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Abstract. Increased anthropogenic aerosols result in an enhancement in cloud droplet number concentration (Nd), which

consequently modifies the cloud and precipitation process. It is unclear how exactly cloud liquid water path (LWP) and cloud

fraction respond to aerosol perturbations. A volcanic eruption may help to better understand and quantify the cloud response

to external perturbations, with a focus on the short-term cloud adjustments. The goal of the present study is to understand and

quantify the response of clouds to a selected volcanic eruption and to thereby advance the fundamental understanding of the5

cloud response to external forcing. In this study we used the ICON (ICOsahedral Non-hydrostatic) model in its numerical

weather prediction setup at a cloud-system-resolving resolution of 2.5 km horizontally, to simulate the region around the

Holuhraun volcano for one week (1 – 7 September 2014). A pair of simulations, with and without the volcanic aerosol plume,

allowed us to assess the simulated effective radiative forcing and its mechanisms, as well as its impact on adjustments of LWP

and cloud fraction to the perturbations of Nd. In comparison to MODIS (Moderate Resolution Imaging Spectroradiometer)10

satellite retrievals, a clear enhancement of Nd due to the volcanic aerosol is detected and attributed. In contrast, no changes in

either LWP or cloud fraction could be attributed. The on average almost unchanged LWP is a result of some LWP enhancement

for thick, and a decrease for thin clouds.

1 Introduction

Volcanic eruptions influence the climate by emitting large quantities of solid particles (ash) and gaseous compounds into the15

atmosphere (Cole-Dai, 2010). Ash particles block sunlight and, therefore, decrease solar radiation reaching the surface. This

leads to a cooling, even if the ash settles down due to gravity relatively fast (Robock, 1981).

The gas emissions mainly include water vapor, carbon dioxide, sulfur components (mainly sulfur dioxide (SO2)), and ni-

trogen (Mather et al., 2004). Chemical processes convert SO2 to sulfuric acid (H2SO4; sulfate aerosol) in the troposphere at

relatively short time spans of few days, while in the stratosphere, the conversion can take weeks up to months (Rose et al.,20

2001).

Sulfate aerosols, injected from a large volcanic eruption, modify the Earth’s radiative budget directly by scattering sunlight

and indirectly via interaction with clouds (Sahyoun et al., 2019). The latter is the focus of the present manuscript. A large

volcanic eruption as a natural laboratory may help to better understand and quantify how cloud properties are modified in

response to anthropogenic aerosols emissions (Inguaggiato et al., 2018; Christensen et al., 2021).25
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Imposed effective radiative forcing by aerosol-cloud interactions in warm clouds can be separated into the Twomey effect

(Twomey, 1974) and cloud adjustments to radiative forcing (Bellouin et al., 2020). An enhancement in cloud condensation nu-

clei (CCN) concentrations lead to an increase in cloud droplet number concentration (Nd), resulting in a smaller effective radius

(re) if cloud liquid water path (LWP) is constant. Consequently, scattering cross section and the cloud albedo are enhanced,

causing clouds to reflect more sunlight back to space, which is known as Twomey effect (Twomey, 1974). Anthropogenic30

aerosols modify cloud particle size distributions, which reduces the efficiency of collision-coalescence processes, leading to

delay in precipitation onset consequently enhancing cloud lifetime (Albrecht, 1989). This infers on average an enhancement

in cloud fraction and LWP (Pincus and Baker, 1994; Gryspeerdt et al., 2019). These longer lived clouds reflect more sunlight

back to space and cool the atmosphere and surface even more, which is known as lifetime effect (Xue et al., 2008).

Along with the aforementioned effects, there is a large variety of processes that partially offset these effects on clouds,35

such as a reduced maximum supersaturation if more droplets compete for the available water vapor (Twomey, 1959), a larger

evaporation rate of smaller droplets (Small et al., 2009), increased droplet spectrum dispersion (Brenguier et al., 2011; Liu and

Daum, 2002), or enhanced evaporation due to cloud-top mixing (Ackerman et al., 2004; Gryspeerdt et al., 2019). Because the

different effects oppose each other, the overall changes in the effective radiative forcing cloud be minor on larger scales (Khain

et al., 2008; Stevens and Feingold, 2009). In this study, the responses of clouds to aerosols emitted in the Holuhraun volcano40

eruption were examined. The Holuhraun eruption was the strongest in Europe since the 18th century and emitted substantial

amounts of sulfate aerosol (Ilyinskaya et al., 2017). This natural phenomenon has triggered a large effort to investigate the

impact of this large aerosol perturbation on cloud properties. (Malavelle et al., 2017).

Malavelle et al. found a significant reduction in re in satellite data, but only insignificant alterations of LWP. They further

concluded that several general circulation models overemphasize LWP increase in response to the additional aerosol. However,45

McCoy et al. (2018) did find an increase in LWP when carefully conditioning on moisture convergence. In addition, ambiguous

results, with LWP responses of either sign, were obtained by (Toll et al., 2017) when analyzing multiple volcanic eruptions.

Following these previous studies, we chose the Holuhraun eruption to investigate the response of LWP, cloud fraction, and

its corresponding radiative effect in response to additional CCN in the emission plume of the volcano, employing simulations

in cloud resolving resolution and comparing them to satellite observations.50

2 Model and data

The present study focuses on a detection and attribution approach, using cloud resolving simulations (kilometer-scale reso-

lution, Stevens et al., 2020) in combination with the analysis of satellite data. A pair of simulations over the North Atlantic

ocean around the Holuhraun volcano on Iceland was employed (Figure 1). The model used is the ICOsahedral Non-hydrostatic

model (ICON, Zängl et al., 2015). The ICON model is developed by a collaboration between the German Meteorological55

Service and the Max Plank Institute for Meteorology (Klocke et al., 2017). It can be used from global simulation in the climate

scale (Giorgetta et al., 2018) to high resolution large eddy simulations (Heinze et al., 2017). Here, the physics package of the
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Figure 1. Domain of the ICON-NWP simulations over the North Atlantic ocean (60◦W - 20◦E, 50◦N - 80◦N) which included the Holuhraun

volcano on Iceland that erupted in September 2014. The model resolution is approximately 2.5 km in the horizontal (R2B10 triangular grid).

Red dot indicates location of Holuhraun volcano.

numerical weather prediction (NWP) variant is used (ICON-NWP). The resolution corresponds to approximately 2.5 km in the

horizontal (R2B10 triangular grid). In the vertical, 75 layers with top height at 30 km were chosen.

The physics package of ICON-NWP includes a comprehensive double moment cloud liquid and ice microphysical scheme60

(Seifert and Beheng, 2006). Because of using a rather fine resolution, deep convection is considered to be resolved, whereas, for

shallow convection, the parameterization scheme by Tiedtke (1989) with modifications by Bechtold et al. (2008) was used. To

achieve a more realistic representation of the Twomey effect, we furthermore coupled the hydrometeor number concentrations

from the double moment microphysical scheme to the radiation scheme as proposed in Kretzschmar et al. (2020).

Initial and boundary conditions were derived from the European Centre for Medium-Range Weather Forecast (ECMWF)65

Integrated Forecasting System (IFS) operational analysis. The 2014 Holuhraun eruption was a fissure eruption that started

on 20 August 2014 and ended on 25 February 2015. By 7 September 2014, the lava field had extended more than 11 km

to the north (Kolzenburg et al., 2017). We choose the period from 1 to 7 September 2014 for our analysis because the lava

field had developed sufficiently in this period and substantial amounts of SO2 had been emitted into the atmosphere, while,

at the same time, a well-defined plume is observable. An additional feature in simulations that must be mentioned, is the70

implementation of a satellite simulator into the model. Satellites are essential tools to assess the character of clouds due to

their global coverage and availability (Lai et al., 2019). Differences between model simulations and satellite retrievals stem in
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part from a different definition of the respective quantities that are compared. Therefore, one approach to reduce inconstancy

between model simulations and satellite retrievals is to use satellite simulators in models to mimic the observational processes

(Roh et al., 2020). The COSP satellite simulator (Bodas-Salcedo et al., 2011) is an open source work package developed by75

CFMIP (Cloud Feedback Model Intercomparison Project) to replicate active and passive satellite data using variables from

the model as an input (Webb et al., 2017). In this study, just satellite simulator for MODIS (Moderate Resolution Imaging

Spectroradiometer) observations (Pincus et al., 2012) was used. The COSP simulator uses several model variables as input

such as temperature, pressure, cloud fraction and cloud water content (Kretzschmar et al., 2019) to generate what the MODIS

retrievals would capture given the simulated clouds fields (Saponaro et al., 2020).80

In the cloud-resolving simulation (each grid box is either fully cloudy or clear), the use of sub-grid variability, one of the

features of COSP for application in general circulation models, was not necessary. In order to evaluate COSP related variables

in our simulations, the collection 6.1 Level-2 MODIS-Aqua optical and physical cloud data product was used (Platnick et al.,

2017); therefore, swaths with 1 km spatial resolution for re, cloud optical thickness (τc ) and LWP were used and remapped

to the model resolution to have an accurate comparison. Furthermore, the planetary albedo at the top of the atmosphere is85

analyzed as retrieved by the Clouds and the Earth’s Radiant Energy System (CERES) instrument onboard the Aqua satellite

(Su et al., 2015; Loeb et al., 2016).

2.1 CCN activation

The ICON-NWP version applied in this study does not contain an interactive aerosol model; therefore, in this section, we

discuss how CCN are activated into clouds droplets in the default model setup and afterward we introduce a new method for90

CCN activation in microphysical scheme, which had specifically been developed for this study. In the default setup of ICON,

CCN activation uses a parameterization that employs a functional dependency of grid scale vertical velocity and pressure

to derive the number of newly activated CCN (Hande et al., 2016). Hande et al. (2016) performed model simulations that

considered a multi-modal interactive aerosol scheme to provide information on the formation and transport of aerosols in

Europe and, by using the parameterization of Abdul-Razzak and Ghan (2000, ARG), derived CCN number concentrations for95

different vertical velocities for a selected date (30 April 2013). This parameterization thus assumes a temporally and spatially

constant profile of CCN which is representative for CCN background over Europe. For that reason, this parameterization alone

can not provide information about CCN concentration within a plume of volcanic aerosol.

In order to more accurately represent the aerosol plume, we use look-up tables that contain the number of activated CCN as a

function of pressure p and vertical velocityw as an input for the ICON simulation. The number of activated CCN is interpolated100

from these look-up tables considering the values of p and w in each grid-box within the cloud microphysical scheme. This

method had been developed for the ICON model in its large-eddy setup (Costa-Surós et al., 2020) and has been implemented

into ICON-NWP for our study. While dedicated interactive-aerosol simulations were performed to create the look-up tables

in Costa-Surós et al. (2020), we use the Copernicus Atmospheric Monitoring Service (CAMS) reanalysis (Inness et al., 2019)

to obtain the information about the spatial-temporal distribution of the aerosol mass mixing ratio by aerosol species. The105

CAMS reanalysis provides aerosol mass mixing ratios at 60 hybrid sigma/ pressure levels up to 0.1 hPa, and covers the 2003 to
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2020 period. Using the aerosol mass mixing ratio from the CAMS reanalysis, along with using the ARG parametrization, that

calculates the number of activated aerosols employing the Köhler theory (Köhler, 1936), we created look-up tables of activated

CCN for our simulation.

In our study, the ARG-parameterization is employed offline, by running a box model setup and using aerosol mass mix-110

ing ratio from the CAMS reanalyses as an input for various vertical velocities. The ARG-parameterization has been used in

microphysical schemes in a wide range of resolutions before, ranging from global climate models to cloud resolving models

(Ghan et al., 2011; West et al., 2014; Luo et al., 2008). The ARG parameterization is based on the competition between aerosol

particles for available water vapor which depends on aerosol particle composition, size distribution and most importantly the

supersaturation forcing rate obtained by the updraft. We evaluate supersaturation S0,i at ten specific values of vertical velocity115

used in the look-up tables (see Costa-Surós et al., 2020). After calculating Smax, the critical radius of activation for each aerosol

mode is obtained in the box model. When the supersaturation for each aerosol mode is smaller than maximum supersatura-

tion Smax ≥ S0,i , the environment has gained the needed supersaturation to activate the particles. Using this approach, an

observations-tied spatially-temporally varying input number concentration of activated CCN for ten prescribed vertical veloc-

ity classes was produced. In the CAMS reanalyses data, the aerosols emitted from the Holuhraun volcano are not represented:120

it is firstly not constrained by the data assimilation. CAMS assimilates MODIS aerosol optical depth (AOD) retrievals (Levy

et al., 2013), but due to the presence of extensive clouds in the region of interest, MODIS was not able to capture sufficient

information about AOD. Secondly, it is also not included in the model simulation, because in the emission source model of

CAMS, no volcanic emissions are considered. Therefore, the CAMS data was used to obtain background spatial and temporal

aerosols concentration and in order to implement aerosol concentrations inside the plume, the sulfate aerosol concentration125

in CAMS was scaled based on the SO2 emission monitored by Ozone Mapping and Profile Suite (OMPS) satellite retrievals

which will be explained in more detail in the next session (Yang, 2017).

2.2 The volcanic-aerosol plume in the model simulations

Lava flows and emitted gases from volcanic eruptions are the most common features that remotely can be monitored globally

and at different time scales. SO2 is one of the most common gases emitted from volcanic eruptions and can be retrieved by130

spaced-based sensors (Fioletov et al., 2020). In this study, the OMPS data product (Level 2) for SO2 was used. This data set

provides information about vertically integrated SO2 (in Dobson units, DU). The SO2 retrievals for 1 to 7 September 2014 for

the lower troposphere are shown in Figure 2.

The SO2 plume was detected on 1 September shortly after the beginning of the eruption and evolved over time mostly east-

wards, towards Scandinavia. Former studies compared OMPS satellite retrievals with surface observations for the Holuhraun135

eruption and showed that satellite retrievals are able to detect spatial and temporal evolution of the volcanic plume (Ialongo

et al., 2015). In this study, we performed two simulations over the domain shown in Figure 1, one with background aerosol

concentrations only, which is referred to as the no-volcano simulation, and one with scaling the sulfate concentrations in the

CAMS reanalysis data within the plume as defined by the OMPS satellite retrievals, referred to as the volcano simulation in

this article. As shown in Figure 2, grid-points with SO2 concentrations in the lower troposphere exceeding 1 DU are considered140
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Figure 2. Total vertical column amount of SO2 associated with the ground pixel retrieved using a prescribed SO2 profile centered at 3 km

(in Dobson units) from 1 to 7 September 2014 obtained from OMPS (Yang, 2017) satellite retrievals. No data are available for 6 September

2014.

to constitute the plume. For these grid-points, a scale factor field was computed by dividing the SO2 concentrations retrieved

within the plume by the mean SO2 concentration for the entire domain outside the plume region. In the next step, the sulfate

aerosol mass mixing ratio from the CAMS reanalyses was scaled inside of plume by these scaling factors before deriving a new

CCN distribution that now considers the volcanic plume with the enhancement consistent with the OMPS satellite retrievals.

Figure 3 shows the geographical distribution of vertical-mean number of activated CCN for 2 September 2014 with a back-145

ground sulfate aerosol concentration (a and c) and scaled sulfate concentration (b and d) for two different prescribed vertical

velocities (0.599 m s−1 and 4.64 m s−1). As is mentioned in section 2.1, the strength of the updraft corresponds to maximum

supersaturation in the ARG-parameterization. Therefore, more CCN gets activated at higher vertical velocity. In Figure 3, the
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 no plume ( w = 0.599 m s 1 )(a)  plume ( w = 0.599 m s 1 )(b)

 no plume (w = 4.64 m s 1)(c)  plume (w = 4.64 m s 1)(d)

0 100 200 300 400 500 600 700 800 900 1000
CCN (cm 3)

Figure 3. Number of column-mean activated CCN (cm−3) for 2 September 2014 for two different vertical velocities (w = 0.55 m s−1, upper

panels, and w = 4.6 m s−1, lower panels). Left panels (no-plume) correspond to background concentrations of aerosols and right panels

(plume) correspond to scaled aerosol concentrations.

location of the plume can smoothly be identified. This information lead us to perform two simulations one with a background

activated CCN concentration (left panels) referred as no-volcano simulation, and one with scaled activated CCN concentration150

(right panels) referred to as volcano simulation.

3 Results

The present study aims at a detection and attribution approach, assessing the differences in cloud properties within and outside

the volcanic plume by comparing a factual and a counterfactual simulation with satellite observations. This aims to evaluate

how cloud microphysical properties (Nd and LWP) behave differently in and outside the volcano plume.155

To address this scientific question, grid cells that are located inside and outside of volcano plume are analyzed and compared

to each other in volcano and no-volcano (factual and counterfactual) simulations along with MODIS satellite retrievals for the

7 days starting on 1 September 2014. In the no-volcano simulation, there is no CCN enhancement due to the volcanic emissions
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Figure 4. Relative frequency distribution of Nd (cm−3) for liquid clouds, inside of the plume (a) and outside the volcano plume (b) in

the volcano simulation (red), the no-volcano simulation (blue) and MODIS Aqua level-2 data (black). The PDF shows the spatio-temporal

variability for the MODIS overpass time for the seven days.

(left column in Figure 3). Nevertheless, the grid points that are located inside of the volcano plume are compared to the ones

outside the plume to assess differences due to different meteorological conditions.160

Nd is the first microphysical variable we assess. Nd is not directly retrieved by the operational MODIS satellite retrievals.

Instead, re and τc are retrieved using the method described by Nakajima and King (1990). On the basis of such retrievals,

assuming clouds that behave like adiabatic ones, Nd can be computed as follows (Grosvenor et al., 2018):

Nd = γ τ
1
2

c r
− 5

2
e . (1)

In this relation, γ depends mainly on the adiabatic condensation rate and can be approximated as 1.37·10−5 m−
1
2 (Quaas et al.,165

2006). In order to obtainNd by Equation 1 in our analyses both in simulations and MODIS, re less than 4µm and τc less than 4

were excluded from data set because they are less reliable (Nakajima and King, 1990). For consistency,Nd is derived from the
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COSP diagnostics of τc and re (see section 2) in the same way as done in the MODIS retrievals. The model output is sampled

at the time of the MODIS Aqua overpass of approximately 13.30 LST (Local Sidereal Time).

In the subsequent figures, in each panel the blue line is for the no-volcano run, the red line is for the volcano run and the170

black line is for the MODIS observations. Figure 4 shows the relative frequency distribution of Nd. The right panel (outside

of plume) indicates that the Nd distribution outside of the volcano plume for both simulations are, as expected, very similar

because the meteorology is the same and there is no additional aerosol. Comparing both simulations to MODIS retrievals

demonstrates that the simulated Nd distribution is close to what is obtained from the satellite retrievals. In contrast, for the grid

points inside the plume, it can be seen that Nd is substantially enhanced in the volcano run compared to the no-volcano run175

as was expected due to the larger concentration of activated CCN inside the volcano plume. The Nd distribution for MODIS

shows that these observations are considerably closer to the volcano run with respect to the higher probability of large Nd

even if at lower concentrations there is a systematic discrepancy between MODIS data and both simulations. For such low

concentrations, there is the possibility that the satellite data are biased (Grosvenor et al., 2018). For broken clouds, MODIS

shows overly large re, which implies overly low Nd (Eq. 1). Nevertheless, the results for the large Nd concentrations, and the180

overall good agreement between the simulations and satellite retrievals (also outside the plume) allow for clear detection of the

enhancement of Nd inside the volcanic plume and its attribution to the volcanic aerosol.

The mean values for Nd are listed in Table 1. The mean Nd in the plume, compared to the mean of the distribution outside

the plume, is enhanced by 77 % in volcano run compared to no (0 %) change in the no-volcano run. The enhancement value in

MODIS is 78 % which almost exactly is the same as in the volcano run. The meanNd outside the plume is 134 cm−3, 128 cm−3185

and 135 cm−3 for no-volcano, volcano simulations and MODIS respectively, showing that outside of plume Nd didn’t change

considerably between simulations because the meteorology is same and there is no additional activated CCN, and showing

good consistency between both model runs and the satellite retrievals.

Figure 5 shows the same analyses as Figure 4 but for LWP. The distribution of LWP for the region outside the volcano plume190

is not significantly different between the two simulations, as expected. The mean values for LWP (Table 1) in both simulations

is the same at 151 g m−2; furthermore, the MODIS mean value of 149 g m−2 is close to the simulations which demonstrate

the accuracy of clouds simulations. This is also true for the entire distribution (Figure 5). Considering the simulated profiles,

in the simulation with volcano emissions included, there is a decrease in the probability of shallower clouds (with lower LWP)

and an increase in the probability of thicker clouds (with higher LWP) compared to the no-volcano simulation. The MODIS195

distribution for LWP inside the plume indicates that the probability for shallower clouds is less than what the simulations show,

but the probability for thicker clouds is higher than in the no-volcano run, albeit also less than in the volcano run. In terms of

the mean values for LWP (Table 1) for inside of plume, the simulations indicate a slight enhancement (+6 %) attributable to

the different weather conditions (plume enhancement in the no-volcano run), and a strong enhancement (+30 %) in the volcano

run. The difference suggests that the model shows an LWP enhanced by 24% due to additional CCN inside of volcano plume.200

MODIS, however, is very close to the result of the no-volcano run for the average values. This almost zero enhancement on
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Variables MODIS

outside

plume

MODIS

plume en-

hancement

no-vol

outside

plume

no-vol

plume en-

hancement

vol outside

plume

vol plume

enhance-

ment

Nd (cm−3) 135 78% 134 0% 128 77%

LWP (g m2) 149 7% 151 6% 151 30%

RWP (g m2) - - 13 53% 13 38%

Cloud

fraction (%)

52 29 % 58 32% 58 40%

All-sky

Albedo

0.39 18% 0.33 27% 0.35 42%

Cloudy-sky

Albedo

0.44 9% 0.46 0% 0.45 7%

Table 1. Mean values for Nd, LWP, RWP, total cloud fraction and albedo at top of atmosphere for MODIS (CERES for the albedo), the no-

volcano simulation and volcano simulation. The values are computed for outside of plume and enhancement inside of plume which computed

as ( mean for inside of plume−mean for outside of plume
mean for outside of plume ).

average, however, seems to come about by a decrease in LWP for the clouds with low LWP, and an enhancement of LWP for

large LWP values (Figure 5. This is qualitatively consistent with the results of the ICON-NWP model. The model, however,

exaggerates the increase in large LWP values, leading to the exaggerated mean increase.

The question is now what is the underlying process leading to an increase in LWP in the volcano simulation? One reason is205

the suppression of precipitation (e.g., Seifert et al., 2012). Therefore, the distribution of rain water path (RWP) was analyzed to

investigate the alteration of precipitation inside and outside the volcano plume in both, the volcano and no-volcano simulations.

The comparison is shown in Figure 6. Since the precipitation information is not available from MODIS or other satellite

retrievals, RWP is only depicted for the simulations. Inside the volcano plume, there is a decrease in light rain and an increase in

heavy rain for the volcano simulation, compared to the no-volcano simulation. In terms of mean values for RWP (Table 1), there210

is a decrease in the volcano run by 15 % on average, while the precipitation profile for outside of plume is quite similar which

is in the agreement of the fact that LWP for outside of plume didn’t alter significantly. Moreover, suppression in precipitation

can also lead to enhancement in cloud horizontal extent (cloud fraction). Therefore, the modification in cloud fraction was

examined in simulations and MODIS. The analyses for mean values of total cloud fraction in Table 1 demonstrates that, in the

volcano simulation, cloud fraction is enhanced in the plume compared to outside the plume by 40 %, while the enhancement is215

only 32 % in the no-volcano simulation. However, even in the no-volcano simulation, cloud fraction inside of plume is higher

than outside of plume by 32 % due to the different weather conditions, and this is consistent with what MODIS shows (29 %).

Finally, the effect on radiation (indicative of the effective radiative forcing due to the modification of cloud properties by

the volcanic aerosol) is examined. Therefore the TOA albedo was analyzed inside and outside of plume in simulations and

CERES level-2 footprint data (Su et al., 2015). For the comparison, the simulation output was remapped to 20 km horizontal220
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Figure 5. As Figure 4, but for LWP (g m−2).

resolution to be consistent with the resolution of the CERES footprint. In Figure 7 TOA albedo for the cloudy sky is depicted

for inside and outside the volcano plume for both simulations and CERES data. Clear sky was excluded because, in the model,

no aerosol-radiation interactions are considered, but in the CERES this effect is in the data and would bias the analysis for

clear sky. An additional important aspect that should be considered, is that the TOA albedo distribution is considered here for

liquid clouds with τc more than 4 because in obtaining Nd the data with τc less than 4 were excluded as well. Considering the225

TOA albedo distribution inside the plume, it is seen that in the volcano simulation, there is a higher probability for TOA albedo

larger than 0.6 compared to the no-volcano simulation. In the CERES data, there is a peak at TOA albedo between 0.4 and 0.6

that is not as pronounced in either simulation. In turn, the probability for TOA albedo larger than 0.7 is smaller in the data than

in both simulations. This bias, however, is clear outside the plume but much less so inside the plume - possibly indicative of

the albedo enhancement due to the volcanic aerosol.230

For the mean values (Table 1), in turn, clear sky data were taken into account to be able to see the influence of cloud

fraction changes on modifying TOA albedo. The difference in mean values between inside and outside the plume in the
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Figure 6. Relative frequency distribution of RWP profile in logarithmic scale for inside of plume (a) and outside of volcano plume (b) in

volcano simulation (red) and no-volcano simulation (blue).

volcano simulation is 15 % larger compared to no-volcano simulation. In CERES data there is an 18 % enhancement inside

the volcano plume compared to outside the plume. When compared to the difference between inside and outside the plume

in the no-volcano simulation (27 %), it is difficult to conclude that there is a signal of alteration in TOA albedo in CERES235

data. We also analyzed cloudy sky TOA albedo mean values in simulations and CERES. The values in Table 1 demonstrate an

enhancement of 9 % in CERES and 7 % in volcano simulation while no changes were obtained in no-volcano simulation. The

daily mean incoming solar radiation was obtained 260 W m−2; therefore, effective radiative forcing except cloud cover effect

can be estimated as 10 W m−2 in CERES and 8 W m−2 in volcano simulation.
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Figure 7. Relative frequency distribution of TOA albedo profile for inside of plume (a) and outside of volcano plume (b), in volcano

simulation (red), no-volcano simulation (blue) ,and CERES level-2 footprint data (black).

4 Conclusions240

In this study, the impact of aerosols emitted by the Holuhraun volcanic eruption on liquid clouds was assessed from a pair

of cloud-system resolving simulations with and without the enhancement in CCN due to the volcanic emission, and from

MODIS and CERES satellite retrievals. The COSP simulator was implemented in the model to allow for an apples-to-apples

comparison between the simulations and satellite data. To identify the impact of the additional aerosol on cloud microphysical

properties, areas located inside and outside the volcano plume were compared in terms of their statistical distributions. In the245

no-volcano (counterfactual) simulation, only the differences in weather conditions are sampled. In the in volcano (factual)

simulation, in addition, there is the effect of then CCN enhancement on the clouds. To the extent the inside vs. outside-plume

difference is consistent between the satellite retrievals and the volcano simulation, but not between the satellite retrievals

and the no-volcano simulation detection and attribution of the effect of the aerosol on the clouds is achieved. Our analyses
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indicated that Nd concentration is clearly enhanced inside the volcano plume. This enhancement by almost 80 % is attributable250

to the additional CCN inside the volcano plume. Our scientific goal in this study was to examine how LWP and cloud fraction

respond to the enhancement of theNd in the volcanic plume. The analysis reveals that in the simulations and MODIS, the LWP

is increased inside the plume compared to outside the plume. However, for the mean increase, no attribution to the additional

CCN is possible. In turn, there is an indication that at low LWP, there is a decrease in LWP while at large LWP, there is an

enhancement. This latter enhancement, however, is exaggerated in the ICON-NWP model simulation. In the model, the reason255

for the enhancement of LWP in the volcano simulation was the decrease in precipitation compared to no-volcano simulation

by 15 % on average, due to a shift from lighter to more heavy rain. Examining cloud fraction - only possible for the mean

value - demonstrates that the cloud fraction also increased inside the plume in the volcano simulation compared to the no-

volcano simulation. Similar to the result for LWP, this mean increase cannot be attributed to the volcanic aerosol. It is unclear

for the MODIS data, how much change in cloud fraction between inside and outside the plume is due to the enhancement of260

cloud lifetime due to the additional CCN and how much simply is because of different weather. To learn about the climate

implications, it is essential to identify how the planetary albedo differs inside and outside the volcano plume. In this study, the

difference in increase of TOA albedo between inside and outside the volcano plume in the volcano and no-volcano simulations

was quantified by at 42% when considering the volcanic aerosol vs. only 27% without it, but it is, again, not possible to attribute

the enhancement in TOA albedo in the CERES observations.265

Overall, the results from this detailed analysis using level-2 satellite observations and cloud-system resolving simulations

confirm the key result of Malavelle et al. (2017) that there is a clear, detectable and attributable impact of the volcanic aerosol

on the Nd, but there is on average only a very small, not attributable, effect on both LWP and cloud fraction. This net result

for the case of the Holuhraun volcano for LWP comes about by a slight enhancement of LWP for thick (large-LWP) clouds

compensated for by a decrease in LWP in thin (low-LWP) clouds.270

Data availability. The ICON model outputs are stored at the German climate computing center (DKRZ) and are available upon request to the

corresponding author. The MODIS data were downloaded from the Atmosphere Archive Distribution System (LAADS) Distributed Active
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