a B~ wN

© 00 ~N o

10
11
12
13
14
15
16
17
18
19
20
21

22

Formation and impacts of nitryl chloride in Pearl River Delta

Haichao Wang#, Bin Yuan>®", E Zheng?®, Xiaoxiao Zhang??, Jie Wang!, Keding Lu%®, Chenshuo
Ye?3, Lei Yang?®, Shan Huang?®, Weiwei Hu’, Suxia Yang?®, Yuwen Peng?3, Jipeng Qi%3, Sihang
Wang??, Xianjun He23, Yubin Chen?3, Tiange Li*3, Wenjie Wang?®, Yibo Huangfu®3, Xiaobing Li??,

Mingfu Cai?3, Xuemei Wang?®, Min Shao??

% School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, 519082, China

2 |nstitute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China

3 Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental
Quality, Guangzhou, 511443, China

4 Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality
Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry
of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai,
519082, China

5 State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.

® The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

7 State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental
Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of
Sciences, Guangzhou 510640, China

8 Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany

Correspondence: Bin Yuan (byuan@jnu.edu.cn)


mailto:byuan@jnu.edu.cn

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
‘ 46
47
48
49

50

51

52

53

Abstract. Here we present a field measurement of CINO2 (nitryl chloride) and N2Os (dinitrogen
pentoxide) by a Time-of-Flight Chemical lonization Mass Spectrometer (ToF-CIMS) with the Filter
Inlet for Gas and AEROsols (FIGAERO) at a regional site in Pearl River Delta during a
photochemical pollution season from Sept. 26™ to Nov. 17", 2019. Three patterns of air masses are
sampled during this campaign, including the dominating air masses from the north and northeast
urban regions (Type A), the southeast coast (Type B), and the South China Sea (Type C). The
concentration of CINOz and N20s were observed to be much higher in Type A and B than these-in
Fype-Cindicatedin Type C, indicating that the urban nighttime chemistry is more active than the
background marine regions. N2Os uptake coefficient and CINO2 production yield were estimated by
rmeasured-parametersbased on the field measurement, and the performance of the previously derived
parameterizations were-was assessed-. The nighttime CINO: correlated with particulate chloride and

the mass concentration of fine particles (most likely due to aerosol surface area), but-netwith-nitrate
radical-formation—rate;—suggested that the CINO formation was limited by the N2Os uptake rather
than-N2.Os-seuree-at this site. By examining the relationship ef-between particulate chloride and other
species, we implied that anthropogenic emissions (e.g., biomass burning) rather than sea salt
particles dominate the origin of particulate chloride, despite-although the site -tbeings only about 100
km away from the ocean. A box model with detailed ehleride-chemistrychlorine chemistry is used to
investigate the impacts of CINO2 chemistry on atmospheric oxidation. Model simulations showed the
ehlorideradicalchlorine radical liberated by CINO2 photolysis during the next day had a smah-slight
increase in concentrations of OH, HO2 and RO; radicals, as well as minor contributions to ROz
radical and Oz formation (<5%, on daytime average) in all the three types of air masses. Relative
higher contributions were observed in Type A and B. The overall low contributions of CINO: to
atmospheric oxidation are consistent with those reported recently from wintertime observations in
China (ineluded-including Shanghai, Beijing, Wangdu and Mt. Tai). This may be attributed to: (1)
Relative low particle mass concentration limited CINO. formation; (2) Other reactions channels, like
nitrous acid (HONO), oxygenated volatile organic compounds (OVOCs, including formaldehyde),
and ozone photolysis, had targer-more significant radical formation rate during the ozone pollution
episodes and weakened the CINO: contribution indirectly. The results provided scientific insights
into the role of nighttime chemistry in photochemical pollution under various scenarios in coastal

areas.
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1. Introduction

Chloride—radiealChlorine radical is an important oxidant in the tropospheric besides OH radicals,
NOs radicals and ozone (Saiz-Lopez and von Glasow, 2012; Simpson et al., 2015; Wang et al.,
2019b), which alters the fate of many atmospheric compositions, including oxidants, reactive
nitrogen compounds, volatile organic compounds (VOCs), and other halogens. ClI radical is much
more reactive than OH with-respect-toconcerning certain VOCs (e.g., alkanes) by a few orders of
magnitude for reaction rate constant (Atkinson and Arey, 2003; Atkinson et al., 2006).; therefore, it
contributes to atmospheric oxidation capacity considerably in the troposphere despite low
concentrations. For example,_the global model showed_-about 20 % of ethane, 14 % of propane
oxidation are attributed to the-chloride-chemistrychlorine chemistry at the global scale (Wang et al.,
2019c). Modeling simulations also demonstrated that ehloride-chemistrychlorine chemistry enhanced
oxidative degradation of VOCs by >20% at some locations (Sarwar et al., 2014).

Photolysis of CINO, (R1) is a major source of the tropospheric ehleride—radicalchlorine radical
(Thornton et al., 2010b; Simpson et al., 2015), other ehleride-radicalchlorine radical sources include
the reaction of HCI with OH (Riedel et al., 2012; Eger et al., 2019), photolysis of Cl> and other
halogen compounds like ICI and BrCl (Peng et al., 2021). Tropospheric CINO: is not only an

impertanta critical chlorine activation precursor but also a nocturnal reseurvierreservoir of reactive

(RETHA: i

nitrogen, which is mainly formed ia-by NOs heterogeneous reaction-ef-N2Os- on chlorine-containing
particles with a braneh-branching ratio at nighttime (R2).
CINO; + hv — Cl + NO; (R1)
N20s5 + H20/Cl" — ¢CINO2 + (2-9)NO3™  (R2)

where ¢ represents the yield of CINO2. This mechanism was firstly proposed by Finlaysonpitts et al.
(1989) through detecting the products of N2Os uptake on NaCl particles. Given this reaction, the
formation of CINO2 can be influenced by the N2Os uptake (such as N2Os uptake probabilities and
aerosol surface area) as well as the production yield of CINO.

N20s uptake coefficient, y(N20s), have been reported highly varied under tropospheric conditions
(Brown and Stutz, 2012). Both the field and laboratory studies revealed that this process can be
affected by ambient temperature, relative humidity (Mozurkewich and Calvert, 1988; Mentel et al.,
1999; Hallquist et al., 2003), chemical compositions (such as the content of nitrate, liquid water,
chloride, and organics) (Mentel et al., 1999; Brown et al., 2006; Bertram and Thornton, 2009; Gaston

3
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et al.,, 2014; McDuffie et al., 2018b; Tang et al., 2014; Anttila et al., 2006), as well as particle
morphology (Mielke et al., 2013; Zong et al., 2021). Until now, the key factors that controlling N2Os
uptake coefficient in the different environments are still not well understood. CINO; yield is also
highly varied subject to the liquid water and chloride content in the aerosol (Behnke et al., 1997;
Roberts et al., 2009; Bertram and Thornton, 2009). Several studies demonstrated that the CINO-
yield is also affected by other factors like aerosol sulfate (Staudt et al., 2019) and organics (Ryder et
al., 2015; Tham et al., 2018; McDuffie et al., 2018a). However, the comprehensive quantitative
relationship of these factors in controlling the yield still has large uncertainties. These gaps in

parameterization of N»Os uptake coefficients and CINO, yield result in challenging to accurately (RBTHRA: Ti
. . . . . . - . (RBTHRRA: Ti
predict CINO, and particulate nitrate production.Fhese-gapsin-understanding-the-eritical-controlling CamTRA:
i (RBTHR: i

Seters—terblLO —optaleeoctielontocupllos SO inld lend o the pradictionot SO npd

Osthoff et al. (2008) and Thornton et al. (2010a) directly observed elevated CINO> in coastal and
inland U.S. by chemical ionization mass spectrometer (CIMS), respecitively. They shed light on the
significance of CINO2 photolysis in launching the radical chemistry during the morning time, and
also affecting halogen chemistry and reactive nitrogen cycling. Large amounts of ehloride
radhiealchlorine radicals are liberated through the photolysis of noctural accumulated CINO2 (R1),
which oxidizes VOCs and produces peroxy radicals (RO2) to initiate the daytime raidcal cycling in
the morning, when other radical source, like ozonolysis and photolysis of Oz, HONO and HCHO, are
still weak (Osthoff et al., 2008). The impacts of CINO2 chemistry on primany source of radicals and
ozone formation is a critical topic, the answer of which is very helpful to narrow the gap of the
missing priamry source of ROx and improve our knowledge of the currect ozone pollution
mechanism (Tan et al., 2017; Tham et al., 2016). Model simulation highlighted CINO2 chemistry
could increase mean daily maximum 8 h ozone by up to 7.0 ppbv in some areas in the Northern
Hemisphere (Sarwar et al., 2014). The large contribution was also confirmed in the southern
California region by a box model study (Riedel et al., 2014). In addition, global model simualtion
showed CINO: chemistry increases wintertime ozone by up to 8 ppb over polluted continents (Wang
et al., 2019c). Particularly, previously modelling results also highlight the importance of CINO>
chemistry in enhancing Os production in China (Li et al., 2016; Yang et al., 2022b).

Several field studies reported the measurement of CINO: in varied environments in the past
decade (Riedel et al., 2012; Young et al., 2012; Mielke et al., 2013; Riedel et al., 2013; Bannan et al.,
2015; Faxon et al., 2015; Mielke et al., 2015; Phillips et al., 2016; Bannan et al., 2017; Wang et al.,
2017c; Wang et al., 2017d; Le Breton et al., 2018; McDuffie et al., 2018a; Yun et al., 2018a; Zhou et

al., 2018; Bannan et al., 2019; Eger et al., 2019; Haskins et al., 2019; Jeong et al., 2019; Xia et al.,
4
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2020; Xia et al., 2021; Tham et al., 2016; Tham et al., 2014; Wang et al., 2016; Phillips et al., 2012;
Lou et al., 2022; Sommariva et al., 2018), in which the maximum CINO; up to sub-ppbv to several
ppbv were reported, indicating its ubiquitousubiguity presence worldwide and a broad atmospheric
impacts over various regions. During the CalNex-LA campaign 2010, CINO2 was measurred at
ground site, the Research Vessel and aircraft platform, which depicted a full picture of the abundance
of CINOz and confirmed its large impacts on atmospheric chemsitry in both urban and coastal
regions in California (Riedel et al., 2012; Young et al., 2012; Mielke et al., 2013). Recently, Wang et
al. (2016) used a box model simulated the chemical evolution of the plume after leaving the
observation site in Hongkong and showed CINO2 chemistry had a following-day enhancement of
ozone peak and daytime ozone production rate by 5-16% and 11-41%, along with a large increasing
of OH, HO2 and ROz concentration especially in the morning. While Xia et al. (2021) and Lou et al.
(2022) reported winter measurments of CINO: in north and east China, respectively, both-they both
showed moderate CINO: level and a relative small contributions of CINO2 chemistry to radical
source and ozone enhancement on campaign average. These results is quite different with that
happened during the summertime in China (Tham et al., 2016; Wang et al., 2016; Tan et al., 2017),
and highlight the large variation of CINO2 chemistry influenced by temporal spatial distribution.
Despite its likely importance to the regional atmospheric oxidation and air quality, investigations
of CINO: chemistry in China remain relatively sparse. There are several field measurements of
CINO- conducted in the China in recent years, while considering the large diversities of air mass in
inland and coastal regions in China, more field and model works are need to gain more insights to
the CINO2 chemistry in various atmospheric environments and assess its atmospheric impacts. Until
now, only several field measurement of CINO2 were reported in Pearl River Delta (PRD) region
(Tham et al., 2014; Wang et al., 2016; Yun et al., 2018a), and only Wang et al. (2016) reported a
comprehensive analysis of the impact of CINO2 chemistry on radical and ozone formation in 2013 as
mentioned before. To understanding the increasing Os problem in recent years (Wang et al., 2019a)
and examining the role of CINO2 chemistry in Oz formation in PRD, we measured CINOz2, N20s, and
other related parameters at a regional site in PRD during a severe photochemical pollution season in
2019. The abundance, formation, and variation during different air masses patterns are well
characterized. The factors impact its formation are diagnosed. Finally, the contribution of ehloride
radhiealchlorine radicals liberated by CINO2 photolysis on the daytime radical chemistry, as well as
ozone formation are comprehensively assessed by a box model coupled with detailed ehloride

chemistrychlorine chemistry.

2. Method
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2.1 Measurement site

This campaign was conducted at the Guangdong Atmospheric Supersite of China, which is located

[ﬁ?%ﬁ FAk: (BRIN) Times New Roman

on the top of a mountain (~ 60 m high, a.s.l.h) in Heshan (22.728°N, 112.929°E), Jiangmen city,

Guangdong Province (Yang et al., 2022a) . This site was in the western Peral River Delta where no
major industry in the surroundings, but with some farmland and a few residents live at the hill foot.
The traffic is far away from this site and believed to have little influence on the samplingseldem
disturbs—the—sampling. The anthropogenic activity is much lower than the urban regions like

Guangzhou City, but the air quality is often influenced by neighbor cities, especially the outflow of

air masses from the regions on the north and northeast. Therefore, the air masses sampled at this site
are sometimes representative of the urban pollution from the center PRD. There were many
atmospheric intensive studies once conducted in the site to study the air pollutions in PRD (Tan et al.,
2019; Yun et al., 2018b). In this study, the instruments were located on the top floor of the
measurement building with inlets approximately 15 m above the ground. The data presented in the
study were collected from 27" September to 17" November 2019, during which photochemical
pollution occurred frequently (Yang et al., 2022a). Time is given as CNST (Chinese National
Standard Time = UTC+8 h). During the campaign, sunrise was approximately at 06:00 and sunset
was approximately at 18:00 CNST.

2.2 Instrument setup

A comprehensive suite of instrumentation was overviewed and listed in Table 1. An iodide-adduct
Time-of-Flight Chemical lonization Mass Spectrometer (ToF-CIMS) with the Filter Inlet for Gas and
AEROsols (FIGAERO) was applied to measure CINO, and N20s along with other oxygenated
organic species (Ye et al., 2021; Wang et al., 2020b) . In brief, the gas phase species were measured
via a 2-m-long, 6-mm-outer-diameter PFA inlet while the particles were simultaneously collected on
a Teflon filter via a separate 2-m-long, 10-mm-outer-diameter copper tubing inlet; both had flow
rates of 2 L min" with a drainage flow of 20 L min™’. The gas phase was measured for 25 minutes at
1 Hz, and the FIGAERO instrument was then switched to place the filter in front of the ion molecule
region; it was then heated incrementally to 200 <C to desorb all the mass from the filter to be
measured in the gas phase, which resulted in high-resolution thermograms. CINO. and N.Os are
measured as the iodide adduct ions at m/z 207.867 (ICINO2") and m/z 234.886 (IN20s") in the ToF-
CIMS, respectively. The measurement background and sensitivities for detecting CINO2 and N20s
with the dependence of water content were quantified and-desecribed-in-details-(see Appendix). The
limit of detection (LOD) for CINO2 and N20Os were 4.3 and 6.0 pptv in 1-minute time-resolution,

respectively, with an uncertainty of ~30%.
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Sub-micron aerosol composition (PM1) were measured by a High-Resolution Time of Flight
Aerosol Mass Spectrometer (HR-ToF-AMS) (DeCarlo et al., 2006). The soluble ions of sodium and
potassium was measured by a commercial instrument (GAC-IC) equipped with an aerosol collector
and detected by ion chromatography (Dong et al., 2012). The particle number size distribution
(PNSD) was measured by a scanning mobility particle sizer (SMPS, TSI 3938). The aerosol surfaces
area was calculated based on the size distribution measurement and corrected to wet particle-state by
a hygroscopicity growth factor, with a total uncertainty of determining wet aerosol surface areas by
~30% (Liu et al., 2013). VOCs were measured by Proton Transfer Reaction Time-of-Flight Mass
Spectrometry (PTR-MS)(Wu et al., 2020; He et al., 2022) and an automated gas chromatograph
equipped with mass spectrometry or flame ionization detectors (GC-MS). A commercial instrument
(Thermo Electron model 42i) was used to monitor NOx. Oz was measured by a commercial
instrument using ultraviolet (UV) absorption (Thermo Electron 49i). PM2s was measured by a
Tapered Element Oscillating Microbalance (TEOM, 1400A analyzer). SO, and CO were measured
by commercial instruments (Thermo Electron 43i and 48i). In addition, the meteorological
parameters were available during the measurement. Photolysis frequencies were determined by a
spectroradiometer (Bohn et al., 2008). The aerosol liquid water content (ALWC) is calculated from
the ISORROPIA-II thermodynamic equilibrium model (Clegg et al., 1998). We used the reverse
mode in ISORROPIA-II with the input of water-soluble ions along with ambient temperature (T) and
relative humidity (RH). Given the high RH in this campaign, we ran the model by assuming aerosol

phase were metastable.

Table 1. Summary of the information about observed gas and particle parameters during the

campaign.
Species Limit of detection Methods Accuracy
N20s 6.0 pptv (30, 1 min) FIGAERO-ToF-CIMS +30%
CINO: 4.3 pptv (30, 1 min) FIGAERO-ToF-CIMS +30%
NO 60 pptv (20, 1 min) Chemiluminescence +20%
NO2 0.3 ppbv (20, 1 min) Mo convert +20%
O3 0.5 ppbv (20, 1 min) UV photometry +5%
VOCs 0.1 ppbv (5 min) PTR-ToF-MS +30%
VOCs 20-300 pptv (1 h) GC-FID/MS +20%
PM2s 0.1 ug m — 3 (1 min) TEOM +5%
CcO 4 ppbv (5 min) IR photometry +5%
SO. 0.1 ppbv (1 min) Pulsed UV fluorescence +10%
HCHO 25 pptv (2 min) Hantzsch fluorimetry +5%
PNSD 14 nm -700 nm (4 min) SMPS +20%
Aerosol composition <0.16 g m3 (30 min) GAC-IC +30%
PM1 components 0.15 g m3 (4 min) HR-ToF-AMS +30%

Photolysis frequencies  Varies with species (20 s) Spectroradiometer +10%

7
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2.3 Box model setup

A zero-dimensional chemical box model constrained by the field campaign data was applied to
simulate the CINOz chemistry. The box model was based on the Regional Atmospheric Chemical
Mechanism version 2 (RACM2) described in Goliff et al. (2013), and ehloride—chlorine-related
chemical mechanism werewas added (Wang et al., 2017b; Tan et al., 2017). Briefly, ehleride
chemistrychlorine chemistry was adapted to RACM2 from the modifications to Master Chemical

Mechanism (Xue et al., 2015), and the oxidation products from reactions between lumped VOC

species and ehlerideradicalchlorine radicals were adapted from those of OH oxidation from RACM2.

J(CINO») was calculated according to the NASA-JPL recommendation based on the work by Ghosh
et al. (2012). The impact of O3 by CINO2 chemistry was assessed by differing the results of two
scenarios with and without the constrains of the observed CINOpwith-or-witheut-the-constraints—of

the-ebserved-CINO: in the model simulation. For the reaction rate constant of the lumped species
with ClI, the fastest value from different species was used to represent the upper limit of the impact of

chleride-chemistrychlorine chemistry. It should be note that the setting will lead to overestimation on

the contributions from CINO, chemistry. The model was constrained by the observed CINO2, NOX,
03, CO, VOCs (assignment to RACM2), photolysis frequencies, ambient temperaturetemperature
and pressure. The model runs were from 29 September to 17 November, 2019 with most of the
measurement data taken accounted for, and with a two-days spin-up. The constant lifetime ef-the
input-trace-gases-corresponds to a deposition velocity of 1.2 cm s with an assumed boundary layer

height of 1000 m_was used for the input trace gases, and the model-generated species was-were set to

24 hours lifetime due to the loss caused by the dry deposition_(Lu et al., 2012). The input data were

averaged and interpolated to 1 hour of resolution.

3. Results and discussions

3.1 Overview of measurement

Figure 1 shows time series of CINO. and relevant trace gases, particlesparticles, and meteorological
parameters during the measurements. In this campaign, the meteorological condition featured high
temperature (24.7 3.8 °C) and high humidity (62.1% =+15.6%), low wind speed (1.5 0.8 m s%),

and the dominant air flow were from north and northwest. Compared to those with previously

8
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measurements at the same site in January 2017 (Yun et al., 2018b), the temperature was higher and
relative humidity was lower during the measurements. The average and maximum concentration of
particulate matter (PMzs) was 47.6+19.3 ug m™ and 138 ug m, respectively, which is significantly
lower than that observed in January 2017, with a maximum up to 400 ug m3. The dominant air
pollutant was Oz with hourly campaign maximum and the average mean daily maximum 8-hour Oz
(MDAS8 03) of 152.8 ppbv and 75.2 #20.9 ppbv, respectively. There were 27 days out of 53 days
with the hourly maximum of Os exceeded the Chinese national air quality standard (200 pg m,
equivalent to 93 ppbv), suggesting severe ozone pollution during the measurement period in PRD
region. NO> concentration was also elevated with 21.0 +10.4 ppbv on campaign average. The
concurrent high Oz and NO2 made large nitrate radical production rate occurred with a daily average

of 2.5 2.8+2.1 ppbv h' (median, 1.8 ppbv h™). The campaign maximum NOs production rate was

observed up to 18.6 ppbv h't in the afternoon at 11" November, 2019. At night, the nitrate radical

production rate was 1.8 1.5 ppbv h™! on campaign average (median, 1.4 ppbv h*). However, high

NOs production rate did not mean high concentrations of NOs, N2Os and CINO: in the atmosphere,

as the concentration affected by both their sources and sinks.
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Figure 1. Time series of N2Os, CINOz and relevant parameters. The grey dotted line in the Os panel
denotes Chinese national air quality standard for hourly maximum Os (200 pg m, equivalent to 93

ppbv). NOs radical is calculated based on a thermal equilibrium with measured NO2 and N2Os.
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N2Os existed at a moderate concentration at most nights, with the daily nocturnal peaks range from
<100 pptv to 1180 pptv and nocturnal average of 64 +145 pptv. During the nights from 27 — 3™
September, 2019, the N2Os concentration was significantly higher than other nights. The NO3
lifetime, calculated by steady state method (Brown et al., 2003), was much longer in the four nights
than other nights, implied relative weak sink of NO3z-N20s for the first four nights. The lifetime of
NOs was < 1 minute in general (except the first four nights), indicating active NO3z chemistry at this
site. The NOz concentration was calculated assuming the thermal equilibrium of NO2-NO3-N2Os,
with a possible lower bias caused by the equilibrium coefficient for reversible reactions of NOs and
N20s (Keq) (Chen et al., 2022). Figure 1 shows the variation of calculated NOs coincided with N2Os.
Elevated NO3 occurred at the first four nights with a maximum of 90 pptv (1 h time resolution),
which is comparable with the reported NOs level at other sites in Pearl River Delta (Wang and Lu,
2019; Brown et al., 2016). CINO showed a clear diurnal variation with high level during the night.
The nocturnal average and hourly maximum were 1984232 pptv and 1497 pptv, respectively. The
abundance of CINO2 and N2Os are lower than those observed at the same site in 2017, with high

N20s and the highest value ever observed CINO2 of 3358 pptv and 8324 pptv (1-minute time

c AERHER

resolution), respectively (Yun et al., 2018b). WhiehThe difference of CINO, level between the two
campaigns conducted in 2017 and 2019 may be caused by the-difference of aerosol loading-between
2017-and-2019. High particulate chloride ion was observed in the site with 0.74 +1.33 pug m™ on

nocturnal average, which was higher at night with a peak in the second half of night and decrease at

daytime.

3. 2 Characterization of pollutants in different air masses.

We noticed the air mass is highly varied during the measurements. For example, during the period of
10/02 - 10/05, the observed ozone and CINO, were much lower than other days; while during the
period of 11/11 - 11/13, the air masses were much polluted with high Os, PM2s and CINO.. We
therefore plotted the backward trajectories of 24 h history of air masses arriving at the measurement
site at 500 m_AMSL height at 00:00, 06:00, 12:00, 18:00 day by day. The measurement period was
separated into three patterns meteorologically according to the analysis of backward trajectories.
Table 2 listed the detailed information about the air mass classification. The air masses from
northeast (and north) was the dominant with a total of 37 days, which was characterized with the
outflow of the center city clusters of PRD and those from inland through long distance transport. We
checked the pollutants of the air masses from PRD and the north out of PRD (e.g., Hunan or Jiangxi
Province), while no significant difference was found. Therefore, we merged the two inland air
masses as Type A. The second type was from the coastal or offshore from east and southeast (Type
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B), which features the outflow of coastal cities like Shenzhen and Hong Kong, which occurred on 12
days in total. The third type was the clean air masses from the South China Sea (4 days, Type C).
Figure 2 shows three cases of each air masses mentioned above.

Table 2. The detailed information of three air mass types.

Air mass type Periods Days

Type A: 09/26-10/01;10/08;10/11-10/20;10/24- 37 (69.8%)
inland air from northeast 11/10;11/14-15

Type B: 10/06-07; 10/09-10; 10/21-23; 12 (22.6%)
coast air from east 11/11-13; 11/16-17

Type C: 10/02-05 4 (7.5%)

marine air from south

The mean diurnal profiles of measured NO2, Os, N2Os, CINO,, the particle chloride content and
the ratio of chloride to sodium in the three types of air masses are shown in Figure 3, with a detailed
summary of related parameters in nocturnal medians listed in Table 3. High levels of NO> and Oz
were observed in Type A and B air masses, with small difference of NO2 diurnal variation during the
second half of night. In comparison, the two pollutants in Type C were much lower. If we focus on
the abundance at night, we found a large difference in NO2 level with a sequence Type A > Type B >
Type C, which results in the same sequence of NOs productions in different air masses. The
nocturnal NO> seems to be a good indicator of the level of pollution, that nocturnal CO, PM2s and
SO also followed this order with highest concentration in Type A. These results indicate that the

most polluted air mass came from the inland urban regions of PRD.
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Figure 2. Three typical cases with air mass from different regions at 29" Sept., 121 Nov. and 4™ Oct.,
respectively. Backward trajectory of 24 h history of air masses arriving at the measurement site with
500 m height at 00:00, 06:00, 12:00, 18:00.

Given the particulate chloride a precursor of CINO,, we examined its diurnal variations in the
three air mass types. The highest level of CI- was found in Type B, and then followed by Type A and
Type C (also at night). Although the diurnal profile of CI" in the three types is similar, the increasing

11



308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323

324

325
326

rate of CI" during the second half of night in Type A is much slower than those in coastal and offshore
air masses. This imply a difference source of chloride, which will be further discussed in the Section
3.4. N20s was observed with moderate concentration in the Type A air mass throughout the night,
with a nocturnal peak of 152.4 pptv between 20:00-21:00, while little N2Os only occurred in the first
half of night in Type B and C with a peak of 75.9 pptv and 13.6 pptv, respectively. The concentration
difference may be attribute to two aspects. Firstly, the difference of P(NOsz) results in more N2Os
produced in Type A. Secondly, compared with the air mass from coastal or offshore regions, the
nocturnal temperature and RH condition from Type A is much lower, and the loss of N.Os may be
faster in Type B and C than that in Type A. The nocturnal median RH in Type A reached up to 67%,
while 78% and 79% in Type B and Type C, suggesting a favorable condition for heterogeneous
hydrolysis of N2Os for all the three air mass types. The elevated CINO2 was observed in Type A and
B with a nocturnal peak of 273.6 pptv and 479.8 pptv, respectively. Significantly less CINO, was
observed in Type C air mass with a peak of 82.6 pptv. The reason of the different levels of CINO;
observed in the three air masses types are discussed in Section. 3.4.

TypeA TypeB Type C
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Figure 3. Mean diurnal profiles of N2Os, CINO: and relevant parameters in the three types of air

masses.

Table 3. Statistics results (median *standard deviation) of the related parameters in the three types

of air masses (from 18:00 to 06:00 CNST).
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Air mass Type-A Type-B Type-C

RH (%) 67.0 £11.9 78.0 £10.9 79.0£9.1
T(°C) 22.8 3.0 233422 25.6 £1.9
CINO (pptv) 131.0 +202.8 162.0 +310.1 16.7 +£21.2
N,Os (pptv) 17.8 +164.9 6.3 £64.6 2.8+9.3
CI (ug m®) 041 +1.11 0.56 £1.85 0.33 051
PMzs (ug m) 53.0 +18.8 41.0 42138 32.0+10.2
SO2 (ppbv) 5.0 +4.7 3.4+114 34447
Na* (ug m’) 0.12 +0.07 0.18 +0.09 0.09 £0.03
P(NOs) (ppbv h) 1.60 £1.49 1.39 +1.50 0.69 £0.49
NO2 (ppbv) 24.8 £10.9 18.1 +6.2 11.2 +5.8
03 (ppbv) 24442138 29.5+23.1 22.4+152
CO (ppbv) 540.3 +122.3 448.4 +130.7 367.5 +89.8

3.3 N20s uptake coefficient and CINO: yield

In line with previous studies, we estimate N2Os uptake coefficient and CINO; yield using the
measurements of N2Os, CINO, and particulate nitrate (Phillips et al., 2016; Wang et al., 2018; Tham
et al., 2018). By assuming both the nocturnal enhancement of nitrate and CINO. are mainly
attributed to N2Os uptake processes, CINO: yield can be solely derived by the regression analysis of
CINO. versus particulate nitrate (Wagner et al., 2012; Riedel et al., 2013). The ¢CINO; can then be
obtained by the fitted regression slope (S, Eg. 1) and named as regression method.

@ =2S/(S+1) (Eg. 1)

Combining with the data of N2Os and aerosol surface area, the increase in CINO2 and nitrate
can be simulated simultaneously by setting the input of N2Os uptake coefficient and CINO: yield
(named as simulation method). The optimal N2Os uptake coefficient and CINO- yield are obtained
simultaneously by adjusting the two parameters until the simulation reproduces the observed increase
CINO: and nitrate (Phillips et al., 2016; Xia et al., 2020; Tham et al., 2018). This analysis assumes
only N2Os uptake process dominates the increase of CINOz and nitrate, and other physicochemical
processes like vertical transportation, depositions are less important. This method requests the air
mass in the analysis duration time is relative stable and less affected by emission and transportation.
In addition, it is not valid in the case with negative changes of CINO2 and nitrate. The following
selection criteria is set to pick out the suitable plumes to meet the assumptions. Firstly, the consistent
increase trends of CINO; and the NOz™ and clear correlation between them during the analysis
duration should be observed with a regression coefficient threshold of 0.5, which indicates the two
products have the same source. Secondary, an equivalent or faster increase of ammonium
accompanied with nitrate, to ensure insignificant degas of HNOsz to the atmosphere. The
observational data were averaged to 30 min for the following analysis, the time-period of each

derivation ranges from 2.5 to 10 hours. Figure 4 depicts an example of the derivation on 5%
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November, 2019, the stable Sa indicates stable air mass during the analysis period. And the
prediction is well reproduced the observed increase in CINO2 and NOz".

During this campaign, we carefully identified 20 plumes with clear correlations between CINO>
and particulate nitrate by the slope method (R? > 0.5). As shown in Table 4, the derived CINO yield
varied from 0.13 to 1.00 with a median of 0.45 £0.22 (mean value of 0.44). In the 20 plumes, we
derived N2Os uptake coefficient and CINO for 12 cases in total. The results in other 8 night were not
valid due to the lack of Sa data (four nights) or producing unreasonably high results due to the
observed low N2Os concentration near the detection limit biased the simulations. We show good
consistent of derived CINO; yields by the two different methods. The estimated N2Os uptake
coefficient showed a large variation and ranged from 0.0019 to 0.077 with a median of 0.0195 +
0.0288 (mean value of 0.0317). The estimated yN2Os is within the range determined by previous
field studies (Tham et al., 2018). Specifically in China, the average level of yN2Os is comparable
with those reported in urban Beijing (Wang et al., 2017a; Wang et al., 2018), Wangdu (Tham et al.,
2018), and Jinan (Wang et al., 2017c) during the summertime, but systematically higher than those
determined in China in wintertime (Xia et al., 2021; Wang et al., 2020a; Brown et al., 2016), except
the case reported on the urban canopy of Beijing (Chen et al., 2020). McDuffie et al. (2018a)
summarized the reported ¢CINO, based on the observations, and we showed that the estimated
average @CINOz in this study is in the middle to upper end of the values reported globally (Xia et al.,
2021; McDuffie et al., 2018a). Due to the limited data points, we cannot distinguish the difference of
yN20s between the three air mass patterns. The CINO: yields in Type A are slightly lower than those
in Type B with an average of 0.41 and 0.47, respectively.
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Figure 4. An example of the derivation of N2Os uptake coefficient and CINO; yield constrained by
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observation of aerosol surface area, N2Os and the enhancement of particulate nitrate and CINO2 on

5% November, 2019. The pink region presents #50% uncertainty of N»Os uptake coefficient.

Table 4. The derived N2Os uptake coefficient and CINO: yields at each night.

NO. Period yN20Os 2 ¢CINO, ? ¢CINO, ° r2b Type
1 10/02 01:00-06:00 NaN NaN 0.13 0.90 C
2 10/02 23:00-06:00 NaN NaN 0.25 0.90 C
3 10/11 01:00-04:00 NaN NaN 0.65 1.00 B
4 10/14 23:00-04:00 0.017 0.28 0.23 0.56 A
5 10/18 18:00-21:00 0.0059 0.42 0.40 0.90 A
6 10/20 20:30-23:00 0.045 0.44 0.47 0.71 A
7 10/21 20:30-01:00 0.061 0.52 0.54 0.90 B
8 10/22 22:30-05:00 0.066 0.58 0.61 0.62 B
9 10/24 22:00-06:00 0.065 0.26 0.23 0.74 A
10 10/25 21:00-02:00 0.077 1.00 1.00 0.92 A
11 10/28 21:00-04:00 NaN NaN 0.15 0.74 A
12 11/01 21:00-23:30 0.022 0.35 0.32 0.83 A
13 11/02 22:00-00:30 NaN NaN 0.29 1.00 A
14 11/03 18:00-06:00 0.0031 0.52 0.50 0.92 A
15 11/04 22:00-06:00 0.0019 0.45 0.47 0.86 A
16 11/08 00:00-06:00 0.0097 0.34 0.32 0.85 A
17 11/10 00:00-04:00 NaN NaN 0.59 0.80 A
18 11/11 22:00-04:00 NaN NaN 0.53 0.50 B
19 11/12 22:00-04:00 NaN NaN 0.42 0.62 B
20 11/13 21:00-00:00 0.0070 0.70 0.75 0.92 B

Note: 2 the values of yN2Os and ¢CINO are derived by simulation method; ® the CINO; and the
correlation coefficient (R?) between CINO, and particulate nitrate are derived by regression method,

the data was filtered with a correlation coefficient obtained from linear fitting threshold of 0.5.

To gain insight into the factors governing the N2Os uptake and CINO: formation processes, the
estimated yN2Os and ¢CINO; were compared with those predicted from complex laboratory-derived
and field-derived parameterizations. An agueous inorganic iconic reaction mechanism once raised by
Bertram and Thornton (2009) and established a volume-limited parameterization by considering the

aerosol volume, surface area, nitrate content, ALWC, and chloride content (named BTO09, Eq. 8).

_ 4HgqVk 1
¥YBT09 = s, (1 T 1 Falz0] | TlCr] ) (8)

*2b(NO3T ez NO3]

Where Hag is Henry’s law coefficient of N2Os, V is the aerosol volume; k is equal t01.15x10°-(1.15
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=1 08)PCOL3MH20D): o/ is the ratio of reaction rate of HoO versus NOs™ to HoONO,* that was set to
0.06, and ka/kzp is the ratio of reaction rate of CI" versus NOs" to H:ONO" that was set to 29
(Bertram and Thornton, 2009). The mean values of particulate volume to surface ratio (V/Sa) was
measured. A simple parameterization (EJO5) considered the effect of enhanced RH and temperature
on N20s uptake was also included (Evans and Jacob, 2005). In addition, the recently established
empirical parameterization based on the same framework (Eg. 8, named Yu20), optimized some
parameters according to the meta-analysis of five field measurements in China by Yu et al. (2020),
also assessed in the study. Figure 5(a) shows the correlation of estimated yN2Os versus the
parameterization. All the three parameterizations fail to predict the high values. The simple
parameterization of EJO5 had the best performance with a high correlation and a consistent
prediction of the median value. While other two parameterizations, BT09 and Yu20, underestimated
the observed yN2Os. Figure 6(a-h) show the dependence of the observed yN2Os on the factors
reported in previous literatures that possibly alert the processes of N2Os uptake and CINO; formation.
We show that yN2Os highly correlated with the ambient RH as well as liquid water content,
confirming the critical role of water content in N2Os uptake and explained the reason why EJO5 had a
good performance. The dependence of yN2Os on nitrate mass concentration does not follows the rule
of nitrate suppressing effect (Wahner et al., 1998), which may be due to the covariance of nitrate and
liquid water content. With respect to other factors, insignificant impacts on the N>Os uptake are

obtained.
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Figure 5. The inter-comparison of observation and parameterization of N2Os uptake coefficient (a)
and CINO:z yield (b). The larger size of solid dots represents the median results. The parametrizations
of EJO5, BT09, Yu20 and BK97 cited from Evans and Jacob (2005), Bertram and Thornton (2009),
Yu et al. (2020), Behnke et al. (1997), respectively. The fitted CINO- yield (colored by black) in
panel (b) shows the best fitting result in the study by adopting the ka/ks of 32.0.

Bertram and Thornton (2009) also proposed a CINO: yield parameterization method that
considering the ratio of ALWC and chloride content (Eq. 9), here the ka/ks was the ratio of reaction
rate of H2ONO2" versus CI" to H20 and adopted as 483 £175. Behnke et al. (1997) determined this
ratio of 836 +32, while it is estimated to be 105 £37 in Yu et al. (2020).

-1

_ [H,0]
®Brog = (—1+k4/k3[a_]) ©)

Figure 5(b) shows that all the predicting CINO2 yield based on the abovementioned
parameterizations overestimated the observations. The performance of the parameterization schemes
of BK97 and BTO09 based on the model aerosol conditions with an overestimation up to ~100% are
expected and consistent with previous studies, which may be caused by the unaccounted potentially
competitive effect of other species like organics, sulfate for the NO5" intermediate (McDuffie et al.,
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2018a; Staudt et al.,, 2019; Xia et al., 2021; Wang et al., 2017d). Although the empirical
parameterization (Yu20) based on field observations improved the prediction and narrowed the gap
effectively, the overestimation is still large with an average of ~50%, which indicated that the yield
are more strongly suppressed in this study than those observed in the campaigns of Yu et al. (2020).
The factor 32.0 (ka/ks in Eqg. 9) was derived by iterative algorithms to achieve the best consistent
between the observed and parameterized CINO: yield, which is smaller than the Yu20 parameters by
factors of 3.3. We examined the relationships of CINO; yields with aerosol water content and other
aerosol compositions as shown in Figure 6(i-p). We show that ¢CINO> only weakly correlated with
the content of chloride (including the mass ratio and fraction in PM2s) and the molar ratio of chloride
to water, confirmed the dependence found in laboratory studies. However, we did not find the
dependence of the yields with aerosol organic or sulfate, as well as the RH and water alone in the

campaign, implying the CINO; yield mechanism is much more complicated than the laboratory

conditions.
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Figure 6. The estimated N2Os uptake coefficient and CINO yield versus related parameters.

3.4 The factors influence CINO2 formation

The CINO; formation can be largely affected by the budget of NOs-N20s and N2Os uptake processes.
The variation of NO3 loss by VOC and NO alert the NOs loss distribution by N>Os uptake and
CINO: formation indirectly. Figure 7 shows the correlation between daily median CINO2 and mass
concentration of chloride, PM2s and NOs production rate for the three types of air masses. Due to the
limited dataset of type C, the correlation analysis may not make sense, therefore, we did not take
type C into consideration in detailed discussion. We show that the mass concentration of chloride
also showed a correlation coefficient with CINO2 by 0.66 and 0.31 for type A and B, respectively.
Furthermore, the mass concentration of PM2s correlated reasonably with the CINO; formation with
the correlation coefficient of 0.39 and 0.62 for type A and B, respectively. But, the levels of CINO>
demonstrate little relationship with the nitrate production rate. This is quite different from the results
observed in United Kingdom, where the CINO2 levels are mainly controlled by NO. and Oz, rather

than by the N2Os uptake processes (Sommariva et al., 2018).
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Figure 7. The functional dependence of daily median of CINO2 on particulate chloride, nitrate
radical production rate and PM2 in the air mass of Type A (a, d, g), Type B (b, e, h) and Type C (c, f,
i).

The low correlation between CINO2 and NOs production rate is within expectations. In general,
the production of nitrate radical controls the total budget of N2Os, if N2Os uptake dominated the sink
of NOgs, as the result the N2Os uptake and its products would show good correlation with NO3
production rate. But in fact, NOs loss can also be affected by other loss pathways, like the reactions
with NO and VOCs. In many cases, the NOs loss is dominated by VOC or NO, that means the
CINO: formation is suppressed. If the two loss pathways are highly varied due to irregular emissions,
then the relationship between CINO: and NOs production rate would be less correlated. We

confirmed large variations of NO and VOC (not shown) in hourly and daily scales, which means the

proportion of N2Os uptake to the total loss of NOs is highly varied correspondingly. In addition, the

variation of NoOs uptake coefficient and CINO, vield also result in the weak correlation between

: R

NOs production rate and CINO, concentration. The weak correlation reflects the highly variable

: Fiw

chemical processes from NOs production to CINO, production in this region. Overall—thelow

)

: s

As the precursor of CINO2, higher concentrations of particulate chloride result in high CINO2

yield from N20s uptake to some extent, as evidenced by our field observation (Figure 6) and
previous laboratory studies (Bertram and Thornton, 2009; Roberts et al., 2009; Ryder et al., 2015).
High PM_s concentrations usually provide more aerosol surface area to promote N.Os uptake. The
close relationship between CINO2 and PM2s indicate that aerosol surface area, most likely, is a
critical factor that limited CINO2 formation. The proportion of nitrate in the total PM10 was small
with an average of 10.4%, therefore the correlation of CINO, and PM2s cannot attribute to the
covariance between nitrate and PMzs. In addition, the CINO: level in the air mass of Type B show
higher correlation to both CI" and PM2s than type A, suggesting that the CINO2 formation in Type B
is more effectively affected by the levels of chloride and PM2s.

Recently model simulation indicated that the CINO2 chemistry level is sensitive to the emission of
chloride in PRD (Li et al., 2021). In this study, a question raised that where is the source of chloride?
The mass ratio of CI"/Na* is often used as an indicator of sea salt or anthropogenic sources to
chloride with a threshold of 1.81 (Yang et al., 2018; Wang et al., 2016). High ratio means the
particulate chloride affected by anthropogenic emission rather than sea salt. We determine that the
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mean mass ratios of Cl" to Na* are 5.3, 6.3 and 3.1 in Type A, B and C, respectively (Figure 3). This
indicated that PM.s sampled during the campaign was not strongly influenced by fresh sea salt
aerosols. In the three types, the Type C air mass had a lowest ratio and may be influenced by both sea
salt and anthropogenic emissions, which seems reasonable since it come from South China Sea. If
we assume that Type A air mass is free of sea salt and only influenced by anthropogenic activities,
the higher ratio implies more intensive chloride source in Type B. The correlation between
particulate chloride and some possible indicators, including K*, benzene, SO, CO, acetonitrile
(CH3CN), were examined day by day. Figure 8 shows the max correlation coefficient (R%) in each
day with a threshold of 0.5. We filtered out 39 out of 46 days during this campaign with a fraction of
85%. Among the 39 days, a total of 11 days is associated with strongest correlation between CI- and
benzene, which is typically come from industrial emissions. ClI- also correlated with K*, CO and
CH3sCN in 19 day in total, implies potential contributions from biomass burning emissions. In total of
9 days for highest correlations of CI; with SO indicated coal-fired power plants emissions may also
contributed to CI-emission. We summarized that the source of chloride may be highly varied from
different anthropogenic activities including biomass burning, industrial processes as well as coal-
fired power plants. The statistic results in Table 5 suggest that the CI" in air mass of Type A were
affected by various sources, especially related to the sources associated with K*, benzene and
CH3CN; the CI" in Type B was mainly contributed by the similar source of CO, and Type C was only
affected by coal-fired power plants emissions. In addition, Figure 8 showed that there are 2 days that
the correlations between CI and Na* exceeded the max of the selected anthropogenic factor matrix,

indicated that the aerosol still also impacted by sea salt to some extent.

g O . 1 % #2 CI vsNa'
T 08l | - - = me |l m#8 ClvsK'
E i im n X i 1 = #11 CI" vs Benzene
g 0.6~ | | I = #9 CI vs SO,
S Hodaaadadrbom bbbl qa44-14=14] = #9 CrvsCO
I paf | j | m #2 CI" vs CH,CN
5 i | 1 #7 notvalid
% oz2f 1 | -
T [ i ] i
N 0.0L : !

10-10 10-20 11-01 11-10

Time (CNST)

Figure 8. The max correlation coefficient between particulate chloride and a selected parameter
matrix (including K*, benzene, SO, CO, acetonitrile (CH3CN)) in each day. The labelled number in
each legend indicates the days be the maximum, the dashed line denotes the threshold of 0.5 (39

valid days out of 46 in total). The cross means the correlation coefficient between CI- and Na* is
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Table 5. The statistic of the days for highest factors correlated with particulate chloride in different

air mass pattern.

factorsFactors  Type A Type B Type C
K* 8 0 0
Benzene 9 2 0
SO 5 1 3
Cco 4 5 0
CHsCN 2 0 0

3.5 The impacts of CINO2 on atmospheric oxidation

In this section, we focus on the assessment of the impact of CINO2 photolysis on the source of
radicals and the contribution to the atmospheric oxidation. Figure 9 shows the diurnal accumulation
of ROx production rate from model simulations with CINO2 chemistry in the three types of air mass.
The total ROx production rate was higher in Type A and then followed by Type B and C, in which
photolysis of HONO, HCHO, Oz and OVOCs had large contributions. In addition, we noticed that
the significant role of OVOCs (including photolysis and reacts with Os) in producing ROx at this site
especially in the Type A and B air mass. This result is consistent with that constrained by observed
OVOCs in Guangzhou City (Wang et al., 2022c).

Cl radical, liberated by CINO,, enhanced little ROx production, with a morning peak contribution of
1.3%, 2.2% and 1.8% for Type A, B, C, respectively (08:00-09:00). The contribution of CINO:
photolysis to the production of ROXx is less than 1% on daytime averaged, similar to the results
obtained in winter Shanghai (Lou et al., 2022) as well as North China (Xia et al., 2021), and much
lower compared to- previous studies reported in summer time in in-beth-nerth-and-south-China (Tan

etal., 2017; Tham et al., 2016). However, another winter campaign conducted in Hongkong in winter

showed much more significant impacts compared with our observation(Wang et al., 2016), indicated

that the CINO, chemistry can also had a large influence on the radical formation in wintertime.
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Figure 9. The diurnal cycle and distribution of ROx production rate in the three types air masses.

Figure 10 shows the enhancement of OH, HO, and RO radicals with the consideration of CINO,-
chemistry. The enhancement of the three radicals peaked in the morning. On average, OH
concentration was enhanced by 1.5% to 2.6% in different air masses. The percentage of enhancement
for HO:2 radical was 1.9% to 4.6%, whereas the enhancement for RO was a little bit higher (3.0% to
6.8%). In general, the enhancement of radicals was more significant in Type B than other two types
of air masses, which is related to elevated CINO2 concentrations for these air masses. Low CINO:
and other radical precursors led to an earlier enhancement peak (08:00-09:00) in Type C and lasted a
short time period. Although the increase peak occurred later at 09:00-10:00 for the air mass of Type
A and Type B, the increase lasted for a longer time and had a longer effect. Overall, daytime OH,

HO2 and ROz enhanced by 1.0%, 2.0%, and 3.0% on campaign average.

T T T T T T T T T
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1.08} (a) 1 1.08} (b) 1 1.08 (c) E
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[ [ [
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Figure 10. The diurnal cycle on the enhancement of OH (a), HO: (b), RO2 (c) by CINO. chemistry
in the three air mass patterns.

Figure 11 depicts the integral enhancement of O3 production by CINO2 photolysis varied from less
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than 0.1 ppb to 4 ppb day by day, with a percentage of <1% to 4.9% with a median of 0.8%. Our
results are comparable with the winter case in North China (Xia et al., 2021). The next day O3
enhancement was highly correlated with the level of CINO2 with the correlation coefficient of 0.7
(Fig. 11(a)). The daily net Os production enhanced by 0.70 ppbv-h™ (0.9%), 1.02 ppbv h™*-(1.9%),
0.24 ppbv h™-(0.6%) on daytime accumulation in Type A, B, C, respectively, which is consistent with

the nocturnal level of CINO: in the three air masses presented in Table 3.
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Figure 11. (a) The correlation of daily median CINO. (18:00-06:00) and its impact on next day net
O3 production enhancement during the campaign; (b) the average contribution of daytime integral Os

by CINO2 mechanism in the three types of air masses.

Table 6 summarized the observation-constrained box model simulation results about the impacts<

(BHRM: BUSIIBEGT: 0 B )

(HmRm: g0l OT%E: | TH, BOBRIEEG: 12 B )

of CINO» chemistry. The average CINO> concentration in the observation is moderate compared with

previous observations, other radical precursors (e.g., HCHO) also elevated at the same time. This

leads to a large total radical and ozone production rate and relative minor contribution by CINO>

chemistry. Which indicates that the contribution of CINO, chemistry is affected by the budget of (BETHR: T )

other radical precursors. In addition, significant contribution by CINO» chemistry to photochemical

pollution also frequently observed in different campaigns (Tham et al., 2016; Wang et al., 2016), in

which the receptor site may have aging plumes with higher CINO, and thus larger contributions (BBTHR: T )

(Wang et al., 2016), suggests the large variability of CINO> and its environmental impacts at various

air masses. Here, our observations should be representative of the local condition and reflects the

chemistry and impacts of CINO; on the air pollutions in PRD region. (BETHER: Ti )
(BRBTHR: F46: (h0) +hCEL G5 )

Table 6. The summary of impacts of CINO, on the next-day enhancement of ozone and radical (BBTHR: I )

production based on box model that constrained by field observations in previous literatures.
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Location Duration CINO; peak  Daytime average Daytime average References  «+. LT RS, TSI AaitE
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‘Heshan, CN, 2019. 11 15 1.0%-4.9% <2.2% this work
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Wangdu/Beijing/ 2017-2018 17 1.3%-6.2% 1.3%-3.8% Xiaetal., 2021 c R S, FAREiG: AshRE
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Seoul, Korea 2016.5-6 25 1.0-2.0% - Jeong etal., 2019 L 7S, FHEG: BsRE
N L RS, TG HEEE
‘Hongkong, CN, 2013.11-12 47 11.0-41.0%? - Wang et al., 2016 Lk L, FhEE: AORE
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Note: 2 used box model to estimate the following evolution after the plume passing measurement site Lok R, TSI HRE
and the impacts on the next day air quality; ® not constrained the observed CINO2 concentration but LT B, THAEG: AFUE
- . ] - Dok AT, I EEE

simulated the observed maximum CINO, case (1.5 ppbv CINOp), to predict the corresponding upper i ARE

contribution. : FAYIt: HAE

LA HEE

: ;B HHRE

i ) ) i ) i o : TR
Previous studies suggest that chlorine radicals from CINO: photolysis may contribute significantly B AR

to the oxidation of some VOCs species, especially for long-chain alkanes(Shi et al., 2020; Wang et
al., 2022b). The oxidation of long-chain alkanes (C10~14 n-alkanes) by ehloride-chlorine and OH
radicals during the morning hour (6809:00—--0910:00) were also evaluated based on modeled

oxidants concentration. We observe small contributions of chlorine radical with a percentage of 4.3%,

4.3% and 3.8% for n-decane, n-dodecane, and n-tetradecane, respectively, during the period (Oct.

16" to Nov. 17", 2019) when the long-chain alkanes measurement was valid. We also checked the

role of chlorine radicals in short-chain alkanes oxidation, obtaining a slightly larger contribution than

the long-chain alkanes, which is attributed to a relatively larger reaction rate constants between Cl

with OH with respect to the short-chain alkanes. The daytime average contributions of CI ranged

from 1.4% - 1.6% varied by the chain length of the alkanes. Therefore, we concluded that chlorine

radicals liberated by CINO» photolysis play a role in the oxidation of alkanes in the morning time,

but are not critical compared with OH oxidation on the daytime average. We note that several studies

reported other sources produced a large number of halogen radicals like Clo (Liu et al., 2017; Xia et
al., 2020), BrClI (Peng et al., 2021), the daytime reaction of HCI with OH (Riedel et al., 2012; Eger et

al., 2019; Li et al., 2019). These may cause more alkanes oxidized by halogen radicals. However, it is

not possible to assess the overall impacts by constraining all precursors of chlorine radical in this

work, which may warrant further investigation by more comprehensive field studies equipped with

the instruments for detecting these species.
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4. Conclusion
An intensive field study in Pearl River Delta took place during a photochemical pollution season

from Sept. 26" to Nov. 17", 2019, providing a comprehensive observation dataset to understand the

#i [81]:

(BBTHRA: bir

CINO. chemistry and its impacts on the air quality. r-general—w\We observed a wide variation for
determining factors of CINO, formation in different kinds of air masses. We—found-that-the—air

backward-trajectory-Two of-themstypes of air mass from northern and northeastern inland cities and
the eastern coastal regions, features polluted with elevated Oz and related trace gases like NOx and

CO. Correlation analysis showed that CINO> formation is limited by chloride availability and PM2s

concentrations (mostly due to aerosol surface area) at this site.

We estimated the N2Os uptake coefficients and CINO. yield during this campaign and assessed the
performance of previous parameterizations schemes. The newly developed observation-based
empirical parameterization was also checked and showed an overall underestimation. We showed the
yN20s only strongly correlated with RH, and the parameterization proposed by Evans and Jacob
(2005) showed a considerable consistent with the observation. The CINO2 yield only showed weak
correlation with the content of particle chloride, and the exist parameterizations systematically
overestimated the yield.

The particulate chloride mainly originated from anthropogenic emissions rather than sea salt.
However, the specific contributing source of chloride in this region cannot be determined, due to the
varying correlation relationship with different kinds of anthropogenic emission indicators day by day.
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selvents—This result highlights the CINO2 chemistry may be triggered by many Kkinds of
anthropogenic activities in the PRD regions (Wang et al., 2016; Yang et al., 2018). Fhe-sources—of

M%—GM—MMESW‘G—HWW i } } ZMW—Q%MWMWGH—W i i i
model—t-is-demenstrated-thatObservation-constrained box model revealed ehloride-radicalchlorine

radicals liberated by CINO2 chemistry had a relatively small contribution to the following daytime
level of OH—HO.—and-RORO, radicals_;—as—wellas—asmall-enhancement-ofand O3z and-ROx
sredueten—nol—thethreebmes ot oirrmassesin (his reqion. Fhe—rpoeee OO chopistnr s
larger-in-theTFype-B-than-that-of Type-A—Overal—tThe small contribution of CINO2 chemistry in
PRD region may be due to the limited CINO> produced by N2Os uptake processes, and other strong

primary sources of radicals weakened its contribution indirectly. Given complex source of particulate

chloride, we call for more field investigations to address the ehloride—chemistrychlorine chemistry
and its roles in air pollutions in China.
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Appendix

Al. The measurement background and calibration of CIMS

The background measurement of CINO, and N,Os was performed during the campaign. Figure 1A

)

showed an example of the background check at the beginning of the campaign, which confirmed the

negligible background signal in the measurement of CINO, and N,Os in the ambient condition. The

: s

: TR

: ThR

calibration of CINO2 measurement sensitivity has been introduced in Wang et al. (2022a). In brief, a
nitrogen flow (6 mL min) containing 10 ppmv Cl, was passed over a slurry containing NaNO- and
NaCl to produce CINO: (Thaler et al., 2011), and NaCl was included in the slurry in order to
minimize the formation of NO: as a byproduct. The mixed flow containing CINO. was then
conditioned to a given RH and sampled into the CIMS instrument. To quantify CINO>, the mixed
flow was delivered directly into a cavity attenuated phase shift spectroscopy instrument (CAPS,
Model N500, Teledyne API) to measure background NO2z concentrations or through a thermal
dissociation tube at 365 °C to fully decompose CINO: to NO., and the total NO2 concentrations were
then determined using CAPS. The differences in the measured NO> concentrations with and without
thermal dissociation was equivalent to CINO2 concentrations. The CAPS instrument had a detection
limit of 0.2 ppbv in 1 min for NO2 and an uncertainty of ~10%. To calibrate CIMS measurements of
N20s, a humidity adjustable mixed flow containing stable N20s, which was produced via O3
oxidation of NO2, was sampled into the CIMS instrument to obtain a normalized humidity
dependence curve of N2Os. While the concentration of N2Os source is not quantified due to the
absence of a N2Os detector, so we delivered the N2Os source flow through a supersaturated sodium
chloride solution to convert N2Os to CINO> with a unit efficiency at 50% RH, which is a widely used
method for the calibration of CINO2 by CIMS technique. The absolute N2Os sensitivity at RH-50%
RH can be realized and then scaled to other humidity condition by the normalized N2Os sensitivity
curve determined before. The sensitivity curves for N2Os and CINO> to water content were shown in

Figure AZA2. In this study, the sensitivity of the instrument was calibrated after the campaign. The

main parameters (pressure: voltages, etc.) of the CIMS were checked every day and were relatively
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stable, indicating that the CIMS is operating stably during the campaign.

Figure A2-A3 shows the high-resolution peak fitting results of typical mass spectra at m/z 235 and-
m/z 208 for N2Os and CINO: in three air mass patterns, respectively. The peaks of N2Os and CINO>
were clearly resolved in the mass spectra. The peak of IN2Os™ can be well retrieved by separating a
large adjacent peak of C2H4lO3S™ in the air masses affected by marine emissions (Type B and C),
which might be hydroperoxymethyl thioformate (HPMTF) from dimethyl sulfide oxidation (Veres et
al., 2020). The interference signals including H3INO2S™ for CINO2 measurements can also be well
separated in all the three air mass patterns. These results underline the necessity and feasibility in the

application of ToF analyzer in detecting N2Os and CINO: with iodide CIMS.
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three air mass patterns.
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