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 10 

Abstract. Vehicle emissions have become a major source of air pollution in urban areas, especially for near-road 11 

environments, where the pollution characteristics are difficult to be captured by a single-scale air quality model 12 

due to the complex composition of the underlying surface. Here we developed a hybrid model CMAQ-13 

RLINE_URBAN to quantitatively analyse the effects of vehicle emissions on urban roadside NO2 concentrations 14 

at a high spatial resolution of 50 m × 50 m. To estimate the influence of various street canyons on the dispersion 15 

of air pollutants, a Machine Learning-based Street Canyon Flow (MLSCF) scheme was established based on 16 

Computational Fluid Dynamic and two machine learning methods. The results indicated that compared with the 17 

CMAQ model, the hybrid model improved the underestimation of NO2 concentration at near-road sites with MB 18 

changing from -10 μg/m3 to 6.3 μg/m3. The MLSCF scheme obviously increased upwind concentrations within 19 

deep street canyons due to changes in the wind environment caused by the vortex. In summer, the relative 20 

contribution of vehicles to NO2 concentrations in Beijing urban areas was 39% on average, similar to results from 21 

CMAQ-ISAM model, but increased significantly with the decreased distance to the road centerline, especially 22 

reaching 75% on urban freeways.  23 
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1 Introduction 27 

The accelerated urbanization leads to severe air pollution in China. As one of the indicators of air pollution, nitrogen 28 

dioxide (NO2) causes an adverse impact on human health and promotes the generation of ozone and particulate 29 

matter (Pandey et al., 2005; Khaniabadi et al., 2017). During the last decade, benefiting from the implementations 30 

of several air pollution control strategies by the Chinese government, the air quality has improved (Jin et al., 2016; 31 

Zheng et al., 2018), and the vertical column densities of NO2 displayed a decreasing trend after 2013 (Shah et al., 32 

2020; Cui et al., 2021). However, the economic development and nitrogen oxides (NOx) emissions are not 33 

decoupled in China (Luo et al., 2022a). In some megacities of China, such as Chengdu, the daily averaged 34 

NO2 concentration could reach 200 μg/m3 (Zhu et al., 2019), far exceeding the 24-h average air quality guideline 35 

of 80 μg/m3 suggested by the Ministry of Environmental Protection of China. 36 

 37 

The improvement of PM2.5 in China was mainly due to the emission reduction and control measures of industrial 38 

and domestic sources (Zhang et al., 2019b), which also relieved the NO2 pollution, but the reduction potential of 39 

these sources has been gradually declining. Meanwhile, as the population of vehicles is growing rapidly, vehicle 40 

emissions have become a major source of NO2 pollution, especially in urban areas (Nguyen et al., 2018). Due to 41 

the low release height of vehicle emissions, combined with the negative dispersion condition caused by nearby 42 

buildings, air pollutants will be significantly accumulated near the street. According to roadside observations, 43 

within the distance of about 100-200 m near roads, the concentrations of CO, NO2, ultrafine particulate matter 44 

(UFP), PM2.5, PM10, and other pollutants will increase with the decreased distance to the road centerline, especially 45 

for the pollution levels of NO2 and UFP increasing exponentially. Therefore, the gradient of concentration around 46 

the road changes dramatically (Nayeb Yazdi et al., 2015; Hagler et al., 2012). Moreover, the dispersion of air 47 

pollutants in the near-road environment is significantly affected by geometric characteristics of the street canyon. 48 

For example, in a standard street canyon, when the external wind direction at the roof level is perpendicular to the 49 

street axis, a clockwise vortex will be generated inside, resulting in the accumulation of pollutant concentrations at 50 

the upwind grid receptors in the canyon (Oke, 1988; Manning et al., 2000). Consequently, how to quantitatively 51 

identify urban vehicle-induced air pollution around roads affected by complex underlying surface conditions has 52 

become an urgent scientific issue. 53 

 54 

Regional-scaled air quality models, represented by Chemical Transport Models (CTMs) including Community 55 

Multi-scale Air Quality (CMAQ) model (Byun and Schere, 2006), Comprehensive Air quality Model with 56 



4 

 

extensions (CAMx), and Weather Research and Forecasting/Chemistry model (WRF-Chem) (Grell et al., 2005), 57 

have been used extensively in assessment on the impacts of vehicle emissions on the regional atmospheric 58 

environment, focusing on the source apportionment (Luo et al., 2022b; Vara-Vela et al., 2016; Kheirbek et al., 59 

2016; Lv et al., 2020) and evaluation of control measures (Zhang et al., 2020; Yu et al., 2019; Cheng et al., 2019; 60 

Ke et al., 2017). However, the spatial resolution of CTMs is generally larger than 1 km×1 km, so the significant 61 

impacts of vehicle emissions on near-source air quality cannot be predicted by CTMs due to the grid 62 

homogenization on vehicle emissions. 63 

 64 

To avoid the aforementioned disadvantages, the local-scaled numerical models based on Gaussian diffusion theory 65 

or computational fluid dynamic (CFD) are adopted by numerous researches to study at a finer spatial resolution 66 

(Zhang et al., 2021b; Patterson and Harley, 2019; Soulhac et al., 2012), including Research LINE-source Dispersion 67 

Model (RLINE) (Snyder et al., 2013), Operational Street Pollution Model (OSPM), AERMOD (Cimorelli et al., 68 

2005), and RapidAir® (Masey et al., 2018). However, the large uncertainties in predictions from Gaussian 69 

dispersion models come from the provided meteorological conditions and background concentrations. The natural 70 

logarithm function is usually used to characterize the vertical profile of wind speed in both the inertial and rough 71 

sublayers, neglecting the influence of urban complex underlying surface compositions on the wind field (Cimorelli 72 

et al., 2005; Masey et al., 2018; Snyder et al., 2013). Nevertheless, in standard and deep street canyons, the changes 73 

of vertical wind profile cannot be described by the logarithmic form, otherwise the actual wind speed will be greatly 74 

overestimated (Soulhac et al., 2008). Although the OSPM has performed a large number of comparisons with field 75 

observations in shallow or standard street canyons, the validation of model performance in deep street canyons 76 

with a large aspect ratio was still inadequate (Kakosimos et al., 2010). Moreover, OSPM overestimated the bottom 77 

wind speed in a deep street canyon by about 10 times compared with the predictions from CFD, resulting in greatly 78 

underestimating pollutant concentrations (Murena et al., 2009). Comparatively speaking, CFD model can 79 

accurately simulate the air flow and pollutant concentration in complex street canyons, but the simulation domain 80 

of CFD model is much smaller than the urban scale, and the influence of the long-term meteorological boundary 81 

conditions cannot be considered.  82 

 83 

Considering the respective strengths and limitations of regional models and local models, several studies have been 84 

carried out on coupling of air quality models applicable to different scales (Ketzel et al., 2012; Stocker et al., 2012;  85 

Lefebvre et al., 2013; Jensen et al., 2017; Kim et al., 2018; Mallet et al., 2018; Hood et al., 2018; Benavides et al., 86 

2019; Kamińska, 2019; Mu et al., 2022). Although these models performed accurately in near-road simulation, the 87 
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influence of street canyons is still hard to be considered. In some hybrid models (Stocker et al., 2012; Jensen et al., 88 

2017; Mallet et al., 2018), OSPM was still applied to calculate concentration levels within the street, where the 89 

application of logarithmic wind profile probably overestimated the bottom wind speed in a deep street canyon as 90 

abovementioned. Other models simply assumed that in street canyons, wind direction followed the street direction, 91 

and wind speed was uniform, which was not sufficient to resolve the concentration gradient within street canyons 92 

(Kim et al., 2018; Benavides et al., 2019). Berchet et al. (2017) proposed a cost-effective method for simulating 93 

city-scale pollution taking advantage of high-resolution accurate CFD, while the primary NOx was predicted due 94 

to the lack of a chemical module. Therefore, it is essential to build an integrated model to predict long-term and 95 

near-road air pollution suitable for the urban complex underlying surface environment. 96 

 97 

The objective of the present work is to investigate the street-level NO2 concentrations and quantify the contribution 98 

of vehicle emissions considering the influence of the refined wind flow in complex urban environment. To this end, 99 

a hybrid model CMAQ-RLINE_URBAN was developed by offline coupling the local RLINE model with the 100 

regional CMAQ model and some localized urban thermodynamic parameter schemes. Specifically, in order to 101 

predict the effects of urban street canyons on the diffusion of pollutants, we developed a Machine Learning-based 102 

Street Canyon Flow (MLSCF) parameterization scheme to estimate the wind filed in a cost-effective way, which 103 

was based on integrating two machine learning methods using big wind profile data from 1600 CFD simulations. 104 

To evaluate the performance of CMAQ-RLINE_URBAN, simulations under several scenarios were conducted in 105 

Beijing urban areas from August 1st to 31th of 2019, and validated through comparison with observations from 106 

monitoring sites. Furthermore, spatial distribution characteristics of NO2 concentrations in the near-road 107 

environment were also analysed in this study. 108 

 109 

2 Materials and Methods 110 

2.1 Hybrid model framework 111 

Here, we established the MLSCF scheme based on R language, and modified the code of RLINE model to add 112 

other parameterization schemes with FORTRAN language. Finally, a multiscale air quality hybrid model was 113 

developed to achieve a high-resolution NO2 pollution mapping in urban areas. The framework of CMAQ-114 

RLINE_URBAN is shown in Figure 1. The hybrid model was established based on RLINE model, offline coupling 115 

with the gridded meteorological field provided by WRF model and the pollutant background concentrations from 116 

non-vehicle sources provided by CMAQ model with the Integrated Source Apportionment Method (ISAM), 117 

considering the thermodynamic effects caused by the complex underlying surface compositions of the city. In our 118 
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hybrid model, a NO2 pollution map with a high temporal (1 h) and spatial resolution (50 m×50 m) can finally be 119 

obtained.  120 

 121 

RLINE is a Gaussian line source dispersion model developed by Snyder et al. (2013) to predict pollutant 122 

concentrations in near-road environments. In the RLINE model, the mobile source is considered as a finite line 123 

source, from which the concentration is found by approximating the line as a series of point sources and integrating 124 

the contributions of point sources using an efficient numerical integration scheme. The number of points needed 125 

for convergence to the proper solution is a function of distance from the source line to the receptor, and each point 126 

source is simulated using a Gaussian plume formulation. The RLINE model performs generally comparable results 127 

when evaluated with other line source models for on-road traffic emissions dispersion (Snyder et al., 2013; Heist 128 

et al., 2013; Chang et al., 2015), and has been successfully used in many studies to evaluate the impacts from traffic 129 

emissions on air quality (Zhai et al., 2016; Valencia et al., 2018; Benavides et al., 2019; Filigrana et al., 2020; 130 

Zhang et al., 2021a). 131 

 132 

The simulation for local meteorological conditions in CMAQ-RLINE_URBAN included three steps: Estimation 133 

for areas above the top of Urban Canopy Layer (UCL), inside of UCL, and inside of the street canyon. (1) In this 134 

study, the configuration of WRF model referred to our previous study (Lv et al., 2020). The height of midpoint in 135 

the bottom layer to the ground was set as 22.5 m, which was close to the average height of buildings near street 136 

canyons, similar to the settings in the previous study (Benavides et al., 2019). Therefore, the meteorological field 137 

simulated by the WRF model was used as the wind field and atmospheric stability at the top of UCL. During the 138 

hybrid model running, the meteorological conditions over buildings near each road were obtained separately from 139 

WRF model according to the road location. (2) Then, the surface roughness length (𝑧0) of each road was estimated 140 

based on the surrounding building geometry and used to recalculate the localized meteorological parameters (e.g. 141 

Monin-Obukhov length) within UCL according to the algorithm proposed by Benavides et al. (2019) (𝑧0 scheme). 142 

The atmospheric turbulence intensity in urban areas around sunset in the afternoon was obviously enhanced 143 

considering the influence of the urban heat island effect based on methods in the AERMOD model (Cimorelli et 144 

al., 2005) (UHI scheme). The UHI scheme would affect the turbulent intensity based on the evaluation for the 145 

upward surface heat flux and the urban boundary layer height due to convective effects, and then the mixing height, 146 

convective velocity scale, surface friction velocity, and Monin-Obhukov length were all recalculated (details in the 147 

Supplement Section S1). (3) Finally, the wind field within UCL was calculated according to different types of road 148 

environments: open terrain and street canyon. The logarithmic wind profile based on Monin-Obhukov Similarity 149 
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Theory (MOST) (Foken, 2006) in the original RLINE model was still used when the grid receptor was located in 150 

the open terrain (MOST scheme), while the MLSCF parameterization scheme was used for grid receptors within 151 

the street canyon to quantitatively characterize the influence of the street canyon geometry and the external wind 152 

environment at the top of the roof. The detailed introduction for street canyon geometry and the MLSCF scheme 153 

was described in the following section. 154 

 155 

The real-time vehicle emission inventory used in both regional and local air quality models was based on Street-156 

Level On-road Vehicle Emission (SLOVE) Model developed in our previous study (Lv et al., 2020), which was 157 

based on the real-time traffic condition data from AMap. The daily averaged NOx emission from on-road vehicles 158 

in Beijing in 2019 was estimated to be 136.0 Mg, of which emissions from heavy duty vehicles and heavy duty 159 

trucks accounted for 31% and 34%, respectively. In our simulation, the concentrations of NO, NO2, and O3 160 

excluding contributions from vehicle emissions were used as background concentrations at the roof level, avoiding 161 

the double counting in the coupling process. These background concentrations were simulated by CMAQ-ISAM 162 

model, in which the emissions were divided into local mobile and other four emission groups to trace their 163 

contributions separately, so the influence of non-local vehicle emissions was considered, and details were presented 164 

in our previous study (Lv et al., 2020). The spatial resolution of the innermost domain in both WRF and CMAQ 165 

model was 1.33 km×1.33 km. In addition, the influence of atmospheric turbulence and building geometry on the 166 

vertical mixing of background concentration was considered (vertical mixing scheme). The ratios of wind speed at 167 

surface and roof levels were used as a proxy to calculate the contribution of background concentration over street 168 

canyons to the near-ground level (Benavides et al., 2019). In this scheme, the surface wind was from MLSCF 169 

scheme when the gird receptor is located within the street canyon, and otherwise the logarithmic wind profile was 170 

used to calculate the wind speed at the specified height, and details were showed in the Supplement Section S2. 171 

Finally, combined with the vehicle-induced primary NOx concentration calculated by the RLINE kernel, the high 172 

spatial resolution NO2 map could be simulated considering the photochemical process of NOx. In this study, a 173 

simplified two-reaction scheme, including the photolysis of NO2 and the oxidation of NO, was incorporated into 174 

the model to characterize the photochemical process of NOx (details in the Supplement Section S3), which has been 175 

successfully applied in the SIRANE dispersion model (Soulhac et al., 2017). 176 

 177 

2.2 Development for MLSCF scheme  178 

2.2.1 The database of street canyon geometry 179 

We first established a database of street canyon geometry for 15,398 roads in urban areas of Beijing based on the 180 
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three-dimensional building data obtained from our previous study (Lv et al., 2020) using Geographic Information 181 

System (GIS). Three typical parameters to represent street canyon geometry were investigated, including height 182 

ratio (𝐻𝑙/𝐻𝑟) (𝐻𝑙 is the building height on the left side, while 𝐻𝑟 is the building height on the right side), aspect 183 

ratio (𝐻/𝑊) (𝐻 is set to be the average height, and W is the width of the street canyon), the canyon length to height 184 

ratio (𝐿/𝐻) (𝐿 is set to be the length of the street canyon). In this study, the extremely special geometry of canyons 185 

was not considered, and the typical street canyons were selected as the following conditions: (1) The proportion of 186 

actual street canyon length (the length of road where the buildings nearby) was greater than 0.5; (2) 𝐻/𝑊 was 187 

greater than 0.2; (3) 𝐻𝑙/𝐻𝑟 was between 0.3 and 3.3. Finally, the total number of the typical street canyon was 188 

1,889, with a total length of 787 km. The spatial distributions of canyon geometry are shown in Figure S1 in the 189 

Supplement. In urban areas of Beijing, street canyon was generally wide with the averaged width of 50.3 m, and 190 

buildings on both sides were relatively low with a mean of 23.6 m. Most street canyons were obviously located in 191 

areas within the fourth ring road. The shallow (𝐻/𝑊≤0.5) canyons and long canyons (𝐿/𝐻>7) were dominated, 192 

accounting for 54% and 84% of the total number of street canyons. 193 

 194 

2.2.2 Description of CFD cases 195 

Here, to predict air flow in street canyons comprehensively, CFD simulations were conducted under combinations 196 

of different values of controlling factors based on ANSYS FLUENT (v19.2). The controlling factors included the 197 

aforementioned three typical parameters to represent canyon geometry, the background wind speed at the height of 198 

H (𝑉(𝐻)) and the angle between wind direction and street axis (α) to describe the external wind environment. The 199 

selected values of each factor were listed in Table 1, and total 1600 (i.e., 5×4×4×5×4) simulations were 200 

implemented.  201 

 202 

In this study, the computational domain of three-dimensional (3D) full-scale CFD simulations is shown in Figure 203 

2. The average building height 𝐻 of the street canyon was always set to 21 m in different simulations, which was 204 

similar to the mean street canyon height in Beijing. Other actual size of street canyons (e.g., street canyon width 205 

W) was calculated according to the ratio of each specific simulation. Distances between urban canopy layers (UCL) 206 

boundaries and the domain top, domain inlet and domain outlet were set as 5𝐻, 5𝐻, and 20𝐻, respectively.  207 

 208 

The turbulence closure schemes for CFD include the Reynolds-Averaged Navier-Stokes (RANS) and the Large-209 

Eddy Simulation (LES), and the choice of them depends on the computational cost, the accuracy required and the 210 
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purpose of application. The RANS resolves the mean time-averaged properties with all the turbulence motions to 211 

be modelled, while LES adopts a spatial filtering operation and consequently resolves large-scale eddies directly 212 

and parameterizes small-scale eddies (Zhong et al., 2016). Compared with the LES, the RANS is more easily 213 

established and computationally faster (Xie and Castro, 2006). However, the LES can provide a better prediction 214 

of air flow than that from the RANS when handling complex geometries (Dejoan et al., 2010; Santiago et al., 2010). 215 

In this study, considering the huge computational burden of a large number of simulations and the relatively simple 216 

geometry of street canyons in our modelling, the RANS was selected to characterize the air flow. 217 

 218 

Following the CFD guideline (Tominaga et al., 2008; Franke et al., 2011), zero normal gradient conditions or 219 

pressure outlet conditions were applied at the domain outlet, and symmetry boundary conditions were adopted at 220 

the domain top and two lateral domain boundaries. For near-wall treatment, no-slip wall boundary conditions with 221 

standard wall functions were used (Fluent, 2006). All governing equations for the flow and turbulent quantities 222 

were discretized by the finite volume method with the second-order upwind scheme. The SIMPLE scheme was 223 

used for the pressure and velocity coupling. The residual for continuity equation, velocity components, turbulent 224 

kinetic energy, and its dissipation rate were all below 10-5. Meanwhile, the CFD simulation would also stop when 225 

the iteration steps exceeded 10,000, due to the large computing cost of so many simulations. In summary, the 226 

average iteration steps of total 1600 cases were 4,443. About 54.6% of cases met the convergence criteria, and the 227 

median residual values of continuity equation, velocity in X axis, velocity in Y axis, velocity in Z axis, k and ε were 228 

1.0×10-5, 8.5×10-7, 8.5×10-7, 4.1×10-7, 3.4×10-6 and 5.4×10-6, respectively, indicating the overall model 229 

performance was acceptable. The selected turbulence model and grid arrangement are discussed in the following 230 

section. 231 

 232 

At the domain inlet, the power-law velocity profile (Brown et al., 2001), vertical profiles of turbulent kinetic energy 233 

𝑘𝑖𝑛 and its dissipation rate 𝜀𝑖𝑛 at the domain inlet (Lien and Yee, 2004; Zhang et al., 2019a), were described below: 234 

𝑈0(𝑧) = 𝑈𝑟𝑒𝑓 (
𝑧

𝐻𝑟𝑒𝑓
)

𝛼

 235 

𝑘𝑖𝑛(𝑧) = (𝐼𝑖𝑛 × 𝑈0(𝑧))
2
 236 

𝜀𝑖𝑛(𝑧) =
𝐶𝜇

3/4
𝑘𝑖𝑛

3/2

𝜅𝑧
 237 



10 

 

Here, 𝑈0(𝑧) stood for the stream-wise velocity at the height z. 𝑈𝑟𝑒𝑓 represented the reference speed. The reference 238 

height 𝐻𝑟𝑒𝑓 was 21m. The power-law exponent of 𝛼=0.22 denoted underlying surface roughness above medium-239 

dense urban area (Kikumoto et al., 2017). Turbulence intensity 𝐼𝑖𝑛 was 0.1, Von Karman constant 𝜅 was 0.41 and 240 

𝐶𝜇 was 0.09. 241 

 242 

2.2.3 The CFD validation  243 

In this study, the stream-wise and vertical velocity predicted by CFD within street canyons was compared with 244 

wind tunnel data in previous researches. For buildings of the cube arrays model, wind tunnel data from Brown et 245 

al. (2001) was used to evaluate the reliability of CFD results by measuring vertical profiles of velocity. In this 246 

experiment, street canyon was perpendicular to the wind direction at the roof level. For long-street models, we 247 

predicted horizontal profiles of velocity along the street centerline at the height of z=0.11H or vertical profiles at 248 

some points and then validated CFD simulations using wind tunnel data from Hang et al. (2010). In this validation 249 

case, the wind direction at the roof level was parallel to the axis of street canyons. The description and validation 250 

results are shown in Figure S2-S3, and Table S1 in the Supplement, respectively.  251 

 252 

We identified the influence of different minimum sizes of hexahedral cells near wall surfaces (fine: 0.1m, medium: 253 

0.2m, and coarse: 0.5m) and turbulence models (standard k-ε model and RNG k-ε model) on the predicted velocity, 254 

to evaluate the grid independence and turbulence model accuracy (Figure S3 in the Supplement). The results 255 

indicated that the predictions from the standard k-ε model could well match the variations of observed velocity 256 

within the street canyon, of which performances were much better than that of the RNG model. In addition, different 257 

grid resolutions used in simulations would not obviously affect the predicted results. We finally adopted the 258 

standard k-ε model to characterize turbulence, and the minimum size of hexahedral cells near wall surfaces was 259 

0.5 m with an expansion ratio of 1.1 was applied to save the computing cost, and the average mesh number in total 260 

80 street canyon models is 1,367,965. 261 

 262 

Moreover, the averaged wind speed from CFD in street canyons with different aspect ratios and external wind 263 

direction was compared with predictions from other empirical methods used in SIRANE model (Soulhac et al., 264 

2012) and MUNICH model (Kim et al., 2018). Similar predictions using different methods also proved the 265 

reliability of CFD simulation in this study (Figure S4 in the Supplement). 266 

 267 
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2.2.4 Machine learning 268 

Data driven method, such as machine learning and deep learning, is now a successful operational geoscientific 269 

processing schemes and has co-evolved with data availability over the past decade (Reichstein et al., 2019). 270 

Specially, these models have been used as computationally efficient emulators of explicit mechanism models, to 271 

explore uncertainties (Aleksankina et al., 2019) and sensitivities or replace complex gas-phase chemistry schemes 272 

(Keller and Evans, 2019; Conibear et al., 2021). In addition, meta-models (Fang et al., 2005) such as neural 273 

networks and Gaussian process (Beddows et al., 2017) are also used to produce a quick to run model surrogate and 274 

show reliable performance. Random Forest (RF) model algorithm is an ensemble learning method that generates 275 

many decision trees and aggregates their results, which has been developed to solve the high variance errors typical 276 

of a single decision tree (Breiman, 2001). Multivariate Adaptive Regression Splines (MARS) is a nonparametric 277 

and nonlinear regression method, which can be regarded as an extension of the multivariate linear model (Friedman, 278 

1991). RF and MARS are common machine learning methods which run efficiently on large data sets, and are 279 

relatively robust to outliers and noise. Furthermore, they never require the specification of underlying data model 280 

and the complex parameter tuning, and they can still provide efficient alternatives and generally show a high 281 

accuracy in applications for predict air pollutant concentrations (Hu et al., 2017; Chen et al., 2018; Kamińska, 2019; 282 

Geng et al., 2020). 283 

 284 

Here, based on the database including 42,880 samples obtained from 1600 CFD simulations, the RF and MARS 285 

were both used to simulate the wind vector along X-axis (𝑉𝑥) and Y-axis (𝑉𝑦) at different heights within the street 286 

canyon respectively. The 𝑉𝑥 and 𝑉𝑦 were the average of all velocities along X or Y axis over the same horizontal 287 

profile at a specific height within the street canyons. The input predictor variables included 𝐻/𝑊, 𝐿/𝑊, 𝐻𝑙/𝐻𝑟, 288 

the grid receptor relative height (𝑧/𝐻 ), the background wind vector at the height of H along X-axis (𝑉𝑏𝑔𝑥 =289 

𝑉(𝐻) × sin 𝛼 ) and Y-axis (𝑉𝑏𝑔𝑦 = 𝑉(𝐻) × cos 𝛼 ). We finally combined the advantages of these two machine 290 

learning models and developed the MLSCF scheme to predict wind environment in street canyons and incorporated 291 

into the hybrid model, which is discussed in the section 3.1.  292 

 293 

In RF model, the number of predictors randomly sampled at each split node in the decision tree (𝑚𝑡𝑟𝑦) and the 294 

number of trees to grow (𝑁𝑢𝑚𝑇𝑟𝑒𝑒𝑠) are two important hyperparameters that determine the performance of the 295 

model. Similarly, in MARS model, the two important hyperparameters are the total number of terms (𝑛𝑝𝑟𝑢𝑛𝑒) and 296 

the maximum number of interactions (𝑑𝑒𝑔𝑟𝑒𝑒). By comparing the mean squared error (MSE) for testing datasets 297 
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across models with candidate parameter combinations, we set 𝑚𝑡𝑟𝑦  and 𝑁𝑢𝑚𝑇𝑟𝑒𝑒𝑠  as 6 and 200 in RF, 298 

respectively, and 𝑛𝑝𝑟𝑢𝑛𝑒  and 𝑑𝑒𝑔𝑟𝑒𝑒  as 23 and 3 in MARS, respectively. Additionally, the 10-fold cross-299 

validation (CV) repeated ten times were considered to evaluate the prediction performance of our models. The total 300 

dataset was randomly divided into 10 subsets, where 9 subsets was used to train model and another was applied for 301 

validation. The fitted coefficients of MARS are shown in Table S2-S3 in the Supplement. 302 

 303 

In order to identify the sensitivity and response relationship between prediction variables and results in RF model, 304 

we used the MSE for out-of-bag (OOB) to evaluate the relative importance of each feature to 𝑉𝑥  and 𝑉𝑦 , by 305 

randomly replacing the value of a single prediction variable one by one (Liaw, 2002). Higher values of increase in 306 

MSE indicated that the predictor was more important. In addition, Partial Dependence Plots (PDPs) was applied to 307 

establish the response relationship between the change of a single predictive variable and the predicted results, 308 

considering the average influence of other variables (Greenwell, 2017). 309 

 310 

2.3 Configuration of CMAQ-RLINE_URBAN 311 

The near-ground NO2 concentrations were simulated from August 1st to 31th in 2019 when the average of daily 312 

high temperatures was higher than 30 ℃ and sunlight duration was longer than 13 hours, leading to strong 313 

photochemical reactions. The simulation domain for the hybrid model covered the core urban areas within and 314 

surrounding the fifth ring road, shown in Figure 3. The receptors included both grid receptors and monitor receptors. 315 

The grid receptors were set at a spatial resolution of 50 m×50 m, and the height above the ground was 1.5 m, which 316 

was equivalent to the height of the human breathing. We used data from 10 observation stations (monitor receptors) 317 

located in the normal urban environment and 5 near-road monitoring sites for validation (Beijing Ecological 318 

Environment Monitoring Center, available at http://zx.bjmemc.com.cn/) (DSH, NSH, QM, XZM, and YDM) in the 319 

simulation domain (Figure 3), which were 10 meters and 3 meters above the ground respectively. The QM and 320 

XZM sites were located in shallow street canyons, and details for the morphometric of near-road measurement sites 321 

were shown in Table S4 in the Supplement. 322 

 323 

In general, compared to the RLINE model, CMAQ-RLINE_URBAN has the following improvements: 324 

(a) The gridded meteorological parameters provided by the WRF model were used. 325 

(b) Gridded non-vehicle-related concentrations provided by CMAQ-ISAM model were used as background 326 

concentrations. 327 
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(c) A simple NOx photochemical scheme was incorporated to simulate NO2 concentrations. 328 

(d) Thermodynamic effects caused by the special underlying surface structures of the city were considered, 329 

including UHI effects, the influence of local buildings on turbulence intensity and vertical mixing of 330 

background concentrations. 331 

(e) A newly developed MLSCF scheme was applied to predict wind environment in street canyons. 332 

 333 

In our simulation, the model configurations in the base scenario CMAQ-RLINE_URBAN included all (a)-(e) 334 

schemes, and the other two control scenarios were set to investigate the sensitivity of urban schemes on predictions, 335 

where all input data was set to be the same. The scenario CMAQ-RLINE only including (a)-(c) schemes was set to 336 

analyze the impacts of urban thermodynamic schemes, and the scenario CMAQ-RLINE_URBAN_nc including 337 

(a)-(d) schemes was set to identify the impacts of the MLSCF scheme. Although the wind environment for each 338 

road at the top of the canyon was provide by the WRF model in all scenarios, the calculation of wind profile within 339 

the street canyon was different. It was estimated based on the MOST theory in the CMAQ-RLINE and CMAQ-340 

RLINE_URBAN_nc rather than that from the MLSCF in the CMAQ-RLINE_URBAN. 341 

 342 

3 Results  343 

3.1 Fitting results of machine learning 344 

In this study, the 10-fold cross-validation (CV) repeated ten times was considered to evaluate the prediction 345 

performances of RF and MARS models. As shown in Figure 4 and Figure S5, both models performed acceptable 346 

robustness in CV, indicating that neither RF nor MARS model overfitted the data. In general, the performances of 347 

both models in predicting 𝑉𝑦 was better than that in 𝑉𝑥 of which the absolute value was relatively small, especially 348 

for MARS model. Since 𝑉𝑥 was responsible for the formation of the vortex within street canyons and affected by 349 

multiple factors, it was more difficult to be simulated. The averages of mean absolute error (MAE), root mean 350 

square error (RMSE), and correlation coefficient (R) in the CV of the RF model for 𝑉𝑥 and 𝑉𝑦 were 0.04 m/s and 351 

0.05 m/s, 0.02 m/s and 0.03 m/s, and 0.99, respectively. Although the average of the relative error (RE) was a little 352 

high (42.5% and 43%), particularly when the predicted wind speed was low, the median RE were relatively low 353 

with 9.8% and 2.7%, respectively, indicating an acceptable performance. Compared with the advanced non-linear 354 

RF algorithm, the MARS model performed not very well, especially when the absolute value of 𝑉𝑥 was greater than 355 

1 m/s and 𝑉𝑦 was less than 3 m/s. However, when the predicted wind speed by machine learning methods was 356 

compared with observations from wind tunnel experiments, we found that the performance of the MARS model 357 
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was obviously better than that of RF model in one of validation cases (see Figure 5). The decision tree model like 358 

RF failed to respond to the parts beyond the range of prediction variables (𝑉𝑏𝑔𝑦=17 m/s >>5 m/s), while the more 359 

reasonable predictions can be obtained by the MARS model which used piecewise linear function essentially. 360 

Therefore, the MLSCF scheme was established based on a method to combine the advantages of each model. The 361 

RF model was used when the input value was within the range of predictors shown in Table 1, otherwise the 362 

predictions from the MARS model were used.  363 

 364 

In addition, the importance of each predictor variable in the RF model was investigated to explain their impacts on 365 

predictions. As shown in Figure 6, the background wind speeds on x and y axis played vital roles in predictions of 366 

𝑉𝑥  and 𝑉𝑦 , respectively, followed by the relative height (𝑧/𝐻). Among the geometric parameters of the street 367 

canyon, the impact of 𝐿/𝑊 was least. Since 𝑉𝑥 was the main driving force for the formation of vortices in street 368 

canyons, it was more affected by the geometry of street canyons especially 𝐻𝑙/𝐻𝑟, comparing to 𝑉𝑦. This feature 369 

importance ranking was basically consistent with the conclusion in a previous study (Fu et al., 2017). Figure S6 in 370 

the Supplement shows the PDPs of each predictor variable in RF model for 𝑉𝑥 and 𝑉𝑦. As 𝑧/𝐻 grew,  𝑉𝑥 and 𝑉𝑦 371 

showed linear and logarithmic increase patterns, respectively. And the resistant effect of windward buildings on 372 

wind speed enhanced with the increasing of 𝐻𝑙/𝐻𝑟 , resulting in a significant decrease in 𝑉𝑥  particularly when 373 

𝐻𝑙/𝐻𝑟 was lower than 1.25.  The relationship between predictors and results in the model was consistent with the 374 

actual mechanism, indicating our model could provide an accurate description of the wind field in the street canyon. 375 

 376 

3.2 Impacts of MLSCF on simulations in street canyons 377 

We compared the differences between monthly mean wind profile in different street canyons including QM 378 

(shallow canyon: 𝐻/𝑊 = 0.22), XZM (shallow canyon: 𝐻/𝑊 = 0.35), SZJ (standard canyon: 𝐻/𝑊 = 1) and 379 

JTDL (deep canyon: 𝐻/𝑊 = 1.93), calculated by the default logarithmic function based on MOST in the original 380 

RLINE model (Foken, 2006), and the MLSCF scheme developed in this study. As shown in Figure 7(a)-(d), the 381 

wind profile estimated by MOST showed a logarithmic change at the height above displacement height (𝑑ℎ) with 382 

a decrease to 0 at 𝑑ℎ, and remained constant below 𝑑ℎ (the 𝑑ℎ  is calculated by multiplying surface roughness length 383 

(z0) times a factor which is recommended to be set as 5). Compared with the MOST, the simulated wind speeds 384 

near the ground and at the top of canyons were generally lower based on the MLSCF scheme in shallow and 385 

standard street canyons. In the deep street canyon, the significant reduction in ventilation volume led to the mean 386 

wind speed simulated by the MLSCF scheme much lower than that of MOST at all heights. Although the aspect 387 
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ratios of the street canyon located in QM and XZM were similar, their orientations were quite different, resulting 388 

in significant differences under prevailing external winds in different directions. Since the prevailing northerly and 389 

southerly wind was observed in Beijing during the study period, the resistance effect of the buildings on both sides 390 

of the east-west street canyon located in QM was more obvious. 391 

 392 

We also investigated the impacts of the MLSCF on hourly wind direction at the bottom (𝑧 = 3𝑚) of different street 393 

canyons by comparing the roof-level predictions from WRF model (see Figure 7(e)-(f)). In the shallow street 394 

canyon like QM, the simulated wind direction at the bottom was consistent with the background on the whole, with 395 

the R reaching 0.8. When the background wind direction was less than 180°, the averaged wind direction at the 396 

bottom simulated by MLSCF was 91.8°, which was basically consistent with the angle between the street and the 397 

south direction (84.5°). When the background wind direction was greater than 180°, the average wind direction 398 

predicted by MLSCF (257.4°) was similar to that in the opposite direction of the street (264.5°), which was in line 399 

with the theory proposed by Soulhac et al. (2008) that the average wind direction in street canyons was assumed to 400 

be consistent with the (opposite) orientation of the street. While in the deep street canyon of SZJ, when the external 401 

wind perpendicularly blew to the street, the wind direction at the bottom was completely opposite to that at the top 402 

due to the formation of vortex, with the R reaching -0.97. In conclusion, compared with the traditional MOST 403 

method, the newly developed MLSCF scheme could well simulate the influence of the external wind environment 404 

and geometry on the wind field inside the street canyon. 405 

 406 

As shown in Figure 8, the impacts of the MLSCF scheme on simulated NO2 concentration were identified by the 407 

differences between CMAQ-RLINE_URBAN and CMAQ-RLINE_URBAN_nc scenario during a clean day 408 

(August 24th). When the atmosphere was stable at night, in street canyons with a large aspect ratio, the wind 409 

direction at the bottom changed to the opposite to that at the top, combined with the decreased wind speed affected 410 

by the MLSCF scheme, the NO2 concentrations at upwind grid receptors increased by up to 80 μg/m3. Meanwhile, 411 

the changes in wind direction would also decrease the concentrations at downwind grid receptors by up to 20 μg/m3. 412 

For example, in the SZJ standard canyon, the background wind direction over the street was 79°(easterly), and 413 

the wind direction at the bottom changed to 291° affected by the MLSCF scheme (westerly). Therefore, the upwind 414 

NO2 concentrations increased, and the location of peak NO2 concentration shifted to the windward. Since the 415 

changes in NO2 concentrations were also influenced by the local on-road emissions, the increase was only up to 416 

2.1 μg/m3 in SJZ street, where the traffic flow and vehicle emissions were small at night. However, a little influence 417 

was observed during the day in the convective boundary layer. During this period, although the wind direction at 418 
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the bottom was not changed obviously due to the parallel background wind in SZJ street, the increased surface 419 

wind speed was beneficial for the dispersion, resulting in the decreased concentration in grid receptors within both 420 

sides of the street canyon. In summary, the MLSCF scheme enabled the characterization of the concentration 421 

distribution in street canyons. 422 

 423 

3.3 Performance of near-road simulations from different models 424 

The performances in predicting NO2 concentrations at all monitor receptors from different models were first 425 

compared, including CMAQ-RLINE_URBAN, CMAQ-RLINE and CMAQ model. The mean bias (MB), RMSE, 426 

normalized mean bias (NMB), normalized mean gross error (NMGE), the fraction of predictions within a factor of 427 

two (FAC2), Index of agreement (IOA), and R between simulations and observations were all selected as statistical 428 

indicators for the evaluation (Table 2). In general, the performance of CMAQ-RLINE_URBAN was the best at all 429 

urban sites. Compared to the CMAQ model, the averaged MB and NMB at urban sites in the hybrid model 430 

decreased from 8 μg/m3 to 1.3 μg/m3 and 27% to 4%, respectively. 431 

 432 

Diurnal variations of observed and predicted hourly averaged NO2 concentrations at near-road sites from different 433 

models were mainly compared and shown in Figure 9. The comparison of hourly and daily averaged concentrations 434 

is shown in Figure 10. Overall, the CMAQ-RLINE_URBAN performed best with the smallest deviations. By 435 

comparing the performances of the CMAQ and CMAQ-RLINE scenario, we found the direct coupling between the 436 

CMAQ and RLINE models could reproduce the high NO2 concentrations at near-road sites in daytime, and 437 

significantly improve the underestimation of near-source concentrations due to grid dilution on emissions in 438 

CMAQ model. The averaged MB and NMB at all sites changed from -10 μg/m3 to 25.6 μg/m3, and from -20% to 439 

51%, respectively. However, a significant overestimation was found in the CMAQ-RLINE at night (0:00-6:00) and 440 

around sunset in the afternoon (16:00-23:00), of which the peak could exceed the observed concentrations by more 441 

than 1 times. This overestimation was reduced in the CMAQ-RLINE_URBAN, where the urban thermodynamic 442 

schemes were implemented. The averaged MB and NMB decreased to 6.3 μg/m3 and 12%, respectively, due to the 443 

following reasons: (1) The increased surface roughness length slightly enhanced local turbulence intensity near 444 

roads; (2) The UHI scheme enhanced the intensity of atmospheric turbulence in urban areas before and after sunset 445 

in the afternoon; (3) The effect of turbulence intensity on the local vertical mixing of background concentrations 446 

was considered, significantly reducing the mixing ratio of concentrations over UCL and near the ground at nights 447 

in the stable boundary layer (Figure S7 in the Supplement), which was probably the main driving force of decreased 448 

predictions in the hybrid model (Benavides et al., 2019). However, the CMAQ-RLINE_URBAN slightly 449 
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overestimated the nighttime NO2 concentration of all observation stations except the DSH, which was probably 450 

caused by overestimations of background concentrations from CMAQ-ISAM and vehicle emissions. 451 

 452 

The accuracy of model performances at each traffic site showed a little difference affected by the variations in the 453 

traffic flow and emissions of nearby roads, as well as the geometry of surrounding buildings and street canyons. At 454 

DSH and NSH sites, which were adjacent to ring roads as the main urban freight corridors with a high traffic flow 455 

including a large proportion of trucks, the high NOx emissions led to the highest roadside NO2 observations among 456 

all sites. The CMAQ model would significantly underestimate the high NO2 concentration at sites nearby ring roads, 457 

with MB and NMB lower than -15 μg/m3 and -28% (Table S5 in the Supplement), respectively, which was 458 

improved using CMAQ-RLINE_URBAN. However, the hybrid model performed a minor overestimation at the 459 

NSH site, since the monitor was actually positioned in the road centerline but assumed to be located downwind in 460 

the model, resulting in a relatively large systematically error (Snyder et al., 2013). In total, CMAQ-461 

RLINE_URBAN performed best among all models, especially improving the estimation of NO2 concentrations 462 

near roads by the original regional model. 463 

 464 

Additionally, Figure S8 in the Supplement shows the comparison between simulated and observed roadside hourly 465 

and daily maximum 8-hour average O3 concentrations by different models, and their diurnal variations are shown 466 

in Figure S9. Generally, the hybrid model significantly improved the overestimation of daytime O3 concentrations 467 

by the CMAQ model when considering the titration effect of high NO concentration near roads on O3. In the hybrid 468 

model, the peak time was delayed to about 15:00, which was closer to the observation, but still 1-2 hours earlier 469 

than the actual time, which may be related to the uncertainty in NO2 photolysis rate. 470 

 471 

3.4 Spatial distribution characteristics of simulated concentrations 472 

We investigated the differences between the spatial distribution of the monthly averaged NO2 concentration 473 

simulated by the CMAQ and CMAQ-RLINE_URBAN models, as shown in Figure 11. Since the urban 474 

thermodynamic schemes were considered in the hybrid model, the overestimation of most urban environmental 475 

grid receptors by CMAQ model was relieved. Within the fourth ring road and its surrounding areas, the mean 476 

concentration of NO2 from CMAQ-RLINE_URBAN was 30.1 μg/m3, lower than that from the CMAQ model (39.5 477 

μg/m3). The overall spatial distribution characteristics of NO2 predictions from both models showed that the 478 

concentrations in south regions were high due to the pollution transport from Hebei province (An et al., 2019). 479 

However, near-road hotspots for the NO2 pollution were identified in the hybrid model where the spatial resolution 480 
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of results increased to 50 m×50 m. The NO2 concentrations nearby ring roads with high traffic flow and emissions 481 

were up to 120 μg/m3, much higher than the maximum prediction from CMAQ model (52.4 μg/m3). In addition, 482 

the simulated near-road concentrations from the hybrid model during traffic peak hours (18:00-19:00) were 483 

significantly higher than those at noon (12:00-13:00), while there were few changes in results from CMAQ model 484 

(Figure S10 in the Supplement).  485 

 486 

The NO2 concentrations estimated by CMAQ-RLINE_URBAN at all grid receptors grids followed a two-mode 487 

Gaussian distribution (Figure S11 in the Supplement), which was similar to Zhang’s results (Zhang et al., 2021b). 488 

The NO2 concentrations as a result of vehicle emissions were further calculated by the differences between the total 489 

and background concentrations. In general, the vehicle-induced NO2 concentrations in urban areas was 11.8 μg/m3, 490 

accounting for 39% of the total concentrations, which was similar to the predicted contribution from the CMAQ-491 

ISAM model (42.5%).  492 

 493 

Figure 12 shows the changes in NO2 concentrations simulated by the hybrid model with distance from the grid 494 

receptors to its nearest road centerline. The concentrations at grid receptors within 200 m from road were 495 

significantly affected by vehicle emissions. Within 50 m around the road, as the distance from grid receptors to the 496 

road centerline gradually increased, the NO2 concentrations decreased exponentially. The total NO2 concentrations 497 

decreased from 53.1 μg/m3 to 30 μg/m3, and the vehicle-induced concentrations also dropped from 34.7 μg/m3 to 498 

12.6 μg/m3. The concentrations near roads with different types were highly dependent on the emission intensity. 499 

The NO2 concentration was highest in the center of the urban freeway, which was 76 μg/m3 and about 1.9 times 500 

higher than that on local roads. The relative contribution of vehicle emissions to NO2 concentration reached up to 501 

75.3% on urban freeways, as well as 71.9% and 65.5% on artery roads and freeways, but only 51.1% on local roads. 502 

It was worth noting that although the NO2 concentrations at far grid receptors to the road on highways were slightly 503 

higher than those on other road types, the contribution of vehicle emissions was the least. It was since the NOx 504 

emission intensity of freeways was as high as that on artery roads, but the density and height of buildings around 505 

freeways were usually low, resulting in a high vertical flux of background concentrations from the top of UCL to 506 

the ground. In conclusion, the results from the hybrid model accurately reflected not only the impacts of local on-507 

road emissions, but also the pollution characteristics affected by non-vehicle sources at the regional scale.  508 

 509 
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4 Conclusion and Discussions 510 

In this study, we developed a hybrid model CMAQ-RLINE_URBAN to quantitatively analyse the effects of vehicle 511 

emissions on urban roadside NO2 concentrations at a high spatial resolution of 50 m × 50 m. The main conclusions 512 

of this study are as follows: 513 

 514 

The developed MLSCF scheme revealed that affected by the geometry of buildings on both sides of the road, the 515 

wind filed in the street canyon sometimes was quite different from that in the environmental background. In deep 516 

street canyons, the wind speed at the bottom decreased obviously due to the resistant effect of buildings, and the 517 

directions of horizontal flow at bottom and top of the canyon were completely opposite due to the formation of 518 

vortex. The application of MLSCF scheme in the hybrid model led to increase NO2 concentrations at upwind grid 519 

receptors within deep street canyons due to changes in the wind environment. However, the influence of the 520 

turbulence induced by street canyon effects on the mixing of air pollution was not considered on which we will 521 

make effort in the future. 522 

 523 

The comparison between observations and predictions showed that the hybrid model significantly improved the 524 

underestimation of near-source concentrations due to grid dilution on emissions in CMAQ model. The 525 

implementation of the urban thermodynamic schemes in the hybrid model also relieved the overestimation in night-526 

time NO2 concentrations from the CMAQ directly coupled with RLINE model. The predictions from CMAQ-527 

RLINE_URBAN model could accurately reflect not only the impact of road local emissions, but also the pollution 528 

characteristics of non-vehicle sources at regional level. It revealed that in summer, the average contribution of 529 

vehicle emission to NO2 concentrations in urban areas of Beijing was 11.8 μg/m3, and the relative contribution 530 

accounted for approximately 39%. Moreover, the vehicle-induced NO2 pollution increased significantly with the 531 

decreased distance to the road centerline, especially reaching 76 μg/m3 (75%) on urban freeways. 532 

 533 

On the basis of this study, the following perspectives are proposed for future research: (1) At present, the execution 534 

time during 1 h running CMAQ-RLINE_URBAN over the urban domain was about 3.9 hours in average, which 535 

reached 4.8 hours at night due to the difficulty of convergence in the condition of the high atmospheric stability. 536 

Therefore, considering the running cost, the grid resolution of area in Beijing 5th ring road and its surroundings 537 

can reach 50 m×50 m. We will make efforts to develop a parallel computing method to reduce the computing time, 538 

in order to improve the grid resolution of a relatively large-scale simulation. (2) In our study, a simplified two-539 

reaction scheme was incorporated into the model to characterize the photochemical process of NOx, since it 540 
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performed similar predictions and less computational time compared with those of the complicated CB05 gas phase 541 

chemical mechanism (Kim et al., 2018). However, another study pointed that the impact of nonlinear O3-NOx-VOC 542 

chemistry on NO2 concentrations in the deep canyon was nonnegligible (Zhong et al., 2017). The influence of 543 

different chemistry schemes on near-road simulation will be investigated in the future. (3) The long-term site-544 

observation of wind environment and pollutant concentrations in various street canyons were suggested to be 545 

compared with modelling results, especially in deep street canyons with large aspect ratio. The navigation 546 

monitoring technology would be applied in the model verification, which can carry out large-scale observation of 547 

concentration along streets. (4) Here, we considered the dynamic impact of idealized building structure on wind 548 

environment in street canyons. However, there are many other influencing factors, such as building layout and 549 

arrangement, roof shape, green vegetation, and thermodynamic effect, which are suggested to be considered in 550 

future studies. (5) In this study, we mainly focused on the NO2 concentrations. In fact, the concentration of 551 

particulate matter, especially UFP, will also have an obvious peak near the road centerline. In the future, the process 552 

of physical and chemical changes of particulate matter near the vehicle exhaust outlet should be further investigated. 553 

(6) The high resolution NO2 concentration map was benefit for the estimation of human health risks induced by the 554 

air pollution at the street level in future researches. 555 

 556 
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 797 

 798 

Figure 1: The framework of multiscale hybrid model CMAQ-RLINE_URBAN. 799 
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 801 
Figure 2: Computational domain (a) and grid arrangement (b) in all CFD test case.  802 
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 805 

Figure 3: Study domain (© OpenStreetMap contributors 2020. Distributed under the Open Data Commons 806 

Open Database License (ODbL) v1.0) and location of monitoring sites (© Microsoft). A. DSH; B. NSH; C. 807 

QM; D. XZM; E. YDM.  808 
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 810 
Figure 4: Cross validations of machine learning models for Vx (a, c) and Vy (b, d): (a)-(b) RF model; (c)-(d) 811 

MARS model. 812 
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 814 
Figure 5: Performances of machine learning on velocity profile in wind tunnel experiments. The street 815 

canyon was perpendicular (a) or parallel (b) to the wind direction at the roof level in different experiments. 816 

The detailed description of each experiment was introduced in Section 2.2.3. 817 
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 819 

Figure 6: Variable importance ranking in the RF model for (a) 𝑽𝒙 and (b) 𝑽𝒚. 820 
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 822 
Figure 7: Influence of MLSCF on wind filed in the street canyon. Monthly averaged vertical profile of wind 823 

speed from MOST and MLSCF method in different street canyons: (a) QM (H/W=0.22); (b) XZM 824 

(H/W=0.35); (c) SZJ (H/W=1); (b) JTDL (H/W=1.93). The gray shade represents the standard deviation in 825 

results of all hours. Hourly wind direction from WRF model (at roof level) and MLSCF method (at ground 826 

level) in different street canyons: (e) QM (H/W=0.22); (f) SZJ (H/W=1). As the gray and green shade shown, 827 

the background wind over the street canyon provided by WRF model was divided into four main directions: 828 

east, west, south and north. 829 
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 831 

Figure 8: Differences in NO2 concentrations at the height of 1.5 m impacted by MLSCF scheme (a, c) over 832 

the study domain (CMAQ-RLINE_URBAN - CMAQ-RLINE_URBAN_nc) (© Microsoft) and (b, d) near 833 

SZJ in 2019-08-24 at 0:00-1:00 (a, b) and 10:00-11:00 (c, d). 834 
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 836 

Figure 9: Diurnal variations of observed and predicted hourly averaged NO2 concentrations from different 837 

models at near-road monitoring sites: (a) DSH; (b) NSH; (c) QM; (d) XZM; (e) YDM. 838 
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 840 

Figure 10: Observed and predicted hourly (a-c) or daily averaged (d-f) NO2 concentrations from different 841 

models at near-road sites: (a, d) CMAQ model; (b, e) CMAQ-RLINE model; (c, f) CMAQ-RLINE_URBAN 842 

model. 843 
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 845 

 846 

 847 
Figure 11: Spatial distribution of monthly averaged NO2 concentrations from (a) CMAQ model and (b) 848 

CMAQ-RLINE_URBAN model (© OpenStreetMap contributors 2020. Distributed under the Open Data 849 

Commons Open Database License (ODbL) v1.0). 850 
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 852 
Figure 12: Monthly averaged NO2 concentrations attributed to all emission sources or vehicles with distance 853 

from the receptor to its nearest road centerline. (a) NO2 attributed to all emission sources near all roads; (b) 854 

NO2 attributed to all emission sources near different road types; (c) Relative contribution of vehicles to NO2 855 

near different road types. The shade area in (a) represents the standard deviation in results of all receptors. 856 
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Table 1: Values of controlling factors used in the simulations. 858 

Controlling factor Value 

𝑯𝒍/𝑯𝒓 (unitless) 0.50 0.75 1.00 1.33 2.00 

𝑯/𝑾 (unitless) 0.25 0.50 1.00 2.00 - 

𝑳/𝑯 (unitless) 3 5 10 20 - 

𝑽(𝑯) (m/s) 1 2 3 4 5 

𝜶 (°) 0 30 60 90 - 

 859 
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Table 2: Model performances under different scenarios 861 

Sites Scenario MB RMSE NMB NMGE FAC2 IOA R 

All 

CMAQ 3.1 25.6 9 53 0.65 0.45 0.52 

CMAQ-RLINE 18.5 46.6 53 77 0.67 0.19 0.55 

CMAQ-RLINE_URBAN 4.6 25.8 13 49 0.75 0.49 0.57 

Urban 

CMAQ 8.0 24.3 27 58 0.68 0.40 0.59 

CMAQ-RLINE 12.3 35.8 43 76 0.64 0.20 0.50 

CMAQ-RLINE_URBAN 1.3 23.1 4 51 0.71 0.47 0.49 

*MB: Mean bias; RSME: Root mean squared error; NMB: Normalized mean bias; NMGE: Normalized mean gross 862 

error; FAC2: Fraction of predictions within a factor of two; IOA: Index of agreement; R: correlation coefficient. 863 
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