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Supplement to “Below-cloud scavenging of aerosol by rain: A 

review of numerical modelling approaches” by A.C. Jones et 

al. 
 

S1 Terminal velocity of falling droplets and particles 
 

Reynold’s number 𝑅𝑒, a measure of whether flow is laminar or turbulent around an obstacle, is 

dependent on the terminal velocity of the particulate being measured. This creates an issue for liquid 

particles with diameter (𝐷𝑑) greater than 20 μm that do not remain spherical as they fall. For these larger 

particles (e.g., rain droplets) implicit formulae following Beard (1976) are used. 

Firstly, we define fundamental variables which will be used throughout this Supplement. Equation S1 

is the ideal gas law which relates air density (𝜌𝑎, kg m-3) to air pressure (𝑃𝑎, Pa), temperature (𝑇𝑎, K), 

and the specific gas constant (𝑅𝑎 = 287.05 J kg-1 K-1). Equation S2 relates the mean speed of air 

molecules (𝑣𝑎, m s-1) to the Boltzmann constant (𝑘𝐵 = 1.3804 × 10
−23J K-1), 𝑇𝑎, and the molecular 

mass (𝑚𝑎 = 4.78 × 10
−26 kg). Equation S3 is the Sutherland Law according to List (1984), which 

relates the dynamic viscosity of air (𝜇𝑎, kg m-1 s-1) to 𝑇𝑎. The constants in Eq. S3 are 𝑆 = 120 K, 𝑇0 =

296.16 K, and 𝜇0 = 1.83 × 10
−5 kg m-1 s-1. Equation S4 relates the mean free path of air molecules 

(𝜆𝑎, m) to 𝜇𝑎, 𝜌𝑎, and 𝑣𝑎. These variables are already used throughout UKCA-mode. 𝜇𝑎 and 𝜆𝑎 are 

determined at the start of the timestep in UKCA-mode. 

𝜌𝑎 =
𝑃𝑎
𝑅𝑎𝑇𝑎

(Eq. 𝑆1) 

𝑣𝑎 = (
8𝑘𝐵𝑇𝑎
𝜋𝑚𝑎

)

1
2⁄

(Eq. 𝑆2) 

𝜇𝑎 = 𝜇0 (
𝑇0 + 𝑆

𝑇𝑎 + 𝑆
)(
𝑇𝑎
𝑇0
)

3
2⁄

(Eq. 𝑆3) 

𝜆𝑎 =
2𝜇𝑎
𝜌𝑎𝑣𝑎

(Eq. 𝑆4) 

Next, we determine the terminal velocity of rain droplets (𝑈𝑡(𝐷𝑑), m s-1) according to Beard (1976) for 

3 regimes: small cloud droplets (0.5μm < 𝐷𝑑 < 19μm), large cloud droplets or small rain droplets 

(19μm < 𝐷𝑑 < 1.07mm), and rain droplets (1.07mm < 𝐷𝑑 < 7mm). 

For 0.5μm < 𝐷𝑑 < 19μm, the terminal velocity is given from the product of the Stoke’s velocity for a 

rigid sphere and the slip correction or Cunningham factor (Eqs S5-S6). 
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𝑈𝑡(𝐷𝑑) =
𝐷𝑑

2(𝜌𝑤 − 𝜌𝑎)𝑔

18𝜇𝑎
× 𝐶𝑐(𝐷𝑑) (Eq. 𝑆5) 

𝐶𝑐(𝐷𝑑) = 1 +
2𝜆𝑎
𝐷𝑑

(1.257 + 0.4 exp (−
1.1𝐷𝑑
2𝜆𝑎

)) (Eq. 𝑆6) 

In Eq. S5, 𝜌𝑤 is the density of water 𝜌𝑤 = 997 kg m-3 while 𝑔 is the gravitational acceleration constant 

(𝑔 = 9.8 m s-2). 

For 19μm < 𝐷𝑑 < 1.07mm, one needs to use the drag coefficient 𝐶𝐷 as an empirical means to represent 

the drag force on the droplet (Seinfeld and Pandis, 1998). Unfortunately, 𝐶𝐷 is a function of the 

Reynold’s number (𝑅𝑒,𝐷) and thus the terminal velocity 𝑈𝑡 and we need to determine 𝑈𝑡 implicitly. To 

do this, we form the dimensionless variable 𝐶𝐷𝑅𝑒,𝐷
2 (widely known as the Davies number, Eq. S7) 

which can then be used to determine 𝑅𝑒,𝐷, which is finally used to determine 𝑈𝑡(𝐷𝑑). The algorithm 

according to Beard (1976) is given below. 

𝑋 = ln(𝐶𝐷𝑅𝑒
2) = ln(

4𝐷𝑑
3𝜌𝑎(𝜌𝑤 − 𝜌𝑎)𝑔

3𝜇𝑎
2 ) (Eq. 𝑆7) 

𝑌 =∑𝑎𝑖𝑋
𝑖

6

𝑖=0

(Eq. 𝑆8) 

𝑅𝑒,𝐷 = 𝐶𝑐(𝐷𝑑) × exp(𝑌) (Eq. 𝑆9) 

𝑈𝑡(𝐷𝑑) =
𝜇𝑎𝑅𝑒,𝐷
𝜌𝑎𝐷𝑑

(Eq. 𝑆10) 

The coefficients in Eq. S8 are: 𝑎0 = −0.318657 × 10
1, 𝑎1 = +0.992696 × 10

0, 𝑎2 = −0.153193 ×

10−2, 𝑎3 = −0.987059 × 10
−3, 𝑎4 = −0.578878 × 10

−3, 𝑎5 = +0.855176 × 10
−4, and 𝑎6 =

−0.327815 × 10−5. 

A similar approach is required for rain droplets with diameters of 1.07mm < 𝐷𝑑 < 7mm. Firstly, it is 

necessary to construct a formula for the surface tension of the droplet (𝜎𝑤,𝑎, N m-1) as a function of 

temperature in order to calculate the dimensionless Bond number.  The surface tension decreases as 

temperature decreases and be described empirically using formulae for −40oC < 𝑇𝑐 < 0
oC from 

Pruppacher and Klett (2010) and 𝑇𝑐 > 0oC from Bohren and Albrecht (1998).  

For −40oC < 𝑇𝑐 < 0
oC: 

𝜎𝑤,𝑎 = 0.001 × (

75.93 + 0.115 𝑇𝑐 + 6.818 × 10
−2 𝑇𝑐

2 +

6.511 × 10−3 𝑇𝑐
3 + 2.933 × 10−4 𝑇𝑐

4 +

6.283 × 10−6 𝑇𝑐
5 + 5.285 × 10−8 𝑇𝑐

6

) (Eq. 𝑆11) 

For 𝑇𝑐 > 0
oC: 
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𝜎𝑤,𝑎 = 0.2358 × (
374 − 𝑇𝑐
647.15

)
1.256

× [1 − 0.625 × (
374 − 𝑇𝑐
647.15

)] (Eq. 𝑆12) 

 

It is inconvenient to have two separate formulae for one covariate. Rather, it makes more sense to fit a 

polynomial to the combined 𝜎𝑤,𝑎 distribution. We use the function polyfit in the python library 

numpy.polynomial.polynomial to fit a polynomial with 6 degrees of freedom to 𝜎𝑤,𝑎 for −40oC < 𝑇𝑐 <

100oC, but in terms of the temperature in K where 𝑇𝑎 = 𝑇𝑐 + 273.15. The polynomial is then: 

𝜎𝑤,𝑎 = 5.1877565 × 10
1 − 1.01222192 × 100 𝑇𝑎 + 8.21706952 × 10

−3 𝑇𝑎
2

−3.54598144 × 10−5 𝑇𝑎
3 + 8.57833352 × 10−8 𝑇𝑎

4

−1.10306055 × 10−10 𝑇𝑎
5 + 5.88999924 × 10−14 𝑇𝑎

6 (Eq. 𝑆13)

 

 

Supplementary Figure S1 shows the surface tension as a function of temperature (in oC) for the 

combined empirical formulae (Eg. S11 and Eq. S12) and the polynomial fit (Eq. S13), along with a 

linear fit used in the Cloud–AeroSol Interacting Microphysics (CASIM) module (Hill et al., 2015) in 

which 𝜎𝑤,𝑎 = (7.61 − 0.155 𝑇𝑐) × 10
−3. It is clear that the polynomial is sufficient for our purposes, 

even reconciling the inconsistency between Eqs S11 and S12 at 𝑇𝑐 = 0
𝑜𝐶. 

Having determined the surface tension, we use it to define two more dimensionless variables: The Bond 

number (𝐵𝑜, a measure of the relative importance of gravitational forces to surface tension) and 𝑁𝑝 or 

the ratio of the Davies number to the Bond number to remove the diameter dependency. 

𝐵𝑜 =
4𝐷𝑑

2(𝜌𝑤 − 𝜌𝑎)𝑔

3𝜎𝑤,𝑎
(Eq. 𝑆14) 

𝑁𝑝 =
𝜎𝑤,𝑎

3𝜌𝑎
2

𝜇𝑎
4(𝜌𝑝 − 𝜌𝑎)𝑔

(Eq. 𝑆15) 

The algorithm to determine 𝑅𝑒,𝐷 and 𝑈𝑡 proceeds as follows 

𝑋 = ln(𝐵𝑜𝑁𝑝
1/6) (Eq. 𝑆16) 

𝑌 =∑𝑏𝑖𝑋
𝑖

5

𝑖=0

(Eq. 𝑆17) 

𝑅𝑒,𝐷 = 𝑁𝑝
1/6 × exp(𝑌) (Eq. 𝑆18) 

𝑈𝑡(𝐷𝑑) =
𝜇𝑎𝑅𝑒,𝐷
𝜌𝑎𝐷𝑑

(Eq. 𝑆19) 

The coefficients in Eq. S17 are: 𝑏0 = −0.500015 × 10
1, 𝑏1 = +0.523778 × 10

1, 𝑏2 =

−0.204914 × 101, 𝑏3 = +0.475294 × 10
0, 𝑏4 = −0.542819 × 10

−1, and 𝑏5 = +0.238449 ×

10−2. 
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In the single moment UKCA-mode impaction scavenging scheme, 𝑈𝑡(𝐷𝑑) is parameterised using a 

very simple formula dependent only on the rain droplet diameter 𝐷𝑑 (Eq. S20).  

𝑈𝑡(𝐷𝑑) = {
4055 𝐷𝑑 𝐷𝑑 < 10

−3m

130 𝐷𝑑
1
2 𝐷𝑑 ≥ 10

−3m
(Eq. 𝑆20) 

While it may be pragmatic to use a simple parameterisation (rather than the complex Beard (1976) 

scheme above), it is clear from Supplementary Fig. S2 that the UKCA-mode scheme overestimates 𝑈𝑡 

by orders of magnitude when 𝐷𝑑 < ~10
−4m and does not capture the exponential decay in 𝑈𝑡 for 𝐷𝑑 >

~10−3m. Given the fact that the rain droplet diameters are prescribed in UKCA-mode, it may also be 

prudent to prescribe terminal velocities using, say P=800mb and T=15oC. If a parameterisation is 

needed, then it may be prudent to use a 6th order polynomial of 𝐷𝑑 with 𝐷𝑑 in units of mm, which 

broadly captures both the logarithmic and linear relation between 𝑈𝑡 and 𝐷𝑑 for 𝐷𝑑 < 7mm. 

𝑈𝑡(𝐷𝑑) = 10
∑ 𝑐𝑖(log10𝐷𝑑)

𝑖6
1 (Eq. 𝑆21) 

Given 𝐷𝑑 in units of mm, the coefficients in Eq. S21 are 𝑐0 = 0.63357089, 𝑐1 = 0.82965738, 𝑐2 =

−0.37507553, 𝑐3 = 0.01117498, 𝑐4 = −0.05815324, 𝑐5 = −0.04914836, and 𝑐6 =

−0.00844277. Figure S2 shows that the fit does a very good job of capturing both the logarithmic and 

linear relationship. Adding a temperature and pressure dependence may over complicate the algorithm. 

Note though, that in the Python script used in the manuscript, the full Beard’s scheme (with a 

temperature dependence) and not Eq. S21 is employed. The advantage of using Eq. S21 over Beard’s 

approach or the UKCA-mode approach is that it is unconditional and thus saves computational expense. 

Following the calculation of 𝑈𝑡(𝐷𝑑), Reynold’s number 𝑅𝑒 is redetermined using Eq. S22, which is 

actually the Reynold’s number based on the raindrop radius rather than diameter (compare with Eq. 

S10). 

𝑅𝑒,𝑟 =
𝑈𝑡(𝐷𝑑)𝜌𝑎𝐷𝑑

2𝜇𝑎
(Eq. 𝑆22) 

 

S2 Rain droplet size distribution 
 

The rain droplet size distribution in expressed as the number density for droplet diameters between 𝐷𝑑 

and 𝐷𝑑 + ∆𝐷𝑑, 𝑁(𝐷𝑑) in units of m-3 m-1. 𝑁(𝐷𝑑) is typically expressed as a function of the rainfall rate 

𝑅, which is typically given in units of kg m-2 s-1, mm hr-1, or mm day-1. It is straightforward to convert 

between these units given that 1 kg m-2 s-1 equals 1 mm and only a temporal conversion is necessary. 

For this formulation 𝑅 is given in units of mm hr-1 while 𝐷𝑑 is expressed in m. The relationship 

between 𝑅 and the rain droplet distribution is then: 
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𝑅 = 3600 ×∫
𝜌𝑤𝜋

6

∞

0

𝐷𝑑
3𝑁(𝐷𝑑)𝑈𝑡(𝐷𝑑)𝑑𝐷𝑑 (Eq. 𝑆23) 

𝑈𝑡(𝐷𝑑) has been discussed in detail. In single moment droplet models, 𝑁(𝐷𝑑) is typically parameterised 

using a Gamma distribution with the following probability density function. 

𝑁(𝐷𝑑) = 𝑁0𝐷𝑑
𝜇𝑒−𝜆𝐷𝑑 (Eq. 𝑆24) 

In Eq. S24, the parameters 𝑁0, 𝜆, and 𝜇 describe the intercept, slope, and shape of the Gamma 

distribution. 𝑁0 has units of m-3 m-1 and 𝜆 has units of m-1. In this work, we adopt the common 

assumption such that 𝜇 = 0 which reduces the Gamma distribution to a simpler exponential distribution 

(Eq. S25).  

𝑁(𝐷𝑑) = 𝑁0𝑒
−𝜆𝐷𝑑 (Eq. 𝑆25) 

Empirical parameterisations have been made between the observed 𝑅 and 𝑁(𝐷𝑑). The most widely 

utilised 𝑁(𝐷𝑑) parameterisation is from Marshall and Palmer (MP, 1948). 

𝑁0 = 8 × 10
6 (Eq. 𝑆26) 

𝜆 = 4.1 × 103 𝑅−0.21 (Eq. 𝑆27) 

Another widely utilised parameterisation was provided by Sekhon and Srivastava (SS, 1971), which 

improves on MP by constraining the (positive) relationship between 𝑁0 with 𝑅 using observations. 

𝑁0 = 7 × 10
6 𝑅0.37 (Eq. 𝑆28) 

𝜆 = 3.8 × 103 𝑅−0.14 (Eq. 𝑆29) 

Finally, Abel and Boutle (AB, 2012) empirically fitted 𝑁0 to 𝜆 using a power law. They also derived a 

relationship between 𝜆 and 𝑅 by assuming 𝑈𝑡(𝐷𝑑) = 𝑐𝑅𝐷𝑑
𝑑𝑅, where the constants 𝑐𝑅 = 386.6 and 

𝑑𝑅 = 0.67 are from Sachidananda and Zrnic (1986). By inputting 𝑁(𝐷𝑑) (Eq. S25) and 𝑈𝑡(𝐷𝑑) into 

Eq. S23, and making use of the Gamma function, AB derived the following formulae for 𝑁0 and 𝜆 : 

𝜆 = (
𝜋𝜌𝑤𝑥1𝑐𝑅Γ(4 + 𝑑𝑅 + 𝜇)

6𝑅 3600⁄
)

1
4+𝑑+𝜇−𝑥2

≈ 6.236 × 103 𝑅−0.4 (Eq. 𝑆30) 

𝑁0 = 𝑥1𝜆
𝑥2 ≈ 4.9 × 107 𝑅−0.89 (Eq. 𝑆31) 

AB derived 𝑥1 = 0.22 and 𝑥2 = 2.2 empirically from observations which completes the model. Note 

that 𝜇 = 0 in Eq. S30 under the assumption of an exponential distribution, as used in the UM.   
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S3 The collision efficiency according to Slinn (1984) 
 

The collision efficiency 𝐸(𝐷𝑑 , 𝑑𝑝) is defined as the ratio of the total number of collisions occurring 

between droplets and particles to the total number of particles in an area equal to the droplet’s effective 

cross-sectional area, where 𝑑𝑝 is the diameter of the collected particles (Seinfeld and Pandis, 1998). It 

is used in the formulation of the scavenging coefficient Λ(𝑑𝑝) (Eqs S32-S33). 

𝑑𝑛(𝑑𝑝)

𝑑𝑡
= −Λ(𝑑𝑝)𝑛(𝑑𝑝) (Eq. 𝑆32) 

Λ(𝑑𝑝) = ∫
𝜋

4

∞

0

𝐷𝑑
2𝑈𝑡(𝐷𝑑)𝐸(𝐷𝑑 , 𝑑𝑝)𝑁(𝐷𝑑)𝑑𝐷𝑑 (Eq. 𝑆33) 

In Eq. S32, 𝑛(𝑑𝑝) is the number density of aerosol particles with diameter 𝑑𝑝 and Λ(𝑑𝑝) is the size-

resolved scavenging coefficient (s-1). Equation S33 relates Λ(𝑑𝑝) to the integral of the collision 

efficiency 𝐸(𝐷𝑑 , 𝑑𝑝) over the rain droplet size distribution. The next issue is to provide an explicit 

formulation of 𝐸(𝐷𝑑 , 𝑑𝑝) in terms of readily attainable parameters. The collection efficiency is assumed 

to be a linear combination of various processes that result in the collection of particles by droplets. The 

classical Slinn (1984) model combines three such processes: Brownian diffusion, interception, and 

impaction. 

The Slinn (1984) model makes use of 5 dimensionless parameters used to characterise the collected 

particle and the flow around the rain droplet. It is empirical in nature, being based on laboratory data. 

Following Seinfeld and Pandis (1998) and Wang et al. (2010) the dimensionless parameters are: 

𝑅𝑒,𝑟(𝐷𝑑) =
𝑈𝑡(𝐷𝑑)𝜌𝑎𝐷𝑑

2𝜇𝑎
(Eq. 𝑆34) 

𝑆𝑐(𝑑𝑝) =
𝜇𝑎

𝜌𝑎𝐷diff(𝑑𝑝)
(Eq. 𝑆35) 

𝑆𝑡(𝐷𝑑, 𝑑𝑝) =
2𝜏(𝑑𝑝) (𝑈𝑡(𝐷𝑑) − 𝑢𝑡(𝑑𝑝))

𝐷𝑑
(Eq. 𝑆36) 

𝜙(𝐷𝑑, 𝑑𝑝) =
𝑑𝑝
𝐷𝑑

(Eq. 𝑆37) 

𝜔 =
𝜇𝑤
𝜇𝑎

(Eq. 𝑆38) 

Two approximations have been made in Eqs S34-S38. Firstly, that the terminal velocity of the raindrop 

far exceeds the terminal velocity of the particle (𝑈𝑡(𝐷𝑑) ≫ 𝑢𝑡(𝑑𝑝)), and secondly that the squared sum 

of the raindrop and particle diameters is effectively equal to the square of the raindrop diameter alone 

((𝐷𝑑 + 𝑑𝑝)
2
≅ 𝐷𝑑

2). Thus, we effectively assume that the raindrop diameter is much greater than the 
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particle diameter. Equations S34-S38 describe the Reynolds number with respect to radius (Eq. S34); 

Schmidt number (Eq. S35); Stokes number (Eq. S36); ratio of diameters (Eq. S37); and the viscosity 

ratio of water to air (Eq. S38). The parameters are further detailed below. With these dimensionless 

variables defined, Slinn (1984) then provided empirically derived formulae for the combined collision 

efficiency (Eqs S39-S42). 

𝐸slinn(𝐷𝑑, 𝑑𝑝) = 𝐸𝑏𝑟(𝐷𝑑 , 𝑑𝑝) + 𝐸𝑖𝑛(𝐷𝑑 , 𝑑𝑝) + 𝐸𝑖𝑚(𝐷𝑑 , 𝑑𝑝) (Eq. 𝑆39) 

𝐸𝑏𝑟(𝐷𝑑 , 𝑑𝑝) =
4

𝑅𝑒,𝑟𝑆𝑐
[1 + 0.4𝑅𝑒,𝑟

1
2𝑆𝑐

1
3 + 0.16𝑅𝑒,𝑟

1
2𝑆𝑐

1
2] (Eq. 𝑆40) 

𝐸𝑖𝑛(𝐷𝑑, 𝑑𝑝) = 4𝜙 [𝜔
−1 + (1 + 2𝑅𝑒,𝑟

1
2)𝜙] (Eq. 𝑆41) 

𝐸𝑖𝑚(𝐷𝑑 , 𝑑𝑝) =

{
 
 

 
 
(

𝑆𝑡 − 𝑆𝑡
∗

𝑆𝑡 − 𝑆𝑡
∗ + 2 3⁄

)

3
2⁄

(
𝜌𝑤
𝜌𝑝
)

1
2⁄

×

               10
2.905 − 3.07(log10

𝑆𝑡
𝑆𝑡
∗)
0.173

− 2.61×10−14𝑅𝑒,𝐷
3.9

𝑆𝑡 > 𝑆𝑡
∗

0 𝑆𝑡 ≤ 𝑆𝑡
∗

(Eq. 𝑆42) 

The exponent in the second line in Eq. S42 is an empirical correction factor introduced by Fredericks 

and Saylor (2016). 𝜌𝑝 is the particle density assumed to be 1500 kg m-3. This is different to the density 

of dust used in the CLASSIC and UKCA dust schemes (2650 kg m-3) and is more representative of, 

e.g., ammonium sulfate aerosol. Given the Reynold’s number with respect to diameter (𝑅𝑒,𝐷) 

determined using Beard’s (1976) approach (Section S1 in the Supplement), the critical Stokes number 

𝑆𝑡
∗ is then defined as: 

𝑆𝑡
∗(𝐷𝑑) =

1.2 +
1
12 ln(1 + 𝑅𝑒,𝐷)

1 + ln(1 + 𝑅𝑒,𝐷)
(Eq. 𝑆43) 

A few variables have been introduced in Eqs S34-S43 and need to be defined. Namely, the characteristic 

relaxation time of particles (𝜏, s), the particle Brownian diffusion coefficient (𝐷diff, m
2 s-1), the viscosity 

of water (𝜇𝑤, kg m-1 s-1), and the density of water (𝜌𝑤 = 997 kg m-3). Seinfeld and Pandis (1998) 

provide formulae for 𝜏 and 𝐷diff (Eqs S44-S46). 

𝜏(𝑑𝑝) =
(𝜌𝑝 − 𝜌𝑎)𝑑𝑝

2𝐶𝑐(𝑑𝑝)

18𝜇𝑎
(Eq. 𝑆44) 

𝐷diff(𝑑𝑝) =
𝑘𝐵𝑇𝑎𝐶𝑐(𝑑𝑝)

3𝜋𝜇𝑎𝑑𝑝
(Eq. 𝑆45) 

𝐶𝑐(𝑑𝑝) = 1 +
2𝜆𝑎
𝑑𝑝

(1.257 + 0.4 exp (−
1.1𝑑𝑝

2𝜆𝑎
)) (Eq. 𝑆46) 

Dehaoui et al. (2015) provide a power law for 𝜇𝑤 in terms of temperature valid from super-cooled water 

up to the boiling point or 239.15 K ≤ 𝑇𝑎 ≤ 373.15 K (Eq. S47). 
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𝜇𝑤 = 1.3788 × 10
−4 × (

𝑇𝑎
225.66

− 1)
−1.6438

(Eq. 𝑆47) 

 

S4 Thermophoresis and diffusiophoresis effects 
 

A number of studies have suggested that 𝐸slinn(𝐷𝑑 , 𝑑𝑝) significantly underestimates the collision 

efficiency, particularly for accumulation sized particles (0.1 μm < 𝑑𝑝 < 1 μm), by missing out key 

processes that affect collision. Various processes have been highlighted as having an impact upon 

collision, such as thermophoresis, diffusiophoresis, and electric charge. Davenport and Peters (1978), 

Andronache et al. (2006), Wang et al. (2010), and various others have provided formulae for these 

missing effects. 

For thermophoresis (𝐸𝑇ℎ(𝐷𝑑, 𝑑𝑝)) and diffusiophoresis (𝐸𝐷𝑓(𝐷𝑑)), the following are applicable: 

𝐸𝑡ℎ(𝐷𝑑 , 𝑑𝑝) =
4𝛼𝑡ℎ (2 + 0.6 𝑅𝑒,𝑟

1
2 𝑃𝑟

1
3) (𝑇𝑎 − 𝑇𝑠)

𝑈𝑡(𝐷𝑑)𝐷𝑑
(Eq. 𝑆48)

 

𝐸𝑑𝑓(𝐷𝑑) =
4𝛽𝑑𝑝ℎ (2 + 0.6 𝑅𝑒,𝑟

1
2 𝑆𝑐𝑤

1
3) (

𝑝𝑠
o

𝑇𝑠
−
𝑝𝑎
o𝑅𝐻
𝑇𝑎

)

𝑈𝑡(𝐷𝑑)𝐷𝑑
(Eq. 𝑆49)

 

𝛼𝑡ℎ =
2(𝑘𝑎 +

5𝜆𝑎
𝐷𝑑𝑘𝑝
⁄ )𝑘𝑎𝐶𝑐(𝑑𝑝)

5𝑃𝑎 (1 +
6𝜆𝑎

𝐷𝑑
⁄ )(2𝑘𝑎 + 𝑘𝑝 +

10𝜆𝑎
𝐷𝑑𝑘𝑝
⁄ )

(Eq. 𝑆50) 

𝑃𝑟 =
𝑐𝑝𝜇𝑎
𝑘𝑎

(Eq. 𝑆51) 

𝛽𝑑𝑝ℎ =
𝑇𝑎𝐷diffwater

𝑃𝑎
(
𝑀𝑤
𝑀𝑎

)

1
2

(Eq. 𝑆52) 

𝑆𝑐𝑤 =
𝜇𝑎

𝜌𝑎𝐷diffwater
(Eq. 𝑆53) 

The algorithm is rather involved and requires expressions for the new parameters: the thermal 

conductivity of air (𝑘𝑎, J m-1 s-1 K-1), the thermal conductivity of the particle (𝑘𝑝, J m-1 s-1 K-1), the water 

vapour diffusivity in air (𝐷diffwater, m2 s-1), the rain droplet surface temperature (𝑇𝑠, K), and the 

saturation vapour pressure of water (𝑝𝑎
o and 𝑝𝑠

o at temperature 𝑇𝑎 and 𝑇𝑠 respectively, Pa). In terms of 

constants, the molar mass of water is 𝑀𝑤 = 0.01802, the molar mass of dry air is 𝑀𝑎 = 0.02896 kg 

mol-1, and the specific heat capacity of air is 𝑐𝑝 = 1003.5 J kg-1 K-1. 𝑅𝐻 in Eq. S49 is the relative 

humidity (%), assumed to be 80 % in this study. 
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From Pruppacher and Klett (2010), we have the following formulae for 𝑘𝑎 and 𝐷diffwater, where for 

the latter 𝑇0 = 273.15 K and 𝑃0 = 101,325 Pa. 

𝑘𝑎 = 418.4 × (1.04645 + 0.017 𝑇𝑎) × 10
−5 (Eq. 𝑆54) 

𝐷diffwater = 0.211 × 10
−4 × (

𝑇𝑎
𝑇0
)
1.94

(
𝑃0
𝑃𝑎
) (Eq. 𝑆55) 

The particulate thermal conductivity (𝑘𝑝) depends on the aerosol in question. Ladino et al. (2011) use 

a value of 0.419, which is similar to representative values for ammonium sulphate, ammonium nitrate, 

and soot at 0 oC (0.53). Whereas sea-salt has 𝑘𝑝 = 6.7 and calcite (mineral dust) is 𝑘𝑝 ≈ 3. For this 

simple investigation, we assume 𝑘𝑝 = 0.5 following the logic that this scheme may well be used for all 

UKCA-mode aerosol in future. 

For the surface temperature of rain droplets (𝑇𝑠), a good assumption is to use the wet-bulb temperature 

which is always less than the ambient dry-bulb temperature (𝑇𝑎). For simplicity though, we assume a 

constant 𝑇𝑎 − 𝑇𝑠 increment, such that 𝑇𝑠 = 𝑇𝑎 − 5
oC as in Davenport and Peters (1978), or 𝑇𝑠 = 𝑇𝑎 − 3

 

oC as in Wang et al. (2010). We choose 𝑇𝑠 = 𝑇𝑎 − 3
 oC. 

We use the saturation vapour pressure formula from Seinfeld and Pandis (1998), where temperature is 

in oC and may refer to the air temperature (𝑇𝑎) or the rain droplet temperature (𝑇𝑠). The coefficients are 

𝑎0 = 6.107799961, 𝑎1 = 4.436518521 × 10
−1, 𝑎2 = 1.428945805 × 10

−2, 𝑎3 = 2.650648471 ×

10−4, 𝑎4 = 3.031240396 × 10
−6, 𝑎5 = 2.034080948 × 10

−8, and 𝑎6 = 6.136820929 × 10
−11. 

𝑝o = 100 × (𝑎0 + 𝑎1𝑇 + 𝑎2𝑇
2 + 𝑎3𝑇

3 + 𝑎4𝑇
4 + 𝑎5𝑇

5 + 𝑎6𝑇
6) (Eq. 𝑆56) 

 

S5 Charged particles 
 

Particles and droplets may attract each other if their charges are of opposite sign, an effect which should 

be included in the collision efficiency. Andronache et al. (2006) use the following relation for the 

collision efficiency due to charge. 

𝐸𝑒𝑠(𝐷𝑑, 𝑑𝑝) =
16𝐾𝑄𝑑𝑞𝑝𝐶𝑐(𝑑𝑝)

3𝜋𝜇𝑎𝑈𝑡(𝐷𝑑)𝐷𝑑
2𝑑𝑝

(Eq. 𝑆57) 

𝑄𝑑 = 𝑎𝛼𝐷𝑑
2 (Eq. 𝑆58) 

𝑞𝑝 = 𝑎𝛼𝑑𝑝
2 (Eq. 𝑆59) 

In Eq. S57, 𝐾 = 9 × 109 N m2 C-2, while in Eqs S58-S59 𝑎 = 0.83 × 10−6. 𝛼 is an empirically derived 

parameter that ranges from 0 to 7 C m-2 for neutral to highly charged particles respectively. Wang et al. 

(2010) use 𝛼 = 2 based on standard tropospheric conditions. 
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Symbol Description Units Value Equation(s) 

𝑎 Constant in formulation of 𝐸𝑒𝑠 - 0.83 × 10-6 - 

𝐵𝑜 Bond number - Derived S14 

𝑐𝑝 Specific heat capacity of air J kg-1 K-1 1003.5 - 

𝐶𝑐 Cunningham correction factor - Derived S6, S46 

𝑑𝑝 Aerosol diameter m Variable - 

𝐷𝑑 Cloud droplet diameter m Variable - 

𝐷diff Brownian diffusion coefficient m2 s-1 Derived S45 

𝐷diffwater Water vapour diffusivity in air m2 s-1 Derived S55 

𝐸 Collision efficiency - Derived S39- S41, S48, 

S49, S57 

Eq. 12 in paper 

𝐸slinn Collision efficiency proposed by 

Slinn (1984) 

- Derived S39 

𝐸𝑏𝑟 Collision efficiency due to Brownian 

motion 

- Derived S40 

𝐸𝑖𝑛 Collision efficiency due to 

interception 

- Derived S41 

𝐸𝑖𝑚 Collision efficiency due to impaction - Derived S42 

𝐸𝑡ℎ Collision efficiency due to 

thermophoresis 

- Derived S48 

𝐸𝑑𝑓 Collision efficiency due to 

diffusiophoresis 

- Derived S48 

𝐸𝑒𝑠 Collision efficiency due to electric 

charge 

- Derived S57 

𝐸𝑟𝑐 Collision efficiency due to rear-

capture 

- Derived Eq. 12 in paper 

𝑔 Gravitational acceleration m s-2 9.8 - 

𝑘𝐵 Boltzmann constant J K-1 1.3804 × 10-

23 

- 

𝑘𝑎 Thermal conductivity of air J m-1 s-1 K-1 Derived S54 

𝑘𝑝 Thermal conductivity of the particle J m-1 s-1 K-1 0.5 - 

𝐾 Constant in formulation of 𝐸𝑒𝑠 N m2 C−2 9 × 109 - 

𝑚𝑎 Molecular mass of dry air kg 4.78 × 10-26 - 

𝑀𝑤 Molar mass of water kg mol-1 0.01802 - 
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𝑀𝑎 Molar mass of dry air kg mol-1 0.02896 - 

𝑛 Number density of aerosol particles m-3 m-1 Derived Lognormal 

PDF 

𝑁 Number density of rain droplets m-3 m-1 Derived S24 

𝑁0 Intercept of rain droplet distribution m-3 m-1 Derived S26, S28, S31 

𝑁𝑝 Ratio of Davies to Bond Number - Derived S15 

𝑝𝑎
o Saturation vapor pressure of water at 

temperature 𝑇𝑎 

Pa Derived S56 

𝑝𝑠
o Saturation vapor pressure of water at 

temperature 𝑇𝑠 

Pa Derived S56 

𝑃𝑎 Air pressure Pa 101,325 - 

𝑃𝑟 Prandtl number - Derived S51 

𝑞𝑝 Mean charge of a particle C Derived S59 

𝑄𝑑 Mean charge of a rain drop C Derived S58 

𝑅 Rainfall rate mm hr-1 Derived S23 

𝑅𝑎 Specific gas constant J kg-1 K-1 287.05 - 

𝑅𝑒,𝑟 Reynolds number according to radius - Derived S22, S34 

𝑅𝑒,𝐷 Reynolds number according to 

diameter 

- Derived S9, S18 

𝑅𝐻 Relative Humidity % 80 - 

𝑆 Sutherland constant K 120 - 

𝑆𝑐 Schmidt number - Derived S35 

𝑆𝑐𝑤 Schmidt number for water in air - Derived S53 

𝑆𝑡 Stokes number - Derived S36 

𝑆𝑡
∗ Critical Stokes number - Derived S43 

𝑇𝑎 Air temperature K 293.15 - 

𝑇𝑐 Air temperature in Celsius oC 20 - 

𝑇𝑠 Droplet surface temperature K Derived 𝑇𝑎 − 3 

𝑇0 Sutherland constant K 296.166 - 

𝑈𝑡 Terminal velocity of particle / droplet m s-1 Derived S5, S10, S19, 

S20 

𝛼 Parameter in formulation of 𝐸𝑒𝑠 C m-2 2 - 

𝛼𝑡ℎ Variable in formulation of 𝐸𝑡ℎ m2 s-1 K-1 Derived S50 

𝛽𝑑𝑝ℎ Variable in formulation of 𝐸𝑑𝑓 m2 s-1 K Pa-1 Derived S52 

𝜆 Slope of rain droplet distribution m-1 Derived S29 
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𝜆𝑎 Mean free path of air molecules m Derived S4 

Λ Scavenging coefficient s-1 Derived S33 

𝜇 Shape of rain droplet distribution - 0 - 

𝜇𝑎 Dynamic viscosity of air kg m-1 s-1 Derived S3 

𝜇𝑤 Viscosity of water kg m-1 s-1 Derived S47 

𝜇0 Sutherland constant kg m-1 s-1 1.83 × 10-5 - 

𝑣𝑎 Mean speed of air molecules m s-1 Derived S2 

𝜌𝑎 Air density kg m-3 Derived S1 

𝜌𝑝 Aerosol density kg m-3 1500 - 

𝜌𝑤 Density of water kg m-3 997 - 

𝜎𝑤,𝑎 Surface tension of water N m-1 Derived S11, S12, S13 

𝜏 Relaxation time of particles s Derived S44 

𝜙 Diameter ratio - Derived S37 

𝜔 Ratio of water to air viscosity  - Derived S38 

 

Table S1. All variables and their values used in BCS models (Sections S1-S5)  
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Constants in the Wang et al. (2014) Λrain parameterization 

 𝑖 =  0 𝑖 =  1 𝑖 =  2 𝑖 =  3 𝑖 =  4 𝑖 =  5 𝑖 =  6 

𝑎𝑖 
-6.2609 

×100 

6.8200 

×10-1 

8.6760 

×10-1 

1.2820 

×10-1 
   

𝑏𝑖 
-1.4707 

×101 

5.1043 

×101 

-9.7306 

×101 

9.7946 

×101 

-5.3923 

×101 

1.5311 

×101 

-1.7510 

×100 

𝑐𝑖 
7.2300 

×10-1 

3.0300 

×10-2 
     

𝑑𝑖 
-6.4920 

×10-1 

9.3483 

×100 

-2.1929 

×101 

2.5317 

×101 

-1.5395 

×101 

4.7242 

×100 

-5.7660 

×10-1 

 

Table S2. Constants in the Wang et al. (2014) Λrain parameterization 
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Station Latitude Longitude 

440 nm aerosol optical depth (AOD) 

Dec-Feb Mar-May Jun-Aug Sep-Nov 

Agoufou 

Mali 
15.3454N 1.47912W 0.3232 0.6905 0.6840 0.4195 

Ouagadougou 

Burkina Faso 
12.2N 1.4W 0.4650 0.7370 0.4737 0.4576 

Cape Verde 16.7325N 22.9355W 0.2732 0.2995 0.5246 0.3834 

Banizoumbou 

Niger 
13.5412N 2.66475E 0.3789 0.7418 0.5549 0.4196 

Dakar 

Senegal 
14.3942N 16.9586W 0.3354 0.5098 0.6018 0.4061 

Cinzana 

Mali 
13.2784N 5.93387W 0.3547 0.6924 0.5338 0.3504 

Tamanrasset 

Algeria 
22.79N 5.53E 0.0708 0.2617 0.4600 0.2269 

Zinder airport 

Niger 
13.7767N 8.99023E 0.4571 0.6803 0.5437 0.4350 

 

Table S3. AERONET 440 nm seasonal aerosol optical depth in 8 dusty regions (Holben et al., 1998) 
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Station Latitude Longitude 

Near surface dust concentration (μg m-3) 

Dec-Feb Mar-May Jun-Aug Sep-Nov 

Cape Grim 

Tasmania 
40.68S 144.68E 2.4780 1.7105 0.6190 1.2105 

Marsh 

King George Island 
62.18S 58.3W 0.9245 0.7345 0.2745 0.3245 

Mawson 

Antarctica 
67.6S 62.5E 0.2210 0.0325 0.0340 0.1295 

Palmer Station 

Antarctica 
64.77S 64.05W 0.1050 0.4805 0.6995 0.2085 

Funafuti 

Tuvalu 
8.5S 179.2W 0.0865 0.0795 0.1845 0.3785 

Menen Point 

Nauru 
0.53S 166.95E 0.0705 0.2715 0.0585 0.0725 

Norfolk Island 29.08S 167.98E 0.7620 0.5960 0.1075 2.3480 

American Samoa 14.25S 170.58W 0.1880 0.1610 0.1290 0.0770 

Midway Island 28.22N 177.35W 0.2475 1.7720 0.3055 0.3720 

Oahu Hawaii 21.33N 157.7W 0.5230 1.3455 0.3650 0.2495 

Cheju – Korea 33.52N 126.48E 8.4510 25.4015 6.0175 11.5470 

Fanning Island 3.92N 159.33W 0.0380 0.2675 0.0405 0.0385 

Enewetak Atoll 11.33N 162.33E 0.1375 0.4390 0.1800 0.0885 

Ragged Point 

Barbados 
13.17N 59.43W 4.9480 15.1195 30.5450 18.2140 

Bermuda West and 

East 
32.27N 64.87W 0.3425 1.2325 7.1990 3.0560 

Mace Head 

Ireland 
53.32N 9.85W 0.9940 1.2820 1.0205 0.7625 

University of 

Miami – Florida 
25.75N 80.25W 1.2365 1.7260 14.2730 2.6590 

Izana Tenerife 

(alt=2360 m) 
28.3N 16.5W 8.3015 39.8525 33.9970 31.1735 

 

Table S4. Seasonal near surface dust concentrations from the University of Miami Oceanic Aerosols 

Network (U-MIAMI) (Prospero and Nees, 1986) 
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Figure S1. Surface tension 𝝈𝒘,𝒂 as a function of temperature 𝑻𝒄. Cloud AeroSol Interaction Microphysics 

(CASIM) is a new cloud microphysics model at the Met Office (Hill et al., 2015) and is shown for 

reference   
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Figure S2. Reynold’s number (𝑹𝒆,𝑫) and terminal velocity (𝑼𝒕) as a function of droplet diameter (𝑫𝒅) for 

various standard atmospheric conditions using the Beard (1976) scheme alongside 𝑼𝒕 as parameterised in 

UKCA and the parameterisation given in Eq. S21. 
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Figure S3. The rain droplet number distribution for various rainfall rates (𝑹) and 3 different 

parameterisations assuming an exponential distribution 
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Figure S4. BCS scavenging coefficient for the Slinn+ph+rc model as a function of aerosol diameter for 

various atmospheric profiles representative of 1 km altitude increments from the surface to 5 km 
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Figure S5a. Time evolution of the (a,c) mass concentration and (b,d) median diameter of (a-b) an 

accumulation-like mode and (c-d) a coarse-like mode with a constant rain rate of 0.5 mm hr-1 for 6 BCS 

schemes. Results from offline box model simulations 
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Figure S5b. Time evolution of the (a,c) mass concentration and (b,d) median diameter of (a-b) an 

accumulation-like mode and (c-d) a coarse-like mode with a constant rain rate of 10 mm hr-1 for 6 BCS 

schemes. Results from offline box model simulations 
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Figure S6.  Annual-mean values by area or station from 4 datasets used to assess simulated dust in the 

UM-GA8.0 simulations: (a) 550 nm dust optical depth (DOD) from Kok et al. (2021), (b) 440 nm DOD 

from AERONET measurements (Table S3), (c) near surface dust concentration from the U-MIAMI 

dataset (Table S4, Prospero and Nees, 1986), and (d) dust deposition rates from Huneeus et al. (2011) 
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Figure S7.  Annual-mean total dust emissions rate in all of the UM-GA8.0 simulations performed for this 

study 
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Figure S8. Annual-mean total dust deposition rate in all of the UM-GA8.0 simulations performed for this 

study 
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Figure S9. Annual-mean precipitation anomalies with respect to observations from the Global 

Precipitation Climatology Project (GPCP2) (Adler et al., 2003). (a) Annual mean precipitation in the 

SLINN+PH+RC simulation (i.e., u-ck145, (b) the difference between precipitation in SLINN+PH+RC and 

the default UM-GA8.0 model (i.e., u-ck421) which employs CLASSIC dust, (c) the difference between 

precipitation in default UM-GA8.0 and GPCP2, and (d) the difference between precipitation in 

SLINN+PH+RC and GPCP2 
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Figure S10. Annual-mean dust mode merging rate (coarse mode → accumulation mode): (a) integrated 

vertically in SLINN+PH+RC(DM), (b) integrated vertically in LAAKSO(DM), (c) zonally averaged in 

SLINN+PH+RC(DM), and (d) zonally averaged in LAAKSO(DM) 
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Figure S11.  Global dust metrics in the LAAKSO and LAAKSO(DM) simulations, used to answer KQ4 – 

impact of representing downward mode-merging. (a-c) annual-mean total dust burden, (d-f) seasonal and 

regional dust optical depths (DOD) against 440n nm AERONET observations (+) and 550nm DOD from 

Kok et al. (2021), (g-i) seasonal and regional near surface dust concentrations against U-MIAMI 

observations (Prospero and Nees, 1986), (j-l) annual-mean regional dust deposition rates against 

observations from Huneeus et al. (2011) 
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Figure S12.  Dust volume size distributions in a cross Atlantic transect in the LAAKSO and 

LAAKSO(DM) simulations for (a) June conditions in the region (58-61 oW, 11-14 oN) and 2-2.4 km 

compared to SALTRACE measurements, (b) August conditions in the region (18-24 oW, 14-24 oN) and 2-

3 km altitude compared to AER-D measurements, and (c) June conditions in the region (4-8 oW, 21-26 oN) 

and 0.1-1.2 km altitude compared to Fennec 2011 measurements. (d) shows the horizontal boundaries of 

the averaging regions in the Equatorial Atlantic 
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Figure S13.  Dust number size distributions in a cross Atlantic transect in the SLINN+PH+RC and 

SLINN+PH+RC(DM) simulations (a-c) and LAAKSO and LAAKSO(DM) simulations (d-f) for: (a,d) 

June conditions in the region (58-61 oW, 11-14 oN) and 2-2.4 km compared to SALTRACE measurements, 

(b,e) August conditions in the region (18-24 oW, 14-24 oN) and 2-3 km altitude compared to AER-D 

measurements, and (c,f) June conditions in the region (4-8 oW, 21-26 oN) and 0.1-1.2 km altitude 

compared to Fennec 2011 measurements. (g) shows the horizontal boundaries of the averaging regions in 

the Equatorial Atlantic 


