQ Houston-Texas (2013), DISCOVER-AQ
197 Colorado (2014), and Korea United States Air Quality Study (KORUS-AQ) (2016).
198 Meteorological inputs come from the observed pressure, temperature, and relative humidity. The
199 measurements of photolysis rates are not available for all photolysis reactions; therefore, our initial
200 guess of those rates comes from a look-up-table populated by the National Center for Atmospheric
201 Research (NCAR) Tropospheric Ultraviolet And Visible (TUV) model calculations. These values
202 are a function of solar zenith angle, total ozone column density, surface albedo, and altitude. We
203 set the total ozone column and the surface albedo to fixed numbers of 325 (Dobson) DU and 0.15,
204 respectively. The initial guess is then corrected by applying the ratio of observed photolysis rates
205 of $\text{NO}_2 + \text{hv}$ ($j\text{NO}_2$) and/or $\text{O}_3 + \text{hv}$ ($j\text{O}^1\text{D}$) to the calculated ones to all j -values (i.e., wavelength-
206 independent). If both observations of $j\text{NO}_2$ and $j\text{O}^1\text{D}$ are available, the correction factor is
207 averaged. The KORUS-AQ campaign is the only one that provides $j\text{O}^1\text{D}$ measurements; therefore,
208 the use of the wavelength-independent correction factor based on the ratio of observed to
209 calculated $j\text{NO}_2$ values for all j -value is a potential source of error in the model especially when
210 aerosols are present. The model calculations are based on the observations merged to a temporal
211 resolution varying from 10 to 15 seconds. Each calculation was run for five consecutive days with
212 an integration time of 1 hour to approach diel steady state. We test the number of solar cycles
213 against ten days on the KORUS-AQ setup and observe no noticeable difference in simulated OH
214 and HCHO (Figure S1), indicating that five solar cycles suffice. Some secondarily-formed species
215 must be unconstrained for the purpose of model validation. Therefore, the concentrations of several
216 secondarily-formed compounds, such as HCHO and PAN, are unconstrained. Nitric oxide (NO)
217 and NO_2 are also allowed to cycle while their sum (i.e., NO_x) is constrained. Because the model
218 does not consider various physical loss pathways, including deposition and transport, which vary
219 by time and space, we oversimplify their physical loss through a first-order dilution rate set to
220 $1/86400-1/43200 \text{ s}^{-1}$ (i.e., 24- or 12-hr lifetime), which in turn prevents relatively long-lived
221 species from accumulating over time. Our decision on unconstraining HCHO, a pivotal compound
222 impacting the simulation of HOx, may introduce some systematic biases in the simulation of
223 radicals determining ozone chemistry (Schroeder et al., 2020). Therefore, to mitigate the potential
224 bias in HCHO, we set the dilution factor to maintain the campaign-averaged bias in the simulated
225 HCHO with respect to observations of less than 5%. However, it is essential to recognize that
226 HCHO can fluctuate freely for each point measurement because the dilution constraint is set to a
227 fixed value for an individual campaign. Each time tag is independently simulated, meaning we do
228 not initialize the next run using the simulated values from the previous one; this in turn, permits
229 parallel computation. Regarding the KORUS-AQ campaign where HOx observations were

available, we only ran the model for data points with HO_x measurements. Similar to Souri et al. (2020), we filled gaps in VOC observations with a bilinear interpolation method with no extrapolation allowed. In complex polluted atmospheric conditions such as that over Seoul, South Korea, Souri et al. (2020) observed that this simple treatment yielded comparable results with respect to the NASA LaRC model (Schroeder et al. 2020), which incorporated a more comprehensive data harmonization. Table 1 lists the major configuration along with the observations used for the box model.

Several parameters are calculated based on the box model outputs. LRO_x is defined through the sum of primarily radical-radical reactions:

$$LRO_x = k_{HO_2+HO_2}[HO_2]^2 + \sum k_{RO_{2i}+HO_2}[RO_{2i}][HO_2] + \sum k_{RO_{2i}+RO_{2i}}[RO_{2i}]^2 \quad (1)$$

where k is the reaction rate constant. LNO_x mainly occurs via the NO₂+OH reaction:

$$LNO_x = k_{OH+NO_2+M}[OH][NO_2][M] \quad (2)$$

where M is a third body. We calculate P(O₃) by subtracting the ozone loss pathways dictated by HO_x (HO+HO₂), NO₂+OH, O₃ photolysis, ozonolysis, and the reaction of O(¹D) with water vapor from the formation pathways through the removal of NO via HO₂ and RO₂:

$$P(O_3) = k_{HO_2+NO}[HO_2][NO] + \sum k_{RO_{2i}+NO}[RO_{2i}][NO] - k_{OH+NO_2+M}[OH][NO_2][M] - P(RONO_2) - k_{HO_2+O_3}[HO_2][O_3] - k_{OH+O_3}[OH][O_3] - k_{O(^1D)+H_2O}[O(^1D)][H_2O] - L(O_3) + alkenes \quad (3)$$

3. Results and Discussion

3.1. Box Model Validation

There are uncertainties associated with the box model (e.g., Brune et al., 2022; Zhang et al., 2021; Lee et al., 2021), which can be attributed to: i) the lack of inclusion of physical processes such as entrainment/detrainment and diffusion, ii) discounting the heterogeneous chemistry, iii) invalid assumption of the diel steady state in areas close to large emission sources or in photochemically less active environments (Thornton et al., 2002; Souri et al., 2021), iv) errors in the chemical mechanism and v) errors in the measurements. These limitations necessitate a thorough validation of the model using unconstrained observations. While models have been known for a long time not to be 100% accurate (Box, 1976), it is important to characterize whether the model can effectively represent reality. For instance, if the simulated HCHO is poorly correlated with observations and/or displayed large magnitude biases, it will be erroneous to assume that the sources of HCHO, along with relevant chemical pathways, are appropriate. It is important to acknowledge that the VOC constraints for these model calculations are incomplete, especially for the DISCOVER-AQ campaigns, which lacked comprehensive VOC observations. Nevertheless, we will show that the selected VOCs are sufficient to reproduce a large variance (>70%) in observed HCHO.

We diagnose the performance of the box model by comparing the simulated values of five compounds to observations: HCHO, NO, NO₂, PAN, hydroperoxyl radical (HO₂), and OH. Figure 2 depicts the scatterplot of the comparisons along with several statistics. HCHO observations are usually constrained in box models to improve the representation of HO₂ (Schroeder et al., 2017;

264 Souri et al., 2020; Brune et al., 2022); however, this constraint may mask the realistic
265 characterization of the chemical mechanism with respect to the treatment of VOCs. Additionally,
266 it is important to know if the sources of HCHO are adequate. Therefore, we detach the model from
267 this constraint to perform a more fair and stringent validation.

268 Concerning HCHO, our model does have considerable skill at reproducing the variability
269 of observed HCHO ($R^2=0.73$). To evaluate if this agreement is accidentally caused by the choice
270 of the dilution factor and to identify if our VOC treatment is inferior compared to the one adopted
271 in the NASA LaRC (Schroeder et al., 2021), we conducted three sets of sensitivity tests for the
272 KORUS-AQ campaign, including ones with and without considering a dilution factor and another
273 one without HNO_3 and H_2O_2 constraints (Figure S2). The lack of consideration of a dilution factor
274 results in no difference in the variance in HCHO captured by our model ($R^2=0.81$). Our model
275 without the dilution factor is still skillful at replicating the magnitude of HCHO with less than 12%
276 bias. This is why the optimal dilution factor for each campaign is within 12 hr to 24 hr, which is
277 not different from other box modeling studies (e.g., Brune et al., 2022; Miller and Brune, 2022).
278 We observe no difference in the simulated HCHO when HNO_3 and H_2O_2 values are not
279 constrained. The unconstrained NASA LaRC setup oversampled at 10-sec frequency captures 86%
280 variance in the measurements, only slightly (6%) outperforming our result. However, the
281 unconstrained NASA LaRC setup greatly underestimates the magnitude of HCHO compared to
282 our model results.

283 The model performs well with regard to the simulation of NO ($R^2=0.89$) and NO_2 ($R^2=0.99$)
284 in the logarithmic scale. Immediately evident is the underestimation of NO in highly polluted
285 regions, contrary to an overestimation in clean ones. This discrepancy leads to an underestimation
286 (overestimation) of NO/ NO_2 in polluted (clean) regions. The primary drivers of NO/ NO_2 are jNO_2
287 and O_3 , both of which are constrained in the model. What can essentially deviate the partitioning
288 between NO and NO_2 from that of observations in polluted areas is the assumption of the diel
289 steady state, which is rarely strictly valid where measurements are close to large emitters. The
290 overestimation of NO in low NO_x areas is often blamed on the lack of chemical sink pathways of
291 NO in chemical mechanisms (e.g., Newland et al., 2021). The relatively reasonable performance
292 of PAN ($R^2=0.63$) is possibly due to constraining some of the oxygenated VOCs, such as
293 acetaldehyde. Xu et al. (2021) observed a strong dependency of PAN concentrations on NO/ NO_2
294 ratios. Smaller NO/ NO_2 ratios are usually associated with larger PAN mixing ratios because NO
295 can effectively remove peroxyacetyl radicals. We observe an overestimated PAN (0.27 ppbv),
296 possibly due to an underestimation of NO/ NO_2 . Moreover, we should not rule out the impact of
297 the first-order dilution factor, which was only empirically set in this study. For instance, if we
298 ignore the dilution process for the KORUS-AQ campaign, the bias of the model in terms of PAN
299 will increase by 33% resulting in poor performance ($R^2=0.40$) (Figure S3). We notice that this
300 poor performance primarily occurs for high altitude measurements where PAN is thermally stable
301 (Figure S4); therefore, this does not impact the majority of rapid atmospheric chemistry occurring
302 in the lower troposphere, such as the formation of HCHO. Schroeder et al. (2020) found that proper
303 simulation of PAN in the polluted PBL during KORUS-AQ required a first-order loss rate based
304 on thermal decomposition at the average PBL temperature, which was more realistic than the
305 widely varying local PAN lifetimes associated with temperature gradients between the surface and
306 the top of the PBL. This solution is computationally equivalent to the dilution rate used in this
307 study.

308 KORUS-AQ was the only field campaign providing OH and HO_2 measurements.
309 Concerning HO_2 , former studies such as Schroeder et al. (2017), Souri et al. (2020), and Brune et

310 al. (2022) managed to reproduce HO₂ mixing ratios with R² ranging from 0.6 to 0.7. The
311 performance of our model (R²=0.66) is similar to these past studies, with nearly negligible biases
312 (<1%). One may argue that the absence of the HO₂ uptake by aerosols is contributing to some of
313 the discrepancies we observe in the HO₂ comparison. Brune et al. (2022) provided compelling
314 evidence showing that considering the HO₂ uptake made their results significantly inconsistent
315 with the observations suggesting that the HO₂ uptake might have been inconsequential during the
316 campaign. Our model manages to reproduce 64% of the variance of observed OH outperforming
317 the simulations presented in Souri et al. (2020) and Brune et al. (2022) by >10%. The slope (=
318 1.03) is not too far from the identity line, indicating that our box model systematically
319 overestimates OH by 0.62 10⁶ cm⁻³. This may be attributed to a missing OH sink in the mechanism
320 or the lack of inclusion of some VOCs. A sensitivity test involving removing the first-order
321 dilution process demonstrates that the simulation of HOx is rather insensitive to this parameter
322 (Figure S5). In general, the model performance is consistent, or outperforms, results from recent
323 box modeling studies, indicating that it is at least roughly representative of the real-world ozone
324 chemistry and sensitivity regimes.

325 **3.2. Can HCHO/NO₂ ratios fully describe the HOx-ROx cycle?**

326 Kleinman et al. (2001) demonstrated that LROx/LNOx is the most robust ozone regime
327 indicator. Thus, the predictive power of FNR at detecting the underlying chemical conditions can
328 be challenged by comparing FNR to LROx/LNOx. Ideally, if they show a strong degree of
329 correspondence (i.e., R²=1.0), we can confidently say that FNR can realistically portray the
330 chemical regimes. Any divergence of these two quantities indicates the inadequacy of the FNR
331 indicator. Souri et al. (2020) observed a strong linear relationship between the logarithmic
332 transformed FNR and those of LROx/LNOx. Our analysis in this study will be based on the
333 simulated values to ensure that the relationship is coherent based on a realization from the well-
334 characterized box model. As pointed out by Schroeder et al. (2017) and Souri et al. (2020), a
335 natural logarithm of LROx/LNOx roughly equal to -1.0 (i.e., LROx/LNOx = 0.35-0.37)
336 perceptibly separates VOC-sensitive from NOx-sensitive regimes, which would make this
337 threshold the baseline of our analysis.

338 Figure 3 demonstrates the log-log relationship of LROx/LNOx and FNR, and P(O₃), from
339 all four air quality campaigns. The log-log relationships from each individual campaign are shown
340 in Figure S6-S9. We overlay the LROx/LNOx baseline threshold along with two commonly used
341 thresholds for FNR suggested by Duncan et al. (2010); they defined the VOC-sensitive regimes if
342 FNR<1 and the NO_x-sensitive ones if FNR>2. Any region undergoing a value between these
343 thresholds is unlabeled and considered to be in a transitional regime. The size of each data point
344 is proportional to the HCHO×NO₂ concentration magnitude. One striking finding from this plot is
345 that there is indeed a strong linear relationship between the logarithmic-transformed LROx/LNOx
346 and FNR (R²=0.91). A strong linear relationship between the two quantities in the log-log scale
347 indicates a power law dependence (i.e., $y=ax^b$). A strong power law dependency means that these
348 two quantities have a poor correlation at their low and high values. This is mainly caused by the
349 fact that HCHO does not fully describe VOC reactivity rates **in environments with high and low**
350 **VOC concentrations** (Souri et al., 2020). The question is, what range of FNR will fall in
351 $\ln(\text{LROx/LNOx}) = -1.0 \pm 0.2$? Following the baseline, the transitioning ratios follow a normal
352 distribution with a mean of 1.8, a standard deviation of 0.4, and a range from 1 to 4 (Figure S10).
353 We define the chemical error in the application of FNR to separate the chemical regimes as the
354 relative error standard deviation (i.e., σ/μ) of the transitioning ratios leading to ~ 20%. These
355 numbers are based on a single model realization and can change if a different mechanism is used;

356 nonetheless, the model has considerable skill at reproducing many different unconstrained
357 compounds, especially OH, suggesting that it is a rather reliable realization. Comparing the
358 transitioning FNRs to the NO₂ concentrations suggests no correlation ($r=0.02$), whereas there is a
359 linear correlation between the transitioning ratios and the HCHO concentrations ($r=0.56$). This
360 tendency reinforces the study of Souri et al. (2020), who, primarily due to the HCHO-NO₂
361 feedback, observed a larger FNR threshold in VOC-rich environments to be able to detect the
362 chemical regimes.

363 **3.3. Large PO₃ rates occur in regions with large HCHO×NO₂ concentrations when
364 moving toward NOx-sensitive regions**

365 A striking and perhaps intuitive tendency observed from Figure 3 is that large PO₃ rates
366 are mostly tied to higher HCHO×NO₂. But this relationship gradually weakens as we move
367 towards VOC-sensitive regions (smaller LROx/LNOx ratios). This is a textbook example of non-
368 linear ozone chemistry. In VOC-sensitive areas, PO₃ can be strongly inhibited by NO₂+OH and
369 the formation of organic nitrates despite the abundance of the precursors. In the application of
370 remote-sensing of ozone precursors, the greatest unused metric describing the mass of the ozone
371 precursors is HCHO×NO₂. However, this metric should only be used in conjunction with FNR. To
372 demonstrate this, based on what the baseline (LROx/LNOx) suggests against thresholds on FNRs
373 defined by Duncan et al. (2010), we group the data into four regions: NOx-sensitive – NOx-
374 sensitive, NOx-sensitive-transitional, VOC-sensitive-transitional, and VOC-sensitive-VOC-
375 sensitive. A different perspective on this categorization is that the transitional regimes are a weaker
376 characterization of the main regime; for instance, NOx-sensitive-transitional regions are less NOx-
377 sensitive than NOx-sensitive – NOx-sensitive. Subsequently, the cumulative distribution functions
378 (CDFs) of PO₃ and HCHO×NO₂ with respect to the aforementioned groups are calculated, which
379 is shown in Figure 4. Regarding NOx-sensitive—NOx-sensitive regions, we see the PO₃ CDF very
380 quickly converging to the probability of 100%, indicating that the distribution of PO₃ is skewed
381 towards very low values. The median of PO₃ for this particular regime (where CDF = 50%) is only
382 0.25 ppbv/hr. This agrees with previous studies such as Martin et al. (2002), Choi et al. (2012), Jin
383 et al. (2017), and Souri et al. (2017), reporting that NOx-sensitive regimes dominate in pristine
384 areas. The PO₃ CDFs between NOx-sensitive—transitional and VOC-sensitive—VOC-sensitive
385 are not too distinct, whereas their HCHO×NO₂ CDFs are substantially different. The non-linear
386 ozone chemistry suppresses PO₃ in highly VOC-sensitive areas such that those values are not too
387 different from those in mildly polluted areas (NOx-sensitive—transitional). Perhaps the most
388 interesting conclusion from this figure is that elevated PO₃ values (median = 4.6 ppbv/hr), a factor
389 of two larger than two previous regimes, are mostly found in VOC-sensitive—transitional. This is
390 primarily due to two causes: i) this particular regime is not strongly inhibited by the nonlinear
391 chemistry, particularly NO₂+OH, and ii) it is associated with abundant precursors evident in the
392 median of HCHO×NO₂ being three times as large of those in NOx-sensitive—transitional. This
393 tendency illustrates the notion of non-linear chemistry and how this may affect regulations. Simply
394 knowing where the regimes are might not suffice to pinpoint the peak of PO₃, as this analysis
395 suggests that we need to consider both FNR and HCHO×NO₂; both metrics are readily accessible
396 from satellite remote-sensing sensors.

397 **3.4. Can we estimate PO₃ using the information from HCHO/NO₂ and HCHO×NO₂?**

398 It may be advantageous to construct an empirical function fitted to these two quantities and
399 elucidate the maximum variance (information) we can potentially gain to recreate PO₃. After
400 several attempts, we found a bilinear function ($z=a_0+a_1x+a_2y+a_3xy$) to be a good fit without

401 overparameterization. Due to presence of extreme values in both FNR and $\text{HCHO} \times \text{NO}_2$, we use a
 402 weighted least squares method for the curve fitting based on the distance of the fitted curve to the
 403 data points (known as bi-squares weighting). The best fit with R^2 equals to 0.94 and an RMSE of
 404 0.60 ppbv/hr is:

$$405 \quad PO_3 = 0.74 - 0.09x - 0.02y + 0.25xy \quad (4)$$

406 where x and y are FNR (unitless) and $\text{HCHO} \times \text{NO}_2$ (ppbv²), respectively. The residual of the fit is
 407 shown in Figure S11. The gradients of PO_3 with respect to x and y are:

$$408 \quad \frac{dPO_3}{dx} = 0.25y - 0.09 \quad (5)$$

$$409 \quad \frac{dPO_3}{dy} = 0.25x - 0.02 \quad (6)$$

410 An apparent observation arises from these equations that is the derivative of PO_3 to each
 411 metric depends on the other one underscoring their interconnectedness. For instance, Eq. (6)
 412 suggests that larger FNRs (x) result in a larger gradient of PO_3 to the abundance of $\text{HCHO} \times \text{NO}_2$
 413 (y). In very low FNRs, this gradient can become very small, rendering PO_3 insensitive (or in
 414 extreme cases, negatively correlated) to $\text{HCHO} \times \text{NO}_2$. This analysis provides encouraging results
 415 about the future application of the satellite-derived $\text{HCHO} \times \text{NO}_2$; however, the wide class of
 416 problems relating to the application of satellite-derived FNR columns, such as satellite errors in
 417 columns or the translation between columns to PBL is also present in Eq. (4), even in a more
 418 pronounced way due to $\text{HCHO} \times \text{NO}_2$ and HCHO^2 ($= xy$). This new perspective on PO_3 estimation
 419 deserves a separate study.

420 3.5. Altitude dependency and its parametrization

421 A lingering concern over the application of satellite-based FNR tropospheric columns is
 422 that the vertical distribution of HCHO and NO_2 are integrated **into** columns; thus, this vertical
 423 information is permanently lost. Here, we provide insights **into** the vertical distribution of FNR
 424 within the tropospheric column. This task requires information about the differences between i)
 425 the vertical shape of HCHO and that of NO_2 and ii) the vertical shape in the sensitivity of the
 426 retrievals to the different altitude layers (described as scattering weights). Ideally, if both
 427 compounds show an identically relative shape, the FNR columns will be valid for every air parcel
 428 along the vertical path (i.e., a straight line). Previous studies such as Jin et al. (2017) and Schroeder
 429 et al. (2017) observed a large degree of vertical inhomogeneity in both HCHO and NO_2
 430 concentrations suggesting that this ideal condition cannot be met. **We do not always have precise**
 431 **observations of HCHO and NO_2 vertical distributions**, but we can constitute some degree of
 432 generalization by leveraging the measurements made during the aircraft campaigns. As for the
 433 differences in the vertical shapes (i.e., the curvature) of the sensitivity of the retrievals between
 434 HCHO and NO_2 channels (i.e., ~ 340 nm and ~ 440 nm), under normal atmospheric and viewing
 435 geometry conditions, several studies such as Nowlan et al. 2018 and Lorente et al. 2017 showed
 436 small differences in the vertical shapes of the scattering weights **in the** first few kilometers altitude
 437 above the surface where the significant fluctuations in FNRs usually take place. Therefore, our
 438 analysis does not consider the varying vertical shapes in the scattering weights. However, this
 439 assumption might not hold for excessive aerosol loading with variable extinction efficiency
 440 between ~ 340 nm and ~ 440 nm wavelengths or extreme solar zenith angles.

441 Figure 5 demonstrates the violin plot of the afternoon ($> 12:00$ LT) vertical distribution of
 442 HCHO , NO_2 , and FNR observed by NASA's aircraft during the four field campaigns analyzed in
 443 this study superimposed by the simulated PO_3 rates. The vertical layers are grouped into sixteen

441 altitudes ranging from 0.25 km to 7.75 km. Each vertical layer incorporates measurements ± 0.25
 442 km of the mid-layer height. The observations do not follow a normal distribution, particularly in
 443 the lower parts of the atmosphere; thus, medians are preferred to represent the central tendency.
 444 While the largest PO₃ rates tend to occur in areas close to the surface (< 2 km agl), a nonnegligible
 445 fraction of the elevated PO₃ rates are also observed in other parts of the atmosphere, such as in the
 446 free troposphere.

447 Several intriguing features are observed in Figure 5: First, up to the 5.75 km range, which
 448 encompasses the PBL area and a large portion of the free troposphere, NO₂ concentrations tend to
 449 decrease quicker than those of HCHO in line with previous studies such as Schroeder et al. (2017),
 450 Jin et al. (2017), Chan et al. (2019), and Ren et al. (2022). Second, above 5.75 km, HCHO levels
 451 off, whereas NO₂ shows an increasing trend. Finally, due to their different vertical shapes, we
 452 observe nonuniformities in the vertical distribution of FNR: they become more NO_x-sensitive with
 453 altitude up to a turning point at 5.75 km and then shift back to the VOC-sensitive direction.

454 It is attractive to model these shapes and apply parameterizations to understand how their
 455 shapes will complicate the use of tropospheric column retrieval from satellites. First order rational
 456 functions are a good candidate to use. Concerning the vertical dependency of HCHO and NO₂, we
 457 find reasonable fit ($R^2=0.73$) as:

$$458 \quad HCHO, NO_2 = \frac{a_0 z + a_1}{z + a_2} \quad (7)$$

459 where z is altitude in km. a_i ($i=0,1,2$) are fitting parameters. From this equation it is determined
 that FNRs follow a second order rational function:

$$460 \quad f(z) = \frac{HCHO}{NO_2} = \frac{b_0 z^2 + b_1 z + b_2}{b_3 z^2 + b_4 z + b_5} \quad (8)$$

461 where b_i ($i=0, \dots, 5$) are fitting parameters. One can effortlessly fit this function to different bounds
 462 of the vertical distribution of FNR such as the 25th and 75th percentiles, and subsequently estimate
 463 the first moment of the resultant polygon along z divided by the total area bounded to the polygon
 (the centroid, G) via:

$$464 \quad G(z_1, z_2) = \frac{1}{2A} \int_{z_1}^{z_2} f^2(z)_{75th} - f^2(z)_{25th} dz \quad (9)$$

465 where A is the area of the polygon bounded by the 75th percentiles, $f(z)_{75th}$, and the 25th
 466 percentiles ($f(z)_{25th}$) of FNR (shown in Figure 5 as solid black lines). We define an altitude
 467 adjustment factor (f_{adj}) such that one can translate an observed FNR tropospheric column ratios,
 such as those retrieved from satellites, to a defined altitude and below that point (zt) through:

$$468 \quad f_{adj} = \frac{G(0, z_t)}{G(0, 8 \text{ km})} \quad (10)$$

469 where zt can be interchanged to match the PBLH. This definition is more beneficial than using the
 470 entire tropospheric column to the surface conversion (e.g., Jin et al., 2017) because ozone can form
 471 in various vertical layers. Using the observations collected during the campaign, we estimate Eq.
 472 (10) along with $\pm 1\sigma$ boundaries shown in Figure 6. To determine the adjustment factor error, we
 473 reestimate Eq.9 with $\pm 1\sigma$ level in the coefficients obtained from Eq.8. The resultant error is shown
 474 in the dashed red line in Figure 6. This error results from uncertainties associated with assuming
 475 that the second-order rational function can explain the vertical distribution of FNRs. The shape of
 476 the resulting adjustment factor is in line with the vertical distribution of FNR (see Figure 5): the
 477 adjustment factor curve closer to the surface has values smaller than one, increases to values larger
 478 than one in the mid-troposphere, and finally, converges to one near the top of **measured
 concentrations**. If one picks out an altitude pertaining to a PBLH, one can easily apply f_{adj} to the

479 observed FNR columns to estimate the corresponding ratio for that specific PBLH. A more evolved
480 PBLH (i.e., a large zt) results in stronger vertical mixing, rendering f_{adj} closer to one. The standard
481 error deviation of this conversion is around 19%. The relatively low fluctuations in the adjustment
482 factor around one suggest that under the observed atmospheric conditions (clear-sky afternoon
483 summers), the columnar tropospheric ratios do not poorly represent the chemical conditions in the
484 PBL region.

485 It is beneficial to model this curve to make this data-driven conversion easier for future
486 applications. A second-order polynomial can well describe ($R^2=0.97$) this curve:

$$f_{adj} = az_t^2 + bz_t + c \quad a = -0.01, b = 0.15, c = 0.78 \quad (11)$$

487 Although Eq. (11) does not include observations above 8 km, the area bounded between $f(z)_{75th}$
488 and $f(z)_{25th}$ in higher altitudes is too small to make a noticeable impact on this adjustment factor.

489 One may object that since we estimated the adjustment factor based on two boundaries
490 (25th and 75th percentiles) of the data, we are no longer really dealing with 50% of features
491 observed in the vertical shapes of FNR. This valid critique can be overcome by gradually relaxing
492 the lower and upper limits and examining the resulting change in f_{adj} . When we reduce the lower
493 limit in Eq. (9) from the 25th to 1st percentiles, the optimal curve is similar to the one shown in
494 Figure 6 (Figure S12). However, when we extend the upper limit from the 75th percentile to greater
495 values, we see the fit becoming less robust above the 80th percentile, indicating that the formulation
496 applies to ~80% of the data. The reason behind the poor representation of the adjustment factor
497 for the upper tail of the population is the extremely steep turning point between 5.5 and 6.0 km,
498 necessitating a higher-order rational function to be used for Eq. (7) and Eq. (8). We prefer to limit
499 this analysis to both boundaries and the order defined in Eq. (8) and Eq. (9) because extreme value
500 predictions usually lack robustness.

501 A **caveat** with these results is that our analysis is limited to afternoon observations because
502 we focus on afternoon low-orbiting sensors such as OMI and TROPOMI. Nonetheless, Schroeder
503 et al. (2017) and Crawford et al. (2021) observed large diurnal variability in these profiles due to
504 diurnal variability in sinks and sources of NO₂ and HCHO and atmospheric dynamics. The diurnal
505 cycle has an important implication for geostationary satellites such as Tropospheric Emissions
506 indeed: Monitoring of Pollution (TEMPO) (Chance et al., 2019). **Limiting the observations to**
507 **morning time results in a smaller adjustment factor for altitudes close to the surface resulting from**
508 **steeper vertical gradients of HCHO/NO₂** (Figures S13 and S14). This tendency agrees with Jin et
509 al. (2017), who observed a larger deviation from one in an adjustment factor used for the column-
510 surface conversion in winter.

511 Another important caveat with our analysis is that it is based upon four air quality
512 campaigns in warm seasons that avoid times/areas with convective transport; as such, our analysis
513 needs to be made aware of the vertical shapes of FNR during convective activities and cold
514 seasons. However, a few compelling assumptions can **minimize** these oversights: first, it is very
515 atypical to encounter elevated ozone production rates during cold seasons with few exceptions
516 (Ahmadov et al., 2015; Rappenglück et al., 2014); second, the notion of ozone regimes is only
517 appropriate in photochemically active environments where the ROx-HOx cycle is active; an
518 example of this can be found in Souri et al. (2021) who observed an enhancement of surface ozone
519 in central Europe during a lockdown in April 2020 (up to 5 ppbv) compared to a baseline which
520 was explainable by the reduced O₃ titration through NO in place of the photochemically induced
521 production. An exaggerated extension to this example is the nighttime chemistry where NO-O₃-
522 NO₂ partitioning is the primary driver of negative ozone production rates; at night, the definition
523 of NOx-sensitive or VOC-sensitive is meaningless, so **it** is in photochemically less active

environments; third, it is rarely advisable to use cloudy scenes in satellite UV-Vis gas retrievals due to the arguable assumption on Lambertian clouds and highly uncertain cloud optical centroid and albedo; accordingly, atmospheric convection occurring during storms or fires is commonly masked in satellite-based studies. Therefore, the limitations associated with the adjustment factor are mild compared to the advantages.

3.6. Spatial Heterogeneity

The spatial representation error resulting from unresolved processes and scales (Janić et al., 2016; Valin et al., 2011; Souri et al., 2022) refers to the amount of information lost due to satellite footprint or unresolved inputs used in satellite retrieval algorithms. Unfortunately, this source of error cannot be determined when we do not know the true state of the spatial variability. There is, however, a practical way to resolve this by conducting multi-scale intercomparisons of a coarse spatial resolution output against a finer one. Yet, despite the absence of the truth in this approach, we tend to find their comparisons useful in giving us an appreciation of the error.

We build the reference data on qualified pixels (`qa_value`> 0.75) of offline TROPOMI tropospheric NO₂ version 2.2.0 (van Geffen et al., 2021; Boersma et al., 2018) and total HCHO columns version 2.02.01 (De Smedt et al., 2018) oversampled at 3×3 km² in summer 2021 over the US. Figure 7 shows the map of those tropospheric columns as well as FNR. Encouragingly, the small footprint and relatively low detection limit of TROPOMI compared to its predecessor satellite sensors (e.g., OMI) enable us to have possibly one of the finest maps of HCHO over the US to date. Large values of HCHO columns are found in the southeast due to strong isoprene emissions (e.g., Zhu et al., 2016; Wells et al., 2020). Cities like Houston (Boeke et al., 2011; Zhu et al., 2014; Pan et al., 2015; Diao et al., 2016), Kansas City, Phoenix (Nunnermacker et al., 2004), and Los Angeles (de Gouw et al., 2018) also show pronounced enhancements of HCHO possibly due to anthropogenic sources. Expectedly, large tropospheric NO₂ columns are often confined to cities and some coal-fired power plants along the Ohio River basin. Concerning FNR, low values dominate cities, whereas high values are found in remote regions. An immediate tendency observed from these maps is that the length scale of HCHO columns is longer than that of NO₂. This indicates that NO₂ columns are more heterogeneous. Because of this, we observe a large degree of spatial heterogeneity with respect to FNRs.

Here we limit our analysis to Los Angeles due to computational costs imposed by the subsequent experiment. To quantify the spatial representation errors caused by satellite footprint size, we upscale the FNRs by convolving the values with four low pass box filters with the size of 13×24, 36×36, 108×108, and 216×216 km², shown in the first column of Figure 8. Subsequently, to extract the spatial variance (information), we follow the definition of the experimental semivariogram (Matheron, 1963):

$$\gamma(\mathbf{h}) = \frac{1}{2N(\mathbf{h})} \sum_{|x_i - x_j| - |\mathbf{h}| \leq \varepsilon} [Z(x_i) - Z(x_j)]^2 \quad (12)$$

where $Z(x_i)$ (and $Z(x_j)$) is discrete pixels of FNRs, $N(\mathbf{h})$ is the number of paired pixels separated by the vector of \mathbf{h} . The $|\cdot|$ operator indicates the length of a vector. The condition of $|x_i - x_j| - |\mathbf{h}| \leq \varepsilon$ is to permit certain tolerance for differences in the length of the vector. Here, we ignore the directional dependence in $\gamma(\mathbf{h})$ which makes the vector of \mathbf{h} scalar ($h = |\mathbf{h}|$). Moreover, we bin γ values in 100 evenly-spaced intervals ranging from 0 to 5 degrees. To remove potential outliers (such as noise), it is wise to model the semivariogram using an empirical regression model. To model the semivariogram, we follow the stable Gaussian function used by Souri et al. (2022):

$$\gamma(h) = s(1 - e^{-(\frac{h}{r})^{c_0}}): c_0=1.5 \quad (13)$$

566 where r and s are fitting parameters. For the most part, geophysical quantities become spatially
 567 uncorrelated at a certain distance called the range, and the variance associated with that distance
 568 is called the sill. The fitting parameters, r , and s , describe these two quantities as long as the stable
 569 Gaussian function can well fit to the shape of semivariogram. The semivariograms, and the fits,
 570 associated with each map are depicted in the second column of Figure 8.

571 The modeled semivariograms suggest that a coarser field comes with a smaller sill,
 572 implying a loss in the spatial information (variance). The length scale (i.e., the range) only sharply
 573 increases at coarser footprints ($>36 \times 36 \text{ km}^2$). This indicates that several coarse-resolution satellite
 574 sensors, such as OMI ($13 \times 24 \text{ km}^2$), are rather able to determine the length scales of FNR over a
 575 major city such as Los Angeles. By leveraging the modeled semivariograms, we can effortlessly
 576 determine the spatial representation error for specific scale (e.g., $h=10 \text{ km}$) through

$$e^2(h) = 1 - \frac{\gamma(h)}{\gamma_{ref}(h)} \quad (14)$$

577 where $\gamma(h)$ and $\gamma_{ref}(h)$ are the modeled semivariogram of the target and the reference fields (3×3
 578 km^2). This equation articulates the amount of information lost in the target field compared to the
 579 reference. Accordingly, the proposed formulation of the spatial representation error is relative.
 580 **Figure 9 depicts the representation errors for various footprints.** For the most part, the OMI nadir
 581 pixel ($13 \times 24 \text{ km}^2$) only has a $\sim 12\%$ loss of the spatial variance. On the contrary, a grid box with a
 582 size of $216 \times 216 \text{ km}^2$ fails at capturing $\sim 65\%$ of the spatial information in FNR with a 50 km length
 583 scale comparable to the extent of Los Angeles. The advantage of our method is that we can
 584 mathematically describe the spatial representation error as a function of the length of our target.
 585 The present method can be easily applied to other atmospheric compounds and locations. We have
 586 named this method SpaTial Representation Error EstimaTor (STREET) which is publicly available
 587 as an open-source package (Souri, 2022).

588 An oversight in the above experiment lies in its lack of appreciation of unresolved physical
 589 processes in the satellite measurements: **a weak sensitivity of some retrievals to the near-surface**
 590 **pollution due to the choice of spectral windows used for fitting** (Yang et al., 2014), using 1-D air
 591 mass factor calculation instead of 3-D (Schwaerzel et al., 2020), and **neglecting** aerosol effect on
 592 the light path are just **a few** examples to point out. To account for the unresolved processes, one
 593 can recalculate Eqs. (12)-(14) using outputs from different retrieval frameworks, which is beyond
 594 the scope of this study.

595 3.7. Satellite errors

596 3.7.1. Concept

597 Two types of retrieval errors can affect our analysis: systematic errors (bias) and
 598 unsystematic ones (random errors). In theory, it is very compelling to understand their differences.
 599 In reality, the distinction between random and systematic errors is not as clear-cut as it seems. **For**
 600 **example**, one may wish to establish the credibility of a satellite retrieval by comparing it to a sky-
 601 radiance measurement over time. Because each measurement is made at a different time, their
 602 comparison is not a repetition of the same experiment; each time, the atmosphere differs in some
 603 aspects, so each comparison is unique. Adding more sky-radiance measurements will add new
 604 experiments. For each paired data point, many unique issues contribute differently to errors; as
 605 such, our problem is grossly under-determined (i.e., more unknowns for a given observation).

606 Here, we do not attempt to separate random from systematic errors in the subsequent analysis,
607 thereby limiting this study to the total uncertainty.

608 We focus on analyzing the statistical errors drawn from the differences between the differences between the
609 benchmark and the retrievals on daily basis. Two sensors are used for this analysis: TROPOMI
610 and OMI. To propagate individual uncertainties in HCHO and NO₂ to FNRs, we follow an
611 analytical approach involving Jacobians of the ratio to HCHO and NO₂. Assuming that errors in
612 HCHO and NO₂ are uncorrelated, the relative error of the ratio can be estimated by:

$$\frac{\sigma}{ratio} = \sqrt{\left(\frac{\sigma_{HCHO}}{HCHO}\right)^2 + \left(\frac{\sigma_{NO_2}}{NO_2}\right)^2} \quad (15)$$

613 where σ_{HCHO} and σ_{NO_2} are total uncertainties of HCHO and NO₂ observations. It is important to
614 recognize that the errors in HCHO and NO₂ are not strictly uncorrelated due to assumptions made
615 in their air mass factor calculations.

616 3.7.2. Error Distributions in TROPOMI and OMI

617 We begin our analysis with the error distribution of daily TROPOMI tropospheric NO₂
618 columns (v1.02.02) against 22 MAX-DOAS instruments from May to September in 2018-2021.
619 The data are paired based on the criteria defined in Verhoelst et al. (2021). The spatial locations
620 of the stations are mapped in Figure S15. Figure 10a shows the histogram of the TROPOMI minus
621 the MAX-DOAS instruments. The first observation from this distribution is that it is skewed
622 towards lower differences, evident in the skewness parameter around -4.6. As a result of the
623 skewness, the median **should better represent** the central tendency which is around -1×10^{15}
624 molec./cm². In general, TROPOMI tropospheric NO₂ columns show a low bias. We fit a normal
625 distribution to the data using the non-linear Levenberg-Marquardt method. This fitted normal
626 distribution ($R^2=0.94$) is used to approximate σ_{NO_2} for different confidence intervals, and to
627 **minimize** blunders. To understand how much of these disagreements are caused by systematic
628 errors as opposed to random errors, we redo the histogram using monthly-based observations
629 (Figure S16). A slight change in the dispersions between the daily and the monthly-basis analysis
630 indicates the significance of unresolved systematic (or relative) biases. This tendency suggests that
631 when conducting the analysis on a monthly basis, the relative bias cannot be mitigated by
632 averaging. Verhoelst et al. (2021) rigorously studied the potential root cause of some discrepancies
633 between MAX-DOAS and TROPOMI. An important source of error stems from the fundamental
634 differences in the vertical sensitivities of MAX-DOAS (more sensitive to the lower tropospheric
635 region) and TROPOMI (more sensitive to the upper tropospheric area). This systematic error can
636 only be mitigated using reliably high-resolution vertical shape factors instead of spatiotemporal
637 averaging of the satellite data.

638 The error analysis for OMI follows the same methods applied for TROPOMI; however,
639 with different benchmarks. We follow the comparisons made between the operational product
640 version 3.1 and measured columns derived from NCAR's NO₂ measurements integrated along
641 aircraft spirals during four NASA's air quality campaigns. More information regarding this data
642 comparison can be found in Choi et al. (2020). Figure 10b shows the histogram of OMI minus the
643 integrated spirals. Compared to TROPOMI, the OMI bias is worse by a factor of two. The standard
644 deviation calculated from a Gaussian fit (2.31×10^{15} molec./cm²) is not substantially different from
645 that of TROPOMI (2.11×10^{15} molec./cm²).

646 As for the error distribution of TROPOMI HCHO columns (version 1.1.(5-7)), we use 24
647 FTIR measurements during the same time period based on the criteria specified in Vigouroux et

648 al. (2020). The stations are mapped in Figure S15. The frequency of the paired data is daily. Figure
649 11a depicts the error distribution. The distribution is slightly broader compared to that of NO₂,
650 manifested in a larger standard deviation 4.32×10^{15} molec./cm². This is primarily due to two facts:
651 i) HCHO optical depths generally peak in the UV range (<380 nm), where the large optical depths
652 of ozone and Rayleigh scattering result in weaker and noisier signals (Gonzalez Abad et al., 2019),
653 and ii) the broader and stronger NO₂ optical depths in the ViS range (400-500 nm), where the
654 signal-to-noise ratio is typically more outstanding, permit better quality retrievals. Similar to the
655 NO₂, we fit a normal distribution ($R^2=0.90$) to specify σ_{HCHO} for different confidence intervals.

656 Concerning OMI HCHO columns from SAO version 3 (Gonzalez Abad et al., 2015), we
657 follow the intercomparison approach proposed in Zhu et al. (2020). Based on this approach, the
658 benchmarks come from GEOS-Chem simulated HCHO columns corrected by in-situ aircraft
659 measurements. The measurements were made during ozone seasons from KORUS-AQ,
660 DISCOVERs, FRAPPE, NOMADSS, and SENEX campaigns (see Table 1 in Zhu et al. 2020).
661 OMI values ranging from -0.5×10^{15} molec./cm² and 1.0×10^{17} molec./cm² with effective cloud
662 fraction between 0.0 and 0.3, and SZA between 0 and 60 degrees are only considered in the
663 comparison. Any pixels from OMI and grid boxes from the corrected GEOS-Chem simulation that
664 fall into a polygon enclosing the campaign domain are used to create the error distribution shown
665 in Figure 11b. The distribution has much denser data because the model output covers a large
666 portion of the satellite swath. The error distribution suggests that OMI HCHO is inferior to
667 TROPOMI evident in larger bias and standard deviation. The OMI bias is twice as large as that of
668 TROPOMI. De Smedt et al. (2021) observed the same level of bias from their comparisons of
669 OMI/TROPOMI with MAX-DOAS instruments (see Table 3 in their paper). Moreover, their OMI
670 vs MAX-DOAS comparisons were severely scattered. Likewise, we observe the standard deviation
671 of OMI from the fitted Gaussian function to be roughly five times as large of that TROPOMI. This
672 can be primarily due to a weaker signal-to-noise (and sensor degradation) in OMI. It is because of
673 this reason that OMI HCHO should be averaged over several months. Another possible reason for
674 the large standard deviation is the fact that the benchmark arises from a modeling experiment
675 whose ability at resolving spatiotemporal variations in HCHO may be uncertain. This partly leads
676 to the performance of OMI to look poor.

677 3.7.3. *The impact of retrieval error on the ratio*

678 Following Eq. (15), we calculate the standard error for a wide range of NO₂ and HCHO
679 columns at a 68% confidence interval (1 sigma) for both TROPOMI and OMI derived from the
680 fitted Gaussian function to the histograms; the standard errors are shown in Figure 12. We observe
681 smaller errors to be associated with larger tropospheric column concentrations. As for TROPOMI,
682 either daily HCHO or tropospheric NO₂ columns should be above $1.2-1.5 \times 10^{16}$ molec./cm² to
683 achieve 20-30% standard error. The TROPOMI errors start diminishing the application of FNR
684 when both measurements are below this threshold. Regarding OMI, it is nearly impossible to get
685 the standard error below of 20-30% given its problematically large HCHO standard deviation. For
686 50% error, the daily HCHO columns should be above 3.2×10^{16} molec./cm². This range of error
687 can also be achieved if OMI tropospheric NO₂ columns are above 8×10^{15} molec./cm².

688 3.8. *The fractional errors to the combined error*

689 The ultimate task is to compile the aforementioned errors to gauge how each individual
690 source of error contributes to the overall error. Although each error is different in nature, combined
691 they explain the uncertainties of one quantity (FNR) and can be roughly considered independent;
692 therefore, the combined error is given by:

$$\sigma_{total} = \sqrt{\sigma_{Col2PBL}^2 + \sigma_{SpatialRep}^2 + \sigma_{Retreival}^2} \quad (16)$$

693 $\sigma_{Col2PBL}$ is the error in the adjustment-factor defined in this study. We calculated a 26% standard
 694 error for a wide range of PBLHs. Therefore, $\sigma_{Col2PBL}$ equals to 26% of the observed ratio (i.e.,
 695 magnitude dependent). $\sigma_{SpatialRep}$ is more complex. It is a function of the footprint of the satellite
 696 (or a model), the spatial variability of the reference field, which varies from environment to
 697 environment, and the length scale of our target (e.g., a district, a city, or a state). Eq. (14) explicitly
 698 quantifies this error. The product of the square root of that value and the observed ratio defines
 699 $\sigma_{SpatialRep}$. The last error depends on the magnitude of HCHO and NO₂ tropospheric columns. It
 700 can be estimated from Eq. (15) times the observed ratio. We did not include the chemistry error in
 701 Eq. (16) because it was suited only for segregating the chemical conditions; it does not describe
 702 the level of uncertainties that comes with the observed columnar ratio. Figure 13 shows the total
 703 relative error given the observed TROPOMI ratio seen in Figure 7. We consider the OMI spatial
 704 representation error (13% variance loss) for this case that was computed in a city environment.
 705 The retrieval errors are based on TROPOMI sigma values. Areas associated with relatively small
 706 errors (<50%) are mostly seen in cities due to a stronger signal (smaller $\sigma_{Retreival}$). Places with
 707 low vegetation and anthropogenic sources (i.e., Rocky Mountains) possess the largest errors
 708 (>100%).
 709

710 To produce some examples of the fractional errors to the combined error, we focus on two
 711 different environments with two different sets of HCHO and NO₂ columns. One represents a
 712 heavily polluted area, and the other one is a moderately polluted region. We also include two
 713 footprints: OMI (13×24 km²) and a 108×108 km² pixel. Finally, we calculate the percentage of
 714 each error component for both OMI and TROPOMI sensors. Figure 14 shows the pie charts
 715 describing the percentage of each individual error to the total error for TROPOMI. Unless the
 716 footprint of the sensor is coarse enough (e.g., 108 km²) to give rise to the spatial representation
 717 error dominance, the retrieval error stands out. New satellites are not expected to have very large
 718 footprints; as such, retrieval errors appear to be the major obstacle to using FNR in a robust
 719 manner. Figure 15 shows the same calculation but using OMI errors; the retrieval errors massively
 720 surpass other errors. This motivates us to do one more experiment; we recalculate the HCHO error
 721 distribution in OMI using monthly-averaged data instead of daily (Figure S17). This experiment
 722 suggests a standard deviation of 9.4×10^{15} molec./cm², with which we again observe the retrieval
 723 error to be the largest contributor (>80%) of the combined error (Figure S18). A recent study
 724 (Johnson et al., 2022) also suggests that retrieval errors can result in considerable disagreement
 between FNRs from various sensors and retrieval frameworks.
 725

4. Summary

726 The main goal of this study was to characterize the errors associated with the ratio of
 727 satellite-based HCHO to NO₂ columns, which has been widely used for ozone sensitivity studies.
 728 From the realization of the complexity of the problem, we now know that four major errors should
 729 be carefully quantified so that we can reliably represent the underlying ozone regimes. The errors
 730 are broken down into i) the chemistry error, ii) the column to the PBL translation, iii) the spatial
 731 representation error, and iv) the retrieval error. Each error has its own dynamics and has been
 732 tackled differently by leveraging a broad spectrum of tools and data.
 733

734 The chemistry error refers to the predictive power of the HCHO/NO₂ ratio (hereafter FNR)
 in describing the HOx-ROx cycle, which can be well explained by the ratio of the chemical loss

735 of $\text{HO}_2 + \text{RO}_2$ (LROx) to the chemical loss of NOx (LNOx). Because those chemical reactions are
736 not directly observable, we set up a chemical box model constrained with a large suite of in-situ
737 aircraft measurements collected during DISCOVER-AQs and KORUS-AQ campaigns (~ 500 hr
738 of flight). Our box model showed a reasonable performance at recreating some unconstrained key
739 compounds such as OH ($R^2=0.64$, bias=17%), HO_2 ($R^2=0.66$, bias<1%), and HCHO ($R^2=0.73$).
740 Subsequently, we compared the simulated FNRs to LROx/LNOx. They showed a high degree of
741 correspondence ($R^2=0.93$) but only in the **logarithmic** scale; this indicated that FNRs do not fully
742 describe the HOx-ROx cycle (*i.e.*, the sensitivity of ozone production rates to NOx and VOC) for
743 heavily polluted environments and pristine ones. Following a robust baseline indicator
744 ($\ln(\text{LROx}/\text{LNOx}) = -1.0 \pm 0.2$) segregating NOx-sensitive from VOC-sensitive regimes, we
745 observed a diverse range of FNR ranging from 1 to 4. These transitioning ratios had a Gaussian
746 distribution with a mean of 1.8 and a standard deviation of 0.4. This implied that the relative
747 standard error associated with the ratio from the chemistry perspective at a 68% confidence interval
748 was 20%. Although this threshold with its error was based on a single model realization and can
749 be different for a different chemical mechanism, it provided a useful universal baseline derived
750 from various chemical and meteorological conditions. At a 68% confidence level, any uncertainty
751 beyond 20% in the ozone regime identification from FNRs likely originates from other sources of
752 error, such as the retrieval error.

753 Results from the box model showed that ozone production rates in extremely polluted
754 regions (VOC-sensitive) were not significantly different from those in pristine ones (NOx-
755 sensitive) due to non-linear chemical feedback mostly imposed by $\text{NO}_2 + \text{OH}$. Indeed, the largest
756 PO_3 rates (median = 4.6 ppbv/hr) were predominantly seen in VOC-sensitive regimes tending
757 towards the transitional regime. This was primarily caused by the abundance of ozone precursors
758 (*i.e.*, $\text{HCHO} \times \text{NO}_2$) and the diminished negative chemical feedback. We also revealed that
759 $\text{HCHO} \times \text{NO}_2$ could be used as a sensible proxy for the ozone precursors' abundance. In theory,
760 this metric, in conjunction with the ratio, provided reasonable estimates of PO_3 rates (RMSE =
761 ± 0.60 ppbv/hr).

762 We then analyzed the afternoon vertical distribution of HCHO, NO_2 , and their ratio
763 observed from aircraft during the air quality campaigns binned to the near-surface to 8 km. For
764 altitudes below 5.75 km, HCHO concentration steadily decreased with altitude but at a lower rate
765 than NO_2 . Above that altitude, NO_2 concentrations stabilized and slightly increased due to
766 lightning and stratospheric sources. The dissimilarity between the vertical shape of NO_2 versus
767 HCHO resulted in a **rather** non-linear shape of FNR. This non-linear shape necessitated a
768 mathematical formulation to transform an observed columnar ratio to a ratio at a desired vertical
769 height expanding from the surface. We fit a second-order rational function to the profile and
770 formulated the altitude adjustment factor, which followed a second-order polynomial function
771 starting from values below 1 for lower altitudes, following values above 1 for some high altitudes,
772 and finally converging to 1 at 8 km. This behavior means that the ozone regime tends to get pushed
773 **slightly** towards the VOC-sensitive regime near the surface for a given tropospheric columnar
774 ratio. **This tendency was more pronounced in morning times when the non-linear shape of FNRs**
775 **was stronger.** This data-driven adjustment factor exclusively derived from afternoon aircraft
776 profiles during warm seasons in non-convective conditions had a standard error of **19%.**

777 An important error in the satellite-based observations stemmed from unresolved spatial
778 variability in trace gas concentrations within a satellite pixel (Souri et al., 2022; Tang et al., 2021).
779 The amount of unresolved spatial variability (the spatial representation error) can in principle be
780 modeled if we base our reference on a distribution map made from a high spatial resolution dataset.

We modeled semivariograms (or spatial auto-correlation) computed for a reference map of FNR observed by TROPOMI at 3×3 km 2 over Los Angeles. Subsequently, we coarsened the map to 13×24 , 36×36 , 108×108 , and 216×216 km 2 and modeled their semivariograms. As for 13×24 km 2 , which is equivalent to the OMI nadir spatial resolution, around 12% of spatial information (variance) was lost due to its footprint. The larger the footprint, the bigger the spatial representation error. For instance, a grid box with a size of 216×216 km 2 lost 65% of the spatial information in the ratio at a 50 km length scale. Our method is compelling to understand and easy to apply for other products and different atmospheric environments. Based on this approach, we developed an open-source package called SpaTial Representation Error EstimaTor (STREET) (Souri, 2022).

We presented estimates of retrieval errors associated with daily TROPOMI and OMI tropospheric NO₂ columns by comparing them against a large suite of MAX-DOAS (Verhoelst et al. 2021) and vertically-integrated measurements from aircraft spirals (Choi et al., 2020). Both products were smaller than the benchmark. Furthermore, they show a relatively consistent dispersion at a 68% confidence level ($\sim 2 \times 10^{15}$ molec./cm 2) suggested by fitting a normal function ($R^2 > 0.9$) to their error distributions. As for daily TROPOMI and OMI HCHO products, we used global FTIR observations (Vigouroux et al., 2020) and data-constrained GEOS-Chem outputs from multiple campaigns (Zhu et al., 2020), respectively. TROPOMI HCHO indeed outperforms OMI HCHO with respect to bias and dispersion on a daily basis. The standard deviation of OMI HCHO was found to be roughly five times as large compared to TROPOMI. While this error can be partly reduced by oversampling over a span of a month or a season, it is critical to recognize that ozone events are episodic; thus, daily observations should be the standard mean for understanding the chemical pathways for the formation of tropospheric ozone. After combining the daily biases from both HCHO and NO₂ TROPOMI comparisons, we concluded that either daily HCHO or tropospheric NO₂ columns should be above $1.2-1.5 \times 10^{16}$ molec./cm 2 to achieve 20-30% standard error in the ratio. Due to the large error in daily OMI HCHO, it was nearly impossible to achieve 20-30% standard error given the observable range of HCHO and NO₂ columns over our planet. To reach 50% error using daily OMI data, HCHO columns should be above 3.2×10^{16} molec./cm 2 or tropospheric NO₂ columns should be above 8×10^{15} molec./cm 2 .

To build intuition in the significance of the errors above, we finally calculated the combined error in the ratio by linearly combining the root sum of the squares of the TROPOMI retrieval errors, the spatial representation error pertaining to OMI nadir footprint over a city-like environment, and the altitude adjustment error for a wide range of observed HCHO and NO₂ columns over the US. These observations were based on the TROPOMI in the summertime of 2021. The total errors were relatively mild (<50%) in cities due to a stronger signal, whereas they easily exceeded 100% in regions with low vegetation and anthropogenic sources (i.e., Rocky Mountains). The retrieval error was the dominant source of the combined error (40-90%).

All of these aspects highlight the necessity of improving the trace gas satellite retrieval algorithms in conjunction with sensor calibration, although with the realization that a better retrieval is somewhat limited by the advancements made in other disciplines, such as atmospheric modeling and molecular spectroscopy.

Acknowledgment

This study was funded by NASA's Aura Science Team (grant number: 80NSSC21K1333). PTR-MS measurements were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit, FFG-ALR-ASAP). The PTR-MS instrument team (P. Eichler, L. Kaser, T. Mikoviny, M. Müller) is acknowledged for their support with field work and data processing. We acknowledge FTIR HCHO measurements team including T. Blumenstock, M. De Mazière, M.

827 Grutter, J. W. Hannigan, N. Jones, R. Kivi, E. Lutsch, E. Mahieu, M. Makarova, I. Morino, I.
828 Murata, T. Nagahama, J. Notholt, I. Ortega, M. Palm, A. Röhling, M. Schneider, D. Smale, W.
829 Stremme, K. Strong, Y. Sun, R. Sussmann, Y. Té, and P. Wang. The measurements at Paramaribo
830 have been supported by the BMBF (German Ministry of Education and Research) in the project
831 ROMIC-II subproject TroStra (01LG1904A). The NDACC FTIR stations Bremen, Garmisch,
832 Izaña, Ny-Ålesund, Paramaribo and Karlsruhe have been supported by the German
833 Bundesministerium für Wirtschaft und Energie (BMWi) via DLR under grants 50EE1711A, B and
834 D. We thank the Meteorological Service Suriname and Cornelis Becker for support. The
835 measurements and data analysis at Bremen are supported by the Senate of Bremen. The NCAR
836 FTS observation programs at Thule, GR, Boulder, CO and Mauna Loa, HI are supported under
837 contract by the National Aeronautics and Space Administration (NASA). The National Center for
838 Atmospheric Research is sponsored by the National Science Foundation. The Thule effort is also
839 supported by the NSF Office of Polar Programs (OPP). Operations at the Rikubetsu and Tsukuba
840 FTIR sites are supported in part by the GOSAT series project. The Paris TCCON site has received
841 funding from Sorbonne Université, the French research center CNRS and the French space agency
842 CNES. The Jungfraujoch FTIR data are primarily available thanks to the support provided by the
843 F.R.S. - FNRS (Brussels), the GAW-CH program of MeteoSwiss (Zürich) and the HFSJG.ch
844 Foundation (Bern). The MAX-DOAS data used in this publication were obtained from A. Bais, J.
845 Burrows, K. Chan, M. Grutter, C. Liu, H. Irie, V. Kumar, Y. Kanaya, A. Piters, C. Rivera-
846 Cárdenas, M. Van Roozendael, R. Ryan, V. Sinha, and T. Wagner. Fast delivery of MAX-DOAS
847 data tailored to the S5P validation was organized through the S5PVT AO project NIDFORVAL.
848 IUP-Bremen ground-based measurements are funded by DLR-Bonn received through project
849 50EE1709A. We thank the IISER Mohali atmospheric chemistry facility for supporting the MAX-
850 DOAS measurements at Mohali, India. KNMI ground-based measurements in De Bilt and Cabauw
851 are partly supported by the Ruisdael Observatory project, Dutch Research Council (NWO) contract
852 184.034.015, by the Netherlands Space Office (NSO) for Sentinel-5p/TROPOMI validation, and
853 by ESA via the EU CAMS-27 project. LZ and SS acknowledge grants from Guangdong Basic and
854 Applied Basic Research Foundation (2021A1515110713) and Shenzhen Science and Technology
855 Program (JCYJ20210324104604012). The TROPOMI validation work was supported by
856 BELSPO/ESA through the ProDEx project TROVA-E2 (grant no. PEA 4000116692). TV
857 acknowledges support from BELSPO through BRAIN-BE 2.0 project LEGO-BEL-AQ (contract
858 B2/191/P1/LEGO-BEL-AQ). We thank Glenn Diskin for providing CO, CO₂, and CH₄
859 measurements. We thank Paul Wennberg for H₂O₂ and HNO₃ measurements.
860

861 **Data Access**

862 The FTIR and MAXDOAS data used in this publication were partly obtained from the Network
863 for the Detection of Atmospheric Composition Change (NDACC) and are available through the
864 NDACC website www.ndacc.org. The spatial representation error is estimated based on publicly
865 available package, SpaTial Representation Error EstimaTor (STREET)
866 (<https://github.com/ahsouri/STREET>). DISCOVER-AQ and KORUS-AQ aircraft data can be
867 downloaded from <https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html> and
868 <https://www-air.larc.nasa.gov/missions/korus-aq/>. TROPOMI NO₂ and HCHO data can be
869 downloaded from https://disc.gsfc.nasa.gov/datasets/S5P_L2_NO2_1/summary and
870 https://disc.gsfc.nasa.gov/datasets/S5P_L2_HCHO_1/summary. The box model results can be
871 obtained by contacting the corresponding author through ahsouri@cfa.harvard.edu.
872

873 **Author contributions**
874 AHS designed the research, analyzed the data, conducted the simulations, made all figures, and
875 wrote the paper. MSJ, SP, XL, and KC helped with conceptualization, fundraising, and analysis.
876 GMW helped with configuring the box model. AF, AW, WB, DRB, AJW, RCC, KM, and CC
877 measured various compounds during the air quality campaigns. JHC orchestrated all these
878 campaigns and contributed to the model interpretation. TV, SC, and GP provided paired MAX-
879 DOAS and TROPOMI tropospheric NO₂ observations. CV and BL provided paired FTIR and
880 TROPOMI HCHO observations. SC and LL provided paired integrated aircraft spirals and OMI
881 tropospheric NO₂ observations. LZ and SS provided the paired observations between the corrected
882 GEOS-Chem HCHO and OMI HCHO columns. All authors contributed to the discussion and
883 edited the paper.
884
885
886
887
888
889

890 **References**

891 Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., Edwards, P.M., de
892 Gouw, J.A., Frost, G.J., Gilman, J., Helmig, D., Johnson, B., Karion, A., Koss, A.,
893 Langford, A., Lerner, B., Olson, J., Oltmans, S., Peischl, J., Pétron, G., Pichugina, Y.,
894 Roberts, J.M., Ryerson, T., Schnell, R., Senff, C., Sweeney, C., Thompson, C., Veres, P.R.,
895 Warneke, C., Wild, R., Williams, E.J., Yuan, B., Zamora, R., 2015. Understanding high
896 wintertime ozone pollution events in an oil- and natural gas-producing region of the western
897 US. *Atmospheric Chemistry and Physics* 15, 411–429. <https://doi.org/10.5194/acp-15-411-2015>

898 Bela, M.M., Barth, M.C., Toon, O.B., Fried, A., Ziegler, C., Cummings, K.A., Li, Y., Pickering,
899 K.E., Homeyer, C.R., Morrison, H., Yang, Q., Mecikalski, R.M., Carey, L., Biggerstaff,
900 M.I., Betten, D.P., Alford, A.A., 2018. Effects of Scavenging, Entrainment, and Aqueous
901 Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central
902 and Southeast United States. *Journal of Geophysical Research: Atmospheres* 123, 7594–
903 7614. <https://doi.org/10.1029/2018JD028271>

904 Boeke, N.L., Marshall, J.D., Alvarez, S., Chance, K.V., Fried, A., Kurosu, T.P., Rappenglück, B.,
905 Richter, D., Walega, J., Weibring, P., Millet, D.B., 2011. Formaldehyde columns from the
906 Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft
907 data and a global model. *Journal of Geophysical Research: Atmospheres* 116.
908 <https://doi.org/10.1029/2010JD014870>

909 Boersma, K.F., Eskes, H.J., Brinksma, E.J., 2004. Error analysis for tropospheric NO₂ retrieval
910 from space. *Journal of Geophysical Research: Atmospheres* 109.
911 <https://doi.org/10.1029/2003JD003962>

912 Boersma, K.F., Eskes, H.J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen,
913 J.H.G.M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J.D., van der
914 A, R.J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., Compernolle,
915 S.C., 2018. Improving algorithms and uncertainty estimates for satellite NO₂ retrievals:
916 results from the quality assurance for the essential climate variables (QA4ECV) project.
917 *Atmospheric Measurement Techniques* 11, 6651–6678. <https://doi.org/10.5194/amt-11-6651-2018>

918 Boersma, K.F., Eskes, H.J., Veefkind, J.P., Brinksma, E.J., van der A, R.J., Sneep, M., van den
919 Oord, G.H.J., Levelt, P.F., Stammes, P., Gleason, J.F., Bucsela, E.J., 2007. Near-real time
920 retrieval of tropospheric NO₂ from OMI. *Atmospheric Chemistry and Physics* 7, 2103–
921 2118. <https://doi.org/10.5194/acp-7-2103-2007>

922 Box, G.E.P., 1976. Science and Statistics. *Journal of the American Statistical Association* 71,
923 791–799. <https://doi.org/10.1080/01621459.1976.10480949>

924 Brune, W.H., Miller, D.O., Thames, A.B., Brosius, A.L., Barletta, B., Blake, D.R., Blake, N.J.,
925 Chen, G., Choi, Y., Crawford, J.H., Digangi, J.P., Diskin, G., Fried, A., Hall, S.R., Hanisco,
926 T.F., Huey, G.L., Hughes, S.C., Kim, M., Meinardi, S., Montzka, D.D., Pusede, S.E.,
927 Schroeder, J.R., Teng, A., Tanner, D.J., Ullmann, K., Walega, J., Weinheimer, A.,
928 Wisthaler, A., Wennberg, P.O., 2022. Observations of atmospheric oxidation and ozone
929 production in South Korea. *Atmospheric Environment* 269, 118854.
930 <https://doi.org/10.1016/j.atmosenv.2021.118854>

931 Chan, K.L., Wang, Z., Ding, A., Heue, K.-P., Shen, Y., Wang, J., Zhang, F., Shi, Y., Hao, N.,
932 Wenig, M., 2019. MAX-DOAS measurements of tropospheric NO₂ and HCHO in Nanjing

933

934

935 and a comparison to ozone monitoring instrument observations. *Atmospheric Chemistry and*
936 *Physics* 19, 10051–10071. <https://doi.org/10.5194/acp-19-10051-2019>

937 Chance, K., Palmer, P.I., Spurr, R.J.D., Martin, R.V., Kurosu, T.P., Jacob, D.J., 2000. Satellite
938 observations of formaldehyde over North America from GOME. *Geophysical Research*
939 *Letters* 27, 3461–3464. <https://doi.org/10.1029/2000GL011857>

940 Chance, K., Liu, X., Miller, C.C., Abad, G.G., Huang, G., Nowlan, C., Souri, A., Suleiman, R.,
941 Sun, K., Wang, H., Zhu, L., Zoogman, P., Al-Saadi, J., Antuña-Marrero, J.-C., Carr, J.,
942 Chatfield, R., Chin, M., Cohen, R., Edwards, D., Fishman, J., Flittner, D., Geddes, J.,
943 Grutter, M., Herman, J.R., Jacob, D.J., Janz, S., Joiner, J., Kim, J., Krotkov, N.A., Lefer, B.,
944 Martin, R.V., Mayol-Bracero, O.L., Naeger, A., Newchurch, M., Pfister, G.G., Pickering,
945 K., Pierce, R.B., Cárdenas, C.R., Saiz-Lopez, A., Simpson, W., Spinei, E., Spurr, R.J.D.,
946 Szykman, J.J., Torres, O., Wang, J., 2019. TEMPO Green Paper: Chemistry, physics, and
947 meteorology experiments with the Tropospheric Emissions: monitoring of pollution
948 instrument, in: *Sensors, Systems, and Next-Generation Satellites XXIII*. Presented at the
949 *Sensors, Systems, and Next-Generation Satellites XXIII*, SPIE, pp. 56–67.
950 <https://doi.org/10.1117/12.2534883>

951 Chance, K.V., Burrows, J.P., Perner, D., Schneider, W., 1997. Satellite measurements of
952 atmospheric ozone profiles, including tropospheric ozone, from ultraviolet/visible
953 measurements in the nadir geometry: a potential method to retrieve tropospheric ozone.
954 *Journal of Quantitative Spectroscopy and Radiative Transfer* 57, 467–476.
955 [https://doi.org/10.1016/S0022-4073\(96\)00157-4](https://doi.org/10.1016/S0022-4073(96)00157-4)

956 Chance, K.V., Burrows, J.P., Schneider, W., 1991. Retrieval and molecule sensitivity studies for
957 the global ozone monitoring experiment and the scanning imaging absorption spectrometer
958 for atmospheric chartography, in: *Remote Sensing of Atmospheric Chemistry*. Presented at
959 the *Remote Sensing of Atmospheric Chemistry*, SPIE, pp. 151–165.
960 <https://doi.org/10.1117/12.46657>

961 Choi, S., Lamsal, L.N., Follette-Cook, M., Joiner, J., Krotkov, N.A., Swartz, W.H., Pickering,
962 K.E., Loughner, C.P., Appel, W., Pfister, G., Saide, P.E., Cohen, R.C., Weinheimer, A.J.,
963 Herman, J.R., 2020. Assessment of NO₂ observations during DISCOVER-AQ and KORUS-
964 AQ field campaigns. *Atmospheric Measurement Techniques* 13, 2523–2546.
965 <https://doi.org/10.5194/amt-13-2523-2020>

966 Choi, Y., Kim, H., Tong, D., Lee, P., 2012b. Summertime weekly cycles of observed and
967 modeled NO_x and O₃ concentrations as a function of satellite-derived ozone production
968 sensitivity and land use types over the Continental United States. *Atmospheric Chemistry*
969 and Physics 12, 6291–6307. <https://doi.org/10.5194/acp-12-6291-2012>

970 Choi, Y., Souri, A.H., 2015a. Seasonal behavior and long-term trends of tropospheric ozone, its
971 precursors and chemical conditions over Iran: A view from space. *Atmospheric*
972 *Environment* 106, 232–240. <https://doi.org/10.1016/j.atmosenv.2015.02.012>

973 Choi, Y., Souri, A.H., 2015b. Chemical condition and surface ozone in large cities of Texas
974 during the last decade: Observational evidence from OMI, CAMS, and model analysis.
975 *Remote Sensing of Environment* 168, 90–101. <https://doi.org/10.1016/j.rse.2015.06.026>

976 Crawford, J.H., Ahn, J.-Y., Al-Saadi, J., Chang, L., Emmons, L.K., Kim, J., Lee, G., Park, J.-H.,
977 Park, R.J., Woo, J.H., Song, C.-K., Hong, J.-H., Hong, Y.-D., Lefer, B.L., Lee, M., Lee, T.,
978 Kim, S., Min, K.-E., Yum, S.S., Shin, H.J., Kim, Y.-W., Choi, J.-S., Park, J.-S., Szykman,
979 J.J., Long, R.W., Jordan, C.E., Simpson, I.J., Fried, A., Dibb, J.E., Cho, S., Kim, Y.P., 2021.

980 The Korea–United States Air Quality (KORUS-AQ) field study. *Elementa: Science of the*
981 *Anthropocene* 9, 00163. <https://doi.org/10.1525/elementa.2020.00163>

982 de Gouw, J.A., Gilman, J.B., Kim, S.-W., Alvarez, S.L., Dusant, S., Graus, M., Griffith, S.M.,
983 Isaacman-VanWertz, G., Kuster, W.C., Lefer, B.L., Lerner, B.M., McDonald, B.C.,
984 Rappenglück, B., Roberts, J.M., Stevens, P.S., Stutz, J., Thalman, R., Veres, P.R.,
985 Volkamer, R., Warneke, C., Washenfelder, R.A., Young, C.J., 2018. Chemistry of Volatile
986 Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and
987 Determination of Emission Ratios. *Journal of Geophysical Research: Atmospheres* 123,
988 2298–2319. <https://doi.org/10.1002/2017JD027976>

989 De Smedt, I., Müller, J.-F., Stavrakou, T., van der A, R., Eskes, H., Van Roozendael, M., 2008.
990 Twelve years of global observations of formaldehyde in the troposphere using GOME and
991 SCIAMACHY sensors. *Atmospheric Chemistry and Physics* 8, 4947–4963.
992 <https://doi.org/10.5194/acp-8-4947-2008>

993 De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., Boersma, F.,
994 Chan, K.-L., Donner, S., Eichmann, K.-U., Hedelt, P., Hendrick, F., Irie, H., Kumar, V.,
995 Lambert, J.-C., Langerock, B., Lerot, C., Liu, C., Loyola, D., Piters, A., Richter, A., Rivera
996 Cárdenas, C., Romahn, F., Ryan, R.G., Sinha, V., Theys, N., Vlietinck, J., Wagner, T.,
997 Wang, T., Yu, H., Van Roozendael, M., 2021. Comparative assessment of TROPOMI and
998 OMI formaldehyde observations and validation against MAX-DOAS network column
999 measurements. *Atmospheric Chemistry and Physics* 21, 12561–12593.
1000 <https://doi.org/10.5194/acp-21-12561-2021>

1001 De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N.,
1002 Lerot, C., Gielen, C., Vigouroux, C., Hermans, C., Fayt, C., Veefkind, P., Müller, J.-F., Van
1003 Roozendael, M., 2015. Diurnal, seasonal and long-term variations of global formaldehyde
1004 columns inferred from combined OMI and GOME-2 observations. *Atmospheric Chemistry
1005 and Physics* 15, 12519–12545. <https://doi.org/10.5194/acp-15-12519-2015>

1006 De Smedt, I., Stavrakou, T., Müller, J.-F., van der A, R.J., Van Roozendael, M., 2010. Trend
1007 detection in satellite observations of formaldehyde tropospheric columns. *Geophysical
1008 Research Letters* 37. <https://doi.org/10.1029/2010GL044245>

1009 De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M.,
1010 Richter, A., Hilboll, A., Peters, E., Pedernana, M., Loyola, D., Beirle, S., Wagner, T.,
1011 Eskes, H., van Geffen, J., Boersma, K.F., Veefkind, P., 2018. Algorithm theoretical baseline
1012 for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project.
1013 *Atmospheric Measurement Techniques* 11, 2395–2426. <https://doi.org/10.5194/amt-11-2395-2018>

1015 Diao, L., Choi, Y., Czader, B., Li, X., Pan, S., Roy, A., Souri, A.H., Estes, M., Jeon, W., 2016.
1016 Discrepancies between modeled and observed nocturnal isoprene in an urban environment
1017 and the possible causes: A case study in Houston. *Atmospheric Research* 181, 257–264.
1018 <https://doi.org/10.1016/j.atmosres.2016.07.009>

1019 Duncan, B.N., Yoshida, Y., Olson, J.R., Sillman, S., Martin, R.V., Lamsal, L., Hu, Y., Pickering,
1020 K.E., Retscher, C., Allen, D.J., Crawford, J.H., 2010. Application of OMI observations to a
1021 space-based indicator of NO_x and VOC controls on surface ozone formation. *Atmospheric
1022 Environment* 44, 2213–2223. <https://doi.org/10.1016/j.atmosenv.2010.03.010>

1023 Fried, A., Walega, J., Weibring, P., Richter, D., Simpson, I.J., Blake, D.R., Blake, N.J., Meinardi,
1024 S., Barletta, B., Hughes, S.C., Crawford, J.H., Diskin, G., Barrick, J., Hair, J., Fenn, M.,
1025 Wisthaler, A., Mikoviny, T., Woo, J.-H., Park, M., Kim, Jinseok, Min, K.-E., Jeong, S.,

1026 Wennberg, P.O., Kim, M.J., Crounse, J.D., Teng, A.P., Bennett, R., Yang-Martin, M.,
1027 Shook, M.A., Huey, G., Tanner, D., Knote, C., Kim, JongHo, Park, R., Brune, W., 2020.
1028 Airborne formaldehyde and volatile organic compound measurements over the Daesan
1029 petrochemical complex on Korea's northwest coast during the Korea-United States Air
1030 Quality study: Estimation of emission fluxes and effects on air quality. *Elementa: Science of*
1031 *the Anthropocene* 8, 121. <https://doi.org/10.1525/elementa.2020.121>

1032 González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T.P., Suleiman, R., 2015. Updated
1033 Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI)
1034 formaldehyde retrieval. *Atmospheric Measurement Techniques* 8, 19–32.
1035 <https://doi.org/10.5194/amt-8-19-2015>

1036 Gonzalez Abad, G., Souri, A.H., Bak, J., Chance, K., Flynn, L.E., Krotkov, N.A., Lamsal, L., Li,
1037 C., Liu, X., Miller, C.C., Nowlan, C.R., Suleiman, R., Wang, H., 2019. Five decades
1038 observing Earth's atmospheric trace gases using ultraviolet and visible backscatter solar
1039 radiation from space. *Journal of Quantitative Spectroscopy and Radiative Transfer* 238,
1040 106478. <https://doi.org/10.1016/j.jqsrt.2019.04.030>

1041 Janjić, T., Bormann, N., Bocquet, M., Carton, J.A., Cohn, S.E., Dance, S.L., Losa, S.N., Nichols,
1042 N.K., Potthast, R., Waller, J.A., Weston, P., 2018. On the representation error in data
1043 assimilation. *Quarterly Journal of the Royal Meteorological Society* 144, 1257–1278.
1044 <https://doi.org/10.1002/qj.3130>

1045 Jeon, W., Choi, Y., Souri, A.H., Roy, A., Diao, L., Pan, S., Lee, H.W., Lee, S.-H., 2018.
1046 Identification of chemical fingerprints in long-range transport of burning induced upper
1047 tropospheric ozone from Colorado to the North Atlantic Ocean. *Science of The Total
1048 Environment* 613–614, 820–828. <https://doi.org/10.1016/j.scitotenv.2017.09.177>

1049 Jin, X., Fiore, A.M., Murray, L.T., Valin, L.C., Lamsal, L.N., Duncan, B., Folkert Boersma, K.,
1050 De Smedt, I., Abad, G.G., Chance, K., Tonnesen, G.S., 2017. Evaluating a Space-Based
1051 Indicator of Surface Ozone-NO_x-VOC Sensitivity Over Midlatitude Source Regions and
1052 Application to Decadal Trends. *Journal of Geophysical Research: Atmospheres* 122,
1053 10,439–10,461. <https://doi.org/10.1002/2017JD026720>

1054 Jin, X., Holloway, T., 2015. Spatial and temporal variability of ozone sensitivity over China
1055 observed from the Ozone Monitoring Instrument. *Journal of Geophysical Research:
1056 Atmospheres* 120, 7229–7246. <https://doi.org/10.1002/2015JD023250>

1057 Kleinman, L.I., Daum, P.H., Lee, Y.-N., Nunnermacker, L.J., Springston, S.R., Weinstein-Lloyd,
1058 J., Rudolph, J., 2001. Sensitivity of ozone production rate to ozone precursors. *Geophysical
1059 Research Letters* 28, 2903–2906. <https://doi.org/10.1029/2000GL012597>

1060 Laughner, J.L., Zhu, Q., Cohen, R.C., 2019. Evaluation of version 3.0B of the BEHR OMI NO₂
1061 product. *Atmospheric Measurement Techniques* 12, 129–146. <https://doi.org/10.5194/amt-12-129-2019>

1062 Lee, H.-J., Chang, L.-S., Jaffe, D.A., Bak, J., Liu, X., Abad, G.G., Jo, H.-Y., Jo, Y.-J., Lee, J.-B.,
1063 Yang, G.-H., Kim, J.-M., Kim, C.-H., 2022. Satellite-Based Diagnosis and Numerical
1064 Verification of Ozone Formation Regimes over Nine Megacities in East Asia. *Remote
1065 Sensing* 14, 1285. <https://doi.org/10.3390/rs14051285>

1066 Lee, Y., Huey, L.G., Wang, Y., Qu, H., Zhang, R., Ji, Y., Tanner, D.J., Wang, X., Tang, J., Song,
1067 W., Hu, W., Zhang, Y., 2021. Photochemistry of Volatile Organic Compounds in the
1068 Yellow River Delta, China: Formation of O₃ and Peroxyacetyl Nitrates. *Journal of
1069 Geophysical Research: Atmospheres* 126, e2021JD035296.
1070 <https://doi.org/10.1029/2021JD035296>

1071

1072 Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., Liu, M., Lamsal,
1073 L.N., Barkley, M., De Smedt, I., Van Roozendael, M., Wang, Y., Wagner, T., Beirle, S.,
1074 Lin, J.-T., Krotkov, N., Stammes, P., Wang, P., Eskes, H.J., Krol, M., 2017. Structural
1075 uncertainty in air mass factor calculation for NO₂ and HCHO satellite retrievals.
1076 Atmospheric Measurement Techniques 10, 759–782. <https://doi.org/10.5194/amt-10-759-2017>

1077

1078 Martin, R.V., Chance, K., Jacob, D.J., Kurosu, T.P., Spurr, R.J.D., Bucsela, E., Gleason, J.F.,
1079 Palmer, P.I., Bey, I., Fiore, A.M., Li, Q., Yantosca, R.M., Koelemeijer, R.B.A., 2002. An
1080 improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of Geophysical
1081 Research: Atmospheres 107, ACH 9-1-ACH 9-21. <https://doi.org/10.1029/2001JD001027>

1082 Martin, R.V., Fiore, A.M., Van Donkelaar, A., 2004. Space-based diagnosis of surface ozone
1083 sensitivity to anthropogenic emissions. Geophysical Research Letters 31.
1084 <https://doi.org/10.1029/2004GL019416>

1085 Matheron, G., 1963. Principles of geostatistics. Economic Geology 58, 1246–1266.
1086 <https://doi.org/10.2113/gsecongeo.58.8.1246>

1087 Miller, D.O., Brune, W.H., 2022. Investigating the Understanding of Oxidation Chemistry Using
1088 20 Years of Airborne OH and HO₂ Observations. Journal of Geophysical Research:
1089 Atmospheres 127, e2021JD035368. <https://doi.org/10.1029/2021JD035368>

1090 Newland, M.J., Bryant, D.J., Dunmore, R.E., Bannan, T.J., Acton, W.J.F., Langford, B.,
1091 Hopkins, J.R., Squires, F.A., Dixon, W., Drysdale, W.S., Ivatt, P.D., Evans, M.J., Edwards,
1092 P.M., Whalley, L.K., Heard, D.E., Slater, E.J., Woodward-Massey, R., Ye, C., Mehra, A.,
1093 Worrall, S.D., Bacak, A., Coe, H., Percival, C.J., Hewitt, C.N., Lee, J.D., Cui, T., Surratt,
1094 J.D., Wang, X., Lewis, A.C., Rickard, A.R., Hamilton, J.F., 2021. Low-NO atmospheric
1095 oxidation pathways in a polluted megacity. Atmospheric Chemistry and Physics 21, 1613–
1096 1625. <https://doi.org/10.5194/acp-21-1613-2021>

1097 Nowlan, C.R., Liu, X., Janz, S.J., Kowalewski, M.G., Chance, K., Follette-Cook, M.B., Fried, A.,
1098 González Abad, G., Herman, J.R., Judd, L.M., Kwon, H.-A., Loughner, C.P., Pickering,
1099 K.E., Richter, D., Spinei, E., Walega, J., Weibring, P., Weinheimer, A.J., 2018. Nitrogen
1100 dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution
1101 Events (GEO-CAPE) Airborne Simulator over Houston, Texas. Atmospheric Measurement
1102 Techniques 11, 5941–5964. <https://doi.org/10.5194/amt-11-5941-2018>

1103 Nunnermacker, L.J., Weinstein-Lloyd, J., Kleinman, L., Daum, P.H., Lee, Y.N., Springston,
1104 S.R., Klotz, P., Newman, L., Neuroth, G., Hyde, P., 2004. Ground-based and aircraft
1105 measurements of trace gases in Phoenix, Arizona (1998). Atmospheric Environment 38,
1106 4941–4956. <https://doi.org/10.1016/j.atmosenv.2004.04.033>

1107 Pan, S., Choi, Y., Roy, A., Li, X., Jeon, W., Souri, A.H., 2015. Modeling the uncertainty of
1108 several VOC and its impact on simulated VOC and ozone in Houston, Texas. Atmospheric
1109 Environment 120, 404–416. <https://doi.org/10.1016/j.atmosenv.2015.09.029>

1110 Rappenglück, B., Ackermann, L., Alvarez, S., Golovko, J., Buhr, M., Field, R.A., Soltis, J.,
1111 Montague, D.C., Hauze, B., Adamson, S., Risch, D., Wilkerson, G., Bush, D., Stoeckenius,
1112 T., Keslar, C., 2014. Strong wintertime ozone events in the Upper Green River basin,
1113 Wyoming. Atmospheric Chemistry and Physics 14, 4909–4934. <https://doi.org/10.5194/acp-14-4909-2014>

1115 Ren, B., Xie, P., Xu, J., Li, A., Qin, M., Hu, R., Zhang, T., Fan, G., Tian, X., Zhu, W., Hu, Z.,
1116 Huang, Y., Li, X., Meng, F., Zhang, G., Tong, J., Ren, H., Zheng, J., Zhang, Z., Lv, Y.,
1117 2022. Vertical characteristics of NO₂ and HCHO, and the ozone formation regimes in

1118 Hefei, China. *Science of The Total Environment* 823, 153425.
1119 <https://doi.org/10.1016/j.scitotenv.2022.153425>

1120 Schroeder, J.R., Crawford, J.H., Fried, A., Walega, J., Weinheimer, A., Wisthaler, A., Müller,
1121 M., Mikoviny, T., Chen, G., Shook, M., Blake, D.R., Tonnesen, G.S., 2017. New insights
1122 into the column CH₂O/NO₂ ratio as an indicator of near-surface ozone sensitivity. *Journal*
1123 of *Geophysical Research: Atmospheres* 122, 8885–8907.
1124 <https://doi.org/10.1002/2017JD026781>

1125 Schroeder, J.R., Crawford, J.H., Ahn, J.-Y., Chang, L., Fried, A., Walega, J., Weinheimer, A.,
1126 Montzka, D.D., Hall, S.R., Ullmann, K., Wisthaler, A., Mikoviny, T., Chen, G., Blake,
1127 D.R., Blake, N.J., Hughes, S.C., Meinardi, S., Diskin, G., Digangi, J.P., Choi, Y., Pusede,
1128 S.E., Huey, G.L., Tanner, D.J., Kim, M., Wennberg, P., 2020. Observation-based modeling
1129 of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air
1130 Quality Study (KORUS-AQ). *Elementa: Science of the Anthropocene* 8, 3.
1131 <https://doi.org/10.1525/elementa.400>

1132

1133 Schwaerzel, M., Emde, C., Brunner, D., Morales, R., Wagner, T., Berne, A., Buchmann, B.,
1134 Kuhlmann, G., 2020. Three-dimensional radiative transfer effects on airborne and ground-
1135 based trace gas remote sensing. *Atmospheric Measurement Techniques* 13, 4277–4293.
1136 <https://doi.org/10.5194/amt-13-4277-2020>

1137 Seinfeld, J. H. and Pandis, S. N., 2006: *Atmospheric Chemistry and Physics: From Air Pollution*
1138 to *Climate Change*, 2nd Edn., Wiley-Interscience, Hoboken, N.J., ISBN: 978-1-118-94740-
1139 1.

1140 Sillman, S., He, D., 2002. Some theoretical results concerning O₃-NO_x-VOC chemistry and
1141 NO_x-VOC indicators. *Journal of Geophysical Research: Atmospheres* 107, ACH 26-1-ACH
1142 26-15. <https://doi.org/10.1029/2001JD001123>

1143 Sillman, S., Logan, J.A., Wofsy, S.C., 1990. The sensitivity of ozone to nitrogen oxides and
1144 hydrocarbons in regional ozone episodes. *Journal of Geophysical Research: Atmospheres*
1145 95, 1837–1851. <https://doi.org/10.1029/JD095iD02p01837>

1146 Souri, A.H., Chance, K., Bak, J., Nowlan, C.R., González Abad, G., Jung, Y., Wong, D.C., Mao,
1147 J., Liu, X., 2021. Unraveling pathways of elevated ozone induced by the 2020 lockdown in
1148 Europe by an observationally constrained regional model using TROPOMI. *Atmospheric*
1149 *Chemistry and Physics* 21, 18227–18245. <https://doi.org/10.5194/acp-21-18227-2021>

1150 Souri, A.H., Chance, K., Sun, K., Liu, X., Johnson, M.S., 2022. Dealing with spatial
1151 heterogeneity in pointwise-to-gridded- data comparisons. *Atmospheric Measurement*
1152 *Techniques* 15, 41–59. <https://doi.org/10.5194/amt-15-41-2022>

1153 Souri, A.H., Nowlan, C.R., Wolfe, G.M., Lamsal, L.N., Chan Miller, C.E., Abad, G.G., Janz,
1154 S.J., Fried, A., Blake, D.R., Weinheimer, A.J., Diskin, G.S., Liu, X., Chance, K., 2020.
1155 Revisiting the effectiveness of HCHO/NO₂ ratios for inferring ozone sensitivity to its
1156 precursors using high resolution airborne remote sensing observations in a high ozone
1157 episode during the KORUS-AQ campaign. *Atmospheric Environment* 224, 117341.
1158 <https://doi.org/10.1016/j.atmosenv.2020.117341>

1159 Souri. (2022). ahsouri/STREET: STREET 0.0.2 (0.0.2). Zenodo.
1160 <https://doi.org/10.5281/zenodo.6993116>

1161 Tang, W., Edwards, D.P., Emmons, L.K., Worden, H.M., Judd, L.M., Lamsal, L.N., Al-Saadi,
1162 J.A., Janz, S.J., Crawford, J.H., Deeter, M.N., Pfister, G., Buchholz, R.R., Gaubert, B.,
1163 Nowlan, C.R., 2021. Assessing sub-grid variability within satellite pixels over urban regions

1164 using airborne mapping spectrometer measurements. *Atmospheric Measurement Techniques*
1165 14, 4639–4655. <https://doi.org/10.5194/amt-14-4639-2021>

1166 Thornton, J.A., Wooldridge, P.J., Cohen, R.C., Martinez, M., Harder, H., Brune, W.H., Williams,
1167 E.J., Roberts, J.M., Fehsenfeld, F.C., Hall, S.R., Shetter, R.E., Wert, B.P., Fried, A., 2002.
1168 Ozone production rates as a function of NO_x abundances and HO_x production rates in the
1169 Nashville urban plume. *Journal of Geophysical Research: Atmospheres* 107, ACH 7-1-ACH
1170 7-17. <https://doi.org/10.1029/2001JD000932>

1171 Tonnesen, G.S., Dennis, R.L., 2000a. Analysis of radical propagation efficiency to assess ozone
1172 sensitivity to hydrocarbons and NO_x: 1. Local indicators of instantaneous odd oxygen
1173 production sensitivity. *Journal of Geophysical Research: Atmospheres* 105, 9213–9225.
1174 <https://doi.org/10.1029/1999JD900371>

1175 Tonnesen, G.S., Dennis, R.L., 2000b. Analysis of radical propagation efficiency to assess ozone
1176 sensitivity to hydrocarbons and NO_x: 2. Long-lived species as indicators of ozone
1177 concentration sensitivity. *Journal of Geophysical Research: Atmospheres* 105, 9227–9241.
1178 <https://doi.org/10.1029/1999JD900372>

1179 Valin, L.C., Russell, A.R., Hudman, R.C., Cohen, R.C., 2011. Effects of model resolution on the
1180 interpretation of satellite NO₂ observations. *Atmospheric Chemistry and Physics* 11,
1181 11647–11655. <https://doi.org/10.5194/acp-11-11647-2011>

1182 van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M.,
1183 ter Linden, M., Ludewig, A., Boersma, K.F., Veefkind, J.P., 2022. Sentinel-5P TROPOMI
1184 NO₂ retrieval: impact of version v2.2 improvements and comparisons with OMI and
1185 ground-based data. *Atmospheric Measurement Techniques* 15, 2037–2060.
1186 <https://doi.org/10.5194/amt-15-2037-2022>

1187 Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H.J., Eichmann, K.-U.,
1188 Fjæraa, A.M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F.,
1189 Pazmiño, A., Bais, A., Bazureau, A., Boersma, K.F., Bognar, K., Dehn, A., Donner, S.,
1190 Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratzsea,
1191 M., Hansen, G.H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K.,
1192 Levelt, P.F., Liu, C., Müller, M., Navarro Comas, M., Piters, A.J.M., Pommereau, J.-P.,
1193 Portafaix, T., Prados-Roman, C., Puentedura, O., Querel, R., Remmers, J., Richter, A.,
1194 Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V.P., Stremme, W.,
1195 Strong, K., Van Roozendael, M., Veefkind, J.P., Wagner, T., Wittrock, F., Yela González,
1196 M., Zehner, C., 2021. Ground-based validation of the Copernicus Sentinel-5P TROPOMI
1197 NO₂ measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global
1198 networks. *Atmospheric Measurement Techniques* 14, 481–510. <https://doi.org/10.5194/amt-14-481-2021>

1199 Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière,
1200 M., De Smedt, I., Grutter, M., Hannigan, J. W., Jones, N., Kivi, R., Loyola, D., Lutsch, E.,
1201 Mahieu, E., Makarova, M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt,
1202 J., Ortega, I., Palm, M., Pinardi, G., Röhling, A., Smale, D., Stremme, W., Strong, K.,
1203 Sussmann, R., Té, Y., van Roozendael, M., Wang, P., and Winkler, H.: TROPOMI–
1204 Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based
1205 Fourier-transform infrared stations, *Atmos. Meas. Tech.*, 13, 3751–3767,
1206 <https://doi.org/10.5194/amt-13-3751-2020>, 2020.

1207 Wells, K.C., Millet, D.B., Payne, V.H., Deventer, M.J., Bates, K.H., de Gouw, J.A., Graus, M.,
1208 Warneke, C., Wisthaler, A., Fuentes, J.D., 2020. Satellite isoprene retrievals constrain

1210 emissions and atmospheric oxidation. *Nature* 585, 225–233. <https://doi.org/10.1038/s41586-020-2664-3>

1211 Wolfe, G. M., Kaiser, J., Hanisco, T.F., Keutsch, F.N., de Gouw, J.A., Gilman, J.B., Graus, M.,
1212 Hatch, C.D., Holloway, J., Horowitz, L.W., Lee, B.H., Lerner, B.M., Lopez-Hilfiker, F.,
1213 Mao, J., Marvin, M.R., Peischl, J., Pollack, I.B., Roberts, J.M., Ryerson, T.B., Thornton,
1214 J.A., Veres, P.R., Warneke, C., 2016. Formaldehyde production from isoprene oxidation
1215 across NO_x regimes. *Atmospheric Chemistry and Physics* 16, 2597–2610.
1216 <https://doi.org/10.5194/acp-16-2597-2016>

1217 Wolfe, Glenn M., Marvin, M.R., Roberts, S.J., Travis, K.R., Liao, J., 2016. The Framework for
1218 0-D Atmospheric Modeling (F0AM) v3.1. *Geoscientific Model Development* 9, 3309–3319.
1219 <https://doi.org/10.5194/gmd-9-3309-2016>

1220 Xu, W., Zhang, G., Wang, Y., Tong, S., Zhang, W., Ma, Z., Lin, W., Kuang, Y., Yin, L., Xu, X.,
1221 2021. Aerosol Promotes Peroxyacetyl Nitrate Formation During Winter in the North China
1222 Plain. *Environ. Sci. Technol.* 55, 3568–3581. <https://doi.org/10.1021/acs.est.0c08157>

1223 Yang, K., Carn, S.A., Ge, C., Wang, J., Dickerson, R.R., 2014. Advancing measurements of
1224 tropospheric NO₂ from space: New algorithm and first global results from OMPS.
1225 *Geophysical Research Letters* 41, 4777–4786. <https://doi.org/10.1002/2014GL060136>

1226 Zhang, K., Duan, Y., Huo, J., Huang, L., Wang, Yangjun, Fu, Q., Wang, Yuhang, Li, L., 2021.
1227 Formation mechanism of HCHO pollution in the suburban Yangtze River Delta region,
1228 China: A box model study and policy implementations. *Atmospheric Environment* 267,
1229 118755. <https://doi.org/10.1016/j.atmosenv.2021.118755>

1230 Zhu, L., González Abad, G., Nowlan, C.R., Chan Miller, C., Chance, K., Apel, E.C., DiGangi,
1231 J.P., Fried, A., Hanisco, T.F., Hornbrook, R.S., Hu, L., Kaiser, J., Keutsch, F.N., Permar,
1232 W., St. Clair, J.M., Wolfe, G.M., 2020. Validation of satellite formaldehyde (HCHO)
1233 retrievals using observations from 12 aircraft campaigns. *Atmospheric Chemistry and
1234 Physics* 20, 12329–12345. <https://doi.org/10.5194/acp-20-12329-2020>

1235 Zhu, L., Jacob, D.J., Kim, P.S., Fisher, J.A., Yu, K., Travis, K.R., Mickley, L.J., Yantosca, R.M.,
1236 Sulprizio, M.P., De Smedt, I., González Abad, G., Chance, K., Li, C., Ferrare, R., Fried, A.,
1237 Hair, J.W., Hanisco, T.F., Richter, D., Jo Scarino, A., Walega, J., Weibring, P., Wolfe,
1238 G.M., 2016. Observing atmospheric formaldehyde (HCHO) from space: validation and
1239 intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS)
1240 with SEAC⁴RS aircraft observations over the southeast US. *Atmospheric Chemistry and
1241 Physics* 16, 13477–13490. <https://doi.org/10.5194/acp-16-13477-2016>

1242 Zhu, L., Jacob, D.J., Mickley, L.J., Marais, E.A., Cohan, D.S., Yoshida, Y., Duncan, B.N., Abad,
1243 G.G., Chance, K.V., 2014. Anthropogenic emissions of highly reactive volatile organic
1244 compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of
1245 HCHO columns. *Environ. Res. Lett.* 9, 114004. <https://doi.org/10.1088/1748-9326/9/11/114004>

1246

1247

1248

1249
1250
1251

Table1. The box model configurations and inputs.

Temporal resolution of samples	10-15 sec
Time steps	1 hour
Number of solar cycles	5
Dilution constant	1/86400 -1/43200 (s ⁻¹)
Meteorological Inputs	Pressure, Temperature, and Relative Humidity
Photolysis frequencies estimates	LUT based on the NCAR TUV model calculations
Photolysis frequencies constraints (campaign#‡)	Measured jNO ₂ (1-4) and jO ¹ D (4)
Compounds (Instrument#†, campaign#‡) used for constraining the box model	H ₂ (1, 4)§, CO (4, 1-4), NO _x (2, 1-4), O ₃ (2, 1-4), SO ₂ (6, 4) , CH ₄ (4, 1-4), HNO ₃ (10, 1-4), Isoprene (9, 1-4), Monoterpenes (9, 1-4), Acetone (9, 1-4), Ethylene (1, 4), Ethane (1, 4), Methanol (9, 1-4), Propane (1, 4), Benzene (1 or 9, 2-4), Xylene (1 or 9, 1 and 4), Toluene (1 or 9, 1-4), Glyoxal (8, 4), Acetaldehyde (9, 1-4), Methyl vinyl ketone (9, 1-4), Methyl Ethyl Ketone (9, 2-4), Propene (1 or 9, 2 and 4), Acetic acid (9, 2-4), Glycolaldehyde (5, 4), H ₂ O ₂ (5, 4)
Unconstrained compounds (Instrument#†, campaign#‡) used for validation	HO ₂ (3, 4), OH (3, 4), NO (2, 1-4), NO ₂ (2, 1-4), PAN (10, 1-4), HCHO (7, 1-4)
Chemical Mechanism	CB06

1252
1253 † (1) UC Irvine's Whole Air Sampler (WAS), (2) NCAR 4-Channel Chemiluminescence, (3) Penn
1254 State's Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), (4) NASA Langley's DACOM
1255 tunable diode laser spectrometer, (5) Caltech's single mass analyzer, (6) Georgia Tech's ionization
1256 mass spectrometer, (7) The University of Colorado at Boulder's the Compact Atmospheric Multi-
1257 species Spectrometer (CAMS), (8) Korean Airborne Cavity Enhances Spectrometer, (9)
1258 University of Innsbruck's PTR-TOF-MS instrument, and (10) University of California, Berkeley's
1259 TD-LIF.

1260
1261 ‡ (1) DISCOVER-Baltimore-Washington, (2) DISCOVER-Texas-Houston, (3) DISCOVER-
1262 Colorado, and (4) KORUS-AQ
1263

1264 § In the absence of measurements, a default value of 550 ppbv is specified.
1265

Figure 1. The spatial distributions of aircraft measurements collected during NASA's a) DISCOVER-AQ Houston-Texas, b) DISCOVER-AQ Baltimore-Washington, c) DISCOVER-AQ Colorado, and d) KORUS-AQ. The duration of each campaign is based on how long the aircraft was in the air.

1277 **Figure 2.** The comparisons of the observed concentrations of several critical compounds to those
1278 simulated by our F0AM box model. Each subplot contains mean bias (MB), mean absolute bias
1279 (MAB), and root mean square error (RMSE). The least-squares fit to the paired data, along with
1280 the coefficient of determination (R^2) are also individually shown for each compound. Note that we
1281 do not account for the observations errors in the x-axis. The concentrations of NO and NO₂ are
1282 log-transformed.

1283
 1284
 1285 **Figure 3.** The scatterplot of natural logarithm-transformed of HCHO/NO₂ versus LROx/LNOx
 1286 based on the simulated values performed by the F0AM box model. The heat color indicates the
 1287 calculated ozone production rates (PO₃). The size of each data point is proportional to
 1288 HCHO×NO₂. The black line is the baseline separator of NOx-sensitive (above the line) and VOC-
 1289 sensitive (below the line) regimes. We overlay HCHO/NO₂=1 and HCHO/NO₂=2 as red and
 1290 purple lines, respectively. The dashed dark green line indicates the least-squares fit to the paired
 1291 data. The HCHO/NO₂ = 1.8 with a 20% error is the optimal transitioning point based on this result.
 1292

129
1294 **Figure 4.** Cumulative distribution functions of PO_3 and $\text{HCHO} \times \text{NO}_2$ simulated by the box model
1295 constrained by NASA's aircraft observations. Four regions are shown: NOx-sensitive — NOx-sensitive,
1296 NOx-sensitive—transitional, VOC-sensitive—transitional, and VOC-sensitive—VOC-sensitive. The first
1297 name of the regime is based on the baseline ($\ln(\text{LROx/LNOx})=-1.0$), whereas the second one follows those
1298 defined in Duncan et al. (2010): VOC-sensitive if $\text{HCHO}/\text{NO}_2 < 1$, transitional if $1 < \text{HCHO}/\text{NO}_2 < 2$, and
1299 NO_x-sensitive if $\text{HCHO}/\text{NO}_2 > 2$.
1300

1302 **Figure 5.** The violin plots of the afternoon vertical distribution of HCHO, NO₂, and HCHO/NO₂
1303 observations collected during DISCOVER-AQ Texas, Colorado, Maryland, and KORUS-AQ campaigns.
1304 The violin plots demonstrate the distribution of data (i.e., a wider width means a higher frequency). White
1305 dots show the median. A solid black line shows both the 25th and 75th percentiles. The heatmap denotes
1306 the simulated ozone production rates.
1307

1308
 1309
 1310 **Figure 6.** The adjustment factor is the ratio of the centroid of the polygon bounding 25th and 75th
 1311 percentiles of the observed HCHO/NO₂ columns by NASA's aircraft between the surface to 8 km
 1312 to the ones between the surface and the desired altitude. This factor can be easily applied to the
 1313 observed HCHO/NO₂ columns to translate the value to the desired altitude stretching down to the
 1314 surface (i.e., PBLH). The optimal curve follows a quadratic function formulated in Eq.11.
 1315

1316
 1317 **Figure 7.** Oversampled TROPOMI total HCHO columns (top), tropospheric NO₂ columns
 1318 (middle), and the ratio (bottom) at 3×3 km² from June till August 2021 over the US. **The ratio map**
 1319 **is derived from the averaged maps shown in the top and middle panels.**
 1320

1321
1322
1323
1324
1325
1326
1327
1328

Figure 8. The first column represents the spatial map of HCHO/NO₂ ratios over Los Angeles from June till August 2021 at different spatial resolutions. To upscale each map to a coarser footprint, we use an ideal box filter tailored to the target resolution. The second column shows the semivariograms corresponding to the left map along with the fitted curve (red line). The sill and the range are computed based on the fitted curve. The x-axis in the semivariogram is in degrees (1 degree ~ 110 km).

1329
1330 **Figure 9.** The spatial representation errors quantified based on the proposed method in this study.
1331 The error explains the spatial loss (or variance) due to the footprint of a hypothetical sensor at
1332 different length scales. To put this error in perspective, a grid box with $216 \times 216 \text{ km}^2$ will naturally
1333 lose 65% of the spatial variance existing in the ratio at the scale of Los Angeles, which is roughly
1334 50 km wide. All of these numbers are in reference to the TROPOMI $3 \times 3 \text{ km}^2$.
1335

Figure 10. The histogram of the differences between TROPOMI and OMI and benchmarks. MAX-DOAS and integrated aircraft spirals are the TROPOMI and the OMI benchmarks, respectively. The data curation and relevant criteria on how they have been paired can be found in Verholest et al. (2021) and Choi et al. (2020). The statistics in green are based on all data, whereas those in pink are based on the fitted Gaussian function.

13
1344
1345
1346
1347
1348
1349
1350

Figure 11. The histogram of the differences between TROPOMI and OMI and benchmarks. FTIR and corrected GEOS-Chem simulations are the TROPOMI and the OMI benchmarks. The data curation and relevant criteria on how they have been paired can be found in Vigouroux et al. (2021) and Zhu et al. (2020). The statistics in green color are based on all data, whereas those in pink are based on the fitted Gaussian function.

Figure 12. The contour plots of the relative errors in TROPOMI (left) and OMI (right) based on dispersions derived from Figures 10 and 11. The errors used for these estimates are based on daily observations.

1356
1357
1358
1359
1360
1361
1362
1363
1364

Figure 13. The total relative error for observed TROPOMI HCHO/NO₂ ratios considering the daily TROPOMI retrieval errors ($\sigma_{NO_2} = 2.11 \times 10^{15}$ molec./cm² and $\sigma_{HCHO} = 2.97 \times 10^{15}$ molec./cm²), the spatial representation pertaining to OMI footprint over a city environment (13% loss in the spatial variance), and the column to the PBL translation parameterization (26%) proposed in this study. Please note that the observed FNR is based on mean values from June to August 2021, while the uncertainties used for error calculation are on a daily-basis.

1365
1366
1367
1368

Figure 14. The fractional errors of retrieval (blue), column to PBL translation (green), and spatial representation (yellow) of the total error budget for different concentrations and footprints based on TROPOMI sigma values. The retrieval error used for the error budget is on a daily basis.

1369
1370
1371

Figure 15. Same as Figure 14 but based on OMI sigma values.