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Abstract. 41 

The availability of formaldehyde (HCHO) (a proxy for volatile organic compound 42 
reactivity) and nitrogen dioxide (NO2) (a proxy for nitrogen oxides) tropospheric columns from 43 
Ultraviolet-Visible (UV-Vis) satellites has motivated many to use their ratios to gain some insights 44 
into the near-surface ozone sensitivity. Strong emphasis has been placed on the challenges that 45 
come with transforming what is being observed in the tropospheric column to what is actually in 46 
the planetary boundary layer (PBL) and near to the surface; however, little attention has been paid 47 
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to other sources of error such as chemistry, spatial representation, and retrieval uncertainties. Here 48 
we leverage a wide spectrum of tools and data to carefully quantify those errors. 49 

Concerning the chemistry error, a well-characterized box model constrained by more than 50 
500 hours of aircraft data from NASA’s air quality campaigns is used to simulate the ratio of the 51 
chemical loss of HO2+RO2 (LROx) to the chemical loss of NOx (LNOx). Subsequently, we 52 
challenge the predictive power of HCHO/NO2 ratios (FNRs), which are commonly applied in 53 
current research, at detecting the underlying ozone regimes by comparing them to LROx/LNOx. 54 
FNRs show a strongly linear (R2=0.94) relationship to LROx/LNOx in the log-log scale. Following 55 
the baseline (i.e., ln(LROx/LNOx) = -1.0±0.2) with the model and mechanism (CB06, r2) used for 56 
segregating NOx-sensitive from VOC-sensitive regimes, we observe a broad range of FNR 57 
thresholds ranging from 1 to 4. The transitioning ratios strictly follow a Gaussian distribution with 58 
a mean and standard deviation of 1.8 and 0.4, respectively. This implies that FNR has an inherent 59 
20% standard error (1-sigma) resulting from not being able to fully describe the ROx-HOx cycle. 60 
We calculate high ozone production rates (PO3) dominated by large HCHO×NO2 concentration 61 
levels, a new proxy for the abundance of ozone precursors. The relationship between PO3 and 62 
HCHO×NO2 becomes more pronounced when moving towards NOx-sensitive regions due to non-63 
linear chemistry; our results indicate that there is fruitful information in the HCHO×NO2 metric 64 
that has not been utilized in ozone studies. The vast amount of vertical information on HCHO and 65 
NO2 concentration from the air quality campaigns enables us to parameterize the vertical shapes 66 
of FNRs using a second-order rational function permitting an analytical solution for an altitude 67 
adjustment factor to partition the tropospheric columns to the PBL region. We propose a 68 
mathematical solution to the spatial representation error based on modeling isotropic 69 
semivariograms. With respect to a high-resolution sensor like TROPOspheric Monitoring 70 
Instrument (TROPOMI) (>5.5×3.5 km2), Ozone Monitoring Instrument (OMI) loses 12% of 71 
spatial information at its native resolution. A pixel with a grid size of 216 km2 fails at capturing 72 
~65% of the spatial information in FNRs at a 50 km length scale comparable to the size of a large 73 
urban center (e.g., Los Angeles). We ultimately leverage a large suite of in-situ and ground-based 74 
remote sensing measurements to draw the error distributions of daily TROPOMI and OMI 75 
tropospheric NO2 and HCHO columns. At 68% confidence interval (1 sigma) errors pertaining to 76 
daily TROPOMI observations, either HCHO or tropospheric NO2 columns should be above 1.2-77 
1.5×1016 molec.cm-2 to attain 20-30% standard error in the ratio. This level of error is almost non-78 
achievable with OMI given its large error in HCHO. 79 

The satellite column retrieval error is the largest contributor to the total error (40-90%) in 80 
the FNRs. Due to a stronger signal in cities, the total relative error (<50%) tends to be mild, 81 
whereas areas with low vegetation and anthropogenic sources (e.g., Rocky Mountains) are 82 
markedly uncertain (>100%). Our study suggests that continuing development in the retrieval 83 
algorithm and sensor design and calibration is essential to be able to advance the application of 84 
FNRs beyond a qualitative metric.  85 

1. Introduction 86 
Accurately representing the near-surface ozone (O3) sensitivity to its two major precursors, 87 

nitrogen oxides (NOx) and volatile organic compounds (VOCs), is an imperative step in 88 
understanding non-linear chemistry associated with ozone production rates in the atmosphere. 89 
While it is often tempting to characterize an airshed as NOx or VOC-sensitive, both conditions are 90 
expected as VOC-sensitive (ozone production rates sensitive to VOC) conditions near NOx 91 
sources transition to NOx-sensitive (ozone production rates sensitive to NOx) conditions 92 
downwind as NOx dilutes. Thus, reducing the footprint of ozone production can mostly be 93 
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achieved through NOx reductions. VOCs are key to determining both the location and peak in 94 
ozone production which varies nonlinearly to the NOx abundance. Thus, knowledge of the relative 95 
levels of NOx and VOCs informs the trajectory of ozone production and expectations of where 96 
peak ozone will occur as emissions change. While the near-surface ambient nitrogen dioxide (NO2) 97 
concentrations are regularly monitored by a large number of surface stations, the measurements of 98 
several VOCs with different reactivity rates with respect to hydroxyl (OH), are not routinely 99 
available. As such, our knowledge on where and when ozone production rates are elevated, and 100 
their quantitative dependence on a long list of ozone precursors, is fairly limited, except for 101 
observationally-rich air quality campaigns. This limitation has prompted several studies such as 102 
Sillman et al. (1990), Tonnesen and Dennis (2000a,b), and Sillman and He (2002) to investigate if 103 
the ratio of certain measurable compounds can diagnose ozone regimes meaning if the ozone 104 
production rate is sensitive to NOx (i.e., NOx-sensitive) or VOC (i.e., VOC-sensitive). Sillman 105 
and He (2002) suggested that H2O2/HNO3 was a robust measurable ozone indicator as this ratio 106 
could well describe the chemical loss of HO2+RO2 (LROx) to the chemical loss of NOx (LNOx) 107 
controlling the O3-NOx-VOC chemistry (Kleinman et al., 2001). Nonetheless, both H2O2 and 108 
HNO3 measurements are limited to few spatially-sparse air quality campaigns.  109 

Formaldehyde (HCHO) is an oxidation product of VOCs and its relatively short lifetime 110 
(~1-9 hr) makes the location of its primary and secondary sources rather identifiable (Seinfield and 111 
Pandis, 2006; Fried et al., 2020). Fortunately, monitoring HCHO abundance in the atmosphere has 112 
been a key goal of many Ultraviolet-Visible (UV-Vis) viewing satellites for decades (Chance et 113 
al., 1991; Chance et al., 1997; Chance et al., 2000; González Abad et al., 2015; De Smedt et al., 114 
2008, 2012, 2015, 2018, 2021) with reasonable spatial coverage. Additionally, the strong 115 
absorption of NO2 in the UV-Vis range has permitted measurements of NO2 columns from space 116 
(Martin et al., 2002; Boersma et al., 2004, 2007, 2018).  117 

Advancements in satellite remote-sensing of these two key compounds have encouraged 118 
many studies to elucidate if the ratio of HCHO/NO2 (hereafter FNR) could be a robust ozone 119 
indicator (Tonnensen and Dennis, 2000b; Martin et al. 2004, Duncan et al., 2010). Most studies 120 
using the satellite-based FNR columns attempted to provide a qualitative view of the underlying 121 
chemical regimes (e.g., Choi et al., 2012; Choi and Souri, 2015a,b; Jin and Holloway, 2015; Souri 122 
et al., 2017; Jeon et al., 2018; Lee et al., 2021). Relatively few studies (Duncan et al., 2010; Jin et 123 
al., 2017; Schroeder et al., 2017; Souri et al., 2020) have carefully tried to provide a quantitative 124 
view of the usefulness of the ratio. For the most part, the inhomogeneous vertical distribution of 125 
FNR in columns has been emphasized. Jin et al. (2017) and Schroeder et al. (2017) showed that 126 
differing vertical shapes of HCHO and NO2 can cause the vertical shape of FNR not to be 127 
consistent throughout the troposphere leading to a variable relationship between what is being 128 
observed from the satellite and what is actually occurring in the lower atmosphere. Jin et al. (2017) 129 
calculated an adjustment factor to translate the column to the surface using a relatively coarse 130 
global chemical transport model. The adjustment factor showed a clear seasonal cycle stemming 131 
from spatial and temporal variability associated with the vertical sources and sinks of HCHO and 132 
NO2, in addition to the atmospheric dynamics. In a more data driven approach, Schroeder et al. 133 
(2017) found that the detailed differences in the boundary layer vertical distributions of HCHO 134 
and NO2 lead to a wide range of ambiguous ratios. Additionally, ratios were shown to shift on high 135 
ozone days, raising questions regarding the value of satellite averages over longer timescales. A 136 
goal for our research is to put together an integrated and data-driven mathematical formula to 137 
translate the tropospheric column to the planetary boundary layer (PBL), exploiting the abundant 138 
aircraft measurements available during ozone seasons. 139 
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Using observationally-constrained box models, Souri et al. (2020) demonstrated that there 140 
was a fundamentally inherent uncertainty related to the ratio originating from the chemical 141 
dependency of HCHO on NOx (Wolfe et al., 2016). In VOC-rich (poor) environments, the 142 
transitioning ratios from NOx-sensitive to VOC-sensitive occurred in larger (smaller) values than 143 
the conventional thresholds defined in Duncan et al. (2010) due to an increased (dampened) HCHO 144 
production induced by NOx. To account for the chemical feedback and to prevent a wide range of 145 
thresholds on segregating NOx-sensitive from VOC-sensitive regions, Souri et al. (2020) 146 
suggested using a first-order polynomial matched to the ridgeline in P(O3) isopleths. Their study 147 
illuminated the fact that the ratio suffers from an inherit chemical complication. However, Souri 148 
et al. (2020) did not quantify the error and their work was limited to a subset of atmospheric 149 
condition. To challenge the predictive power of FNR from chemistry perspective, we will take 150 
advantage of a large suite of datasets to make maximum use of varying meteorological and 151 
chemical conditions.  152 

Not only are satellite-based column measurements unable to resolve the vertical 153 
information of chemical species in the tropospheric column, but they are also unable to resolve the 154 
horizontal spatial variability due to their spatial footprint. The larger the footprint is, the more 155 
horizontal information is blurred out. For instance, Souri et al. (2020) observed a substantial spatial 156 
variance (information) in FNR columns at the spatial resolution of 250×250 m2 observed by an 157 
airborne sensor over Seoul, South Korea. It is intuitively clear that a coarse resolution sensor would 158 
lose a large degree of spatial variance (information). This error, known as the spatial representation 159 
error, has not been studied with respect to FNR. We will leverage what we have learned from Souri 160 
et al. (2022), which modeled the spatial heterogeneity in discrete data using geostatistics, to 161 
quantify the spatial representation error in the ratio over an urban environment. 162 

A longstanding challenge is to have a reliable estimate on the satellite retrieval errors of 163 
tropospheric column NO2 and HCHO. Significant efforts have been made recently to assemble, 164 
analyze, and estimate the retrieval errors for two key satellite sensors, TROPOspheric Monitoring 165 
Instrument (TROPOMI) and Ozone Monitoring Instrument (OMI), using various in-situ 166 
measurements (Verhoelst et al., 2021; Vigouroux et al., 2020, Choi et al., 2020; Laughner et al., 167 
2019; Zhu et al., 2020). In this study, we will exploit paired comparisons from some of these new 168 
studies to propagate individual uncertainties in HCHO and NO2 to the FNR errors.  169 

The overarching science goal of this study is to address the fact that the accurate diagnosis 170 
of surface O3 photochemical regimes is impeded by numerous uncertainty components, which will 171 
be addressed in the current paper, and can be classified into four major categories: i) inherent 172 
uncertainties associated with the approach of FNRs to diagnose local O3 production and sensitivity 173 
regimes, ii) translation of tropospheric column satellite retrievals to represent PBL- or surface-174 
level chemistry, iii) spatial representativity of ground pixels of satellite sensors, and iv) 175 
uncertainties associated with satellite-retrieved column-integrated concentrations of HCHO and 176 
NO2. We will address all of these sources of uncertainty using a broad spectrum of data and tools. 177 

Our paper is organized with the following sections. Section 2 describes the chemical box 178 
model setup and data applied. Sections 3.1 to 3.4 deal with chemistry aspects of FNRs and show 179 
the results from a box model. Section 3.5 introduces a data-driven framework to transform the 180 
FNR tropospheric columns to the PBL region. Section 3.6 offers a new way to quantify the spatial 181 
representation error in satellites. Section 3.7 deals with the satellite error characterization and their 182 
impacts on the ratio. Section 3.8 summarizes the fractional contribution of each error to the 183 
combined error. Finally, Sect. 4 provides a summary and conclusions of the study. 184 
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2. Photochemical Box Modeling and Aircraft Data Used 185 
To quantify the uncertainty of FNR from a chemistry perspective, and to obtain several 186 

imperative parameters including the calculated ozone production rates, and the loss of NOx (LNOx) 187 
and ROx (LROx), we utilize the Framework for 0-D Atmospheric Modeling (F0AM) v4 (Wolfe et 188 
al., 2016). We adopt the Carbon Bond 6 (CB06, r2) chemical mechanism and heterogenous 189 
chemistry is not considered in our simulations. The model is initialized with the measurements of 190 
several compounds, many of which constrain the model by being held constant for each timestep 191 
(see Table 1).  192 

Figure 1 shows the map of data points from Deriving Information on Surface Conditions 193 
from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) 194 
Baltimore-Washington (2011), DISCOVER-AQ Houston-Texas (2013), DISCOVER-AQ 195 
Colorado (2014), and Korea United States Air Quality Study (KORUS-AQ) (2016). 196 
Meteorological inputs come from the observed pressure, temperature, and relative humidity. The 197 
measurements of photolysis rates are not available for all photolysis reactions; therefore, our initial 198 
guess of those rates comes from a look-up-table populated by the National Center for Atmospheric 199 
Research (NCAR) Tropospheric Ultraviolet And Visible (TUV) model calculations. These values 200 
are a function of solar zenith angle, total ozone column density, surface albedo, and altitude. We 201 
set the total ozone column and the surface albedo to fixed numbers of 325 (Dobson) DU and 0.15, 202 
respectively. The initial guess is then corrected by applying the ratio of observed photolysis rates 203 
of NO2+hv (jNO2) and/or O3+hv (jO1D) to the calculated ones to all j-values (i.e., wavelength 204 
independent). If both observations of jNO2 and  jO1D are available, the correction factor is 205 
averaged. The KORUS-AQ campaign is the only one that provides jO1D measurements; therefore 206 
the use of the wavelength-independent correction factor based on the observed to calculated jNO2 207 
values for all j-values including jO1D is a potential source of error in the model especially when 208 
aerosols are present. The model calculations are based on the observations merged to a temporal 209 
resolution varying from 10 to 15 seconds. Each calculation was run for five consecutive days with 210 
an integration time of 1 hour to approach diel steady state. We test the number of solar cycle 211 
against ten days on the KORUS-AQ setup, and observe no noticeable difference in simulated OH 212 
and HCHO (Figure S1) indicating that five solar cycles suffice. Some secondarily-formed species 213 
must be unconstrained for the purpose of model validation. Therefore, the concentrations of several 214 
secondarily-formed compounds such as HCHO and PAN are unconstrained. Nitric oxide (NO) and 215 
NO2 are also allowed to cycle, while their sum (i.e., NOx) is constrained. Because the model does 216 
not consider various physical loss pathways including deposition and transport, which vary by 217 
time and space, we oversimplify their physical loss through a first-order dilution rate set to 218 
1/86400-1/43200 s-1 (i.e., 24- or 12-hr lifetime), which in turn prevents relatively long-lived 219 
species from accumulating over time. Our decision on unconstraining HCHO, a pivotal compound 220 
impacting the simulation of HOx, may introduce some systematic biases in the simulation of 221 
radicals determining ozone chemistry (Schroeder et al., 2020). Therefore, to mitigate the potential 222 
bias in HCHO, we set the dilution factor to maintain the campaign-averaged bias in the simulated 223 
HCHO with respect to observations of less than 5%. However, it is essential to recognize that 224 
HCHO can fluctuate freely for each point measurement because the dilution constraint is set to a 225 
fixed value for an individual campaign.  Each time tag is independently simulated meaning we do 226 
not initialize the next run using the simulated values from the previous one; this in turn permits 227 
parallel computation. Regarding the KORUS-AQ campaign where HOx observations were 228 
available, we only ran the model for data points with HOx measurements. Similar to Souri et al. 229 
(2020), we filled gaps in VOC observations with a bilinear interpolation method with no 230 
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extrapolation allowed. In complex polluted atmospheric conditions such as that over Seoul, South 231 
Korea, Souri et al. (2020) observed that this simplistic treatment yielded comparable results with 232 
respect to the NASA LaRC model (Schroeder et al. 2020) which incorporated a more 233 
comprehensive data harmonization. to  Table 1 lists the major configuration along with the 234 
observations used for the box model. 235 

Several parameters are calculated based on the box model outputs. LROx is defined through 236 
the sum of primarily radical-radical reactions: 237 

𝐿𝑅𝑂$ = 𝑘'()*'()[𝐻𝑂-]
- +0𝑘1()2*'()[ 𝑅𝑂-3][𝐻𝑂-]

+0𝑘1()2*1()2[𝑅𝑂-3]
- 

(1) 

where k is the reaction rate constant. LNOx mainly occurs via the NO2+OH reaction: 238 

𝐿𝑁𝑂$ = 𝑘('*5()*6[𝑂𝐻][𝑁𝑂-][𝑀] (2) 

where M is a third body. We calculate P(O3) by subtracting the ozone loss pathways dictated by 239 
HOx (HO+HO2), NO2+OH, O3 photolysis, ozonolysis, and the reaction of O(1D) with water vapor 240 
from the formation pathways through the removal of NO via HO2 and RO2: 241 
𝑃(𝑂:) = 𝑘'()*5([𝐻𝑂-][𝑁𝑂] +0𝑘1()2*5([ 𝑅𝑂-3][𝑁𝑂]

− 𝑘('*5()*6[𝑂𝐻][𝑁𝑂-][𝑀] − 𝑃(𝑅𝑂𝑁𝑂-) − 𝑘'()*(=[𝐻𝑂-][𝑂:]
− 𝑘('*(=[𝑂𝐻][𝑂:] − 𝑘(> ?@ A*')(B𝑂> 𝐷D AE[𝐻-𝑂] − 𝐿(𝑂:
+ 𝑎𝑙𝑘𝑒𝑛𝑒𝑠) 

(3) 

3. Results and Discussion 242 

3.1. Box Model Validation 243 
There are uncertainties associated with the box model (e.g., Brune et al., 2022; Zhang et 244 

al., 2021; Lee et al., 2021) which can be attributed to: i) the lack of inclusion of physical processes 245 
such as entrainment/detrainment and diffusion, ii) discounting the heterogenous chemistry, iii) 246 
invalid assumption of the diel steady state in areas close to large emission sources or in 247 
photochemically less active environments (Thornton et al., 2002; Souri et al., 2021), iv) errors in 248 
the chemical mechanism, and v) errors in the measurements. These limitations necessitate a 249 
thorough validation of the model using unconstrained observations. While models have been 250 
known for a long time to not be 100% accurate (Box, 1976), it is important to characterize whether 251 
the model can effectively represent reality. For instance, if the simulated HCHO is poorly 252 
correlated with observations and/or displayed large magnitude biases, it will be erroneous to 253 
assume that the sources of HCHO along with relevant chemical pathways are appropriate. It is 254 
important to acknowledge that the VOC constraints for these model calculations are incomplete, 255 
especially for the DISCOVER-AQ campaigns which lacked comprehensive VOC observations. 256 
Nevertheless, we will show that the selected VOCs are sufficient to reproduce a large variance 257 
(>70%) in observed HCHO. 258 

We diagnose the performance of the box model by comparing the simulated values of five 259 
compounds to observations: HCHO, NO, NO2, PAN, hydroperoxyl radical (HO2), and OH. Figure 260 
2 depicts the scatterplot of the comparisons along with several statistics. HCHO observations are 261 
usually constrained in box models to improve the representation of HO2 (Schroeder et al., 2017; 262 
Souri et al., 2020; Brune et al., 2022); however, this constraint may mask the realistic 263 
characterization of the chemical mechanism with respect to the treatment of VOCs. Additionally, 264 
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it is important to know if the sources of HCHO are adequate. Therefore, we detach the model from 265 
this constraint to carry out a more fair and stringent validation.  266 

Concerning HCHO, our model does have considerable skill at reproducing the variability 267 
of observed HCHO (R2=0.73). To evaluate if this agreement is accidentally caused by the choice 268 
of the dilution factor and to identify if our VOC treatment is inferior compared to the one adopted 269 
in the NASA LaRC (Schroeder et al., 2021), we conducted three sets of sensitivity tests for the 270 
KORUS-AQ campaign, including ones with and without considering a dilution factor and another 271 
one without HNO3 and H2O2 constraints (Figure S2). When not considering a dilution factor results 272 
in no difference in the variance in HCHO captured by our model (R2=0.81). Our model without 273 
the dilution factor is still skillful at replicating the magnitude of HCHO with less than 12% bias. 274 
It is because of this reason that the optimal dilution factor for each camping is within 12 hr to 24 275 
hr which is not different than other box modeling studies (e.g., Brune et al., 2022; Miller and 276 
Brune, 2022). We observed no difference in the simulated HCHO when HNO3 and H2O2 values 277 
were not constrained. The unconstrained NASA LaRC setup oversampled at 10-sec frequency 278 
captures 86% variance in the measurements, only slightly (6%) outperforming our result. 279 
However, the unconstrained NASA LaRC setup greatly underestimates the magnitude of HCHO 280 
compared to our model results.  281 

The model performs well with regards to the simulation of NO (R2=0.89) and NO2 282 
(R2=0.99) in the log scale. Immediately evident is the underestimation of NO in highly polluted 283 
regions contrary to an overestimation in clean ones. This discrepancy leads to an underestimation 284 
(overestimation) of NO/NO2 in polluted (clean) regions. The primary drivers of NO/NO2 are jNO2 285 
and O3 both of which are constrained in the model. What can essentially deviate the partitioning 286 
between NO and NO2 from that of observations in polluted areas is the assumption of the diel 287 
steady state which is rarely strictly valid where measurements are close to large emitters. The 288 
overestimation of NO in low NOx areas is often blamed on the lack of chemical sink pathways of 289 
NO in chemical mechanisms (e.g., Newland et al., 2021). A relatively reasonable performance of 290 
PAN (R2=0.63) is possibly due to constraining some of the oxygenated VOCs such as 291 
acetaldehyde. Xu et al. (2021) observed a strong dependency of PAN concentrations on NO/NO2 292 
ratios. Smaller NO/NO2 ratios are usually associated with larger PAN mixing ratios because NO 293 
can effectively remove peroxyacetyl radicals. We observe an overestimation of PAN (0.27 ppbv) 294 
possibly due to an underestimation of NO/NO2. Moreover, we should not rule out the impact of 295 
the first-order dilution factor which was only empirically set in this study. For instance, if we 296 
ignore the dilution process for the KORUS-AQ campaign, the bias of the model in terms of PAN 297 
will increase by 33% resulting in a poor performance (R2=0.40) (Figure S3). We notice that this 298 
poor performance primarily occurs for high altitude measurements where PAN is thermally stable 299 
(Figure S4); therefore, this does not impact the majority of rapid atmospheric chemistry occurring 300 
in the lower troposphere such the formation of HCHO. Schroeder et al. (2020) found that proper 301 
simulation of PAN in the polluted PBL during KORUS-AQ required a first-order loss rate based 302 
on thermal decomposition at the average PBL temperature, which was more realistic than the 303 
widely varying local PAN lifetimes associated with temperature gradients between the surface and 304 
the top of the PBL. This solution is computationally equivalent to the dilution rate used in this 305 
study. 306 

KORUS-AQ was the only field campaign providing OH and HO2 measurements. 307 
Concerning HO2, former studies such as Schroeder et al. (2017), Souri et al. (2020), and Brune et 308 
al. (2022) managed to reproduce HO2 mixing ratios with R2 ranging from 0.6 to 0.7. The 309 
performance of our model (R2=0.66) is similar to these past studies with near negligible biases 310 
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(<1%). One may argue that the absence of the HO2 uptake by aerosols is contributing to some of 311 
the discrepancies we observe in the HO2 comparison. Brune et al. (2022) provided compelling 312 
evidence showing that the consideration of the HO2 uptake made their results significantly 313 
inconsistent with the observations suggesting that the HO2 uptake might have been inconsequential 314 
during the campaign. Our model manages to reproduce 64% of the variance of observed OH 315 
outperforming the simulations presented in Souri et al. (2020) and Brune et al. (2022) by >10%. 316 
The slope (= 1.03) is not too far from the identity line indicating that our box model systematically 317 
overestimates OH by 0.62 106 cm-3. This may be attributed to a missing OH sink in the mechanism 318 
or the lack of inclusion of some VOCs. A sensitivity test involving removing the first-order 319 
dilution process demonstrates that the simulation of HOx is rather insensitive to this parameter 320 
(Figure S5). This might be caused by the fact that the simulated HCHO already agrees relatively 321 
well with the observations without the dilution factor. In general, the model performance is 322 
consistent, or outperforms, results from recent box modelling studies which is an indication of it 323 
being at least roughly representative of the real-world ozone chemistry and sensitivity regimes. 324 

3.2. Can HCHO/NO2 ratios fully describe the HOx-ROx cycle? 325 
Kleinman et al. (2001) demonstrated that LROx/LNOx is the most robust ozone regime 326 

indicator. Thus, the predictive power of FNR at detecting the underlying chemical conditions can 327 
be challenged by comparing FNR to LROx/LNOx. Ideally, if they show a strong degree of 328 
correspondence (i.e., R2=1.0), we can confidently say that FNR can realistically portray the 329 
chemical regimes. Any divergence of these two quantities is indicative of inadequacy of the FNR 330 
indicator. Souri et al. (2020) observed a strong linear relationship between the logarithmic 331 
transformed FNR and those of LROx/LNOx. Our analysis in this study will be based upon the 332 
simulated values to ensure that the relationship is coherent based on a realization from the well-333 
characterized box model. As pointed out by Schroeder et al. (2017) and Souri et al. (2020), a 334 
natural logarithm of LROx/LNOx roughly equal to -1.0 (i.e., LROx/LNOx = 0.35-0.37) 335 
perceptibly separates VOC-sensitive from NOx-sensitive regimes, which would make this 336 
threshold the baseline of our analysis.  337 

Figure 3 demonstrates the log-log relationship of LROx/LNOx and FNR, and P(O3), from 338 
all four air quality campaigns. The log-log relationships from each individual campaign are shown 339 
in Figure S6-S9. We overlay the LROx/LNOx baseline threshold along with two commonly used 340 
thresholds for FNR suggested by Duncan et al. (2010); they defined the VOC-sensitive regimes if 341 
FNR<1 and the NOx-sensitive ones if FNR>2. Any region undergoing a value between these 342 
thresholds is unlabeled and considered to be in a transitional regime. The size of each data point 343 
is proportional to the HCHO×NO2 concentration magnitude. One striking finding from this plot is 344 
that there is indeed a strong linear relationship between the logarithmic-transformed LROx/LNOx 345 
and FNR (R2=0.91). A strong linear relationship between the two quantities in the log-log scale is 346 
indicative of a power law dependence (i.e., y=axb). A strong power law dependency means that 347 
these two quantities have a poor correlation at their low and high values. This is mainly caused by 348 
the fact that HCHO does not fully describe VOC reactivity rates in rich and poor VOC 349 
environments (Souri et al., 2020). A question is what range of FNR will fall in ln(LROx/LNOx) = 350 
-1.0±0.2? Following the baseline, the transitioning ratios follow a normal distribution with a mean 351 
of 1.8, a standard deviation of 0.4, and a range from 1 to 4 (Figure S10). We define the chemical 352 
error in the application of FNR to separate the chemical regimes as the relative error standard 353 
deviation (i.e., σ/µ) of the transitioning ratios leading to ~ 20%. These numbers are based on a 354 
single model realization and can change if a different mechanism is used; nonetheless, the model 355 
has considerable skill at reproducing many different unconstrained compounds, especially OH, 356 
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suggesting that it is a rather reliable realization. The comparison of the transitioning FNRs to the 357 
NO2 concentrations suggests no correlation (r=0.02) whereas there is a linear correlation between 358 
the transitioning ratios and the HCHO concentrations (r=0.56). This tendency reinforces the study 359 
of Souri et al. (2020) who, primarily due to the HCHO-NO2 feedback, observed a larger FNR 360 
threshold in VOC-rich environments to be able to detect the chemical regimes. 361 
3.3. Large PO3 rates occur in regions with large HCHO×NO2 concentrations when 362 

moving towards NOx-sensitive regions 363 
A striking and perhaps intuitive tendency observed from Figure 3 is that large PO3 rates 364 

are mostly tied to higher HCHO×NO2. But this relationship gradually weakens as we move 365 
towards VOC-sensitive regions (smaller LROx/LNOx ratios). This is a textbook example of non-366 
linear ozone chemistry. In VOC-sensitive areas, PO3 can be strongly inhibited by NO2+OH and 367 
the formation of organic nitrates despite the abundance of the precursors. In application of remote-368 
sensing of ozone precursors, the greatest unused metric describing the mass of the ozone precursors 369 
is HCHO×NO2. However, this metric should only be used in conjunction with FNR. To 370 
demonstrate this, based on what the baseline (LROx/LNOx) suggests against thresholds on FNRs 371 
defined by Duncan et. al. (2010), we group the data into four regions namely as NOx-sensitive – 372 
NOx-sensitive, NOx-sensitive–transitional, VOC-sensitive–transitional, and VOC-sensitive–373 
VOC-sensitive. A different perspective into this categorization is that the transitional regimes are 374 
a weaker characterization of the main regime; for instance, NOx-sensitive–transitional regions are 375 
less NOx-sensitive than NOx-sensitive – NOx-sensitive. Subsequently, the cumulative distribution 376 
functions (CDFs) of PO3 and HCHO×NO2 with respect to the aforementioned groups are 377 
calculated, which is shown in Figure 4. Regarding NOx-sensitive—NOx-sensitive regions, we see 378 
the PO3 CDF very quickly converging to the probability of 100% indicating that the distribution 379 
of PO3 is skewed towards very low values. The median of PO3 for this particular regime (where 380 
CDF = 50%) is only 0.25 ppbv/hr. This agrees with previous studies such as Martin et al. (2002), 381 
Choi et al. (2012), Jin et al. (2017), and Souri et al. (2017) reporting that NOx-sensitive regimes 382 
dominate in pristine areas. The PO3 CDFs between NOx-sensitive—transitional and VOC-383 
sensitive—VOC-sensitive are not too distinct, whereas their HCHO×NO2 CDFs are substantially 384 
different. The non-linear ozone chemistry suppresses PO3 in highly VOC-sensitive areas such that 385 
those values are not too different than those in mildly polluted areas (NOx-sensitive—transitional). 386 
Perhaps the most interesting conclusion from this figure is that elevated PO3 values (median = 4.6 387 
ppbv/hr), a factor of two larger than two previous regimes, are mostly found in VOC-sensitive—388 
transitional. This is primary due to two causes: i) this particular regime is not strongly inhibited by 389 
the nonlinear chemistry, particularly NO2+OH, and ii) it is associated with abundant precursors 390 
evident in the median of HCHO×NO2 being as three times as large of those in NOx-sensitive—391 
transitional. This tendency illustrates the notion of the non-linear chemistry and how this may 392 
affect regulations. Simply knowing where the regimes are might not suffice to pinpoint the peak 393 
of PO3, as this analysis suggests that we need to take both FNR and HCHO×NO2 into 394 
consideration; both metrics are readily accessible from satellite remote-sensing sensors. 395 

3.4. Can we estimate PO3 using the information from HCHO/NO2 and HCHO×NO2? 396 
It may be advantageous to construct an empirical function fitted to these two quantities and 397 

elucidate the maximum variance (information) we can potentially gain to recreate PO3. After 398 
several attempts, we found a bilinear function (z=a0+a1x+a2y+a3xy) to be a good fit without 399 
overparameterization. Due to presence of extreme values in both FNR and HCHO×NO2, we use a 400 
weighted least squares method for the curve fitting based on the distance of the fitted curve to the 401 
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data points (known as bi-squares weighting). The best fit with R2 equals to 0.94 and an RMSE of 402 
0.60 ppbv/hr is: 403 
𝑃𝑂: = 0.74 − 0.09	𝑥 − 0.02	𝑦 + 0.25𝑥𝑦 (4) 

where x and y are FNR (unitless) and HCHO×NO2 (ppbv2), respectively. The residual of the fit is 404 
shown in Figure S11. The gradients of PO3 with respect to x and y are: 405 
𝑑𝑃𝑂:
𝑑𝑥 = 0.25𝑦 − 0.09 

(5) 

𝑑𝑃𝑂:
𝑑𝑦 = 0.25𝑥 − 0.02 

(6) 

An apparent observation arises from these equations that is the derivatives of PO3 to each 406 
metric depends on the other one underscoring their interconnectedness. For instance, Eq. (6) 407 
suggests that larger FNRs (x) result in a larger gradient of PO3 to the abundance of HCHO×NO2 408 
(y). In very low FNRs, this gradient can become very small rendering PO3 insensitive (or in 409 
extreme cases, negatively correlated) to HCHO×NO2. This analysis provides encouraging results 410 
about the future application of the satellite-derived HCHO×NO2; however, the wide class of 411 
problems relating to the application of satellite-derived FNR columns such as satellite errors in 412 
columns or the translation between columns to PBL are also present in Eq. (4), even in a more 413 
pronounced way due to HCHO×NO2 and HCHO2 (= xy). This new perspective into PO3 estimation 414 
deserves a separate study. 415 

3.5. Altitude dependency and its parametrization 416 
A lingering concern over the application of satellite-based FNR tropospheric columns is 417 

that the vertical distribution of HCHO and NO2 are integrated in columns thus this vertical 418 
information is permanently lost. As such, here we provide insights on the vertical distribution of 419 
FNR within the tropospheric column. This task requires information about the differences between 420 
i) the vertical shape of HCHO and that of NO2 and ii) the vertical shape in the sensitivity of the 421 
retrievals to the different altitude layers (described as scattering weights). Ideally, if both 422 
compounds show an identically relative shape, the FNR columns will be valid for every air parcel 423 
along the vertical path (i.e., a straight line). Previous studies such as Jin et al. (2017) and Schroeder 424 
et al. (2017) observed a large degree of vertical inhomogeneity in both HCHO and NO2 425 
concentrations suggesting that this ideal condition cannot be met. We do not always know the 426 
precise knowledge of HCHO and NO2 vertical distributions, but we can constitute some degree of 427 
generalizations by leveraging the measurements made during the aircraft campaigns. As for the 428 
differences in the vertical shapes (i.e., the curvature) of the sensitivity of the retrievals between 429 
HCHO and NO2 channels (i.e., ~ 340 nm and ~440 nm), under normal atmospheric and viewing 430 
geometry conditions, several studies such as Nowlan et al. 2018 and Lorente et al. 2017 showed 431 
small differences in the vertical shapes of the scattering weights within first few kilometers altitude 432 
above the surface where the significant fluctuations in FNRs usually take place. Therefore, we do 433 
not consider the varying vertical shapes in the scattering weights in our analysis. This assumption 434 
might not hold for excessive aerosol loading with variable extinction efficiency between ~340 nm 435 
and ~440 nm wavelengths or extreme solar zenith angles. 436 

Figure 5 demonstrates the violin plot of the afternoon (> 12:00 LST) vertical distribution 437 
of HCHO, NO2, and FNR observed by NASA’s aircrafts during the four field campaigns analyzed 438 
in this study superimposed by the simulated PO3 rates. The vertical layers are grouped into sixteen 439 
altitudes ranging from 0.25 km to 7.75 km. Each vertical layer incorporates measurements ±0.25 440 
km of the altitude mid-layer height. The observations do not follow a normal distribution, 441 
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particularly in the lower parts of the atmosphere; thus medians are preferred to represent the central 442 
tendency. While the largest PO3 rates tend to occur in areas close to the surface (< 2 km agl), a 443 
nonnegligible fraction of the elevated PO3 rates are also observed in other parts of the atmosphere 444 
such as those in the free troposphere. 445 

Several intriguing features are observed from Figure 5: First, up to the 5.75 km range, 446 
which encompasses the PBL area and a large portion of the free-troposphere, NO2 concentrations 447 
tend to decrease quicker than those of HCHO in line with previous studies such as Schroeder et al. 448 
(2017), Jin et al. (2017), Chan et al. (2019), and Ren et al. (2022). Second, above 5.75 km, HCHO 449 
levels off whereas NO2 shows an increasing trend. As a result of their different vertical trends, we 450 
observe nonuniformities in the vertical distribution of FNR: they become more NOx-sensitive with 451 
altitude up to a turning point at 5.75 km and then shift backwards to VOC-sensitive.  452 

It is attractive to model these shapes and apply parameterizations to understand how their 453 
shapes will complicate the use of tropospheric column retrieval from satellites. First order rational 454 
functions are a good candidate to use. Concerning the vertical dependency of HCHO and NO2, we 455 
find reasonable fit (R2=0.73) as: 456 

𝐻𝐶𝐻𝑂,𝑁𝑂- = 	
𝑎X𝑧 + 𝑎D
𝑧 + 𝑎-

 (7) 

where z is altitude in km. ai (i=0,1,2) are fitting parameters. From this equation it is determined 457 
that FNRs follow a second order rational function: 458 

𝑓(𝑧) =
𝐻𝐶𝐻𝑂
𝑁𝑂-

= 	
𝑏X𝑧- + 𝑏D𝑧 + 𝑏-
𝑏:𝑧- + 𝑏\𝑧 + 𝑏]

 
(8) 

where bi (i=0, … , 5) are fitting parameters. One can effortlessly fit this function to different bounds 459 
of the vertical distribution of FNR such as the 25th and 75th percentiles, and subsequently estimate 460 
the first moment of the resultant polygon along z divided by the total area bounded to the polygon 461 
(the centroid, G) via: 462 

𝐺(𝑧D, 𝑧-) =
1
2𝐴

a 𝑓-(𝑧)b]cd − 𝑓-(𝑧)-]cd
e-

eD
𝑑𝑧 

(9) 

where A is the area of the polygon bounded by the 75th percentiles, 𝑓(𝑧)b]cd , and the 25th 463 
percentiles (𝑓(𝑧)-]cd) of FNR (shown in Figure 5 as solid black lines). We define an altitude 464 
adjustment factor (fadj) such that one can translate an observed FNR tropospheric column ratios, 465 
such as those retrieved from satellites, to a defined altitude and below that point (zt) through: 466 

𝑓fgh = 	
𝐺(0, 𝑧c)
𝐺(0,8	𝑘𝑚) 

(10) 

where zt can be interchanged to match the PBLH. This definition is more beneficial than using the 467 
entire tropospheric column to the surface conversion (e.g., Jin et al., 2017) because ozone can be 468 
formed in various vertical layers. Using the observations collected during the campaign, we 469 
estimate Eq. (10) along with ±1σ boundaries shown in Figure 6. To determine the adjustment factor 470 
error, we reestimate Eq.9 with ±1σ level in the coefficients obtained from Eq.8. The resultant error 471 
is shown in the dashed red line in Figure 6. This error results from uncertainties associated with 472 
assuming that the second-order rational function can explain the vertical distribution of FNRs. The 473 
shape of the resulting adjustment factor is in line with of the vertical distribution of FNR (see 474 
Figure 5): the adjustment factor curve closer to the surface has values smaller than one, increases 475 
to values larger than one in the mid-troposphere, and finally converges to one near the top of the 476 
tropospheric column. If one picks out an altitude pertaining to a PBLH, they can easily apply fadj 477 
to the observed FNR columns to estimate the corresponding ratio for that specific PBLH. A more 478 
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evolved PBLH (i.e., a large zt) results in stronger vertical mixing rendering fadj closer to one. The 479 
standard error deviation of this conversion is around 26%.  480 

It is beneficial to model this curve to make this data-driven conversion easier for future 481 
applications. A second-order polynomial can well describe (R2=0.99) this curve: 482 
𝑓fgh = 𝑎𝑧c- + 𝑏𝑧c + 𝑐 𝑎 = −0.02, 𝑏 = 0.25, 𝑐 = 0.41 (11) 

Although Eq. (11) does not include observations above 8 km, the area bounded between 𝑓(𝑧)b]cd  483 
and 𝑓(𝑧)-]cd  in higher altitudes is too small to make a noticeable impact on this adjustment factor.  484 

One may object that since we estimated the adjustment factor based on two boundaries 485 
(25th and 75th percentiles) of the data we are no longer really dealing with 50% of features observed 486 
in the vertical shapes of FNR. This valid critique can be overcome by gradually relaxing the lower 487 
and upper limits and examine the resulting change in fadj. When we reduce the lower limit in Eq. 488 
(9) from the 25th to 1st percentiles the optimal curve is similar to the one shown in Figure 6 (Figure 489 
S12). However, when we extend the upper limit from 75th percentiles to greater values, we see the 490 
fit becoming less robust above the 80th percentiles indicating that the formulation is applicable for 491 
~80% of the data. The reason behind the poor representation of the adjustment factor for the upper 492 
tail of the population is the extremely steep turning point between 5.5 and 6.0 km necessitating a 493 
higher order rational function to be used for Eq. (7) and Eq. (8). We prefer to limit this analysis to 494 
both boundaries and the order defined in Eq. (8) and Eq. (9) because extreme value predictions 495 
usually lack robustness.  496 

A caution with these results is that our analysis is limited to afternoon observations because 497 
our focus is on afternoon low orbiting sensors such as OMI and TROPOMI. Nonetheless, 498 
Schroeder et al. (2017) and Crawford et al. (2021) observed a large diurnal variability in these 499 
profiles due to diurnal variability in  sinks and sources of NO2 and HCHO, and atmospheric 500 
dynamics. The diurnal cycle has indeed an important implication for geostationary satellites such 501 
as Tropospheric Emissions: Monitoring of Pollution (TEMPO) (Chance et al., 2019). 502 

Another important caveat with our analysis is that it is based upon four air quality 503 
campaigns taking place in warm seasons avoiding times/areas with convective transport; as such 504 
our analysis is ignorant about the vertical shapes of FNR during convective activities and cold 505 
seasons. These oversights can be downplayed by a few compelling assumptions: first, it is very 506 
atypical to encounter elevated ozone production rates during cold seasons with few exceptions 507 
(Ahmadov et al., 2015; Rappenglück et al., 2014); second, the notion of ozone regimes is only 508 
appropriate in photochemically active environments where the ROx-HOx cycle is active; an 509 
example of this can be found in Souri et al. (2021) who observed an enhancement of surface ozone 510 
in central Europe during a lockdown in April 2020 (up to 5 ppbv) compared to a baseline which 511 
was explainable by the reduced O3 titration through NO in place of the photochemically induced 512 
production. An exaggerated extension to this example is the nighttime chemistry where NO-O3-513 
NO2 partitioning is the major driver of negative ozone production rates; at night, the definition of 514 
NOx-sensitive or VOC-sensitive is meaningless, so is in photochemically less active 515 
environments; third, it is rarely advisable to use cloudy scenes in satellite UV-Vis gas retrievals 516 
due to the arguable assumption on Lambertian clouds and highly uncertain cloud optical centroid 517 
and albedo; accordingly, convection occurring during storms or fires are commonly masked in 518 
satellite-based studies. Therefore, the limitations associated with the adjustment factor are mild 519 
compared to the advantages. 520 
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3.6. Spatial Heterogeneity 521 
The spatial representation error resulting from both unresolved processes and scales (Janić 522 

et al., 2016; Valin et al., 2011; Souri et al., 2022) refers to the amount of information lost due to 523 
satellite footprint or unresolved inputs used in satellite retrieval algorithms. This source of error 524 
cannot be determined when we do not know the true state of the spatial variability. There is, 525 
however, a practical way to determine this by conducting multi-scale intercomparisons of a coarse 526 
spatial resolution output against a finer one. Yet, despite the absence of the truth in this approach, 527 
we tend to find their comparisons useful in giving us an appreciation of the error.  528 

We build the reference data on qualified pixels (qa_value> 0.75) of offline TROPOMI 529 
tropospheric NO2 version 2.2.0 (van Geffen et al., 2021; Boersma et al., 2018) and total HCHO 530 
columns version 2.02.01 (De Smedt  et  al., 2018) oversampled at 3×3 km2 in summer 2021 over 531 
the US. Figure 7 shows the map of those tropospheric columns as well as FNR. Encouragingly, 532 
the small footprint and relatively low detection limit of TROPOMI compared to its predecessor 533 
satellite sensors (e.g., OMI) enables us to have possibly one of the finest maps of HCHO over the 534 
US to date. Large values of HCHO columns are found in the southeast due to strong isoprene 535 
emissions (e.g., Zhu et al., 2016; Wells et al., 2020). Cities like Houston (Boeke et al., 2011; Zhu 536 
et al., 2014; Pan et al., 2015; Diao et al., 2016), Kansas City, Phoenix (Nunnermacker et al., 2004), 537 
and Los Angeles (de Gouw et al., 2018) also show pronounced enhancements of HCHO possibly 538 
due to anthropogenic sources. Expectedly, large tropospheric NO2 columns are often confined to 539 
cities and some coal-fired power plants along Ohio river basin. Concerning FNR, low values 540 
dominate cities whereas high values are found in remote regions. An immediate tendency observed 541 
from these maps is that the length scale of HCHO columns is longer than that of NO2. This 542 
indicates that NO2 columns are more heterogenous. It is because of this reason that we observe a 543 
large degree of the spatial heterogeneity with respect to FNRs. 544 

Here we limit our analysis to Los Angeles due to computational costs imposed by the 545 
subsequent experiment. To quantify the spatial representation errors caused by satellite footprint 546 
size, we upscale the FNRs by convolving the values with four low pass box filters with the size of 547 
13×24, 36×36, 108×108, and 216×216 km2, shown in the first column of Figure 8. Subsequently, 548 
to extract the spatial variance (information), we follow the definition of the experimental 549 
semivariogram (Matheron, 1963): 550 

𝛾(𝒉) = 	
1

2𝑁(𝒉) 0 [𝑍(𝑥3) − 𝑍(𝑥o)]-

p$2q$rpq|𝒉|tu

 (12) 

where 𝑍(𝑥3) (and 𝑍>𝑥oA) is discrete pixels of FNRs, N(h) is the number of paired pixels separated 551 
by the vector of h. The |.| operator indicates the length of a vector. The condition of p𝑥3 − 𝑥op −552 
|𝒉| ≤ 𝜀 is to permit certain tolerance for differences in the length of the vector. Here, we rule out 553 
the directional dependency in 𝛾(𝒉), which in turn, makes the vector of h scalar (h = |h|). Moreover, 554 
we bin 𝛾 values in 100 evenly-spaced intervals ranging from 0 to 5 degree. To remove potential 555 
outliers (such as noise), it is wise to model the semivariogram using an empirical regression model. 556 
To model the semivariogram, we follow the stable Gaussian function used in Souri et al. (2022): 557 

𝛾(ℎ) = 	𝑠(1 − 𝑒q(
y
z)
{|): c0=1.5 (13) 

where r and s are fitting parameters. For the most part, geophysical quantities become spatially 558 
uncorrelated at a certain distance called the range and the variance associated with that distance is 559 
called the sill. The fitting parameters, r and s, describe these two quantities as long as the stable 560 



 14 

Gaussian function can well fit to the shape of semivariogram. The semivariograms, and the fits, 561 
associated with each map is depicted in the second column of Figure 8. 562 

The modeled semivariograms suggest that a coarser field comes with a smaller sill, 563 
implying a loss in the spatial information (variance). The length scale (i.e., the range) only sharply 564 
increases at coarser footprints (>36×36 km2). This indicates that several coarse resolution satellite 565 
sensors such as OMI (13×24 km2) are rather able to determine the length scales of FNR over a 566 
major city such as Los Angeles. By leveraging the modeled semivariograms, we can effortlessly 567 
determine the spatial representation error for specific scale (e.g., h=10 km) through 568 

𝑒-(ℎ) = 	1 −	
𝛾(ℎ)
𝛾}~�(ℎ)

 (14) 

where 𝛾(ℎ) and 𝛾}~�(ℎ) is the modeled semivariogram of the target and the reference fields (3×3 569 
km2). This equation articulates the amount of information lost in the target field for the reference. 570 
Accordingly, the proposed formulation of the spatial representation error is relative.  For the most 571 
part, the OMI nadir pixel (13×24 km2) only have a ~12% loss of the spatial variance. On the 572 
contrary, a grid box with a size of 216×216 km2 fails at capturing ~65% of the spatial information 573 
in FNR with a 50 km length scale comparable to the extent of Los Angeles. The advantage of our 574 
method is that we can mathematically describe the spatial representation error as function of the 575 
length of our target. The present method can be easily applied to other atmospheric compounds 576 
and locations. We have named this method SpaTial Representation Error EstimaTor (STREET) 577 
which is publicly available as an open-source package (Souri, 2022).  578 

An oversight in the above experiment lies in its lack of appreciation of unresolved physical 579 
processes in the satellite measurements: weaker sensitivity of some spectra windows to the near-580 
surface pollution (Yang et al., 2014), using 1-D air mass factor calculation instead of 3-D 581 
(Schwaerzel et al., 2020), and discounting aerosol effect on the light path are just few examples to 582 
point out. To account for the unresolved processes, one can recalculate Eqs. (12)-(14) using outputs 583 
coming from different retrieval frameworks, which is beyond the scope of this study. 584 

3.7. Satellite errors 585 

3.7.1. Concept 586 
Two types of retrieval errors can affect our analysis: systematic errors (bias) and 587 

unsystematic ones (random errors). In theory, it is very compelling to understand their differences. 588 
In reality, the distinction between random and systematic errors is not as clear-cut as it seems. One 589 
may wish to establish the credibility of a satellite retrieval by comparing it to a sky-radiance 590 
measurement over time. Because each measurement is made at a different time, their comparison 591 
is not a repetition of the same experiment; each time, the atmosphere differs in some aspects so 592 
each comparison is unique. Adding more sky-radiance measurements will simply add new 593 
experiments. For each paired data points, there are many unique issues contributing differently to 594 
errors; as such our problem is grossly under-determined (i.e., more unknowns for a given 595 
observation). Here, we do not attempt to separate those types of errors in the subsequent analysis, 596 
thereby limiting the analysis to the total uncertainty.  597 

We focus on analyzing the statistical errors drawn from the differences between benchmark 598 
and the retrievals on daily basis. Two sensors are used for this analysis: TROPOMI and OMI. To 599 
propagate individual uncertainties in HCHO and NO2 to FNRs, we follow an analytical approach 600 
involving Jacobians of the ratio to HCHO and NO2. Assuming that errors in HCHO and NO2 are 601 
uncorrelated, the relative error of the ratio can be estimated by: 602 
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where 𝜎'�'(  and 𝜎5() are total uncertainties of HCHO and NO2 observations. It is important to 603 
recognize that the errors in HCHO and NO2 are not strictly uncorrelated due to assumptions made 604 
in their air mass factor calculations. The consequence of disregarding the correlated errors is an 605 
underestimation in the final error. 606 

3.7.2. Error Distributions in TROPOMI and OMI 607 
We begin our analysis with the error distribution of daily TROPOMI tropospheric NO2 608 

columns (v1.02.02) against 22 MAX-DOAS instruments from May to Sep in 2018-2021. The data 609 
are paired based on the criteria defined in Verhoelst et al. (2021). The spatial locations of the 610 
stations are mapped in Figure S13. Figure 10a shows the histogram of the TROPOMI minus the 611 
MAX-DOAS instruments. The first observation from this distribution is that it is skewed towards 612 
lower differences evident in the skewness parameter around -4.6. As a result of the skewness, the 613 
median should be a better representative of the central tendency which is around -1×1015 614 
molec./cm2. In general, TROPOMI tropospheric NO2 columns show a low bias. We fit a normal 615 
distribution to the data using non-linear Levenberg-Marquardt method. This fitted normal 616 
distribution (R2=0.94) is used to approximate 𝜎5() for different confidence intervals and to play 617 
down blunders. To understand how much of these disagreements are caused by systematic errors 618 
as opposed to random errors, we redo the histogram using monthly-based observations (Figure 619 
S14). A slight change in the dispersions between the daily and the monthly-basis analysis indicates 620 
the significance of unresolved systematic (or relative) biases. This tendency suggests, when 621 
conducting the analysis on a monthly basis, the relative bias cannot be mitigated by averaging. 622 
Verhoelst et al. (2021) rigorously studied the potential root cause of some discrepancies between 623 
MAX-DOAS and TROPOMI. An important source of error stems from the fundamental 624 
differences in the vertical sensitivities of MAX-DOAS (more sensitive to the lower tropospheric 625 
region) and TROPOMI (more sensitive to the upper tropospheric area). This systematic error can 626 
only be mitigated using reliably high-resolution vertical shape factors instead of spatiotemporal 627 
averaging of the satellite data. 628 

The error analysis for OMI follows the same methods applied for TROPOMI; however, 629 
with different benchmarks. We follow the comparisons made between the operational product 630 
version 3.1 and measured columns derived from NCAR’s NO2 measurements integrated along 631 
aircraft spirals during four NASA’s air quality campaigns. More information regarding this data 632 
comparison can be found in Choi et al. (2020). Figure 10b shows the histogram of OMI minus the 633 
integrated spirals. Compared to TROPOMI, the OMI bias is worse by a factor of two. The standard 634 
deviation calculated from a Gaussian fit (2.31×1015 molec./cm2) is not substantially different than 635 
that of TROPOMI (2.11×1015 molec./cm2). 636 

As for the error distribution of TROPOMI HCHO columns (version 1.1.(5-7)), we use 24 637 
FTIR measurements during the same time period based on the criteria specified in Vigouroux et 638 
al. (2020). The stations are mapped in Figure S13. The frequency of the paired data is daily. Figure 639 
11a depicts the error distribution. The distribution is slightly broader compared to that of NO2, 640 
manifested in a larger standard deviation 4.32×1015 molec./cm2. This is primarily due to the fact 641 
that the molecular absorption of HCHO is much smaller/narrower than that of NO2 in the UV-Vis 642 
range (Gonzalez Abad et al., 2019); consequently, HCHO observations are more contaminated by 643 
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noise. Similar to the NO2, we fit a normal distribution (R2=0.90) to specify 𝜎'�'(  for different 644 
confidence intervals. 645 

Concerning OMI HCHO columns from SAO version 3 (Gonzalez Abad et al., 2015), we 646 
follow the intercomparison approach proposed in Zhu et al. (2020). Based on this approach, the 647 
benchmarks come from GEOS-Chem simulated HCHO columns corrected by in-situ aircraft 648 
measurements. The measurements were made during ozone seasons from KORUS-AQ, 649 
DISCOVERs, FRAPPE, NOMADSS, and SENEX campaigns (see Table 1 in Zhu et al. 2020). 650 
OMI values ranging from -0.5×1015 molec./cm2 and 1.0×1017 molec./cm2 with effective cloud 651 
fraction between 0.0 and 0.3, and SZA between 0 and 60 degrees are only considered in the 652 
comparison. Any pixels from OMI and grid boxes from the corrected GEOS-Chem simulation that 653 
fall into a polygon enclosing the campaign domain are used to create the error distribution shown 654 
in Figure 11b. The distribution has much denser data because the model output covers a large 655 
portion of the satellite swath. The error distribution suggests that OMI HCHO is inferior to 656 
TROPOMI evident in larger bias and standard deviation. The OMI bias is twice as large as that of 657 
TROPOMI.  De Smedt et al. (2021) observed the same level of bias from their comparisons of 658 
OMI/TROPOMI with MAX-DOAS instruments (see Table 3 in their paper). Moreover, their OMI 659 
vs MAX-DOAS comparisons were severely scattered. Likewise, we observe the standard deviation 660 
of OMI from the fitted Gaussian function to be roughly five times as large of that TROPOMI. This 661 
can primarily due to a weaker signal-to-noise (and sensor degradation) in OMI. It is because of 662 
this reason that OMI HCHO should be oversampled for few months. Another possible reason for 663 
the large standard deviation is the fact that the benchmark arises from a modeling experiment 664 
whose ability at resolving spatiotemporal variations in HCHO may be uncertain. This partly leads 665 
to the performance of OMI to look poor. 666 

3.7.3. The impact of retrieval error on the ratio 667 
Following Eq. (15), we calculate the standard error for a wide range of NO2 and HCHO 668 

columns at 68% confidence interval (1 sigma) for both TROPOMI and OMI derived from the fitted 669 
Gaussian function to the histograms; the standard errors are shown in Figure 12. We observe 670 
smaller errors to be associated with larger tropospheric column concentrations. As for TROPOMI, 671 
either daily HCHO or tropospheric NO2 columns should be above 1.2-1.5×1016 molec./cm2 to 672 
achieve 20-30% standard error. The TROPOMI errors start diminishing the application of FNR 673 
when both measurements are below this threshold. Regarding OMI, it is nearly impossible to get 674 
the standard error below of 20-30% given its problematically large HCHO standard deviation. For 675 
50% error, the daily HCHO columns should be above 3.2×1016 molec./cm2. This range of error 676 
can also be achieved if OMI tropospheric NO2 columns are above 8×1015 molec./cm2. 677 

3.8. The fractional errors to the combined error 678 
The ultimate task is to compile the aforementioned errors to gauge how each individual 679 

source of error contributes to the overall error. Although each error is different in nature, combined 680 
they explain the uncertainties of one quantity (FNR) and can be roughly considered independent; 681 
therefore, the combined error is given by: 682 

𝜎c�c�� = �	𝜎���-���- + 𝜎���c3��1~�- + 𝜎1~c}~3���-  (16) 

𝜎���-���  is the error in the adjustment-factor defined in this study. We calculated a 26% standard 683 
error for a wide range of PBLHs. Therefore, 𝜎���-���  equals to 26% of the observed ratio (i.e., 684 
magnitude dependent). 𝜎���c3��1~�  is more complex. It is a function of the footprint of the satellite 685 
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(or a model), the spatial variability of the reference field which varies from environment to 686 
environment, and the length scale of our target (e.g., a district, a city, or a state). Eq. (14) explicitly 687 
quantifies this error. The product of the square root of that value and the observed ratio defines 688 
𝜎���c3��1~�. The last error depends on the magnitude of HCHO and NO2 tropospheric columns. It 689 
can be estimated from Eq. (15) times the observed ratio. We did not include the chemistry error in 690 
Eq. (16) because it was suited only for segregating the chemical conditions; it does not describe 691 
the level of uncertainties that comes with the observed columnar ratio. Figure 13 shows the total 692 
relative error given the observed TROPOMI ratio seen in Figure 7. We consider the OMI spatial 693 
representation error (13% variance loss) for this case that was computed in a city environment. 694 
The retrieval errors are based on TROPOMI sigma values. Areas associated with relatively small 695 
errors (<50%) are mostly seen in cities due to a stronger signal (smaller 𝜎1~c}~3���). Places with 696 
low vegetation and anthropogenic sources (i.e., Rocky Mountains) possess the largest errors 697 
(>100%). 698 

To produce some examples of the fractional errors to the combined error, we focus on two 699 
different environments with two different sets of HCHO and NO2 columns. One represents a 700 
heavily polluted area, and the other one a moderately polluted region. We also include two 701 
footprints: OMI (13×24 km2) and a 108×108 km2 pixel. Finally, we calculate the percentage of 702 
each error component for both OMI and TROPOMI sensors. Figure 14 shows the pie charts 703 
describing the percentage of each individual error to the total error for TROPOMI. Unless the 704 
footprint of the sensor is coarse enough (e.g., 108 km2) to give rise to the spatial representation 705 
error dominance, the retrieval error stands out. It is not expected for new satellites to have very 706 
large footprints; as such, the retrieval errors appear to be the major obstacle for using FNR in a 707 
robust manner. Figure 15 shows the same calculation but using OMI errors; the retrieval errors 708 
massively surpass other errors. This motivates us to do one more experiment; we recalculate the 709 
HCHO error distribution in OMI using monthly-averaged data instead of daily (Figure S15). This 710 
experiment suggests a standard deviation of 9.4 ×1015 molec./cm2 with which we again observe 711 
the retrieval error to be the largest contributor (>80%) of the combined error (Figure S16). A recent 712 
study (Johnson et al., 2022) also suggests that retrieval errors can result in considerable 713 
disagreement between FNRs from various sensors and retrieval frameworks. 714 

4. Summary 715 
The main goal of this study was to characterize the errors associated with the ratio of 716 

satellite-based HCHO to NO2 columns which has been widely used for ozone sensitivity studies. 717 
From the realization of the complexity of the problem we now know that four major errors should 718 
be carefully quantified so that we can reliably represent the underlying ozone regimes. The errors 719 
are broken down into i) the chemistry error, ii) the column to the PBL translation, iii) the spatial 720 
representation error, and iv) the retrieval error. Each error has its own dynamics and has been 721 
tackled differently by leveraging a broad spectrum of tools and data. 722 

The chemistry error refers to the predictive power of HCHO/NO2 ratio (hereafter FNR) at 723 
describing the HOx-ROx cycle which can be well explained by the ratio of the chemical loss of 724 
HO2+RO2 (LROx) to the chemical loss of NOx (LNOx). Because those chemical reactions are not 725 
directly observable, we set up a chemical box model constrained with a large suite of in-situ aircraft 726 
measurements collected during DISCOVER-AQs and KORUS-AQ campaigns (~ 500 hr of flight). 727 
Our box model showed a reasonable performance at recreating some of unconstrained key 728 
compounds such as OH (R2=0.64, bias=17%), HO2 (R2=0.66, bias<1%), and HCHO (R2=0.73). 729 
Subsequently we compared the simulated FNRs to LROx/LNOx. They showed a high degree of 730 
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correspondence (R2=0.93) but only in the log-log scale; this indicated that FNRs poorly described 731 
the HOx-ROx cycle for heavily polluted environments as well as pristine ones. Following a robust 732 
baseline indicator (ln(LROx/LNOx) = -1.0 ± 0.2) segregating NOx-sensitive from VOC-sensitive 733 
regimes, we observed a diverse range of FNR ranging from 1 to 4. These transitioning ratios had 734 
a Gaussian distribution with a mean of 1.8 and standard deviation of 0.4. This implied that the 735 
relative standard error associated with the ratio from the chemistry perspective at 68% confidence 736 
interval was 20%. Although this threshold with its error was based on a single model realization 737 
and can be different for a different chemical mechanism, it provided a useful universal baseline 738 
derived from various chemical and meteorological conditions. At 68% confidence level, any 739 
uncertainty beyond 20% in the ozone regime identification from FNRs likely originates from other 740 
sources of error such as the retrieval error. 741 

Results from the box model showed that ozone production rates in extremely polluted 742 
regions (VOC-sensitive) were not significantly different than those in pristine ones (NOx-743 
sensitive) due to non-linear chemical feedback mostly imposed by NO2+OH. Indeed, the largest 744 
PO3 rates (median = 4.6 ppbv/hr) were predominantly seen in VOC-sensitive regimes tending 745 
towards the transitional regime. This was primary caused by the abundance of ozone precursors 746 
(i.e., HCHO×NO2) in addition to the diminished negative chemical feedback. We also revealed 747 
that HCHO×NO2 can be used as a sensible proxy for the ozone precursors abundance. In theory, 748 
this metric in conjunction with the ratio provided reasonable estimates on PO3 rates (RMSE = 749 
±0.60 ppbv/hr). 750 

We then analyzed the afternoon vertical distribution of HCHO, NO2, and their ratio 751 
observed from aircrafts during the air quality campaigns binned to the near surface to 8 km. For 752 
altitudes below 5.75 km, HCHO concentration steadily decreased with altitude but at a smaller rate 753 
compared to NO2. Above that altitude, NO2 concentrations stabilized and slightly increased due to 754 
lightning and stratospheric sources. The dissimilarity between the vertical shape of NO2 versus 755 
HCHO resulted in a non-linear shape of FNR. This non-linear shape necessitated a mathematical 756 
formulation to transform an observed columnar ratio to a ratio at a desired vertical height 757 
expanding from the surface. We fit a second-order rational function to the profile and formulated 758 
the altitude adjustment factor which clearly followed a second-order polynomial function starting 759 
from values below 1 for lower altitudes, following values above 1 for some high altitudes, and 760 
finally converging to 1 at 8 km. This behavior means that for a given tropospheric columnar ratio, 761 
the ozone regime tends to get pushed towards the VOC-sensitive regime near the surface. This 762 
data-driven adjustment factor exclusively derived from afternoon aircraft profiles during warm 763 
seasons in non-convective conditions had a standard error of 26%.  764 

An important error in the satellite-based observations stemmed from unresolved spatial 765 
variability in trace gas concentrations within a satellite pixel (Souri et al., 2022; Tang et al., 2021). 766 
The amount of unresolved spatial variability (the spatial representation error) can in principle be 767 
modeled if we base our reference on a distribution map made from a high spatial resolution dataset. 768 
We modeled semivariograms (or spatial auto-correlation) computed for a reference map of FNR 769 
observed by TROPOMI at 3×3 km2 over Los Angeles. Subsequently, we coarsened the map to 770 
13×24, 36×36, 108×108, and 216×216 km2 and modeled their semivariograms. As for 13×24 km2, 771 
which is equivalent of the OMI nadir spatial resolution, around 12% of spatial information 772 
(variance) was lost due to its footprint. The larger the footprint, the bigger spatial representation 773 
error. For instance, a grid box with the size of 216×216 km2 lost 65% of the spatial information in 774 
the ratio at 50 km length scale. Our method is compelling to understand and easy to apply for other 775 
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products and different atmospheric environments. We developed an open-source package called 776 
SpaTial Representation Error EstimaTor (STREET) (Souri, 2022) based on this approach. 777 

We presented estimates of retrieval errors associated with daily TROPOMI and OMI 778 
tropospheric NO2 columns by comparing them against a large suite of MAX-DOAS (Verhoelst et 779 
al. 2021) and vertically-integrated measurements from aircraft spirals (Choi et al., 2020). Both 780 
products were smaller than the benchmark. Furthermore, they show a relatively consistent 781 
dispersion at 68% confidence level (~2×1015 molec./cm2) suggested by fitting a normal function 782 
(R2>0.9) to their error distributions. As for daily TROPOMI and OMI HCHO products, we used 783 
global FTIR observations (Vigouroux et al., 2020) and data-constrained GEOS-Chem outputs from 784 
multiple campaigns (Zhu et al., 2020), respectively. TROPOMI HCHO indeed outperforms OMI 785 
HCHO with respect to bias and dispersion on a daily basis. The standard deviation of OMI HCHO 786 
was found to be roughly five times as large compared to TROPOMI. While this error can be partly 787 
reduced by oversampling over a span of a month or a season, it is critical to recognize that ozone 788 
events are episodic, thus daily observations should be the standard mean for understanding the 789 
chemical pathways for the formation of tropospheric ozone. After combining the daily biases from 790 
both HCHO and NO2 TROPOMI comparisons, we came to the conclusion that either daily HCHO 791 
or tropospheric NO2 columns should be above 1.2-1.5×1016 molec./cm2 to achieve 20-30% 792 
standard error in the ratio. Due to the large error in daily OMI HCHO, it was nearly impossible to 793 
achieve 20-30% standard error given the observable range of HCHO and NO2 columns over our 794 
planet. To reach to 50% error using daily OMI data, either HCHO columns should be above 795 
3.2×1016 molec./cm2 or tropospheric NO2 columns should be above 8×1015 molec./cm2. 796 

To build intuition in the significance of the errors above, we finally calculated the 797 
combined error in the ratio by linearly combining the root sum of the squares of the TROPOMI 798 
retrieval errors, the spatial representation error pertaining to OMI nadir footprint over a city-like 799 
environment, and the altitude adjustment error for a wide range of observed HCHO and NO2 800 
columns over the US. These observations were based on the TROPOMI in summertime 2021. The 801 
total errors were relatively mild (<50%) in cities due to a stronger signal, whereas they easily 802 
exceeded 100% in regions with low vegetation and anthropogenic sources (i.e., Rocky Mountains). 803 
The dominant source of the combined error (40-90%) was the retrieval error. 804 

All of these aspects highlight the necessity of improving the trace gas satellite retrieval 805 
algorithms in conjunction with sensor calibration, although with the realization that a better 806 
retrieval is somewhat limited by the advancements made in other disciplines such as atmospheric 807 
modeling and molecular spectroscopy. 808 
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 1237 
 1238 

Table1. The box model configurations and inputs. 1239 

Temporal resolution of samples 10-15 sec 
Time steps 1 hour 

Number of solar cycles 5 
Dilution constant 1/86400 -1/43200 (s-1)  

Meteorological Inputs Pressure, Temperature, and Relative Humidity 
Photolysis frequencies estimates LUT based on the NCAR TUV model calculations 

Photolysis frequencies 
constraints (campaign#‡) Measured jNO2 (1-4) and jO1D (4) 

Compounds (Instrument#†, 
campaign#‡) used for 

constraining the box model 

H2(1, 4)§, CO (4, 1-4), NOx (2, 1-4), O3 (2, 1-4), SO2 (6, 4) , CH4 
(4, 1-4), HNO3 (10, 1-4), Isoprene (9, 1-4), Monoterpenes (9, 1-
4), Acetone (9, 1-4), Ethylene (1, 4), Ethane (1, 4), Methanol (9, 
1-4), Propane (1, 4), Benzene (1 or 9, 2-4), Xylene (1 or 9, 1 and 
4), Toluene (1 or 9, 1-4), Glyoxal (8, 4), Acetaldehyde (9, 1-4), 

Methyl vinyl ketone (9, 1-4), Methyl Ethyl Ketone (9, 2-4), 
Propene (1 or 9, 2 and 4), Acetic acid (9, 2-4), Glycolaldehyde 

(5, 4), H2O2 (5, 4) 
Unconstrained compounds 

(Instrument#†, campaign#‡)  
used for validation 

HO2 (3, 4), OH (3, 4), NO (2, 1-4), NO2 (2, 1-4), PAN (10, 1-4), 
HCHO (7, 1-4) 

Chemical Mechanism CB06 
 1240 
† (1) UC Irvine’s Whole Air Sampler (WAS), (2) NCAR 4-Channel Chemiluminescence, (3) Penn 1241 
State's Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), (4) NASA Langley's DACOM 1242 
tunable diode laser spectrometer, (5) Caltech's single mass analyzer, (6) Georgia Tech's ionization 1243 
mass spectrometer, (7) The University of Colorado at Boulder's the Compact Atmospheric Multi-1244 
species Spectrometer (CAMS), (8) Korean Airborne Cavity Enhances Spectrometer, (9) 1245 
University of Innsbruck's PTR-TOF-MS instrument, and (10) University of California, Berkeley's 1246 
TD-LIF. 1247 

 1248 
‡ (1) DISCOVER-Baltimore-Washington, (2) DISCOVER-Texas-Houston, (3) DISCOVER-1249 
Colorado, and (4) KORUS-AQ 1250 
 1251 
§ In the absence of measurements, a default value of 550 ppbv is specified. 1252 
  1253 
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 1254 

 1255 
 1256 

Figure 1. The spatial distributions of aircraft measurements collected during NASA’s a) 1257 
DISCOVER-AQ Houston-Texas, b) DISCOVER-AQ Baltimore-Washington, c) DISCOVER-AQ 1258 
Colorado, and d) KORUS-AQ. The duration of each campaign is based on how long the aircraft 1259 
was in the air. 1260 
  1261 
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1262 

 1263 
 1264 

Figure 2. The comparisons of the observed concentrations of several critical compounds to those 1265 
simulated by our F0AM box model. Each subplot contains mean bias (MB), mean absolute bias 1266 
(MAB), and root mean square error (RMSE). The least-squares fit to the paired data along with 1267 
the coefficient of determination (R2) is also individually shown for each compound. Note that we 1268 
do not account for the observations errors in the x-axis. The concentrations of NO and NO2 are 1269 
log-transformed.   1270 
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 1271 
 1272 

Figure 3. The scatterplot of natural logarithm-transformed of HCHO/NO2 versus LROx/LNOx 1273 
based on the simulated values performed by the F0AM box model. The heat color indicates the 1274 
calculated ozone production rates (PO3). The size of each data point is proportional to 1275 
HCHO×NO2. The black line is the baseline separator of NOx-sensitive (above the line) and VOC-1276 
sensitive (below the line) regimes. We overlay HCHO/NO2=1 and HCHO/NO2=2 as red and 1277 
purple lines, respectively. The dashed dark green line indicates the least-squares fit to the paired 1278 
data. The HCHO/NO2 = 1.8 with 20% error is the optimal transitioning point based on this result. 1279 
 1280 
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 1281 
Figure 4. Cumulative distribution functions of PO3 and HCHO×NO2 simulated by the box model 1282 
constrained by NASA’s aircraft observations. Four regions namely as NOx-sensitive — NOx-sensitive, 1283 
NOx-sensitive—transitional, VOC-sensitive—transitional, and VOC-sensitive—VOC-sensitive are shown. 1284 
The first name of the regime is based on the baseline (ln(LROx/LNOx)=-1.0), whereas the second one 1285 
follows those defined in Duncan et al. (2010): VOC-sensitive if HCHO/NO2<1, transitional if  1286 
1<HCHO/NO2<2, and NOx-sensitive if HCHO/NO2>2. 1287 
  1288 
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  1289 
Figure 5. The violin plots of the afternoon vertical distrubution of HCHO, NO2, and HCHO/NO2 1290 
observations collected during DISCOVER-AQ Texas, Colorado, Maryland, and KORUS-AQ campaings. 1291 
The violin plots demonstrate the distrubtion of data (i.e., a wider width means a higher frequency). The 1292 
median is shown by white dots. Both 25th and 75th percentiles are shown by a solid black line. The 1293 
heatmap denotes the simulated ozone prooduction rates. 1294 
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 1296 
 1297 
Figure 6. The adjustment factor defined as the ratio of the centriod (first moment) of the polygon 1298 
bounding 25th and 75th percentiles of the observed HCHO/NO2 columns by the NASA’s aircraft 1299 
between the surface to 8 km to the ones between the surface and a desired altitude. This factor can 1300 
be easily applied to the observed HCHO/NO2 columns to translate the value to a desired altitude 1301 
stretching down to the surface (i.e., PBLH). The optimal curve follows a quadratic function 1302 
formulated in Eq11.  1303 
  1304 
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 1305 
Figure 7. Oversampled TROPOMI total HCHO columns (top), tropospheric NO2 columns 1306 
(middle), and the ratio (bottom) at 3×3 km2 from June till August 2021 over the US. 1307 
  1308 
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 1309 
Figure 8. The first column represents the spatial map of HCHO/NO2 ratios over Los Angeles in 1310 
June till August 2021 at different spatial resolutions. To upscale each map to a coarser footprint, 1311 
we use an ideal box filter tailored to the target resolution. The second column shows the 1312 
semivariograms corresponding to the left map along with the fitted curve (red line). The sill and the 1313 
range are computed based on the fitted curve. The x-axis in the semivariogram is in degree (1 degree 1314 
~ 110 km).  1315 
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 1317 
Figure 9. The spatial representation errors quantified based on the proposed method in this study. 1318 
The error explains the spatial loss (or variance) due to the footprint of a hypothetical sensor at 1319 
different length scales. To put this error in perspective, a grid box with 216×216 km2 will naturally 1320 
lose 65% of the spatial variance existing in the ratio at the scale of Los Angeles which roughly is 1321 
50 km wide. All of these numbers are in reference to the TROPOMI 3×3 km2. 1322 
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 1324 
Figure 10. The histogram of the differences between TROPOMI and OMI and benchmarks. MAX-1325 
DOAS and integrated aircraft spirals are the TROPOMI and the OMI benchmarks, respectively. 1326 
The data curation and relevant criteria on how they have been paired can be found in Verholest et 1327 
al. (2021) and Choi et al. (2020). The statistics in green color are based on all data, whereas those 1328 
in pink are based on the fitted Gaussian function.  1329 
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 1331 
Figure 11. The histogram of the differences between TROPOMI and OMI and benchmarks. FTIR 1332 
and corrected GEOS-Chem simulations are respectively the TROPOMI and the OMI benchmarks. 1333 
The data curation and relevant criteria on how they have been paired can be found in Vigouroux 1334 
et al. (2021) and Zhu et al. (2020). The statistics in green color are based on all data, whereas those 1335 
in pink are based on the fitted Gaussian function.  1336 
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 1339 
Figure 12. The contour plots of the relative errors in TROPOMI (left) and OMI (right) based on 1340 
dispersions derived from Figure 10 and 11. The errors used for these estimates are based on daily 1341 
observations. 1342 
  1343 
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 1344 
Figure 13. The total relative error for observed TROPOMI HCHO/NO2 ratios considering the 1345 
daily TROPOMI retrieval errors (𝜎5()= 2.11×1015 molec./cm2 and 𝜎'�'(= 2.97×1015 1346 
molec./cm2), the spatial representation pertaining to OMI footprint over a city environment (13% 1347 
loss in the spatial variance), and the column to the PBL translation parameterization (26%) 1348 
proposed in this study. Please note that the observed FNR is based on mean values from June till 1349 
August 2021, while the uncertainties used for error calculation are on daily-basis. 1350 
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 1353 
Figure 14. The fractional errors of retrieval (blue), column to PBL translation (green), and spatial 1354 
representation (yellow) of the total error budget for different concentrations and footprints based 1355 
on TROPOMI sigma values. The retrieval error used for the error budget is on daily basis. 1356 
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 1357 
Figure 15. Same as Figure 14 but based on OMI sigma values. 1358 
 1359 


