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Abstract. Vehicle emissions have become a major source of air pollution in urban areas, especially for near-road 10 

environments, where the pollution characteristics are difficult to be captured by a single-scale air quality model 

due to the complex composition of the underlying surface. Here we developed a hybrid model CMAQ-

RLINE_URBAN to quantitatively analyse the effects of vehicle emissions on urban roadside NO2 concentrations 

at a high spatial resolution of 50 m × 50 m. To estimate the influence of various street canyons on the dispersion 

of air pollutants, a Machine Learning-based Street Canyon Flow (MLSCF) scheme was constructed based on 15 

Computational Fluid Dynamic and ensemble learning methods. The results indicated that compared with the 

CMAQ model, the hybrid model improved the underestimation of NO2 concentration at near-road sites with MB 

changing from -10 μg/m3 to 6.3 μg/m3. The MLSCF scheme obviously increased concentrations at upwind 

receptors within deep street canyons due to changes in the wind environment caused by the vortex. In summer, the 

relative contribution of vehicles to NO2 concentrations in Beijing urban areas was 39% on average, similar to results 20 

from CMAQ-ISAM model, but increased significantly with the decreased distance to the road centerline, especially 

reaching 75% on urban freeways.  
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1 Introduction 

The accelerated urbanization leads to severe air pollution in China. As one of the indicators of air pollution, nitrogen 

dioxide (NO2) causes an adverse impact on human health and promotes the generation of ozone and particulate 

matter (Pandey et al., 2005; Khaniabadi et al., 2017). During the last decade, benefiting from the implementations 

of several air pollution control strategies by the Chinese government, the air quality has improved (Jin et al., 2016; 30 

Zheng et al., 2018), and the vertical column densities of NO2 displayed a decreasing trend after 2013 (Cui et al., 

2021), (Shah et al., 2020). However, the economic development and nitrogen oxides (NOx) emissions are not 

decoupled in China (Luo et al., 2022a), and the NO2 pollution is still much more severe than that in developed 

countries. In some megacities of China, such as Chengdu, the daily averaged NO2 concentration could reach 

200 μg/m3 (Zhu et al., 2019), far exceeding the 24-h average air quality guideline of 80 μg/m3 suggested by the 35 

Ministry of Environmental Protection of China (Mepc, 2012). 

 

The improvement of air quality in China was mainly due to the emission reduction and control measures of 

industrial and domestic sources (Zhang et al., 2019b), of which the reduction potential has been gradually declining. 

Meanwhile, as the population of vehicles is growing rapidly, vehicle emissions have become a major source of 40 

NO2 pollution, especially in urban areas (Luo et al., 2022b), accounting for more than 30% in Lyon(Nguyen et al., 

2018). Due to the low release height of vehicle emissions, it is difficult for pollutants to diffuse near the street, and 

there will be significant accumulation around the source. According to roadside observations, within the distance 

of about 100-200 m near roads, the concentrations of CO, NO2, ultrafine particulate matter (UFP), PM2.5, PM10, 

and other pollutants will increase with the decreased distance to the road centerline, especially for the pollution 45 

levels of NO2 and UFP increasing exponentially. Therefore, the gradient of concentration around the road changes 

dramatically (Nayeb Yazdi et al., 2015; Hagler et al., 2012). Moreover, the dispersion of air pollutants in the near-

road environment is significantly affected by geometric characteristics of the street canyon. For example, in a 

standard street canyon, when the external wind direction at the roof level is perpendicular to the street axis, a 

clockwise vortex will be generated inside, resulting in the accumulation of pollutant concentrations at the upwind 50 

receptors in the street canyon (Oke, 1988; Manning et al., 2000). Consequently, how to quantitatively identify 

urban vehicle-induced air pollution around roads affected by complex underlying surface conditions has become 

an urgent scientific issue. 

 

Regional-scaled air quality models, represented by Chemical Transport Models (CTMs) including Community 55 

Multi-scale Air Quality (CMAQ) model (Byun and Schere, 2006), Comprehensive air quality model with 
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extensions (CAMx), and Weather Research and Forecasting/Chemistry model (WRF-Chem) (Grell et al., 2005), 

has been used extensively in assessment on the impacts of vehicle emissions on the regional atmospheric 

environment, focusing on the source apportionment (Luo et al., 2022b; Vara-Vela et al., 2016; Kheirbek et al., 

2016; He et al., 2016) and evaluation of control measures (Zhang et al., 2020; Yu et al., 2019; Cheng et al., 2019; 60 

Ke et al., 2017). However, the spatial resolution of CTMs is generally larger than 1 km×1 km, thus the significant 

impacts of vehicle emissions on near-source air quality cannot be predicted by CTMs due to the grid 

homogenization on vehicle emissions. 

 

To avoid the aforementioned disadvantages, the local-scaled numerical models based on Gaussian diffusion theory 65 

or computational fluid dynamic (CFD) are adopted by numerous researches to study at a finer spatial resolution 

(Zhang et al., 2021; Patterson and Harley, 2019; Soulhac et al., 2012), using Research LINE-source Dispersion 

Model (RLINE) (Snyder et al., 2013), Operational Street Pollution Model (OSPM), AERMOD (Cimorelli et al., 

2005), and RapidAir® (Masey et al., 2018), etc. However, the large uncertainties in predictions from Gaussian 

dispersion models come from the provided meteorological conditions and background concentrations. The natural 70 

logarithm function is usually used to characterize the vertical profile of wind speed in both the inertial and rough 

sublayers, neglecting the influence of urban complex underlying surface compositions on the wind field (Cimorelli 

et al., 2005; Masey et al., 2018; Snyder et al., 2013). Nevertheless, in standard and deep street canyons, the changes 

of vertical wind profile cannot be described by the logarithmic form, otherwise the actual wind speed will be greatly 

overestimated (Soulhac et al., 2008). Although the OSPM has performed a large number of comparisons with field 75 

observations in shallow or standard street canyons, the validation of model performance in deep street canyons 

with a large aspect ratio was still absent (Kakosimos et al., 2010). Moreover, Murena et al. pointed out that OSPM 

overestimated the bottom wind speed in a deep street canyon by about 10 times compared with the predictions from 

CFD, thus greatly underestimating pollutant concentrations (Murena et al., 2009). Comparatively speaking, CFD 

models can accurately simulate the flow field and pollutant concentration in complex street canyons, but the 80 

simulation domain of CFD models is much smaller than the urban scale, and the influence of the long-term 

meteorological boundary conditions cannot be considered. Therefore, it is essential to build a model to predict long-

term near-road air pollution suitable for the urban complex underlying surface environment. 

 

In this paper, we developed a hybrid model CMAQ-RLINE_URBAN by offline coupling the local RLINE model 85 

with the regional CMAQ model and some localized urban thermodynamic parameter schemes, to simulate the near-

road NO2 pollution and quantify the impacts of vehicle emissions at a high spatial resolution. Specifically, in order 
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to predict the effects of urban street canyons on the diffusion of pollutants, we developed a Machine Learning-

based Street Canyon Flow (MLSCF) parameterization scheme, which was based on an ensemble learning method 

using wind data from 1,600 CFD simulations. To evaluate the performance of CMAQ-RLINE_URBAN, 90 

simulations under several scenarios were conducted in Beijing urban areas from August 1st to 31th of 2019, and 

validated through comparison with observations from monitoring sites. Furthermore, spatial distribution 

characteristics of NO2 concentrations in the near-road environment were also analysed in this study. 

2 Materials and Methods 

2.1 Hybrid model framework 95 

Based on FORTRAN and R languages, we developed a multiscale air quality hybrid model on the Linux platform, 

to achieve a high-resolution NO2 pollution mapping in urban areas. The framework of CMAQ-RLINE_URBAN 

was shown in Figure 1. The hybrid model was constructed based on RLINE model, offline coupling with the 

gridded meteorological field provided by WRF model and the pollutant background concentrations from non-

vehicle sources provided by CMAQ model with the Integrated Source Apportionment Method (ISAM), considering 100 

the thermodynamic effects caused by the complex underlying surface compositions of the city. In our model, a NO2 

pollution map with a high temporal (1 h) and spatial resolution (<100 m×100 m) can finally be obtained.  

 

The simulation for local meteorological conditions in CMAQ-RLINE_URBAN included three steps: Estimation 

for areas above the top of Urban Canopy Layer (UCL), inside of UCL, and inside of the street canyon. (1) In this 105 

study, the configuration of WRF model referred to Lv et al. (2020), and the height of midpoint in the bottom layer 

to the ground was about 22.5 m, which was close to the average height of buildings on both sides of street canyons 

in urban areas of Beijing. Therefore, the meteorological field simulated by the WRF model was used as the wind 

field and atmospheric stability at the top of UCL. During the hybrid model running, the meteorological conditions 

over buildings near each road were obtained separately from the WRF model according to the road location. (2) 110 

Then, the surface roughness length (𝑧0) of each road was estimated based on the surrounding building data and 

used to recalculate the localized meteorological parameters (e.g. Monin-Obukhov length) within UCL according 

to the algorithm proposed by Benavides et al. (𝑧0 scheme) (2019). The atmospheric turbulence intensity in urban 

areas around sunset in the afternoon was enhanced considering the influence of the urban heat island (Kheirbek et 

al.) (Kheirbek et al.) effect based on the method in Air Quality Dispersion Modeling (UHI scheme)(Cimorelli et 115 

al., 2005). (3) Finally, the wind field within UCL was calculated according to different types of road environments: 

open terrain and street canyon. The logarithmic wind profile based on Monin-Obhukov Similarity Theory (MOST) 

(Foken, 2006) in the original RLINE model was still used when the receptor was located in the open terrain (MOST 
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scheme), while the MLSCF parameterization scheme was used for receptors in the street canyon to quantitatively 

characterize the influence of the street canyon geometry and the external wind environment at the top of the roof. 120 

The detailed introduction for street canyon geometry and the MLSCF scheme was described in the following 

section. 

 

The real-time vehicle emission inventory based on Street-Level On-road Vehicle Emission (SLOVE) Model 

developed in our previous study (Lv et al., 2020), which was based on the real-time traffic condition data from 125 

AMap (www.amap.com), was used in both regional and local air quality models. In our simulation, the 

concentrations of NO, NO2, and O3 excluding contributions from vehicle emissions were used as background 

concentrations at the roof level, avoiding the double counting in the coupling process. These background 

concentrations were simulated by CMAQ-ISAM model, in which the emissions were divided into mobile and other 

four emission groups to trace their contributions separately, and details were presented in our previous study  (Lv 130 

et al., 2020). In addition, the influence of atmospheric turbulence and building geometry on the vertical mixing of 

background concentration was considered (vertical mixing scheme). The ratios of wind speed at surface and roof 

levels were used as a proxy to calculate the contribution of background concentration over street canyons to the 

near-ground receptors (Benavides et al., 2019). Finally, combined with the vehicle-induced primary NOx 

concentration calculated by the RLINE kernel, the high spatial resolution NO2 map could be simulated considering 135 

the photochemical process of NOx. In this study, a simplified two-reaction scheme was incorporated into the RLINE 

model to characterize the photochemical process of NOx, which has been successfully applied to the SIRANE 

dispersion model (Soulhac et al., 2017). 

 

2.2 Development for MLSCF scheme  140 

2.2.1 The database of street canyon geometry 

We first established a database of street canyon geometry for 15,398 roads in urban areas of Beijing based on the 

three-dimensional building data obtained from our previous study (Lv et al., 2020) using Geographic Information 

System (GIS). Three typical parameters to represent street canyon geometry were investigated, including height 

ratio (𝐻𝑙/𝐻𝑟) (𝐻𝑙 is the building height on the left side, while 𝐻𝑟 is the building height on the right side), aspect 145 

ratio (𝐻/𝑊) (𝐻 is set to be the average height, and W is the width of the street canyon), the canyon length to height 

ratio (𝐿/𝐻) (𝐿 is set to be the length of the street canyon). In this study, the extreme canyon geometry was not 

considered, and the typical street canyons were selected as the following conditions: (1) The proportion of actual 

street canyon length (the length of road where the buildings nearby) was greater than 0.5; (2) 𝐻/𝑊 was greater 
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than 0.2; (3) 𝐻𝑙/𝐻𝑟 was between 0.3 and 3.3. Finally, the total number of the typical street canyon was 1,889, with 150 

a total length of 787 km. The spatial distributions of canyon geometry were shown in Figure S1. In urban areas of 

Beijing, street canyon width was generally wide with a mean of 50.3 m, and buildings on both sides were relatively 

low with a mean of 23.6 m. Most street canyons were obviously located in areas within the fourth ring road. The 

shallow (𝐻/𝑊≤0.5) canyons and long canyons (𝐿/𝐻>7) were dominated, accounting for 54% and 84% of the total 

number of street canyons. 155 

 

2.2.2 Description of CFD cases 

To predict air flow in street canyons comprehensively, CFD simulations were conducted under combinations of 

different values of controlling factors based on ANSYS FLUENT (v19.2). The controlling factors included the 

aforementioned three typical parameters to represent canyon geometry and the background wind speed at the height 160 

of H (𝑉(𝐻)) as well as its direction (α) to describe the external wind environment. The selected values of each 

factor were listed in Table 1, and total 1600 (i.e., 5×4×4×5×4) simulations were implemented.  

 

In this study, the computational domain of three-dimensional (3D) full-scale CFD simulations was shown in Figure 

2. The average building height 𝐻 of the street canyon was always set to 21 m in different simulations, which was 165 

similar to the mean street canyon height in Beijing. Other actual size of street canyons (e.g. street canyon width W) 

was calculated according to the ratio of each specific scenario. Distances between urban canopy layers (UCL) 

boundaries and the domain top, domain inlet and domain outlet were set as 5𝐻, 6𝐻, and 20𝐻, respectively. 

Following the CFD guideline (Tominaga et al., 2008; Franke et al., 2011), zero normal gradient conditions or 

pressure outlet conditions were applied at the domain outlet, and symmetry boundary conditions were adopted at 170 

the domain top and two lateral domain boundaries. For near-wall treatment, no-slip wall boundary conditions with 

standard wall functions were used (Fluent, 2006). All governing equations for the flow and turbulent quantities 

were discretized by the finite volume method with the second-order upwind scheme. The SIMPLE scheme was 

used for the pressure and velocity coupling. The residual for continuity equation, velocity components, turbulent 

kinetic energy, and its dissipation rate were all below 10-5. Meanwhile, the CFD simulation would also stop when 175 

the iteration steps exceeded 10,000, due to the large computing cost of so many simulations. The selected turbulence 

model and grid arrangement were discussed in the following section. 
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At the domain inlet, the power-law velocity profile (Brown et al., 2001), vertical profiles of turbulent kinetic energy 

𝑘𝑖𝑛 and its dissipation rate 𝜀𝑖𝑛 at the domain inlet (Lien and Yee, 2004; Zhang et al., 2019a), were described below: 180 

𝑈0(𝑧) = 𝑈𝑟𝑒𝑓 (
𝑧

𝐻𝑟𝑒𝑓
)

𝛼

 

𝑘𝑖𝑛(𝑧) = (𝐼𝑖𝑛 × 𝑈0(𝑧))
2
 

𝜀𝑖𝑛(𝑧) =
𝐶𝜇

3/4
𝑘𝑖𝑛

3/2

𝜅𝑧
 

Here, 𝑈0(𝑧) stood for the stream-wise velocity at the height z. 𝑈𝑟𝑒𝑓 represented the reference speed. The reference 

height 𝐻𝑟𝑒𝑓 was 21m. The power-law exponent of 𝛼=0.22 denoted underlying surface roughness above medium-185 

dense urban area (Kikumoto et al., 2017). Turbulence intensity 𝐼𝑖𝑛 was 0.1, Von Karman constant 𝜅 was 0.41 and 

𝐶𝜇 was 0.09. 

 

2.2.3 The CFD validation  

In this study, the stream-wise and vertical velocity predicted by CFD within street canyons was compared with 190 

wind tunnel data in previous researches. For buildings of the cube arrays model, wind tunnel data from Brown et 

al. (2001) was used to evaluate the reliability of CFD results by measuring vertical profiles of velocity. For long-

street models, we predicted horizontal profiles of velocity along the street centerline at the height of z=0.11H or 

vertical profiles at some points and then validated CFD simulations using wind tunnel data from Hang et al. (2010). 

The description and validation results were shown in Figure S2-S3, and Table S1, respectively.  195 

 

We identified the influence of different minimum sizes of hexahedral cells near wall surfaces (fine: 0.1m, medium: 

0.2m, and coarse: 0.5m) and turbulence models (standard k-ε model and RNG k-ε model) on the predicted velocity, 

to evaluate the grid independence and turbulence model accuracy (Figure S3). The results indicated that the 

predictions from the standard k-ε model could well match the variations of observed velocity within the street 200 

canyon, of which performances were much better than that of the RNG model. In addition, different grid resolutions 

used in simulations would not significantly affect the predicted results. We finally adopted the standard k-ε model 

to characterize turbulence, and the grid with an expansion ratio of 1.1 was applied in which the minimum size of 

hexahedral cells near wall surfaces was 0.5 m to save the computing cost. 

 205 

Moreover, the averaged wind speed from CFD in street canyons with different aspect ratios and external wind 
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direction was compared with predictions from other empirical methods used in SIRANE model (Soulhac et al., 

2012) and MUNICH model (Kim et al., 2018). Similar predictions using different methods also proved the 

reliability of CFD simulation in this study (Figure S4). 

 210 

2.2.4 Machine learning 

Finally, based on the database including 42,880 samples obtained from 1600 CFD simulations, the Random Forest 

(RF) and Multivariate Adaptive Regression Splines (MARS) were both used to simulate the wind vector along X-

axis (𝑉𝑥) and Y-axis (𝑉𝑦) at different heights within the street canyon respectively. The input predictor variables 

included 𝐻/𝑊, 𝐿/𝑊, 𝐻𝑙/𝐻𝑟, the receptor relative height (𝑧/𝐻), the background wind vector at the height of H 215 

along X-axis (𝑉𝑏𝑔𝑥 = 𝑉(𝐻) × sin 𝛼) and Y-axis (𝑉𝑏𝑔𝑦 = 𝑉(𝐻) × cos 𝛼). RF model algorithm is an ensemble 

learning method that generates many decision trees and aggregates their results, which has been developed to solve 

the high variance errors typical of a single decision tree (Breiman, 2001). MARS is a nonparametric and nonlinear 

regression method, which can be regarded as an extension of the multivariate linear model. An ensemble learning 

method combined with the advantages of these two machine learning models was used as the MLSCF scheme to 220 

predict wind environment in street canyons and incorporated into the hybrid model, which was discussed in the 

section 3.1.  

 

In RF model, the number of predictors randomly sampled at each split node in the decision tree (𝑚𝑡𝑟𝑦) and the 

number of trees to grow (𝑁𝑢𝑚𝑇𝑟𝑒𝑒𝑠) are two important hyperparameters that determine the performance of the 225 

model. Similarly, in MARS model, the two important hyperparameters are the total number of terms (𝑛𝑝𝑟𝑢𝑛𝑒) and 

the maximum number of interactions (𝑑𝑒𝑔𝑟𝑒𝑒). By comparing the mean squared error (MSE) for testing datasets 

across models with candidate parameter combinations, we set 𝑚𝑡𝑟𝑦 and 𝑁𝑢𝑚𝑇𝑟𝑒𝑒𝑠 as 6 and 200, respectively, and 

𝑛𝑝𝑟𝑢𝑛𝑒 and 𝑑𝑒𝑔𝑟𝑒𝑒 as 23 and 3, respectively. Additionally, the 10-fold cross-validation (CV) repeated ten times 

were considered to evaluate the prediction performance of our models. The total dataset was randomly divided into 230 

10 subsets, where 9 subsets was used to train model and another was applied for validation. 

 

In order to identify the sensitivity and response relationship between prediction variables and results in RF model, 

we used the MSE for out-of-bag (OOB) to evaluate the relative importance of each feature to 𝑉𝑥  and 𝑉𝑦 , by 

randomly replacing the value of a single prediction variable one by one (Liaw, 2002). Higher values of increase in 235 

MSE indicated that the predictor was more important. In addition, Partial Dependence Plots (PDPs) was applied to 
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establish the response relationship between the change of a single predictive variable and the predicted results, 

considering the average influence of other variables (Greenwell, 2017). 

 

2.3 Configuration of CMAQ-RLINE_URBAN 240 

The simulations for the near-ground NO2 concentrations were conducted from August 1st to 31th in 2019 when the 

photochemical reactions were strong. The simulation domain for the hybrid model covered the core urban areas 

within and surrounding the fifth ring road, shown in Figure 3. The receptors included both grids and observation 

stations. The grid receptors were set at a spatial resolution of 50 m×50 m, and the height above the ground was 1.5 

m, which was equivalent to the height of the human breathing. We used data from 10 observation stations located 245 

in the normal urban environment and 5 near-road monitoring sites for validation (Beijing Ecological Environment 

Monitoring Center, available at http://zx.bjmemc.com.cn/) (DSH, NSH, QM, XZM, and YDM) in the simulation 

domain (Figure 3), which were 10 meters and 3 meters above the ground respectively. The QM and XZM sites 

were located in shallow street canyons, and details for the morphometric of near-road measurement sites were 

shown in Table S2. 250 

 

In general, compared to the RLINE model, CMAQ-RLINE_URBAN has the following improvements: 

(a) The gridded meteorological parameters provided by WRF model were used. 

(b) Gridded non-vehicle-related concentrations provided by CMAQ-ISAM model were used as background 

concentrations. 255 

(c) A simple NOx photochemical scheme was incorporated to simulate NO2 concentrations. 

(d) Thermodynamic effects caused by the special underlying surface structures of the city were considered, 

including UHI effects and the influence of local buildings on turbulence intensity and vertical mixing of 

background concentrations. 

(e) A newly developed MLSCF scheme was applied to predict wind environment in street canyons. 260 

 

In our simulation, the model configurations in the base scenario CMAQ-RLINE_URBAN included all (a)-(e) 

schemes, and the other two control scenarios were set to investigate the sensitivity of urban schemes on predictions, 

where all input data was set to be the same. The scenario CMAQ-RLINE only including (a)-(c) schemes was set to 

analyze the impacts of urban thermodynamic schemes, and the scenario CMAQ-RLINE_URBAN_nc including 265 

(a)-(d) schemes was set to identify the impacts of the MLSCF scheme. 
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3 Results and Discussion 

3.1 Fitting results of machine learning 

In this study, the 10-fold cross-validation (CV) repeated ten times were considered to evaluate the prediction 270 

performances of RF and MARS models. As shown in Figure 4 and Figure S5, both models performed acceptable 

robustness in CV, indicating that neither RF nor MARS model overfitted the data. In general, the performances of 

both models in predicting 𝑉𝑦 was better than that in 𝑉𝑥 of which the absolute value was relatively small, especially 

for MARS model. Since 𝑉𝑥 was responsible for the formation of the vortex within street canyons and affected by 

multiple factors, it was more difficult to be simulated. The averages of mean absolute error (MAE), root mean 275 

square error (RMSE), relative error (RE), and correlation coefficient (R) in the CV of the RF model for 𝑉𝑥 and 𝑉𝑦 

were 0.04 m/s and 0.05 m/s, 0.02 m/s and 0.03 m/s, 43.0% and 42.5%, and 0.99, respectively. Although the average 

of the RE was a little high, particularly when the wind speed was low, the medians were relatively low with 9.8% 

and 2.7%, respectively, indicating a great model performance. Compared with the advanced non-linear RF 

algorithm, the MARS model performed not very well, especially when the absolute value of 𝑉𝑥 was greater than 1 280 

m/s and 𝑉𝑦  was less than 3 m/s. However, when the predicted wind speed by machine learning methods was 

compared with observations from wind tunnel experiments, we found that the performance of the MARS model 

was obviously better than that of RF model in one of validation cases (Figure 5). The decision tree model like RF 

failed to respond to the parts beyond the range of prediction variables (𝑉𝑏𝑔𝑦=17 m/s >>5 m/s), while the more 

reasonable predictions can be obtained by the MARS model which used piecewise linear function essentially. 285 

Therefore, the MLSCF scheme was established based on an ensemble learning method to combine the advantages 

of each model. The RF model was used when the input value was within the range of predictors shown in Table 1, 

otherwise the predictions from the MARS model were used.  

 

In addition, the importance of each predictor variable in the RF model was investigated to explain their impacts on 290 

predictions. As shown in Figure 6, the background wind speeds on x and y axis played vital roles in predictions of 

𝑉𝑥  and 𝑉𝑦 , respectively, followed by the relative height (𝑧/𝐻). Among the geometric parameters of the street 

canyon, the impact of 𝐿/𝑊 was least. Since 𝑉𝑥 was the main driving force for the formation of vortices in street 

canyons, it was more affected by the geometry of street canyons especially 𝐻𝑙/𝐻𝑟, comparing to 𝑉𝑦. This feature 

importance ranking was basically consistent with the conclusion in a previous study (Fu et al., 2017). Figure S6 295 

showed the PDPs of each predictor variable in RF model for 𝑉𝑥 and 𝑉𝑦. As 𝑧/𝐻 grew,  𝑉𝑥 and 𝑉𝑦 showed linear and 

logarithmic increase patterns, respectively. And the resistant effect of windward buildings on wind speed enhanced 
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with the increasing of 𝐻𝑙/𝐻𝑟, resulting in an significant decrease in 𝑉𝑥 particularly when 𝐻𝑙/𝐻𝑟 was lower than 

1.25.  The relationship between predictors and results in the model was consistent with the actual mechanism, 

indicating our ensemble model could provide an accurate description of the wind field in the street canyon. 300 

 

3.2 Impacts of MLSCF on simulations in street canyon 

We compared the differences between monthly mean wind profile in different street canyons including QM 

(shallow canyon: 𝐻/𝑊 = 0.22), XZM (shallow canyon: 𝐻/𝑊 = 0.35), SZJ (standard canyon: 𝐻/𝑊 = 1) and 

JTDL (deep canyon: 𝐻/𝑊 = 1.93), calculated by the default logarithmic function based on MOST in the original 305 

RLINE model (Foken, 2006), and the MLSCF scheme developed in this study. As shown in Figure 7(a)-(d), the 

wind profile estimated by MOST showed a logarithmic change at the height above displacement height (𝑑ℎ) with 

a decrease to 0 at 𝑑ℎ, and remained constant below 𝑑ℎ. Compared with the MOST, the simulated wind speeds near 

the ground and at the top of canyons were generally lower based on the MLSCF scheme in shallow and standard 

street canyons. In the deep street canyon, the significant reduction in ventilation volume led to the mean wind speed 310 

simulated by the MLSCF scheme much lower than that of MOST at all heights. Although the aspect ratios of the 

street canyon located in QM and XZM were similar, their orientations were quite different, resulting in significant 

differences under prevailing external winds in different directions. Since the prevailing northerly and southerly 

wind was observed in Beijing during the study period, the resistance effect of the buildings on both sides of the 

east-west street canyon located in QM was more obvious. 315 

 

We also investigated the impacts of the MLSCF on hourly wind direction at the bottom (𝑧 = 3𝑚) of different street 

canyons by comparing the roof-level predictions from WRF model (Figure 7(e)-(f)). In the shallow street canyon 

like QM, the simulated wind direction at the bottom was consistent with the background on the whole, with the R 

reaching 0.8. When the background wind direction was less than 180°, the averaged wind direction at the bottom 320 

simulated by MLSCF was 91.8°, which was basically consistent with the angle between the street and the south 

direction (84.5°). While when the background wind direction was greater than 180°, the average wind direction 

predicted by MLSCF (257.4°) was similar to that in the opposite direction of the street (264.5°), which was in line 

with the theory proposed by Soulhac et al. (2008) that the average wind direction in street canyons was assumed to 

be consistent with the (opposite) orientation of the street. While in the deep street canyon of SZJ, when the external 325 

wind perpendicularly blew to the street, the wind direction at the bottom was completely opposite to that at the top 

due to the formation of vortex, with the R reaching -0.97. In conclusion, compared with the traditional MOST 
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method, the newly developed MLSCF scheme could well simulate the influence of the external wind environment 

and geometry on the wind field inside the street canyon. 

 330 

As shown in Figure 8, the impacts of the MLSCF scheme on simulated NO2 concentration were identified by the 

differences between CMAQ-RLINE_URBAN and CMAQ-RLINE_URBAN_nc scenario during a clean day 

(August 24th). When the atmosphere was stable at night, in street canyons with a large aspect ratio, the wind 

direction at the bottom changed to the opposite to that at the top, combined with the decreased wind speed affected 

by the MLSCF scheme, the NO2 concentrations at upwind receptors increased by up to 80 μg/m3. Meanwhile, the 335 

changes in wind direction would also decrease the concentrations at downwind receptors by up to 20 μg/m3. For 

example, in the SZJ standard canyon, the background wind direction over the street was 79°(easterly), and the 

wind direction at the bottom changed to 291° affected by the MLSCF scheme (westerly). Therefore, the NO2 

concentrations at upwind receptors increased, and the location of peak NO2 concentration shifted to the up 

windward. Since the changes in NO2 concentrations were also influenced by the local on-road emissions, the 340 

increase was only up to 2.1 μg/m3 in SJZ street, where the traffic flow and vehicle emissions were small at night. 

However, less influence was observed during the day in the convective boundary layer. During this period, although 

the wind direction at the bottom was not changed obviously due to the parallel background wind in SZJ street, the 

increased surface wind speed was beneficial for the dispersion, resulting in the decreased concentration in receptors 

within both sides of the street canyon. In summary, the MLSCF scheme enabled the characterization of the 345 

concentration distribution in street canyons. 

 

3.3 Performance of near-road simulations from different models 

The performances in predicting NO2 concentrations at all monitoring sites from different models were first 

compared, including CMAQ-RLINE_URBAN, CMAQ-RLINE and CMAQ model. The mean bias (MB), RMSE, 350 

normalized mean bias (NMB), normalized mean gross error (NMGE), the fraction of predictions within a factor of 

two (FAC2), Index of agreement (IOA), and R between simulations and observations were all selected as statistical 

indicators for the evaluation. In general, the performance of CMAQ-RLINE_URBAN was the best at all urban 

sites (Table 2). Compared to the CMAQ model, the averaged MB and NMB at urban sites in the hybrid model 

decreased from 8 μg/m3 to 1.3 μg/m3 and 27% to 4%, respectively. 355 

 

Diurnal variations of observed and predicted hourly averaged NO2 concentrations at near-road sites from different 

models were mainly compared and shown in Figure 9. The comparison of hourly and daily averaged concentrations 
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was shown in Figure 10. Overall, the CMAQ-RLINE_URBAN performed best with the smallest deviations. By 

comparing the performances of the CMAQ and CMAQ-RLINE scenario, we found the direct coupling between the 360 

CMAQ and RLINE models could reproduce the high NO2 concentrations at near-road sites in daytime, and 

significantly improve the underestimation of near-source concentrations due to grid dilution on emissions in 

CMAQ model. The averaged MB and NMB at all sites changed from -10 μg/m3 to 25.6 μg/m3, and from -20% to 

51%, respectively. However, a significant overestimation was found in the CMAQ-RLINE at night (0:00-6:00) and 

around sunset in the afternoon (16:00-23:00), of which the peak could exceed the observed concentrations by more 365 

than 1 times. This overestimation was reduced in the CMAQ-RLINE_URBAN, where the urban thermodynamic 

schemes were implemented. The averaged MB and NMB decreased to 6.3 μg/m3 and 12%, respectively, due to the 

following reasons: (1) The increased surface roughness length slightly enhanced local turbulence intensity near 

roads; (2) The UHI scheme enhanced the intensity of atmospheric turbulence in urban areas before and after sunset 

in the afternoon; (3) The effect of turbulence intensity on the local vertical mixing of background concentrations 370 

was considered, significantly reducing the mixing ratio of concentrations over UCL and near the ground at nights 

in the stable boundary layer (Figure S7), which was probably the main driving force of decreased predictions in 

the hybrid model (Benavides et al., 2019). However, the CMAQ-RLINE_URBAN slightly overestimated the 

nighttime NO2 concentration of all observation stations except the DSH, which was probably caused by 

overestimations of background concentrations from CMAQ-ISAM and vehicle emissions. 375 

 

The accuracy of model performances at each traffic site showed a little difference affected by the variations in the 

traffic flow and emissions of nearby roads, as well as the geometry of surrounding buildings and street canyons. At 

DSH and NSH sites, which were adjacent to ring roads as the main urban freight corridors with a high traffic flow 

including a large proportion of trucks, the high NOx emissions led to the highest roadside NO2 observations among 380 

all sites. The CMAQ model would significantly underestimate the high NO2 concentration at sites nearby ring roads, 

with MB and NMB lower than -15 μg/m3 and -28% (Table S3), respectively, which was improved using CMAQ-

RLINE_URBAN. However, the hybrid model performed a minor overestimation at the NSH site, since the monitor 

was actually positioned in the road centerline but assumed to be located downwind in the model, resulting in a 

relatively large systematical error (Snyder et al., 2013). In total, CMAQ-RLINE_URBAN performed best among 385 

all models, especially improving the estimation of NO2 concentrations near roads by the original regional model. 

 

Additionally, Figure S8 showed the comparison between simulated and observed roadside hourly and daily 

maximum 8-hour average O3 concentrations by different models, and their diurnal variations were shown in Figure 
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S9. Generally, the hybrid model significantly improved the overestimation of daytime O3 concentrations by the 390 

CMAQ model when considering the titration effect of high NO concentration near roads on O3. In the hybrid model, 

the peak time was delayed to about 15:00, which was closer to the observation, but still 1-2 hours earlier than the 

actual time, which may be related to the uncertainty in NO2 photolysis rate. 

 

3.4 Spatial distribution characteristics of simulated concentrations 395 

We investigated the differences between the spatial distribution of the monthly averaged NO2 concentration 

simulated by the CMAQ and CMAQ-RLINE_URBAN models, as shown in Figure 11. Since the urban 

thermodynamic schemes were considered in the hybrid model, the overestimation of most urban environmental 

receptors by CMAQ model was relieved. Within the fourth ring road and its surrounding areas, the mean 

concentration of NO2 from CMAQ-RLINE_URBAN was 30.1 μg/m3, lower than that from the CMAQ model (39.5 400 

μg/m3). The overall spatial distribution characteristics of NO2 predictions from both models showed that the 

concentrations in south regions were high due to the pollution transport from Hebei province (An et al., 2019). 

However, near-road hotspots for the NO2 pollution were identified in the hybrid model where the spatial resolution 

of results increased to 50 m×50 m. The NO2 concentrations nearby ring roads with high traffic flow and emissions 

were up to 120 μg/m3, much higher than the maximum prediction from CMAQ model (52.4 μg/m3). In addition, 405 

the simulated near-road concentrations from the hybrid model during traffic peak hours (18:00-19:00) were 

significantly higher than those at noon (12:00-13:00), while there were few changes in results from CMAQ model 

(Figure S10).  

 

The NO2 concentrations estimated by CMAQ-RLINE_URBAN at all receptor grids followed a two-mode Gaussian 410 

distribution (Figure S11), which was similar to Zhang’s results (Zhang et al., 2021). The NO2 concentrations as a 

result of vehicle emissions were further calculated by the differences between the total and background 

concentrations. In general, the vehicle-induced NO2 concentrations in urban areas was 11.8 μg/m3, accounting for 

39% of the total concentrations, which was similar to the predicted contribution from the CMAQ-ISAM model 

(42.5%).  415 

 

Figure 12 showed the changes in NO2 concentrations simulated by the hybrid model with distance from the receptor 

to its nearest road centerline. The concentrations at receptors within 200 m from road were significantly affected 

by vehicle emissions. Within 50 m around the road, as the distance from receptors to the road centerline gradually 

increased, the NO2 concentrations decreased exponentially. The total NO2 concentrations decreased from 53.1 420 
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μg/m3 to 30 μg/m3, and the vehicle-induced concentrations also dropped from 34.7 μg/m3 to 12.6 μg/m3. The 

concentrations near roads with different types were highly dependent on the emission intensity. The NO2 

concentration was highest in the center of the urban freeway, which was 76 μg/m3 and about 1.9 times that on local 

roads. The relative contribution of vehicle emissions to NO2 concentration reached up to 75.3% on urban freeways, 

as well as 71.9% and 65.5% on artery roads and freeways, but only 51.1% on local roads. It was worth noting that 425 

although the NO2 concentrations at far receptors to the road on highways were slightly higher than those on other 

road types, but the contribution of vehicle emissions was the least. It was since the NOx emission intensity of 

freeways was as high as that on artery roads, but the density and height of buildings around freeways were usually 

low, resulting in a high vertical flux of background concentrations from the top of UCL to the ground. In conclusion, 

the results from the hybrid model accurately reflected not only the impacts of local on-road emissions, but also the 430 

pollution characteristics affected by non-vehicle sources at the regional scale.  

 

4 Conclusions  

In this study, we developed a hybrid model CMAQ-RLINE_URBAN to quantitatively analyse the effects of vehicle 

emissions on urban roadside NO2 concentrations at a high spatial resolution of 50 m × 50 m. The main conclusions 435 

of this study are as follows: 

 

The developed MLSCF scheme revealed that affected by the geometry of buildings on both sides of the road, the 

wind filed in the street canyon sometimes was quite different from that in the environmental background. In deep 

street canyons, the wind speed at the bottom decreased obviously due to the resistant effect of buildings, and the 440 

directions of horizontal flow in bottom and top of the canyon were completely opposite due to the formation of 

vortex. The application of MLSCF scheme in the hybrid model led to increase NO2 concentrations at upwind 

receptors within deep street canyons due to changes in the wind environment. 

 

The comparison between observations and predictions showed that the hybrid model significantly improved the 445 

underestimation of near-source concentrations due to grid dilution on emissions in CMAQ model. The 

implementation of the urban thermodynamic schemes in the hybrid model also relieved the overestimation in night-

time NO2 concentration from the CMAQ directly coupled with RLINE model. The predictions from CMAQ-

RLINE_URBAN model could accurately reflect not only the impact of road local emissions, but also the pollution 

characteristics of non-vehicle sources at regional level. It revealed that in summer, the average contribution of 450 

vehicle emission to NO2 concentration in urban areas of Beijing was 11.8 μg/m3, and the relative contribution 
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accounted for approximately 39%. Moreover, the vehicle-induced NO2 pollution increased significantly with the 

decreased distance to the road centerline, especially reaching 76 μg/m3 (75%) on urban freeways. 

 

On the basis of this study, the following perspectives are proposed for future research: (1) The long-term site-455 

observation of wind environment and pollutant concentrations in various street canyons were suggested to be 

compared with modelling results, especially in deep street canyons with large aspect ratio. The navigation 

monitoring technology would be applied in the model verification, which can carry out large-scale observation of 

concentration along streets. (2) Here, we considered the dynamic impact of idealized building structure on wind 

environment in street canyons. However, there are many other influencing factors, such as building layout and 460 

arrangement, roof shape, green vegetation, and thermodynamic effect, which are suggested to be considered in 

future studies. (3) In this study, we mainly focused on the NO2 concentrations. In fact, the concentration of 

particulate matter, especially UFP, will also have an obvious peak near the road centerline. In the future, the process 

of physical and chemical changes of particulate matter near the vehicle exhaust outlet should be further investigated. 

 465 
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Figure 1: The framework of multiscale hybrid model CMAQ-RLINE_URBAN. 
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Figure 2: Computational domain and grid arrangement in all CFD test case. (a) Settings of CFD simulation 

domain and (b) control factors. 
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Figure 3: Study domain (© OpenStreetMap contributors 2020. Distributed under the Open Data Commons 

Open Database License (ODbL) v1.0) and location of monitoring sites (© Microsoft). A. DSH; B. NSH; C. 

QM; D. XZM; E. YDM.  
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Figure 4: Cross validations of machine learning models for Vx (a, c) and Vy (b, d): (a)-(b) RF model; (c)-(d) 

MARS model. 
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Figure 5: Performances of machine learning on velocity profile in different wind tunnel experiments. 
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Figure 6: Variable importance ranking in the RF model for (a) 𝑽𝒙 and (b) 𝑽𝒚. 
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Figure 7: Influence of MLSCF on wind filed in the street canyon. Monthly averaged vertical profile of wind 

speed from MOST and MLSCF method in different street canyons: (a) QM (H/W=0.22); (b) XZM 

(H/W=0.35); (c) SZJ (H/W=1); (b) JTDL (H/W=1.93). The gray shade represents the standard deviation in 

results of all hours. Hourly wind direction from WRF model (at roof level) and MLSCF method (at ground 655 

level) in different street canyons. (e) QM (H/W=0.22); (f) SZJ (H/W=1). As the gray and green shade shown, 

the background wind over the street canyon provided by WRF model was divided into four main directions: 

east, west, south and north. 
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 660 

Figure 8: Differences in NO2 concentrations at the height of 1.5 m impacted by MLSCF scheme (a, c) over 

the study domain (CMAQ-RLINE_URBAN - CMAQ-RLINE_URBAN_nc) (© Microsoft) and (b, d) near 

SZJ in 2019-08-24 at 0:00-1:00 (a, b) and 10:00-11:00 (c, d). 
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Figure 9: Diurnal variations of observed and predicted hourly averaged NO2 concentrations from different 

models at near-road monitoring sites: (a) DSH; (b) NSH; (c) QM; (d) XZM; (e) YDM. 
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Figure 10: Observed and predicted hourly (a-c) or daily averaged (d-f) NO2 concentrations from different 670 

models at near-road sites: (a, d) CMAQ model; (b, e) CMAQ-RLINE model; (c, f) CMAQ-RLINE_URBAN 

model. 
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Figure 11: Spatial distribution of monthly averaged NO2 concentrations from (a) CMAQ model and (b) 

CMAQ-RLINE_URBAN model. 
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Figure 12: Monthly averaged NO2 concentrations attributed to all sources or vehicles with distance from the 

receptor to its nearest road centerline. (a) NO2 attributed to all sources near all roads; (b) NO2 attributed to 

all sources near different road types; (c) Relative contribution of vehicles to NO2 near different road types. 

The shade area in (a) represents the standard deviation in results of all receptors. 
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Table 1: Values of controlling factors used in the simulations. 

Controlling factor Value 

𝑯𝒍/𝑯𝒓 (unitless) 0.50 0.75 1.00 1.33 2.00 

𝑯/𝑾 (unitless) 0.25 0.50 1.00 2.00 - 

𝑳/𝑯 (unitless) 3 5 10 20 - 

𝑽(𝑯) (m/s) 1 2 3 4 5 

𝜶 (°) 0 30 60 90 - 
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Table 2: Model performances under different scenarios 

Sites Scenario MB RMSE NMB NMGE FAC2 IOA R 

All 

CMAQ 3.1 25.6 9 53 0.65 0.45 0.52 

CMAQ-RLINE 18.5 46.6 53 77 0.67 0.19 0.55 

CMAQ-RLINE_URBAN 4.6 25.8 13 49 0.75 0.49 0.57 

Urban 

CMAQ 8.0 24.3 27 58 0.68 0.40 0.59 

CMAQ-RLINE 12.3 35.8 43 76 0.64 0.20 0.50 

CMAQ-RLINE_URBAN 1.3 23.1 4 51 0.71 0.47 0.49 

*MB: Mean bias; RSME: Root mean squared error; NMB: Normalized mean bias; NMGE: Normalized mean gross 690 

error; FAC2: Fraction of predictions within a factor of two; IOA: Index of agreement; R: correlation coefficient. 
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