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Abstract. 41 

The availability of formaldehyde (HCHO) (a proxy for volatile organic compound 42 
reactivity) and nitrogen dioxide (NO2) (a proxy for nitrogen oxides) tropospheric columns from 43 
Ultraviolet-Visible (UV-Vis) satellites has motivated many to use their ratios to gain some insights 44 
into the near-surface ozone sensitivity. Strong emphasis has been placed on the challenges that 45 
come with transforming what is being observed in the tropospheric column to what is actually in 46 
the planetary boundary layer (PBL) and near the surface; however, little attention has been paid to 47 
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other sources of error such as chemistry, spatial representation, and retrieval uncertainties. Here 48 
we leverage a wide spectrum of tools and data to quantify those errors carefully. 49 

Concerning the chemistry error, a well-characterized box model constrained by more than 50 
500 hours of aircraft data from NASA’s air quality campaigns is used to simulate the ratio of the 51 
chemical loss of HO2+RO2 (LROx) to the chemical loss of NOx (LNOx). Subsequently, we 52 
challenge the predictive power of HCHO/NO2 ratios (FNRs), which are commonly applied in 53 
current research, at detecting the underlying ozone regimes by comparing them to LROx/LNOx. 54 
FNRs show a strongly linear (R2=0.94) relationship to LROx/LNOx, but only in the logarithmic 55 
scale. Following the baseline (i.e., ln(LROx/LNOx) = -1.0±0.2) with the model and mechanism 56 
(CB06, r2) used for segregating NOx-sensitive from VOC-sensitive regimes, we observe a broad 57 
range of FNR thresholds ranging from 1 to 4. The transitioning ratios strictly follow a Gaussian 58 
distribution with a mean and standard deviation of 1.8 and 0.4, respectively. This implies that FNR 59 
has an inherent 20% standard error (1-sigma) resulting from not accurately describing the ROx-60 
HOx cycle. We calculate high ozone production rates (PO3) dominated by large HCHO×NO2 61 
concentration levels, a new proxy for the abundance of ozone precursors. The relationship between 62 
PO3 and HCHO×NO2 becomes more pronounced when moving towards NOx-sensitive regions 63 
due to non-linear chemistry; our results indicate that there is fruitful information in the 64 
HCHO×NO2 metric that has not been utilized in ozone studies. The vast amount of vertical 65 
information on HCHO and NO2 concentration from the air quality campaigns enables us to 66 
parameterize the vertical shapes of FNRs using a second-order rational function permitting an 67 
analytical solution for an altitude adjustment factor to partition the tropospheric columns to the 68 
PBL region. We propose a mathematical solution to the spatial representation error based on 69 
modeling isotropic semivariograms. Based on summertime averaged data, Ozone Monitoring 70 
Instrument (OMI) loses 12% of spatial information at its native resolution with respect to a high-71 
resolution sensor like TROPOspheric Monitoring Instrument (TROPOMI) (>5.5×3.5 km2). A 72 
pixel with a grid size of 216 km2 fails at capturing ~65% of the spatial information in FNRs at a 73 
50 km length scale comparable to the size of a large urban center (e.g., Los Angeles). We 74 
ultimately leverage a large suite of in-situ and ground-based remote sensing measurements to draw 75 
the error distributions of daily TROPOMI and OMI tropospheric NO2 and HCHO columns. At a 76 
68% confidence interval (1 sigma), errors pertaining to daily TROPOMI observations, either 77 
HCHO or tropospheric NO2 columns, should be above 1.2-1.5×1016 molec.cm-2 to attain 20-30% 78 
standard error in the ratio. This level of error is almost non-achievable with OMI, given its large 79 
error in HCHO. 80 

The satellite column retrieval error is the largest contributor to the total error (40-90%) in 81 
the FNRs. Due to a stronger signal in cities, the total relative error (<50%) tends to be mild, 82 
whereas areas with low vegetation and anthropogenic sources (e.g., Rocky Mountains) are 83 
markedly uncertain (>100%). Our study suggests that continuing development in the retrieval 84 
algorithm and sensor design and calibration is essential to be able to advance the application of 85 
FNRs beyond a qualitative metric.  86 

1. Introduction 87 
Accurately representing the near-surface ozone (O3) sensitivity to its two major precursors, 88 

nitrogen oxides (NOx) and volatile organic compounds (VOCs), is an imperative step in 89 
understanding non-linear chemistry associated with ozone production rates in the atmosphere. 90 
While it is often tempting to characterize an airshed as NOx or VOC-sensitive, both conditions are 91 
expected as VOC-sensitive (ozone production rates sensitive to VOC) conditions near NOx 92 
sources transition to NOx-sensitive (ozone production rates sensitive to NOx) conditions 93 
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downwind as NOx dilutes. Thus, reducing the footprint of ozone production can mostly be 94 
achieved through NOx reductions. VOCs are key to determining both the location and peak in 95 
ozone production, which varies nonlinearly to the NOx abundance. Thus, knowledge of the relative 96 
levels of NOx and VOCs informs the trajectory of ozone production and expectations of where 97 
peak ozone will occur as emissions change. While a large number of surface stations regularly 98 
monitor the near-surface ambient nitrogen dioxide (NO2) concentrations, the measurements of 99 
several VOCs with different reactivity rates with respect to hydroxyl (OH) are not routinely 100 
available. As such, our knowledge of where and when ozone production rates are elevated, and 101 
their quantitative dependence on a long list of ozone precursors, is fairly limited, except for 102 
observationally-rich air quality campaigns. This limitation has prompted several studies, such as 103 
Sillman et al. (1990), Tonnesen and Dennis (2000a,b), and Sillman and He (2002), to investigate 104 
if the ratio of certain measurable compounds can diagnose ozone regimes meaning if the ozone 105 
production rate is sensitive to NOx (i.e., NOx-sensitive) or VOC (i.e., VOC-sensitive). Sillman 106 
and He (2002) suggested that H2O2/HNO3 was a robust, measurable ozone indicator as this ratio 107 
could well describe the chemical loss of HO2+RO2 (LROx) to the chemical loss of NOx (LNOx) 108 
controlling the O3-NOx-VOC chemistry (Kleinman et al., 2001). Nonetheless, both H2O2 and 109 
HNO3 measurements are limited to a few spatially-sparse air quality campaigns.  110 

Formaldehyde (HCHO) is an oxidation product of VOCs, and its relatively short lifetime 111 
(~1-9 hr) makes the location of its primary and secondary sources rather identifiable (Seinfield and 112 
Pandis, 2006; Fried et al., 2020). Fortunately, monitoring HCHO abundance in the atmosphere has 113 
been a key goal of many Ultraviolet-Visible (UV-Vis) viewing satellites for decades (Chance et 114 
al., 1991; Chance et al., 1997; Chance et al., 2000; González Abad et al., 2015; De Smedt et al., 115 
2008, 2012, 2015, 2018, 2021) with reasonable spatial coverage. Additionally, the strong 116 
absorption of NO2 in the UV-Vis range has permitted measurements of NO2 columns from space 117 
(Martin et al., 2002; Boersma et al., 2004, 2007, 2018).  118 

Advancements in satellite remote-sensing of these two key compounds have encouraged 119 
many studies to elucidate if the ratio of HCHO/NO2 (hereafter FNR) could be a robust ozone 120 
indicator (Tonnensen and Dennis, 2000b; Martin et al., 2004; Duncan et al., 2010). Most studies 121 
using the satellite-based FNR columns attempted to provide a qualitative view of the underlying 122 
chemical regimes (e.g., Choi et al., 2012; Choi and Souri, 2015a,b; Jin and Holloway, 2015; Souri 123 
et al., 2017; Jeon et al., 2018; Lee et al., 2021). Relatively few studies (Duncan et al., 2010; Jin et 124 
al., 2017; Schroeder et al., 2017; Souri et al., 2020) have carefully tried to provide a quantitative 125 
view of the usefulness of the ratio. For the most part, the inhomogeneous vertical distribution of 126 
FNR in columns has been emphasized. Jin et al. (2017) and Schroeder et al. (2017) showed that 127 
differing vertical shapes of HCHO and NO2 can cause the vertical shape of FNR not to be 128 
consistent throughout the troposphere leading to a variable relationship between what is being 129 
observed from the satellite and what is actually occurring in the lower atmosphere. Jin et al. (2017) 130 
calculated an adjustment factor to translate the column to the surface using a relatively coarse 131 
global chemical transport model. The adjustment factor showed a clear seasonal cycle stemming 132 
from spatial and temporal variability associated with the vertical sources and sinks of HCHO and 133 
NO2, in addition to the atmospheric dynamics. In a more data-driven approach, Schroeder et al. 134 
(2017) found that the detailed differences in the boundary layer vertical distributions of HCHO 135 
and NO2 lead to a wide range of ambiguous ratios. Additionally, ratios were shown to shift on high 136 
ozone days, raising questions regarding the value of satellite averages over longer timescales. Our 137 
research aims to put together an integrated and data-driven mathematical formula to translate the 138 
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tropospheric column to the planetary boundary layer (PBL), exploiting the abundant aircraft 139 
measurements available during ozone seasons. 140 

Using observationally-constrained box models, Souri et al. (2020) demonstrated that there 141 
was a fundamentally inherent uncertainty related to the ratio originating from the chemical 142 
dependency of HCHO on NOx (Wolfe et al., 2016). In VOC-rich (poor) environments, the 143 
transitioning ratios from NOx-sensitive to VOC-sensitive occurred in larger (smaller) values than 144 
the conventional thresholds defined in Duncan et al. (2010) due to an increased (dampened) HCHO 145 
production induced by NOx. To account for the chemical feedback and to prevent a wide range of 146 
thresholds on segregating NOx-sensitive from VOC-sensitive regions, Souri et al. (2020) 147 
suggested using a first-order polynomial matched to the ridgeline in P(O3) isopleths. Their study 148 
illuminated the fact that the ratio suffers from an inherit chemical complication. However, Souri 149 
et al. (2020) did not quantify the error, and their work was limited to a subset of atmospheric 150 
conditions. To challenge the predictive power of FNR from a chemistry perspective, we will take 151 
advantage of a large suite of datasets to make maximum use of varying meteorological and 152 
chemical conditions.  153 

Not only are satellite-based column measurements unable to resolve the vertical 154 
information of chemical species in the tropospheric column, but they are also unable to resolve the 155 
horizontal spatial variability due to their spatial footprint. The larger the footprint is, the more 156 
horizontal information is blurred out. For instance, Souri et al. (2020) observed a substantial spatial 157 
variance (information) in FNR columns at the spatial resolution of 250×250 m2 observed by an 158 
airborne sensor over Seoul, South Korea. It is intuitively clear that a coarse-resolution sensor 159 
would lose a large degree of spatial variance (information). This error, known as the spatial 160 
representation error, has not been studied with respect to FNR. We will leverage what we have 161 
learned from Souri et al. (2022), which modeled the spatial heterogeneity in discrete data using 162 
geostatistics, to quantify the spatial representation error in the ratio over an urban environment. 163 

A longstanding challenge is to have a reliable estimate of the satellite retrieval errors of 164 
tropospheric column NO2 and HCHO. Significant efforts have been made recently to assemble, 165 
analyze, and estimate the retrieval errors for two key satellite sensors, TROPOspheric Monitoring 166 
Instrument (TROPOMI) and Ozone Monitoring Instrument (OMI), using various in-situ 167 
measurements (Verhoelst et al., 2021; Vigouroux et al., 2020, Choi et al., 2020; Laughner et al., 168 
2019; Zhu et al., 2020). This study will exploit paired comparisons from some of these new studies 169 
to propagate individual uncertainties in HCHO and NO2 to the FNR errors.  170 

The overarching science goal of this study is to address the fact that the accurate diagnosis 171 
of surface O3 photochemical regimes is impeded by numerous uncertainty components, which will 172 
be addressed in the current paper, and can be classified into four major categories: i) inherent 173 
uncertainties associated with the approach of FNRs to diagnose local O3 production and sensitivity 174 
regimes, ii) translation of tropospheric column satellite retrievals to represent PBL- or surface-175 
level chemistry, iii) spatial representativity of ground pixels of satellite sensors, and iv) 176 
uncertainties associated with satellite-retrieved column-integrated concentrations of HCHO and 177 
NO2. We will address all of these sources of uncertainty using a broad spectrum of data and tools. 178 

Our paper is organized into the following sections. Section 2 describes the chemical box 179 
model setup and data applied. Sections 3.1 to 3.4 deal with the chemistry aspects of FNRs and 180 
show the results from a box model. Section 3.5 introduces a data-driven framework to transform 181 
the FNR tropospheric columns to the PBL region. Section 3.6 offers a new way to quantify the 182 
spatial representation error in satellites. Section 3.7 deals with the satellite error characterization 183 
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and its impacts on the ratio. Section 3.8 summarizes the fractional contribution of each error to the 184 
combined error. Finally, Section 4 provides a summary and conclusions of the study. 185 

2. Photochemical Box Modeling and Aircraft Data Used 186 
To quantify the uncertainty of FNR from a chemistry perspective and to obtain several 187 

imperative parameters, including the calculated ozone production rates and the loss of NOx (LNOx) 188 
and ROx (LROx), we utilize the Framework for 0-D Atmospheric Modeling (F0AM) v4 (Wolfe et 189 
al., 2016). We adopt the Carbon Bond 6 (CB06, r2) chemical mechanism, and heterogenous 190 
chemistry is not considered in our simulations. The model is initialized with the measurements of 191 
several compounds, many of which constrain the model by being held constant for each timestep 192 
(see Table 1).  193 

Figure 1 shows the map of data points from Deriving Information on Surface Conditions 194 
from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) 195 
Baltimore-Washington (2011), DISCOVER-AQ Houston-Texas (2013), DISCOVER-AQ 196 
Colorado (2014), and Korea United States Air Quality Study (KORUS-AQ) (2016). 197 
Meteorological inputs come from the observed pressure, temperature, and relative humidity. The 198 
measurements of photolysis rates are not available for all photolysis reactions; therefore, our initial 199 
guess of those rates comes from a look-up-table populated by the National Center for Atmospheric 200 
Research (NCAR) Tropospheric Ultraviolet And Visible (TUV) model calculations. These values 201 
are a function of solar zenith angle, total ozone column density, surface albedo, and altitude. We 202 
set the total ozone column and the surface albedo to fixed numbers of 325 (Dobson) DU and 0.15, 203 
respectively. The initial guess is then corrected by applying the ratio of observed photolysis rates 204 
of NO2+hv (jNO2) and/or O3+hv (jO1D) to the calculated ones to all j-values (i.e., wavelength-205 
independent). If both observations of jNO2 and  jO1D are available, the correction factor is 206 
averaged. The KORUS-AQ campaign is the only one that provides jO1D measurements; therefore, 207 
the use of the wavelength-independent correction factor based on the ratio of observed to 208 
calculated jNO2 values for all j-value is a potential source of error in the model especially when 209 
aerosols are present. The model calculations are based on the observations merged to a temporal 210 
resolution varying from 10 to 15 seconds. Each calculation was run for five consecutive days with 211 
an integration time of 1 hour to approach diel steady state. We test the number of solar cycles 212 
against ten days on the KORUS-AQ setup and observe no noticeable difference in simulated OH 213 
and HCHO (Figure S1), indicating that five solar cycles suffice. Some secondarily-formed species 214 
must be unconstrained for the purpose of model validation. Therefore, the concentrations of several 215 
secondarily-formed compounds, such as HCHO and PAN, are unconstrained. Nitric oxide (NO) 216 
and NO2 are also allowed to cycle while their sum (i.e., NOx) is constrained. Because the model 217 
does not consider various physical loss pathways, including deposition and transport, which vary 218 
by time and space, we oversimplify their physical loss through a first-order dilution rate set to 219 
1/86400-1/43200 s-1 (i.e., 24- or 12-hr lifetime), which in turn prevents relatively long-lived 220 
species from accumulating over time. Our decision on unconstraining HCHO, a pivotal compound 221 
impacting the simulation of HOx, may introduce some systematic biases in the simulation of 222 
radicals determining ozone chemistry (Schroeder et al., 2020). Therefore, to mitigate the potential 223 
bias in HCHO, we set the dilution factor to maintain the campaign-averaged bias in the simulated 224 
HCHO with respect to observations of less than 5%. However, it is essential to recognize that 225 
HCHO can fluctuate freely for each point measurement because the dilution constraint is set to a 226 
fixed value for an individual campaign.  Each time tag is independently simulated, meaning we do 227 
not initialize the next run using the simulated values from the previous one; this in turn, permits 228 
parallel computation. Regarding the KORUS-AQ campaign where HOx observations were 229 
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available, we only ran the model for data points with HOx measurements. Similar to Souri et al. 230 
(2020), we filled gaps in VOC observations with a bilinear interpolation method with no 231 
extrapolation allowed. In complex polluted atmospheric conditions such as that over Seoul, South 232 
Korea, Souri et al. (2020) observed that this simple treatment yielded comparable results with 233 
respect to the NASA LaRC model (Schroeder et al. 2020), which incorporated a more 234 
comprehensive data harmonization. Table 1 lists the major configuration along with the 235 
observations used for the box model. 236 

Several parameters are calculated based on the box model outputs. LROx is defined through 237 
the sum of primarily radical-radical reactions: 238 

𝐿𝑅𝑂$ = 𝑘'()*'()[𝐻𝑂-]
- +0𝑘1()2*'()[ 𝑅𝑂-3][𝐻𝑂-]

+0𝑘1()2*1()2[𝑅𝑂-3]
- 

(1) 

where k is the reaction rate constant. LNOx mainly occurs via the NO2+OH reaction: 239 

𝐿𝑁𝑂$ = 𝑘('*5()*6[𝑂𝐻][𝑁𝑂-][𝑀] (2) 

where M is a third body. We calculate P(O3) by subtracting the ozone loss pathways dictated by 240 
HOx (HO+HO2), NO2+OH, O3 photolysis, ozonolysis, and the reaction of O(1D) with water vapor 241 
from the formation pathways through the removal of NO via HO2 and RO2: 242 
𝑃(𝑂:) = 𝑘'()*5([𝐻𝑂-][𝑁𝑂] +0𝑘1()2*5([ 𝑅𝑂-3][𝑁𝑂]

− 𝑘('*5()*6[𝑂𝐻][𝑁𝑂-][𝑀] − 𝑃(𝑅𝑂𝑁𝑂-) − 𝑘'()*(=[𝐻𝑂-][𝑂:]
− 𝑘('*(=[𝑂𝐻][𝑂:] − 𝑘(> ?@ A*')(B𝑂> 𝐷D AE[𝐻-𝑂] − 𝐿(𝑂:
+ 𝑎𝑙𝑘𝑒𝑛𝑒𝑠) 

(3) 

3. Results and Discussion 243 

3.1. Box Model Validation 244 
There are uncertainties associated with the box model (e.g., Brune et al., 2022; Zhang et 245 

al., 2021; Lee et al., 2021), which can be attributed to: i) the lack of inclusion of physical processes 246 
such as entrainment/detrainment and diffusion, ii) discounting the heterogeneous chemistry, iii) 247 
invalid assumption of the diel steady state in areas close to large emission sources or in 248 
photochemically less active environments (Thornton et al., 2002; Souri et al., 2021), iv) errors in 249 
the chemical mechanism and v) errors in the measurements. These limitations necessitate a 250 
thorough validation of the model using unconstrained observations. While models have been 251 
known for a long time not to be 100% accurate (Box, 1976), it is important to characterize whether 252 
the model can effectively represent reality. For instance, if the simulated HCHO is poorly 253 
correlated with observations and/or displayed large magnitude biases, it will be erroneous to 254 
assume that the sources of HCHO, along with relevant chemical pathways, are appropriate. It is 255 
important to acknowledge that the VOC constraints for these model calculations are incomplete, 256 
especially for the DISCOVER-AQ campaigns, which lacked comprehensive VOC observations. 257 
Nevertheless, we will show that the selected VOCs are sufficient to reproduce a large variance 258 
(>70%) in observed HCHO. 259 

We diagnose the performance of the box model by comparing the simulated values of five 260 
compounds to observations: HCHO, NO, NO2, PAN, hydroperoxyl radical (HO2), and OH. Figure 261 
2 depicts the scatterplot of the comparisons along with several statistics. HCHO observations are 262 
usually constrained in box models to improve the representation of HO2 (Schroeder et al., 2017; 263 
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Souri et al., 2020; Brune et al., 2022); however, this constraint may mask the realistic 264 
characterization of the chemical mechanism with respect to the treatment of VOCs. Additionally, 265 
it is important to know if the sources of HCHO are adequate. Therefore, we detach the model from 266 
this constraint to perform a more fair and stringent validation.  267 

Concerning HCHO, our model does have considerable skill at reproducing the variability 268 
of observed HCHO (R2=0.73). To evaluate if this agreement is accidentally caused by the choice 269 
of the dilution factor and to identify if our VOC treatment is inferior compared to the one adopted 270 
in the NASA LaRC (Schroeder et al., 2021), we conducted three sets of sensitivity tests for the 271 
KORUS-AQ campaign, including ones with and without considering a dilution factor and another 272 
one without HNO3 and H2O2 constraints (Figure S2). The lack of consideration of a dilution factor 273 
results in no difference in the variance in HCHO captured by our model (R2=0.81). Our model 274 
without the dilution factor is still skillful at replicating the magnitude of HCHO with less than 12% 275 
bias. This is why the optimal dilution factor for each campaign is within 12 hr to 24 hr, which is 276 
not different from other box modeling studies (e.g., Brune et al., 2022; Miller and Brune, 2022). 277 
We observe no difference in the simulated HCHO when HNO3 and H2O2 values are not 278 
constrained. The unconstrained NASA LaRC setup oversampled at 10-sec frequency captures 86% 279 
variance in the measurements, only slightly (6%) outperforming our result. However, the 280 
unconstrained NASA LaRC setup greatly underestimates the magnitude of HCHO compared to 281 
our model results.  282 

The model performs well with regard to the simulation of NO (R2=0.89) and NO2 (R2=0.99) 283 
in the logarithmic scale. Immediately evident is the underestimation of NO in highly polluted 284 
regions, contrary to an overestimation in clean ones. This discrepancy leads to an underestimation 285 
(overestimation) of NO/NO2 in polluted (clean) regions. The primary drivers of NO/NO2 are jNO2 286 
and O3, both of which are constrained in the model. What can essentially deviate the partitioning 287 
between NO and NO2 from that of observations in polluted areas is the assumption of the diel 288 
steady state, which is rarely strictly valid where measurements are close to large emitters. The 289 
overestimation of NO in low NOx areas is often blamed on the lack of chemical sink pathways of 290 
NO in chemical mechanisms (e.g., Newland et al., 2021). The relatively reasonable performance 291 
of PAN (R2=0.63) is possibly due to constraining some of the oxygenated VOCs, such as 292 
acetaldehyde. Xu et al. (2021) observed a strong dependency of PAN concentrations on NO/NO2 293 
ratios. Smaller NO/NO2 ratios are usually associated with larger PAN mixing ratios because NO 294 
can effectively remove peroxyacetyl radicals. We observe an overestimated PAN (0.27 ppbv), 295 
possibly due to an underestimation of NO/NO2. Moreover, we should not rule out the impact of 296 
the first-order dilution factor, which was only empirically set in this study. For instance, if we 297 
ignore the dilution process for the KORUS-AQ campaign, the bias of the model in terms of PAN 298 
will increase by 33% resulting in poor performance (R2=0.40) (Figure S3). We notice that this 299 
poor performance primarily occurs for high altitude measurements where PAN is thermally stable 300 
(Figure S4); therefore, this does not impact the majority of rapid atmospheric chemistry occurring 301 
in the lower troposphere, such as the formation of HCHO. Schroeder et al. (2020) found that proper 302 
simulation of PAN in the polluted PBL during KORUS-AQ required a first-order loss rate based 303 
on thermal decomposition at the average PBL temperature, which was more realistic than the 304 
widely varying local PAN lifetimes associated with temperature gradients between the surface and 305 
the top of the PBL. This solution is computationally equivalent to the dilution rate used in this 306 
study. 307 

KORUS-AQ was the only field campaign providing OH and HO2 measurements. 308 
Concerning HO2, former studies such as Schroeder et al. (2017), Souri et al. (2020), and Brune et 309 
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al. (2022) managed to reproduce HO2 mixing ratios with R2 ranging from 0.6 to 0.7. The 310 
performance of our model (R2=0.66) is similar to these past studies, with nearly negligible biases 311 
(<1%). One may argue that the absence of the HO2 uptake by aerosols is contributing to some of 312 
the discrepancies we observe in the HO2 comparison. Brune et al. (2022) provided compelling 313 
evidence showing that considering the HO2 uptake made their results significantly inconsistent 314 
with the observations suggesting that the HO2 uptake might have been inconsequential during the 315 
campaign. Our model manages to reproduce 64% of the variance of observed OH outperforming 316 
the simulations presented in Souri et al. (2020) and Brune et al. (2022) by >10%. The slope (= 317 
1.03) is not too far from the identity line, indicating that our box model systematically 318 
overestimates OH by 0.62 106 cm-3. This may be attributed to a missing OH sink in the mechanism 319 
or the lack of inclusion of some VOCs. A sensitivity test involving removing the first-order 320 
dilution process demonstrates that the simulation of HOx is rather insensitive to this parameter 321 
(Figure S5). In general, the model performance is consistent, or outperforms, results from recent 322 
box modeling studies, indicating that it is at least roughly representative of the real-world ozone 323 
chemistry and sensitivity regimes. 324 

3.2. Can HCHO/NO2 ratios fully describe the HOx-ROx cycle? 325 
Kleinman et al. (2001) demonstrated that LROx/LNOx is the most robust ozone regime 326 

indicator. Thus, the predictive power of FNR at detecting the underlying chemical conditions can 327 
be challenged by comparing FNR to LROx/LNOx. Ideally, if they show a strong degree of 328 
correspondence (i.e., R2=1.0), we can confidently say that FNR can realistically portray the 329 
chemical regimes. Any divergence of these two quantities indicates the inadequacy of the FNR 330 
indicator. Souri et al. (2020) observed a strong linear relationship between the logarithmic 331 
transformed FNR and those of LROx/LNOx. Our analysis in this study will be based on the 332 
simulated values to ensure that the relationship is coherent based on a realization from the well-333 
characterized box model. As pointed out by Schroeder et al. (2017) and Souri et al. (2020), a 334 
natural logarithm of LROx/LNOx roughly equal to -1.0 (i.e., LROx/LNOx = 0.35-0.37) 335 
perceptibly separates VOC-sensitive from NOx-sensitive regimes, which would make this 336 
threshold the baseline of our analysis.  337 

Figure 3 demonstrates the log-log relationship of LROx/LNOx and FNR, and P(O3), from 338 
all four air quality campaigns. The log-log relationships from each individual campaign are shown 339 
in Figure S6-S9. We overlay the LROx/LNOx baseline threshold along with two commonly used 340 
thresholds for FNR suggested by Duncan et al. (2010); they defined the VOC-sensitive regimes if 341 
FNR<1 and the NOx-sensitive ones if FNR>2. Any region undergoing a value between these 342 
thresholds is unlabeled and considered to be in a transitional regime. The size of each data point 343 
is proportional to the HCHO×NO2 concentration magnitude. One striking finding from this plot is 344 
that there is indeed a strong linear relationship between the logarithmic-transformed LROx/LNOx 345 
and FNR (R2=0.91). A strong linear relationship between the two quantities in the log-log scale 346 
indicates a power law dependence (i.e., y=axb). A strong power law dependency means that these 347 
two quantities have a poor correlation at their low and high values. This is mainly caused by the 348 
fact that HCHO does not fully describe VOC reactivity rates in environments with high and low 349 
VOC concentrations (Souri et al., 2020). The question is, what range of FNR will fall in 350 
ln(LROx/LNOx) = -1.0±0.2? Following the baseline, the transitioning ratios follow a normal 351 
distribution with a mean of 1.8, a standard deviation of 0.4, and a range from 1 to 4 (Figure S10). 352 
We define the chemical error in the application of FNR to separate the chemical regimes as the 353 
relative error standard deviation (i.e., σ/µ) of the transitioning ratios leading to ~ 20%. These 354 
numbers are based on a single model realization and can change if a different mechanism is used; 355 
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nonetheless, the model has considerable skill at reproducing many different unconstrained 356 
compounds, especially OH, suggesting that it is a rather reliable realization. Comparing the 357 
transitioning FNRs to the NO2 concentrations suggests no correlation (r=0.02), whereas there is a 358 
linear correlation between the transitioning ratios and the HCHO concentrations (r=0.56). This 359 
tendency reinforces the study of Souri et al. (2020), who, primarily due to the HCHO-NO2 360 
feedback, observed a larger FNR threshold in VOC-rich environments to be able to detect the 361 
chemical regimes. 362 
3.3. Large PO3 rates occur in regions with large HCHO×NO2 concentrations when 363 

moving toward NOx-sensitive regions 364 
A striking and perhaps intuitive tendency observed from Figure 3 is that large PO3 rates 365 

are mostly tied to higher HCHO×NO2. But this relationship gradually weakens as we move 366 
towards VOC-sensitive regions (smaller LROx/LNOx ratios). This is a textbook example of non-367 
linear ozone chemistry. In VOC-sensitive areas, PO3 can be strongly inhibited by NO2+OH and 368 
the formation of organic nitrates despite the abundance of the precursors. In the application of 369 
remote-sensing of ozone precursors, the greatest unused metric describing the mass of the ozone 370 
precursors is HCHO×NO2. However, this metric should only be used in conjunction with FNR. To 371 
demonstrate this, based on what the baseline (LROx/LNOx) suggests against thresholds on FNRs 372 
defined by Duncan et al. (2010), we group the data into four regions: NOx-sensitive – NOx-373 
sensitive, NOx-sensitive–transitional, VOC-sensitive–transitional, and VOC-sensitive–VOC-374 
sensitive. A different perspective on this categorization is that the transitional regimes are a weaker 375 
characterization of the main regime; for instance, NOx-sensitive–transitional regions are less NOx-376 
sensitive than NOx-sensitive – NOx-sensitive. Subsequently, the cumulative distribution functions 377 
(CDFs) of PO3 and HCHO×NO2 with respect to the aforementioned groups are calculated, which 378 
is shown in Figure 4. Regarding NOx-sensitive—NOx-sensitive regions, we see the PO3 CDF very 379 
quickly converging to the probability of 100%, indicating that the distribution of PO3 is skewed 380 
towards very low values. The median of PO3 for this particular regime (where CDF = 50%) is only 381 
0.25 ppbv/hr. This agrees with previous studies such as Martin et al. (2002), Choi et al. (2012), Jin 382 
et al. (2017), and Souri et al. (2017), reporting that NOx-sensitive regimes dominate in pristine 383 
areas. The PO3 CDFs between NOx-sensitive—transitional and VOC-sensitive—VOC-sensitive 384 
are not too distinct, whereas their HCHO×NO2 CDFs are substantially different. The non-linear 385 
ozone chemistry suppresses PO3 in highly VOC-sensitive areas such that those values are not too 386 
different from those in mildly polluted areas (NOx-sensitive—transitional). Perhaps the most 387 
interesting conclusion from this figure is that elevated PO3 values (median = 4.6 ppbv/hr), a factor 388 
of two larger than two previous regimes, are mostly found in VOC-sensitive—transitional. This is 389 
primarily due to two causes: i) this particular regime is not strongly inhibited by the nonlinear 390 
chemistry, particularly NO2+OH, and ii) it is associated with abundant precursors evident in the 391 
median of HCHO×NO2 being three times as large of those in NOx-sensitive—transitional. This 392 
tendency illustrates the notion of non-linear chemistry and how this may affect regulations. Simply 393 
knowing where the regimes are might not suffice to pinpoint the peak of PO3, as this analysis 394 
suggests that we need to consider both FNR and HCHO×NO2; both metrics are readily accessible 395 
from satellite remote-sensing sensors. 396 

3.4. Can we estimate PO3 using the information from HCHO/NO2 and HCHO×NO2? 397 
It may be advantageous to construct an empirical function fitted to these two quantities and 398 

elucidate the maximum variance (information) we can potentially gain to recreate PO3. After 399 
several attempts, we found a bilinear function (z=a0+a1x+a2y+a3xy) to be a good fit without 400 
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overparameterization. Due to presence of extreme values in both FNR and HCHO×NO2, we use a 401 
weighted least squares method for the curve fitting based on the distance of the fitted curve to the 402 
data points (known as bi-squares weighting). The best fit with R2 equals to 0.94 and an RMSE of 403 
0.60 ppbv/hr is: 404 
𝑃𝑂: = 0.74 − 0.09	𝑥 − 0.02	𝑦 + 0.25𝑥𝑦 (4) 

where x and y are FNR (unitless) and HCHO×NO2 (ppbv2), respectively. The residual of the fit is 405 
shown in Figure S11. The gradients of PO3 with respect to x and y are: 406 
𝑑𝑃𝑂:
𝑑𝑥 = 0.25𝑦 − 0.09 

(5) 

𝑑𝑃𝑂:
𝑑𝑦 = 0.25𝑥 − 0.02 

(6) 

An apparent observation arises from these equations that is the derivative of PO3 to each 407 
metric depends on the other one underscoring their interconnectedness. For instance, Eq. (6) 408 
suggests that larger FNRs (x) result in a larger gradient of PO3 to the abundance of HCHO×NO2 409 
(y). In very low FNRs, this gradient can become very small, rendering PO3 insensitive (or in 410 
extreme cases, negatively correlated) to HCHO×NO2. This analysis provides encouraging results 411 
about the future application of the satellite-derived HCHO×NO2; however, the wide class of 412 
problems relating to the application of satellite-derived FNR columns, such as satellite errors in 413 
columns or the translation between columns to PBL is also present in Eq. (4), even in a more 414 
pronounced way due to HCHO×NO2 and HCHO2 (= xy). This new perspective on PO3 estimation 415 
deserves a separate study. 416 

3.5. Altitude dependency and its parametrization 417 
A lingering concern over the application of satellite-based FNR tropospheric columns is 418 

that the vertical distribution of HCHO and NO2 are integrated into columns; thus, this vertical 419 
information is permanently lost. Here, we provide insights into the vertical distribution of FNR 420 
within the tropospheric column. This task requires information about the differences between i) 421 
the vertical shape of HCHO and that of NO2 and ii) the vertical shape in the sensitivity of the 422 
retrievals to the different altitude layers (described as scattering weights). Ideally, if both 423 
compounds show an identically relative shape, the FNR columns will be valid for every air parcel 424 
along the vertical path (i.e., a straight line). Previous studies such as Jin et al. (2017) and Schroeder 425 
et al. (2017) observed a large degree of vertical inhomogeneity in both HCHO and NO2 426 
concentrations suggesting that this ideal condition cannot be met. We do not always have precise 427 
observations of HCHO and NO2 vertical distributions, but we can constitute some degree of 428 
generalization by leveraging the measurements made during the aircraft campaigns. As for the 429 
differences in the vertical shapes (i.e., the curvature) of the sensitivity of the retrievals between 430 
HCHO and NO2 channels (i.e., ~ 340 nm and ~440 nm), under normal atmospheric and viewing 431 
geometry conditions, several studies such as Nowlan et al. 2018 and Lorente et al. 2017 showed 432 
small differences in the vertical shapes of the scattering weights in the first few kilometers altitude 433 
above the surface where the significant fluctuations in FNRs usually take place. Therefore, our 434 
analysis does not consider the varying vertical shapes in the scattering weights. However, this 435 
assumption might not hold for excessive aerosol loading with variable extinction efficiency 436 
between ~340 nm and ~440 nm wavelengths or extreme solar zenith angles. 437 

Figure 5 demonstrates the violin plot of the afternoon (> 12:00 LT) vertical distribution of 438 
HCHO, NO2, and FNR observed by NASA’s aircraft during the four field campaigns analyzed in 439 
this study superimposed by the simulated PO3 rates. The vertical layers are grouped into sixteen 440 



 11 

altitudes ranging from 0.25 km to 7.75 km. Each vertical layer incorporates measurements ±0.25 441 
km of the mid-layer height. The observations do not follow a normal distribution, particularly in 442 
the lower parts of the atmosphere; thus, medians are preferred to represent the central tendency. 443 
While the largest PO3 rates tend to occur in areas close to the surface (< 2 km agl), a nonnegligible 444 
fraction of the elevated PO3 rates are also observed in other parts of the atmosphere, such as in the 445 
free troposphere. 446 

Several intriguing features are observed in Figure 5: First, up to the 5.75 km range, which 447 
encompasses the PBL area and a large portion of the free troposphere, NO2 concentrations tend to 448 
decrease quicker than those of HCHO in line with previous studies such as Schroeder et al. (2017), 449 
Jin et al. (2017), Chan et al. (2019), and Ren et al. (2022). Second, above 5.75 km, HCHO levels 450 
off, whereas NO2 shows an increasing trend. Finally, due to their different vertical shapes, we 451 
observe nonuniformities in the vertical distribution of FNR: they become more NOx-sensitive with 452 
altitude up to a turning point at 5.75 km and then shift back to the VOC-sensitive direction.  453 

It is attractive to model these shapes and apply parameterizations to understand how their 454 
shapes will complicate the use of tropospheric column retrieval from satellites. First order rational 455 
functions are a good candidate to use. Concerning the vertical dependency of HCHO and NO2, we 456 
find reasonable fit (R2=0.73) as: 457 

𝐻𝐶𝐻𝑂,𝑁𝑂- = 	
𝑎X𝑧 + 𝑎D
𝑧 + 𝑎-

 (7) 

where z is altitude in km. ai (i=0,1,2) are fitting parameters. From this equation it is determined 458 
that FNRs follow a second order rational function: 459 

𝑓(𝑧) =
𝐻𝐶𝐻𝑂
𝑁𝑂-

= 	
𝑏X𝑧- + 𝑏D𝑧 + 𝑏-
𝑏:𝑧- + 𝑏\𝑧 + 𝑏]

 
(8) 

where bi (i=0, … , 5) are fitting parameters. One can effortlessly fit this function to different bounds 460 
of the vertical distribution of FNR such as the 25th and 75th percentiles, and subsequently estimate 461 
the first moment of the resultant polygon along z divided by the total area bounded to the polygon 462 
(the centroid, G) via: 463 

𝐺(𝑧D, 𝑧-) =
1
2𝐴

a 𝑓-(𝑧)b]cd − 𝑓-(𝑧)-]cd
e-

eD
𝑑𝑧 

(9) 

where A is the area of the polygon bounded by the 75th percentiles, 𝑓(𝑧)b]cd , and the 25th 464 
percentiles (𝑓(𝑧)-]cd) of FNR (shown in Figure 5 as solid black lines). We define an altitude 465 
adjustment factor (fadj) such that one can translate an observed FNR tropospheric column ratios, 466 
such as those retrieved from satellites, to a defined altitude and below that point (zt) through: 467 

𝑓fgh = 	
𝐺(0, 𝑧c)
𝐺(0,8	𝑘𝑚) 

(10) 

where zt can be interchanged to match the PBLH. This definition is more beneficial than using the 468 
entire tropospheric column to the surface conversion (e.g., Jin et al., 2017) because ozone can form 469 
in various vertical layers. Using the observations collected during the campaign, we estimate Eq. 470 
(10) along with ±1σ boundaries shown in Figure 6. To determine the adjustment factor error, we 471 
reestimate Eq.9 with ±1σ level in the coefficients obtained from Eq.8. The resultant error is shown 472 
in the dashed red line in Figure 6. This error results from uncertainties associated with assuming 473 
that the second-order rational function can explain the vertical distribution of FNRs. The shape of 474 
the resulting adjustment factor is in line with the vertical distribution of FNR (see Figure 5): the 475 
adjustment factor curve closer to the surface has values smaller than one, increases to values larger 476 
than one in the mid-troposphere, and finally, converges to one near the top of measured 477 
concentrations. If one picks out an altitude pertaining to a PBLH, one can easily apply fadj to the 478 
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observed FNR columns to estimate the corresponding ratio for that specific PBLH. A more evolved 479 
PBLH (i.e., a large zt) results in stronger vertical mixing, rendering fadj closer to one. The standard 480 
error deviation of this conversion is around 19%. The relatively low fluctuations in the adjustment 481 
factor around one suggest that under the observed atmospheric conditions (clear-sky afternoon 482 
summers), the columnar tropospheric ratios do not poorly represent the chemical conditions in the 483 
PBL region.  484 

It is beneficial to model this curve to make this data-driven conversion easier for future 485 
applications. A second-order polynomial can well describe (R2=0.97) this curve: 486 
𝑓fgh = 𝑎𝑧c- + 𝑏𝑧c + 𝑐 𝑎 = −0.01, 𝑏 = 0.15, 𝑐 = 0.78 (11) 

Although Eq. (11) does not include observations above 8 km, the area bounded between 𝑓(𝑧)b]cd  487 
and 𝑓(𝑧)-]cd  in higher altitudes is too small to make a noticeable impact on this adjustment factor.  488 

One may object that since we estimated the adjustment factor based on two boundaries 489 
(25th and 75th percentiles) of the data, we are no longer really dealing with 50% of features 490 
observed in the vertical shapes of FNR. This valid critique can be overcome by gradually relaxing 491 
the lower and upper limits and examining the resulting change in fadj. When we reduce the lower 492 
limit in Eq. (9) from the 25th to 1st percentiles, the optimal curve is similar to the one shown in 493 
Figure 6 (Figure S12). However, when we extend the upper limit from the 75th percentile to greater 494 
values, we see the fit becoming less robust above the 80th percentile, indicating that the formulation 495 
applies to ~80% of the data. The reason behind the poor representation of the adjustment factor 496 
for the upper tail of the population is the extremely steep turning point between 5.5 and 6.0 km, 497 
necessitating a higher-order rational function to be used for Eq. (7) and Eq. (8). We prefer to limit 498 
this analysis to both boundaries and the order defined in Eq. (8) and Eq. (9) because extreme value 499 
predictions usually lack robustness.  500 

A caveat with these results is that our analysis is limited to afternoon observations because 501 
we focus on afternoon low-orbiting sensors such as OMI and TROPOMI. Nonetheless, Schroeder 502 
et al. (2017) and Crawford et al. (2021) observed large diurnal variability in these profiles due to 503 
diurnal variability in sinks and sources of NO2 and HCHO and atmospheric dynamics. The diurnal 504 
cycle has an important implication for geostationary satellites such as Tropospheric Emissions 505 
indeed: Monitoring of Pollution (TEMPO) (Chance et al., 2019). Limiting the observations to 506 
morning time results in a smaller adjustment factor for altitudes close to the surface resulting from 507 
steeper vertical gradients of HCHO/NO2 (Figures S13 and S14). This tendency agrees with Jin et 508 
al. (2017), who observed a larger deviation from one in an adjustment factor used for the column-509 
surface conversion in winter. 510 

Another important caveat with our analysis is that it is based upon four air quality 511 
campaigns in warm seasons that avoid times/areas with convective transport; as such, our analysis 512 
needs to be made aware of the vertical shapes of FNR during convective activities and cold 513 
seasons. However, a few compelling assumptions can minimize these oversights: first, it is very 514 
atypical to encounter elevated ozone production rates during cold seasons with few exceptions 515 
(Ahmadov et al., 2015; Rappenglück et al., 2014); second, the notion of ozone regimes is only 516 
appropriate in photochemically active environments where the ROx-HOx cycle is active; an 517 
example of this can be found in Souri et al. (2021) who observed an enhancement of surface ozone 518 
in central Europe during a lockdown in April 2020 (up to 5 ppbv) compared to a baseline which 519 
was explainable by the reduced O3 titration through NO in place of the photochemically induced 520 
production. An exaggerated extension to this example is the nighttime chemistry where NO-O3-521 
NO2 partitioning is the primary driver of negative ozone production rates; at night, the definition 522 
of NOx-sensitive or VOC-sensitive is meaningless, so it is in photochemically less active 523 
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environments; third, it is rarely advisable to use cloudy scenes in satellite UV-Vis gas retrievals 524 
due to the arguable assumption on Lambertian clouds and highly uncertain cloud optical centroid 525 
and albedo; accordingly, atmospheric convection occurring during storms or fires is commonly 526 
masked in satellite-based studies. Therefore, the limitations associated with the adjustment factor 527 
are mild compared to the advantages. 528 

3.6. Spatial Heterogeneity 529 

The spatial representation error resulting from unresolved processes and scales (Janić et 530 
al., 2016; Valin et al., 2011; Souri et al., 2022) refers to the amount of information lost due to 531 
satellite footprint or unresolved inputs used in satellite retrieval algorithms. Unfortunately, this 532 
source of error cannot be determined when we do not know the true state of the spatial variability. 533 
There is, however, a practical way to resolve this by conducting multi-scale intercomparisons of a 534 
coarse spatial resolution output against a finer one. Yet, despite the absence of the truth in this 535 
approach, we tend to find their comparisons useful in giving us an appreciation of the error.  536 

We build the reference data on qualified pixels (qa_value> 0.75) of offline TROPOMI 537 
tropospheric NO2 version 2.2.0 (van Geffen et al., 2021; Boersma et al., 2018) and total HCHO 538 
columns version 2.02.01 (De Smedt et al., 2018) oversampled at 3×3 km2 in summer 2021 over 539 
the US. Figure 7 shows the map of those tropospheric columns as well as FNR. Encouragingly, 540 
the small footprint and relatively low detection limit of TROPOMI compared to its predecessor 541 
satellite sensors (e.g., OMI) enable us to have possibly one of the finest maps of HCHO over the 542 
US to date. Large values of HCHO columns are found in the southeast due to strong isoprene 543 
emissions (e.g., Zhu et al., 2016; Wells et al., 2020). Cities like Houston (Boeke et al., 2011; Zhu 544 
et al., 2014; Pan et al., 2015; Diao et al., 2016), Kansas City, Phoenix (Nunnermacker et al., 2004), 545 
and Los Angeles (de Gouw et al., 2018) also show pronounced enhancements of HCHO possibly 546 
due to anthropogenic sources. Expectedly, large tropospheric NO2 columns are often confined to 547 
cities and some coal-fired power plants along the Ohio River basin. Concerning FNR, low values 548 
dominate cities, whereas high values are found in remote regions. An immediate tendency 549 
observed from these maps is that the length scale of HCHO columns is longer than that of NO2. 550 
This indicates that NO2 columns are more heterogeneous. Because of this, we observe a large 551 
degree of spatial heterogeneity with respect to FNRs. 552 

Here we limit our analysis to Los Angeles due to computational costs imposed by the 553 
subsequent experiment. To quantify the spatial representation errors caused by satellite footprint 554 
size, we upscale the FNRs by convolving the values with four low pass box filters with the size of 555 
13×24, 36×36, 108×108, and 216×216 km2, shown in the first column of Figure 8. Subsequently, 556 
to extract the spatial variance (information), we follow the definition of the experimental 557 
semivariogram (Matheron, 1963): 558 

𝛾(𝒉) = 	
1

2𝑁(𝒉) 0 [𝑍(𝑥3) − 𝑍(𝑥o)]-

p$2q$rpq|𝒉|tu

 (12) 

where 𝑍(𝑥3) (and 𝑍>𝑥oA) is discrete pixels of FNRs, N(h) is the number of paired pixels separated 559 
by the vector of h. The |.| operator indicates the length of a vector. The condition of p𝑥3 − 𝑥op −560 
|𝒉| ≤ 𝜀 is to permit certain tolerance for differences in the length of the vector. Here, we ignore 561 
the directional dependence in 	𝛾(𝒉)	which makes the vector of h scalar (h = |h|). Moreover, we bin 562 
𝛾 values in 100 evenly-spaced intervals ranging from 0 to 5 degrees. To remove potential outliers 563 
(such as noise), it is wise to model the semivariogram using an empirical regression model. To 564 
model the semivariogram, we follow the stable Gaussian function used by Souri et al. (2022): 565 
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𝛾(ℎ) = 	𝑠(1 − 𝑒q(
y
z)
{|): c0=1.5 (13) 

where r and s are fitting parameters. For the most part, geophysical quantities become spatially 566 
uncorrelated at a certain distance called the range, and the variance associated with that distance 567 
is called the sill. The fitting parameters, r, and s, describe these two quantities as long as the stable 568 
Gaussian function can well fit to the shape of semivariogram. The semivariograms, and the fits, 569 
associated with each map are depicted in the second column of Figure 8. 570 

The modeled semivariograms suggest that a coarser field comes with a smaller sill, 571 
implying a loss in the spatial information (variance). The length scale (i.e., the range) only sharply 572 
increases at coarser footprints (>36×36 km2). This indicates that several coarse-resolution satellite 573 
sensors, such as OMI (13×24 km2), are rather able to determine the length scales of FNR over a 574 
major city such as Los Angeles. By leveraging the modeled semivariograms, we can effortlessly 575 
determine the spatial representation error for specific scale (e.g., h=10 km) through 576 

𝑒-(ℎ) = 	1 −	
𝛾(ℎ)
𝛾}~�(ℎ)

 (14) 

where 𝛾(ℎ) and 𝛾}~�(ℎ) are the modeled semivariogram of the target and the reference fields (3×3 577 
km2). This equation articulates the amount of information lost in the target field compared to the 578 
reference. Accordingly, the proposed formulation of the spatial representation error is relative. 579 
Figure 9 depicts the representation errors for various footprints.  For the most part, the OMI nadir 580 
pixel (13×24 km2) only has a ~12% loss of the spatial variance. On the contrary, a grid box with a 581 
size of 216×216 km2 fails at capturing ~65% of the spatial information in FNR with a 50 km length 582 
scale comparable to the extent of Los Angeles. The advantage of our method is that we can 583 
mathematically describe the spatial representation error as a function of the length of our target. 584 
The present method can be easily applied to other atmospheric compounds and locations. We have 585 
named this method SpaTial Representation Error EstimaTor (STREET) which is publicly available 586 
as an open-source package (Souri, 2022).  587 

An oversight in the above experiment lies in its lack of appreciation of unresolved physical 588 
processes in the satellite measurements: a weak sensitivity of some retrievals to the near-surface 589 
pollution due to the choice of spectral windows used for fitting (Yang et al., 2014), using 1-D air 590 
mass factor calculation instead of 3-D (Schwaerzel et al., 2020), and neglecting aerosol effect on 591 
the light path are just a few examples to point out. To account for the unresolved processes, one 592 
can recalculate Eqs. (12)-(14) using outputs from different retrieval frameworks, which is beyond 593 
the scope of this study. 594 

3.7. Satellite errors 595 
3.7.1. Concept 596 

Two types of retrieval errors can affect our analysis: systematic errors (bias) and 597 
unsystematic ones (random errors). In theory, it is very compelling to understand their differences. 598 
In reality, the distinction between random and systematic errors is not as clear-cut as it seems. For 599 
example, one may wish to establish the credibility of a satellite retrieval by comparing it to a sky-600 
radiance measurement over time. Because each measurement is made at a different time, their 601 
comparison is not a repetition of the same experiment; each time, the atmosphere differs in some 602 
aspects, so each comparison is unique. Adding more sky-radiance measurements will add new 603 
experiments. For each paired data point, many unique issues contribute differently to errors; as 604 
such, our problem is grossly under-determined (i.e., more unknowns for a given observation). 605 
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Here, we do not attempt to separate random from systematic errors in the subsequent analysis, 606 
thereby limiting this study to the total uncertainty.  607 

We focus on analyzing the statistical errors drawn from the differences between the 608 
benchmark and the retrievals on daily basis. Two sensors are used for this analysis: TROPOMI 609 
and OMI. To propagate individual uncertainties in HCHO and NO2 to FNRs, we follow an 610 
analytical approach involving Jacobians of the ratio to HCHO and NO2. Assuming that errors in 611 
HCHO and NO2 are uncorrelated, the relative error of the ratio can be estimated by: 612 

𝜎
𝑟𝑎𝑡𝑖𝑜 =

��
𝜎'�'(
𝐻𝐶𝐻𝑂�

-
+ �

𝜎5()
𝑁𝑂-

�
-
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where 𝜎'�'(  and 𝜎5() are total uncertainties of HCHO and NO2 observations. It is important to 613 
recognize that the errors in HCHO and NO2 are not strictly uncorrelated due to assumptions made 614 
in their air mass factor calculations. 615 

3.7.2. Error Distributions in TROPOMI and OMI 616 
We begin our analysis with the error distribution of daily TROPOMI tropospheric NO2 617 

columns (v1.02.02) against 22 MAX-DOAS instruments from May to September in 2018-2021. 618 
The data are paired based on the criteria defined in Verhoelst et al. (2021). The spatial locations 619 
of the stations are mapped in Figure S15. Figure 10a shows the histogram of the TROPOMI minus 620 
the MAX-DOAS instruments. The first observation from this distribution is that it is skewed 621 
towards lower differences, evident in the skewness parameter around -4.6. As a result of the 622 
skewness, the median should better represent the central tendency which is around -1×1015 623 
molec./cm2. In general, TROPOMI tropospheric NO2 columns show a low bias. We fit a normal 624 
distribution to the data using the non-linear Levenberg-Marquardt method. This fitted normal 625 
distribution (R2=0.94) is used to approximate 𝜎5() for different confidence intervals, and to 626 
minimize blunders. To understand how much of these disagreements are caused by systematic 627 
errors as opposed to random errors, we redo the histogram using monthly-based observations 628 
(Figure S16). A slight change in the dispersions between the daily and the monthly-basis analysis 629 
indicates the significance of unresolved systematic (or relative) biases. This tendency suggests that 630 
when conducting the analysis on a monthly basis, the relative bias cannot be mitigated by 631 
averaging. Verhoelst et al. (2021) rigorously studied the potential root cause of some discrepancies 632 
between MAX-DOAS and TROPOMI. An important source of error stems from the fundamental 633 
differences in the vertical sensitivities of MAX-DOAS (more sensitive to the lower tropospheric 634 
region) and TROPOMI (more sensitive to the upper tropospheric area). This systematic error can 635 
only be mitigated using reliably high-resolution vertical shape factors instead of spatiotemporal 636 
averaging of the satellite data. 637 

The error analysis for OMI follows the same methods applied for TROPOMI; however, 638 
with different benchmarks. We follow the comparisons made between the operational product 639 
version 3.1 and measured columns derived from NCAR’s NO2 measurements integrated along 640 
aircraft spirals during four NASA’s air quality campaigns. More information regarding this data 641 
comparison can be found in Choi et al. (2020). Figure 10b shows the histogram of OMI minus the 642 
integrated spirals. Compared to TROPOMI, the OMI bias is worse by a factor of two. The standard 643 
deviation calculated from a Gaussian fit (2.31×1015 molec./cm2) is not substantially different from 644 
that of TROPOMI (2.11×1015 molec./cm2). 645 

As for the error distribution of TROPOMI HCHO columns (version 1.1.(5-7)), we use 24 646 
FTIR measurements during the same time period based on the criteria specified in Vigouroux et 647 
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al. (2020). The stations are mapped in Figure S15. The frequency of the paired data is daily. Figure 648 
11a depicts the error distribution. The distribution is slightly broader compared to that of NO2, 649 
manifested in a larger standard deviation 4.32×1015 molec./cm2. This is primarily due to two facts: 650 
i) HCHO optical depths generally peak in the UV range (<380 nm), where the large optical depths 651 
of ozone and Rayleigh scattering result in weaker and noisier signals (Gonzalez Abad et al., 2019), 652 
and ii) the broader and stronger NO2 optical depths in the ViS range (400-500 nm), where the 653 
signal-to-noise ratio is typically more outstanding, permit better quality retrievals. Similar to the 654 
NO2, we fit a normal distribution (R2=0.90) to specify 𝜎'�'( for different confidence intervals. 655 

Concerning OMI HCHO columns from SAO version 3 (Gonzalez Abad et al., 2015), we 656 
follow the intercomparison approach proposed in Zhu et al. (2020). Based on this approach, the 657 
benchmarks come from GEOS-Chem simulated HCHO columns corrected by in-situ aircraft 658 
measurements. The measurements were made during ozone seasons from KORUS-AQ, 659 
DISCOVERs, FRAPPE, NOMADSS, and SENEX campaigns (see Table 1 in Zhu et al. 2020). 660 
OMI values ranging from -0.5×1015 molec./cm2 and 1.0×1017 molec./cm2 with effective cloud 661 
fraction between 0.0 and 0.3, and SZA between 0 and 60 degrees are only considered in the 662 
comparison. Any pixels from OMI and grid boxes from the corrected GEOS-Chem simulation that 663 
fall into a polygon enclosing the campaign domain are used to create the error distribution shown 664 
in Figure 11b. The distribution has much denser data because the model output covers a large 665 
portion of the satellite swath. The error distribution suggests that OMI HCHO is inferior to 666 
TROPOMI evident in larger bias and standard deviation. The OMI bias is twice as large as that of 667 
TROPOMI. De Smedt et al. (2021) observed the same level of bias from their comparisons of 668 
OMI/TROPOMI with MAX-DOAS instruments (see Table 3 in their paper). Moreover, their OMI 669 
vs MAX-DOAS comparisons were severely scattered. Likewise, we observe the standard deviation 670 
of OMI from the fitted Gaussian function to be roughly five times as large of that TROPOMI. This 671 
can be primarily due to a weaker signal-to-noise (and sensor degradation) in OMI. It is because of 672 
this reason that OMI HCHO should be averaged over several months. Another possible reason for 673 
the large standard deviation is the fact that the benchmark arises from a modeling experiment 674 
whose ability at resolving spatiotemporal variations in HCHO may be uncertain. This partly leads 675 
to the performance of OMI to look poor. 676 

3.7.3. The impact of retrieval error on the ratio 677 
Following Eq. (15), we calculate the standard error for a wide range of NO2 and HCHO 678 

columns at a 68% confidence interval (1 sigma) for both TROPOMI and OMI derived from the 679 
fitted Gaussian function to the histograms; the standard errors are shown in Figure 12. We observe 680 
smaller errors to be associated with larger tropospheric column concentrations. As for TROPOMI, 681 
either daily HCHO or tropospheric NO2 columns should be above 1.2-1.5×1016 molec./cm2 to 682 
achieve 20-30% standard error. The TROPOMI errors start diminishing the application of FNR 683 
when both measurements are below this threshold. Regarding OMI, it is nearly impossible to get 684 
the standard error below of 20-30% given its problematically large HCHO standard deviation. For 685 
50% error, the daily HCHO columns should be above 3.2×1016 molec./cm2. This range of error 686 
can also be achieved if OMI tropospheric NO2 columns are above 8×1015 molec./cm2. 687 

3.8. The fractional errors to the combined error 688 
The ultimate task is to compile the aforementioned errors to gauge how each individual 689 

source of error contributes to the overall error. Although each error is different in nature, combined 690 
they explain the uncertainties of one quantity (FNR) and can be roughly considered independent; 691 
therefore, the combined error is given by: 692 
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𝜎c�c�� = �	𝜎���-���- + 𝜎���c3��1~�- + 𝜎1~c}~3���-  (16) 

𝜎���-���  is the error in the adjustment-factor defined in this study. We calculated a 26% standard 693 
error for a wide range of PBLHs. Therefore, 𝜎���-���  equals to 26% of the observed ratio (i.e., 694 
magnitude dependent). 𝜎���c3��1~�  is more complex. It is a function of the footprint of the satellite 695 
(or a model), the spatial variability of the reference field, which varies from environment to 696 
environment, and the length scale of our target (e.g., a district, a city, or a state). Eq. (14) explicitly 697 
quantifies this error. The product of the square root of that value and the observed ratio defines 698 
𝜎���c3��1~�. The last error depends on the magnitude of HCHO and NO2 tropospheric columns. It 699 
can be estimated from Eq. (15) times the observed ratio. We did not include the chemistry error in 700 
Eq. (16) because it was suited only for segregating the chemical conditions; it does not describe 701 
the level of uncertainties that comes with the observed columnar ratio. Figure 13 shows the total 702 
relative error given the observed TROPOMI ratio seen in Figure 7. We consider the OMI spatial 703 
representation error (13% variance loss) for this case that was computed in a city environment. 704 
The retrieval errors are based on TROPOMI sigma values. Areas associated with relatively small 705 
errors (<50%) are mostly seen in cities due to a stronger signal (smaller 𝜎1~c}~3���). Places with 706 
low vegetation and anthropogenic sources (i.e., Rocky Mountains) possess the largest errors 707 
(>100%). 708 

To produce some examples of the fractional errors to the combined error, we focus on two 709 
different environments with two different sets of HCHO and NO2 columns. One represents a 710 
heavily polluted area, and the other one is a moderately polluted region. We also include two 711 
footprints: OMI (13×24 km2) and a 108×108 km2 pixel. Finally, we calculate the percentage of 712 
each error component for both OMI and TROPOMI sensors. Figure 14 shows the pie charts 713 
describing the percentage of each individual error to the total error for TROPOMI. Unless the 714 
footprint of the sensor is coarse enough (e.g., 108 km2) to give rise to the spatial representation 715 
error dominance, the retrieval error stands out. New satellites are not expected to have very large 716 
footprints; as such, retrieval errors appear to be the major obstacle to using FNR in a robust 717 
manner. Figure 15 shows the same calculation but using OMI errors; the retrieval errors massively 718 
surpass other errors. This motivates us to do one more experiment; we recalculate the HCHO error 719 
distribution in OMI using monthly-averaged data instead of daily (Figure S17). This experiment 720 
suggests a standard deviation of 9.4 ×1015 molec./cm2, with which we again observe the retrieval 721 
error to be the largest contributor (>80%) of the combined error (Figure S18). A recent study 722 
(Johnson et al., 2022) also suggests that retrieval errors can result in considerable disagreement 723 
between FNRs from various sensors and retrieval frameworks. 724 

4. Summary 725 
The main goal of this study was to characterize the errors associated with the ratio of 726 

satellite-based HCHO to NO2 columns, which has been widely used for ozone sensitivity studies. 727 
From the realization of the complexity of the problem, we now know that four major errors should 728 
be carefully quantified so that we can reliably represent the underlying ozone regimes. The errors 729 
are broken down into i) the chemistry error, ii) the column to the PBL translation, iii) the spatial 730 
representation error, and iv) the retrieval error. Each error has its own dynamics and has been 731 
tackled differently by leveraging a broad spectrum of tools and data. 732 

The chemistry error refers to the predictive power of the HCHO/NO2 ratio (hereafter FNR) 733 
in describing the HOx-ROx cycle, which can be well explained by the ratio of the chemical loss 734 
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of HO2+RO2 (LROx) to the chemical loss of NOx (LNOx). Because those chemical reactions are 735 
not directly observable, we set up a chemical box model constrained with a large suite of in-situ 736 
aircraft measurements collected during DISCOVER-AQs and KORUS-AQ campaigns (~ 500 hr 737 
of flight). Our box model showed a reasonable performance at recreating some unconstrained key 738 
compounds such as OH (R2=0.64, bias=17%), HO2 (R2=0.66, bias<1%), and HCHO (R2=0.73). 739 
Subsequently, we compared the simulated FNRs to LROx/LNOx. They showed a high degree of 740 
correspondence (R2=0.93) but only in the logarithmic scale; this indicated that FNRs do not fully 741 
describe the HOx-ROx cycle (i.e., the sensitivity of ozone production rates to NOx and VOC) for 742 
heavily polluted environments and pristine ones. Following a robust baseline indicator 743 
(ln(LROx/LNOx) = -1.0 ± 0.2) segregating NOx-sensitive from VOC-sensitive regimes, we 744 
observed a diverse range of FNR ranging from 1 to 4. These transitioning ratios had a Gaussian 745 
distribution with a mean of 1.8 and a standard deviation of 0.4. This implied that the relative 746 
standard error associated with the ratio from the chemistry perspective at a 68% confidence interval 747 
was 20%. Although this threshold with its error was based on a single model realization and can 748 
be different for a different chemical mechanism, it provided a useful universal baseline derived 749 
from various chemical and meteorological conditions. At a 68% confidence level, any uncertainty 750 
beyond 20% in the ozone regime identification from FNRs likely originates from other sources of 751 
error, such as the retrieval error. 752 

Results from the box model showed that ozone production rates in extremely polluted 753 
regions (VOC-sensitive) were not significantly different from those in pristine ones (NOx-754 
sensitive) due to non-linear chemical feedback mostly imposed by NO2+OH. Indeed, the largest 755 
PO3 rates (median = 4.6 ppbv/hr) were predominantly seen in VOC-sensitive regimes tending 756 
towards the transitional regime. This was primarily caused by the abundance of ozone precursors 757 
(i.e., HCHO×NO2) and the diminished negative chemical feedback. We also revealed that 758 
HCHO×NO2 could be used as a sensible proxy for the ozone precursors’ abundance. In theory, 759 
this metric, in conjunction with the ratio, provided reasonable estimates of PO3 rates (RMSE = 760 
±0.60 ppbv/hr). 761 

We then analyzed the afternoon vertical distribution of HCHO, NO2, and their ratio 762 
observed from aircraft during the air quality campaigns binned to the near-surface to 8 km. For 763 
altitudes below 5.75 km, HCHO concentration steadily decreased with altitude but at a lower rate 764 
than NO2. Above that altitude, NO2 concentrations stabilized and slightly increased due to 765 
lightning and stratospheric sources. The dissimilarity between the vertical shape of NO2 versus 766 
HCHO resulted in a rather non-linear shape of FNR. This non-linear shape necessitated a 767 
mathematical formulation to transform an observed columnar ratio to a ratio at a desired vertical 768 
height expanding from the surface. We fit a second-order rational function to the profile and 769 
formulated the altitude adjustment factor, which followed a second-order polynomial function 770 
starting from values below 1 for lower altitudes, following values above 1 for some high altitudes, 771 
and finally converging to 1 at 8 km. This behavior means that the ozone regime tends to get pushed 772 
slightly towards the VOC-sensitive regime near the surface for a given tropospheric columnar 773 
ratio. This tendency was more pronounced in morning times when the non-linear shape of FNRs 774 
was stronger. This data-driven adjustment factor exclusively derived from afternoon aircraft 775 
profiles during warm seasons in non-convective conditions had a standard error of 19%.  776 

An important error in the satellite-based observations stemmed from unresolved spatial 777 
variability in trace gas concentrations within a satellite pixel (Souri et al., 2022; Tang et al., 2021). 778 
The amount of unresolved spatial variability (the spatial representation error) can in principle be 779 
modeled if we base our reference on a distribution map made from a high spatial resolution dataset. 780 
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We modeled semivariograms (or spatial auto-correlation) computed for a reference map of FNR 781 
observed by TROPOMI at 3×3 km2 over Los Angeles. Subsequently, we coarsened the map to 782 
13×24, 36×36, 108×108, and 216×216 km2 and modeled their semivariograms. As for 13×24 km2, 783 
which is equivalent to the OMI nadir spatial resolution, around 12% of spatial information 784 
(variance) was lost due to its footprint. The larger the footprint, the bigger the spatial representation 785 
error. For instance, a grid box with a size of 216×216 km2 lost 65% of the spatial information in 786 
the ratio at a 50 km length scale. Our method is compelling to understand and easy to apply for 787 
other products and different atmospheric environments. Based on this approach, we developed an 788 
open-source package called SpaTial Representation Error EstimaTor (STREET) (Souri, 2022). 789 

We presented estimates of retrieval errors associated with daily TROPOMI and OMI 790 
tropospheric NO2 columns by comparing them against a large suite of MAX-DOAS (Verhoelst et 791 
al. 2021) and vertically-integrated measurements from aircraft spirals (Choi et al., 2020). Both 792 
products were smaller than the benchmark. Furthermore, they show a relatively consistent 793 
dispersion at a 68% confidence level (~2×1015 molec./cm2) suggested by fitting a normal function 794 
(R2>0.9) to their error distributions. As for daily TROPOMI and OMI HCHO products, we used 795 
global FTIR observations (Vigouroux et al., 2020) and data-constrained GEOS-Chem outputs from 796 
multiple campaigns (Zhu et al., 2020), respectively. TROPOMI HCHO indeed outperforms OMI 797 
HCHO with respect to bias and dispersion on a daily basis. The standard deviation of OMI HCHO 798 
was found to be roughly five times as large compared to TROPOMI. While this error can be partly 799 
reduced by oversampling over a span of a month or a season, it is critical to recognize that ozone 800 
events are episodic; thus, daily observations should be the standard mean for understanding the 801 
chemical pathways for the formation of tropospheric ozone. After combining the daily biases from 802 
both HCHO and NO2 TROPOMI comparisons, we concluded that either daily HCHO or 803 
tropospheric NO2 columns should be above 1.2-1.5×1016 molec./cm2 to achieve 20-30% standard 804 
error in the ratio. Due to the large error in daily OMI HCHO, it was nearly impossible to achieve 805 
20-30% standard error given the observable range of HCHO and NO2 columns over our planet. To 806 
reach 50% error using daily OMI data, HCHO columns should be above 3.2×1016 molec./cm2 or 807 
tropospheric NO2 columns should be above 8×1015 molec./cm2. 808 

To build intuition in the significance of the errors above, we finally calculated the 809 
combined error in the ratio by linearly combining the root sum of the squares of the TROPOMI 810 
retrieval errors, the spatial representation error pertaining to OMI nadir footprint over a city-like 811 
environment, and the altitude adjustment error for a wide range of observed HCHO and NO2 812 
columns over the US. These observations were based on the TROPOMI in the summertime of 813 
2021. The total errors were relatively mild (<50%) in cities due to a stronger signal, whereas they 814 
easily exceeded 100% in regions with low vegetation and anthropogenic sources (i.e., Rocky 815 
Mountains). The retrieval error was the dominant source of the combined error (40-90%). 816 

All of these aspects highlight the necessity of improving the trace gas satellite retrieval 817 
algorithms in conjunction with sensor calibration, although with the realization that a better 818 
retrieval is somewhat limited by the advancements made in other disciplines, such as atmospheric 819 
modeling and molecular spectroscopy. 820 
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 1249 
 1250 

Table1. The box model configurations and inputs. 1251 

Temporal resolution of samples 10-15 sec 
Time steps 1 hour 

Number of solar cycles 5 
Dilution constant 1/86400 -1/43200 (s-1)  

Meteorological Inputs Pressure, Temperature, and Relative Humidity 
Photolysis frequencies estimates LUT based on the NCAR TUV model calculations 

Photolysis frequencies 
constraints (campaign#‡) Measured jNO2 (1-4) and jO1D (4) 

Compounds (Instrument#†, 
campaign#‡) used for 

constraining the box model 

H2(1, 4)§, CO (4, 1-4), NOx (2, 1-4), O3 (2, 1-4), SO2 (6, 4) , CH4 
(4, 1-4), HNO3 (10, 1-4), Isoprene (9, 1-4), Monoterpenes (9, 1-
4), Acetone (9, 1-4), Ethylene (1, 4), Ethane (1, 4), Methanol (9, 
1-4), Propane (1, 4), Benzene (1 or 9, 2-4), Xylene (1 or 9, 1 and 
4), Toluene (1 or 9, 1-4), Glyoxal (8, 4), Acetaldehyde (9, 1-4), 

Methyl vinyl ketone (9, 1-4), Methyl Ethyl Ketone (9, 2-4), 
Propene (1 or 9, 2 and 4), Acetic acid (9, 2-4), Glycolaldehyde 

(5, 4), H2O2 (5, 4) 
Unconstrained compounds 

(Instrument#†, campaign#‡)  
used for validation 

HO2 (3, 4), OH (3, 4), NO (2, 1-4), NO2 (2, 1-4), PAN (10, 1-4), 
HCHO (7, 1-4) 

Chemical Mechanism CB06 
 1252 
† (1) UC Irvine’s Whole Air Sampler (WAS), (2) NCAR 4-Channel Chemiluminescence, (3) Penn 1253 
State's Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), (4) NASA Langley's DACOM 1254 
tunable diode laser spectrometer, (5) Caltech's single mass analyzer, (6) Georgia Tech's ionization 1255 
mass spectrometer, (7) The University of Colorado at Boulder's the Compact Atmospheric Multi-1256 
species Spectrometer (CAMS), (8) Korean Airborne Cavity Enhances Spectrometer, (9) 1257 
University of Innsbruck's PTR-TOF-MS instrument, and (10) University of California, Berkeley's 1258 
TD-LIF. 1259 

 1260 
‡ (1) DISCOVER-Baltimore-Washington, (2) DISCOVER-Texas-Houston, (3) DISCOVER-1261 
Colorado, and (4) KORUS-AQ 1262 
 1263 
§ In the absence of measurements, a default value of 550 ppbv is specified. 1264 
  1265 
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 1266 

 1267 
 1268 

Figure 1. The spatial distributions of aircraft measurements collected during NASA’s a) 1269 
DISCOVER-AQ Houston-Texas, b) DISCOVER-AQ Baltimore-Washington, c) DISCOVER-AQ 1270 
Colorado, and d) KORUS-AQ. The duration of each campaign is based on how long the aircraft 1271 
was in the air. 1272 
  1273 
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1274 

 1275 
 1276 

Figure 2. The comparisons of the observed concentrations of several critical compounds to those 1277 
simulated by our F0AM box model. Each subplot contains mean bias (MB), mean absolute bias 1278 
(MAB), and root mean square error (RMSE). The least-squares fit to the paired data, along with 1279 
the coefficient of determination (R2) are also individually shown for each compound. Note that we 1280 
do not account for the observations errors in the x-axis. The concentrations of NO and NO2 are 1281 
log-transformed.   1282 
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 1283 
 1284 

Figure 3. The scatterplot of natural logarithm-transformed of HCHO/NO2 versus LROx/LNOx 1285 
based on the simulated values performed by the F0AM box model. The heat color indicates the 1286 
calculated ozone production rates (PO3). The size of each data point is proportional to 1287 
HCHO×NO2. The black line is the baseline separator of NOx-sensitive (above the line) and VOC-1288 
sensitive (below the line) regimes. We overlay HCHO/NO2=1 and HCHO/NO2=2 as red and 1289 
purple lines, respectively. The dashed dark green line indicates the least-squares fit to the paired 1290 
data. The HCHO/NO2 = 1.8 with a 20% error is the optimal transitioning point based on this result. 1291 
 1292 
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 1293 
Figure 4. Cumulative distribution functions of PO3 and HCHO×NO2 simulated by the box model 1294 
constrained by NASA’s aircraft observations. Four regions are shown: NOx-sensitive — NOx-sensitive, 1295 
NOx-sensitive—transitional, VOC-sensitive—transitional, and VOC-sensitive—VOC-sensitive. The first 1296 
name of the regime is based on the baseline (ln(LROx/LNOx)=-1.0), whereas the second one follows those 1297 
defined in Duncan et al. (2010): VOC-sensitive if HCHO/NO2<1, transitional if  1<HCHO/NO2<2, and 1298 
NOx-sensitive if HCHO/NO2>2. 1299 
  1300 
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  1301 
Figure 5. The violin plots of the afternoon vertical distribution of HCHO, NO2, and HCHO/NO2 1302 
observations collected during DISCOVER-AQ Texas, Colorado, Maryland, and KORUS-AQ campaigns. 1303 
The violin plots demonstrate the distribution of data (i.e., a wider width means a higher frequency). White 1304 
dots show the median. A solid black line shows both the 25th and 75th percentiles. The heatmap denotes 1305 
the simulated ozone production rates. 1306 
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 1308 
 1309 
Figure 6. The adjustment factor is the ratio of the centroid of the polygon bounding 25th and 75th 1310 
percentiles of the observed HCHO/NO2 columns by NASA’s aircraft between the surface to 8 km 1311 
to the ones between the surface and the desired altitude. This factor can be easily applied to the 1312 
observed HCHO/NO2 columns to translate the value to the desired altitude stretching down to the 1313 
surface (i.e., PBLH). The optimal curve follows a quadratic function formulated in Eq.11.  1314 
  1315 
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 1316 
Figure 7. Oversampled TROPOMI total HCHO columns (top), tropospheric NO2 columns 1317 
(middle), and the ratio (bottom) at 3×3 km2 from June till August 2021 over the US. The ratio map 1318 
is derived from the averaged maps shown in the top and middle panels. 1319 
  1320 
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 1321 
Figure 8. The first column represents the spatial map of HCHO/NO2 ratios over Los Angeles from 1322 
June till August 2021 at different spatial resolutions. To upscale each map to a coarser footprint, 1323 
we use an ideal box filter tailored to the target resolution. The second column shows the 1324 
semivariograms corresponding to the left map along with the fitted curve (red line). The sill and the 1325 
range are computed based on the fitted curve. The x-axis in the semivariogram is in degrees (1 1326 
degree ~ 110 km).  1327 
  1328 
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 1329 
Figure 9. The spatial representation errors quantified based on the proposed method in this study. 1330 
The error explains the spatial loss (or variance) due to the footprint of a hypothetical sensor at 1331 
different length scales. To put this error in perspective, a grid box with 216×216 km2 will naturally 1332 
lose 65% of the spatial variance existing in the ratio at the scale of Los Angeles, which is roughly 1333 
50 km wide. All of these numbers are in reference to the TROPOMI 3×3 km2. 1334 
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 1336 
Figure 10. The histogram of the differences between TROPOMI and OMI and benchmarks. MAX-1337 
DOAS and integrated aircraft spirals are the TROPOMI and the OMI benchmarks, respectively. 1338 
The data curation and relevant criteria on how they have been paired can be found in Verholest et 1339 
al. (2021) and Choi et al. (2020). The statistics in green are based on all data, whereas those in 1340 
pink are based on the fitted Gaussian function.  1341 
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 1343 
Figure 11. The histogram of the differences between TROPOMI and OMI and benchmarks. FTIR 1344 
and corrected GEOS-Chem simulations are the TROPOMI and the OMI benchmarks. The data 1345 
curation and relevant criteria on how they have been paired can be found in Vigouroux et al. (2021) 1346 
and Zhu et al. (2020). The statistics in green color are based on all data, whereas those in pink are 1347 
based on the fitted Gaussian function.  1348 
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 1351 
Figure 12. The contour plots of the relative errors in TROPOMI (left) and OMI (right) based on 1352 
dispersions derived from Figures 10 and 11. The errors used for these estimates are based on daily 1353 
observations. 1354 
  1355 
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 1356 
Figure 13. The total relative error for observed TROPOMI HCHO/NO2 ratios considering the 1357 
daily TROPOMI retrieval errors (𝜎5()= 2.11×1015 molec./cm2 and 𝜎'�'(= 2.97×1015 1358 
molec./cm2), the spatial representation pertaining to OMI footprint over a city environment (13% 1359 
loss in the spatial variance), and the column to the PBL translation parameterization (26%) 1360 
proposed in this study. Please note that the observed FNR is based on mean values from June to 1361 
August 2021, while the uncertainties used for error calculation are on a daily-basis. 1362 
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 1365 
Figure 14. The fractional errors of retrieval (blue), column to PBL translation (green), and spatial 1366 
representation (yellow) of the total error budget for different concentrations and footprints based 1367 
on TROPOMI sigma values. The retrieval error used for the error budget is on a daily basis. 1368 
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 1369 
Figure 15. Same as Figure 14 but based on OMI sigma values. 1370 
 1371 


