1 Contribution of marine biological emissions to gaseous

2 methylamines in the atmosphere: an emission inventory

3 based on satellite data

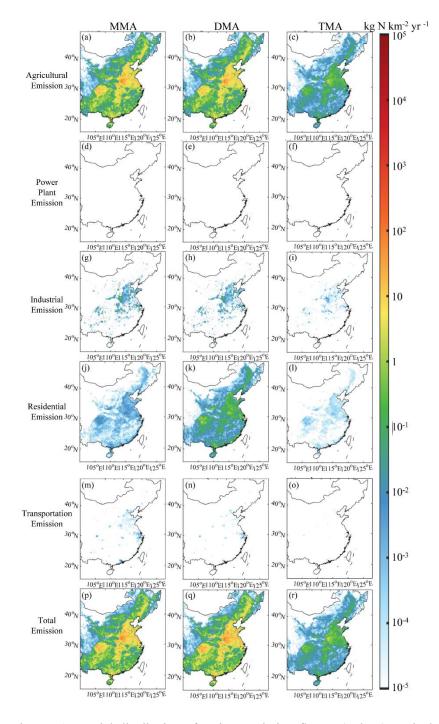
Qi Zhang², Shiguo Jia^{1, 4}, Weihua, Chen³, Jingying Mao⁸, Liming Yang⁵, Padmaja Krishnan⁶, 4 Sayantan Sarkar⁷, Min Shao³, Xuemei Wang³ 5 ¹ School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and 6 7 Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China 8 ² Tianjin Air Pollution Control Laboratory, Tianjin Academy of Eco-Environmental Sciences, Tianjin, 9 300191, PR China 10 ³ Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental 11 Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, 12 China 13 ⁴ Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, 510275, China 14 15 ⁵ Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 16 117576, Singapore 17 ⁶ Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United 18 Arab Emirates 19 School of Engineering, 7 Indian Institute of Technology (IIT) Mandi, Kamand, 20 Himachal Pradesh 175075, India 21 ⁸ Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China 22 Correspondence to: Xuemei Wang (eciwxm@jnu.edu.cn), Shiguo Jia (jiashg3@mail.sysu.edu.cn) 23 24 25 26 27 28 29 30 31 Supplementary Information 32 Contains 12 pages, 3 tables, 8 figures

In this study, Bias, MAE (Mean Absolute Error), and R (Correlation coefficien) were used to evaluate
the deviation between observed value and simulated value.

The January and April observations are from the China Meteorological Data Network (http://data.cma.cn), which includes 659 meteorological stations in 28 provincial-level administrative regions in eastern China (excluding Beijing, Xinjiang and Tibet). The July and October observations are from NCDC (National Climatic Data Center, ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/). Contains 396 sites within the simulation range.

40 Table S1 Comparison of meteorological element model simulation results and observations

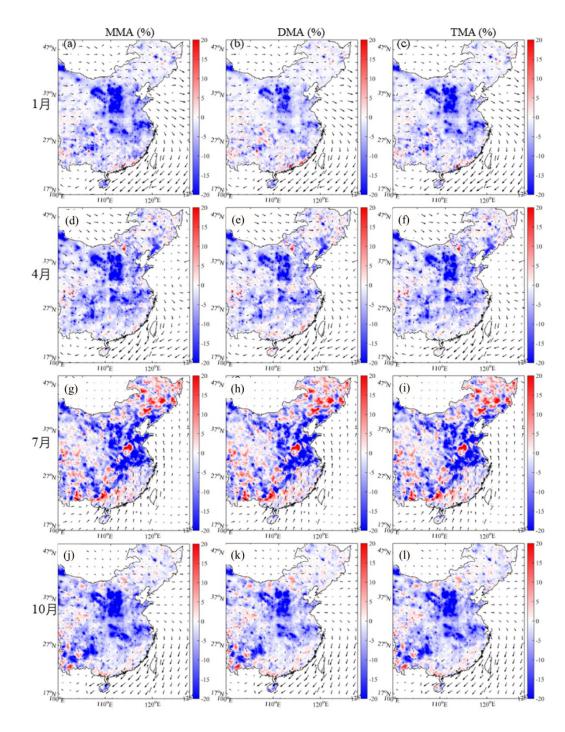
		Observation	Simulation	Bias	MAE	R
	Jan.	4.00	4.11	0.11	3.91	0.68
Wind Speed (m s ⁻¹)	Apr.	4.21	4.56	0.35	3.41	0.68
	Jun.	2.50	3.70	1.20	1.60	0.39
	Oct.	2.40	3.70	1.30	1.60	0.57
Temperature	Jan.	2.50	1.63	-0.86	1.48	0.89
	Apr.	13.24	11.39	-1.85	2.46	0.81
(°C)	Jun.	24.50	23.40	-1.10	2.20	0.89
	Oct.	14.50	13.20	-1.30	2.20	0.92
Relative	Jan.	71.64	59.71	-11.93	18.34	0.73
Humidity (%)	Apr.	63.19	61.18	-2.01	12.07	0.84

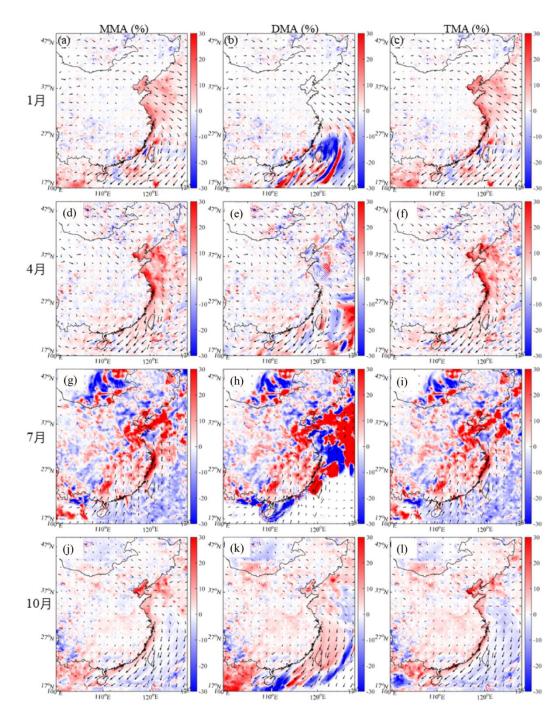

	Jan.		Apr.		Jul.			Oct.				
	MMA	DMA	TMA	MMA	DMA	TMA	MMA	DMA	TMA	MMA	DMA	ТМА
Agricultural	86.8	60.2	84.8	93.2	82.6	92.9	94.6	86.2	94.4	91.5	78.9	91.1
Industrial	4.8	2.9	4.0	4.1	3.2	3.5	3.2	2.6	2.7	5.1	3.8	4.3
Power Plant	0	0	0	0	0	0	0	0	0	0	0	0
Residential	7.9	36.5	10.8	2.4	14.0	3.3	1.8	11.0	2.5	3.0	17.0	4.1
Transportation	0.5	0.2	0.5	0.4	0.2	0.4	0.3	0.2	0.3	0.5	0.3	0.5

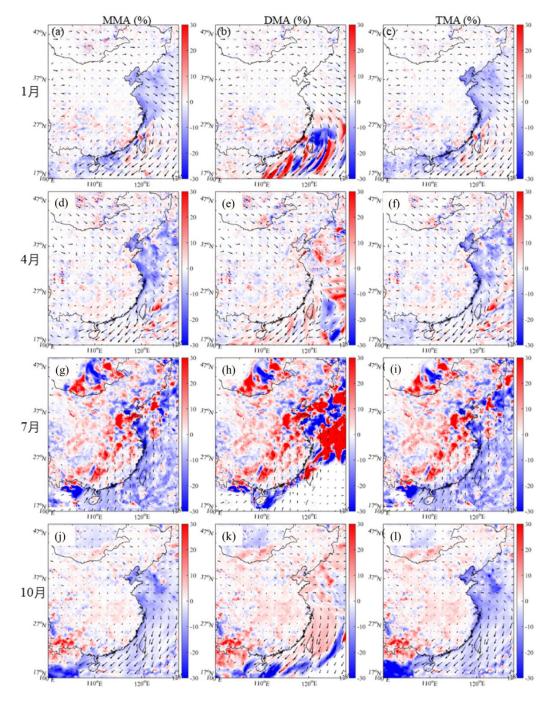
41 Table S2 Ratio of various types of emission sources in January, April, July and October.

Jul. Jan. Apr. Oct. 7.2 Reduce MMA 12.9 8.3 4.4 50% Chla. TMA 3.8 2.6 2.9 2.6 Increase MMA -8.6 -6.6 -4.4 -7.2 50% Chla. -3.4 -2.1 TMA -2.4 -2.5

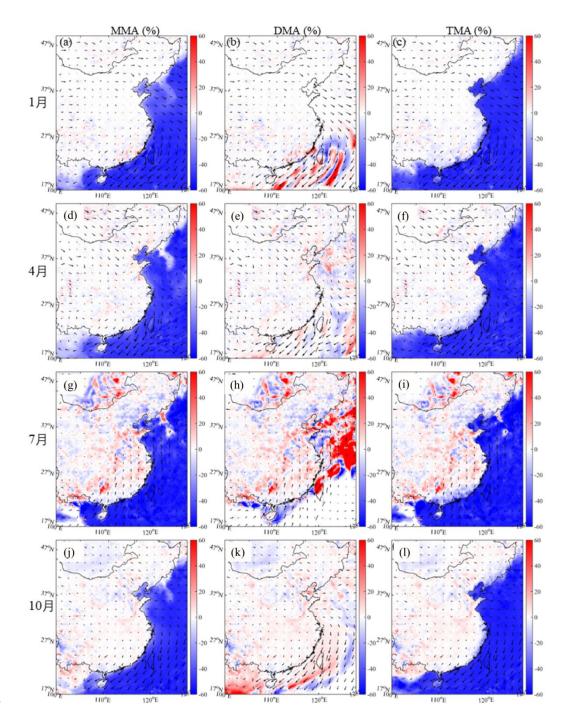
Table S3 Changes in amine emission fluxes (Unit: %).


44

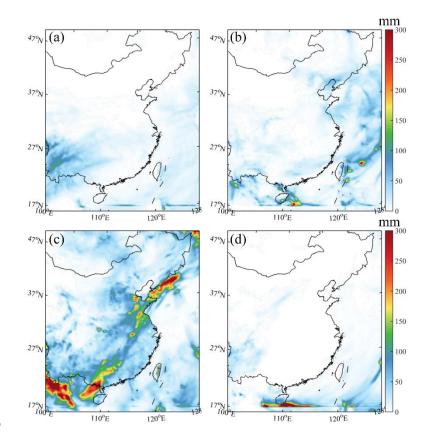

46 Figure S1: Spatial distribution of amines emission fluxes: (a, b, c) Agricultural emissions; (d, e, f)
47 Power plant emissions; (g, h, i) Industrial emissions; (j, k, l)Residential emissions; (m, n, o)
48 Transportation emissions; (p, q, r) Total.


50 Figure S2: Changes in amine simulated concentration after reduction of residential emissions.

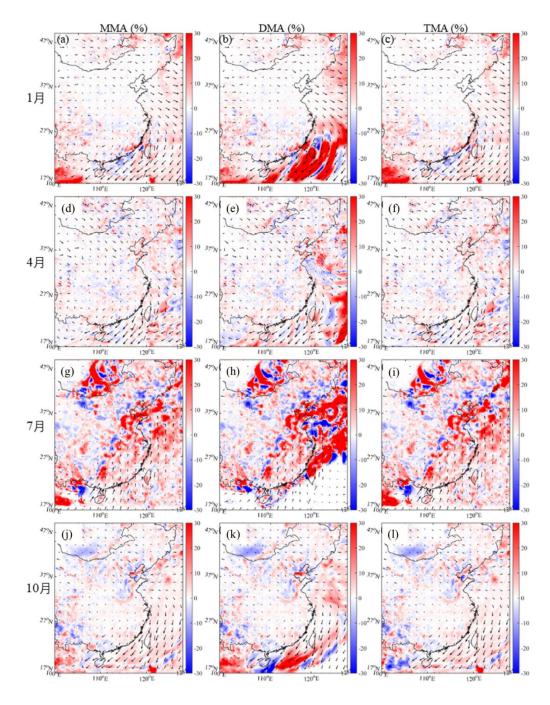
52 Figure S3: Changes in amine simulated concentration after reduction of industrial emissions.



54 Figure S4: Changes in amine simulated concentrations after a 50% reduction in Chla.



56 Figure S5: Changes in amine simulated concentrations after a 50% increase in Chla.


58 Figure S6: Changes in amine simulated concentrations after a 50% reduction in WS.

59

60 Figure S7: Simulated accumulated rainfall distribution in the simulated period: (a) January, (b) April,

61 (c) July and (d) October.

63 Figure S8: Changes in amine simulated concentration after decreasing the apparent Henry coefficient.