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Response to Reviewers #1’s Comments 

Summary 

The study of Lv et al. presents a multi-scale modelling framework for the simulation of 

urban scale NO2 and potentially other primary pollutants at high spatial resolution with a 

focus on traffic-related air pollution. The method combines several different types of 

models and approaches, a regional chemistry-transport-model (CMAQ), a dispersion 

model (RLINE), an urban heat island scheme, and machine-learning based simulation of 

street-canyon flows trained with a CFD model. The overall framework is referred to as 

CMAQ-RLINE_URBAN. 

The overall approach is interesting, but the publication has major deficiencies, is difficult 

to follow, and leaves many questions unanswered. In my view it cannot be published in 

the present form but will need substantial improvements. 

Response: 

Thank you very much for spending time to give us many constructive comments, and they 

have great importance in improving our manuscript. We have revised our manuscript and 

we believe that all the concerns are now fully addressed in this revision. In general, as you 

suggested, a more detailed review on multi-scale air quality models was added in the 

Introduction, and more descriptions on various parameterization schemes were provided 

in the Method and Supplement Materials. In addition, more explanations and expectations 

in the future were added in the Results and Discussions, respectively. 

Major comments 

Question 1 

The individual model components as well as their interplay are very poorly described. 

Examples: 

The RLINE model is never explained. It remains unclear whether this is Gaussian 

dispersion or any other type of model. Providing only references without any further details 

is not sufficient given the fact that this model plays a central role in this study. 

How are emissions released into the model? Is traffic a line source? How are the emissions 

transported forward and dispersed by the (RLINE) model? 

Response: 

Thanks for your advice. We apologized that the introduction of RLINE was missing in our 
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original manuscript so that the details of our model is not sufficient. In general, the RLINE 

is a Gaussian dispersion model specially for the line source simulation. In this revision, we 

have added the description of RLINE model including its mechanism and application in 

Section 2.1. 

The traffic emission is treated as a line source in RLINE. The concentration from the traffic 

emission is found by approximating the line as a series of point sources and integrating the 

contributions of point sources using an efficient numerical integration scheme.  

Revisions in Manuscript: 

(1) Materials and Methods, Line 119-128. 

RLINE is a Gaussian line source dispersion model developed by Snyder et al. (2013) to 

predict pollutant concentrations in near-road environments. In the RLINE model, the 

mobile source is considered as a finite line source, from which the concentration is found 

by approximating the line as a series of point sources and integrating the contributions of 

point sources using an efficient numerical integration scheme. The number of points 

needed for convergence to the proper solution is a function of distance from the source line 

to the receptor, and each point source is simulated using a Gaussian plume formulation. 

The RLINE model performs generally comparable results when evaluated with other line 

source models for on-road traffic emissions dispersion (Snyder et al., 2013; Heist et al., 

2013; Chang et al., 2015), and has been successfully used in many studies to evaluate the 

impacts from traffic emissions on air quality (Zhai et al., 2016; Valencia et al., 2018; 

Benavides et al., 2019; Filigrana et al., 2020; Zhang et al., 2021a). 

 

Question 2 

An UHI scheme is implemented, which "increases atmospheric turbulence intensity 

around sunset in the afternoon", but it is never explained how this increased turbulence 

affects the simulation or what is meant by "afternoon". Is the UHI scheme only triggered 

around sunset? Does it affect the turbulent intensity in RLINE? If so, how exactly? Which 

localized meteorological parameters are recalculated and how? Is the UHI scheme of 

Cimorelli et al. (2005) different from the algorithm proposed by Benavides et al., or is the 

Benavides algorithm based on Cimorelli et al.? The text remains extremely vague despite 
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the fact that, again, this UHI scheme is an essential component of the final model system. 

Please note that WRF can be run with an urban canopy module (e.g. Barlage et al., 2016; 

doi:10.1002/2015JD024450), which would alleviate the necessity of implementing an UHI 

scheme in such a complicated (and unclear) way as done here. Why was this scheme not 

used to drive CMAQ and to compute the winds and stability above roof level? 

Response: 

Thanks for your questions. We apologize for misleading the reviewer about the UHI 

scheme, and the detailed description for UHI scheme were added in this revision. In this 

response, we will give a response to each question as follows: 

• The impacts of UHI effect in the hybrid model is considered not only in the afternoon 

but also over the whole day. However, based on previous studies, the UHI effect is 

more significant in the afternoon around sunset. 

• The UHI scheme will affect the turbulent intensity in RLINE. First, the upward 

surface heat flux and the urban boundary layer height due to convective effects was 

estimated. And then the mixing height Zmix, convective velocity scale w*, surface 

friction velocity u*, and Monin-Obhukov length LMO were recalculated. The UHI 

scheme was never considered in Benavides’s study (Benavides et al., 2019), and in 

this study, it was built based on the algorithm used in the AERMOD model (Cimorelli 

et al., 2005). We have also added a brief introduction of UHI scheme in the Section 

S1. Urban heat island scheme and details in Supplement Materials.  

• The WRF model can actually be coupled with urban canopy models (UCMs) to 

quantify the changes in meteorological conditions caused by special underlying 

surface structures in cities, where the UHI effect is included. However, the WRF 

model was applied for mesoscale meteorological simulation (not smaller than an 

urban scale), so it is too large to consider the impact on each road. The hybrid model 

in this study mainly focuses on local meteorology at the street level. In addition, if 

WRF coupled with UCMs and the UHI scheme are both used in the hybrid model, it 

will cause a double-counting problem of UHI effects. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 140-145. 
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The atmospheric turbulence intensity in urban areas around sunset in the afternoon was 

obviously enhanced considering the influence of the urban heat island effect based on 

methods in the AERMOD model (Cimorelli et al., 2005) (UHI scheme). The UHI scheme 

would affect the turbulent intensity based on the evaluation for the upward surface heat 

flux and the urban boundary layer height due to convective effects, and then the mixing 

height, convective velocity scale, surface friction velocity, and Monin-Obhukov length 

were all recalculated (details in the Supplement Section S1). 

(2) Supplement Materials. Section S1 Urban heat island scheme.  

The Urban Heat Island effect refers to a phenomenon that the temperature of urban 

atmosphere and surface is higher than that of nearby rural areas, of which intensity can be 

quantified by using the temperature difference. UHI is caused by the thermodynamic effect 

of the special underlying surface structure induced by urbanization and the influence of 

human activities. In past decades, the intensity of UHI in Beijing has been increasing at a 

rate of 1.35 ℃ every decade, and has gradually expanded from within the 2nd Ring Road 

to the 6th Ring Road and its surrounding areas (Ge et al., 2016). When the UHI intensity 

is high, the circulation between urban and suburban areas will enhance the boundary layer 

height and turbulence intensity in urban areas, and reduce the concentration of primary 

pollutants such as NOx which are easily affected by the local climate. After adding the UHI 

scheme to the model, the overestimation of the simulation can be reduced, and the 

simulation is more consistent with the observed concentration (Sarrat et al., 2006). 

Here, based on the algorithm used in AERMOD (Cimorelli et al., 2005), we estimated the 

influence of UHI on turbulence in urban areas, especially in the afternoon (16:00-23:00), 

to reduce the over-predicted pollutant concentrations caused by the overestimation of 

atmospheric stability in this period. During this period, due to the large amount of 

anthropogenic heat generated by transportation, cooking and other human activities, as 

well as the gradual release of solar radiation stored by buildings in daytime, the UHI 

intensity in Beijing increase to the peak (Wang et al., 2017). In the calculation, we still 

regarded each road as a basic unit for the calculation, and first estimated the sensible heat 

flux Hu,UHI (W/m2) caused by UHI and the height of the mixing layer Zmix,c (m) formed by 

thermal turbulence. And then the mixing height Zmix, convective velocity scale w*, surface 
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friction velocity u*, and Monin-Obhukov length LMO were recalculated, as follows, 

{
𝐻u,UHI = α𝜌𝑐p∆𝑇u−r𝑢

∗

𝑍mix,c = 𝑍mix,ref(𝑃/𝑃ref)
0.25 

where, α is the empirical coefficient, with a value of 0.03. ρ is air density (kg/m3) and 

calculated by air pressure and temperature. cp is the specific heat capacity of air at constant 

pressure, with a value of 1004 J/kg·K. ΔTu-r is the temperature difference between urban 

and suburban areas, which is set with the value of 3℃ according to the observation of 

several meteorological ground observation stations and satellite remote sensing data 

(Wang et al., 2017). Zmix,ref and Pref are the reference boundary layer height and urban 

population, with values of 400 m and 2 million, respectively (Cimorelli et al., 2005). P is 

the total population of urban areas in the research region, with the value of 9.2 million in 

our study domain for 2020 based on the WorldPop dataset (Bondarenko et al., 2020). 

 

Question 3 

▪ CFD simulations were performed to train a machine-learning based street-canyon flow 

model (MLSCF) in order to predict airflow in street canyons efficiently. This part of the 

publication is quite clear, but how the results of the MLSCF are finally applied to compute 

the dispersion of NO2 is never explained. It should also be noted that the MLSCF model 

only predicts wind speeds at different locations in the street canyon (in along-canyon and 

perpendicular direction), but not turbulence, which also varies depending on wind speeds 

and angle between wind and canyon. The publication mentions the importance of the 

buildup of a vortex in certain situations, but it remains unclear how the mixing of air 

pollution induced by this vortex affects the mixing in RLINE. If RLINE is a simple 

Gaussian dispersion model, how would it be able to represent such a vortex? 

Response: 

Thanks for questions. The MLSCF is developed to estimate the wind velocity and direction 

at different height in the street canyon. In other words, outputs from the MLSCF model 

are wind vectors. Therefore, the impact of turbulence induced by street canyon effect on 

wind environment is considered. As shown in the Figure 8, the impacts of the MLSCF 

scheme on simulated NO2 concentration were identified by the differences between 

modeling scenarios with and without MLSCF. For example, in the SZJ standard canyon, 
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the application of MLSCF led to the wind direction at the bottom in street canyon opposite 

to that at the roof, increasing the upwind concentrations (Figure 8b and Section 3.2 in the 

manuscript). 

However, as you mentioned that since the RLINE is a Gaussian model, we cannot directly 

calculate the impact of vortex in specific situations on the mixing of concentrations in 

street canyons. We will make effort on developing another empirical method to estimate 

effects of the vortex on the mixing of concentrations in the future research, and this is 

discussed in the Conclusions now.  

Revisions in Manuscript: 

(1)  Conclusion and Discussions, Line 505-507. 

However, the influence of the turbulence induced by street canyon effects on the mixing 

of air pollution was not considered on which we will make effort in the future. 

 

Question 4 

NOx is released by emission sources mainly in the form of NO and then converted to NO2 

by reaction of O3. The paper mentions that a "two-reaction scheme" was incorporated into 

RLINE, but it is not explained which photochemical reactions exactly were considered, 

how this reaction scheme was implemented in RLINE, or in what form NOx was emitted. 

Figure 1 suggests that concentrations from vehicles and from background are combined 

within the "NOx photochemical scheme". Is the scheme applied separately to the two 

components? How exactly are they combined? 

Response: 

Thank you for questions. We apologized those unclear descriptions on the NOx 

photochemical reactions in the original manuscript. In general, we used the two-reaction 

method applied in other studies, such as the SIRANE model (Soulhac et al., 2017). The 

NOx photochemical scheme includes two main chemical reactions, namely the photolysis 

of NO2 and the oxidation of NO as follows: 

{
NO2  +  hv →  NO + O3 

NO + O3  →  NO2
 

During simulation, the NOx (NO+NO2) emitted from vehicles is first regarded as an inert 

gas and only the primary concentration after diffusion is simulated. Then, assuming a 
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photo-stationary equilibrium condition, the concentrations of NO, NO2 and O3 are 

calculated as follows: 

{
 
 

 
 [NO2] = (𝑏 − √𝑏

2 − 4𝑐)/2
[NO] = [NO]b + [NO2]b + [NOx]d − [NO2]

[O3] = [O3]b + [NO2]b + 𝜁[NOx]d − [NO2]

𝑏 = 𝑘1/𝑘2 + [O3]b + [NO]b + 2[NO2]b + (1 + 𝜁)[NOx]d
𝑐 = ([O3]b + [NO2]b + ζ[NOx]d)([NO]b + [NO2]b + [NOx]d)

 

where, [NOx]d is the primary concentration of NOx directly simulated by RLINE model 

when taken as an inert gas. [NO]b, [NO2], and [O3]b are the background concentrations of 

NO, NO2 and O3 from non-vehicle sources, respectively, which are provided by CMAQ-

ISAM model. ζ is the ratio of NO2 to NOx in vehicle emissions, with a value of 0.2 

(Benavides et al., 2019; Valencia et al., 2018). 

We have added a brief introduction of the "two-reaction scheme" in Materials and 

Methods and details in Supplement Materials (Section S3. NOx photochemical 

parameter scheme). 

Revisions in Manuscript: 

(1) Materials and Methods. Line 167-170. 

In this study, a simplified two-reaction scheme, including the photolysis of NO2 and the 

oxidation of NO, was incorporated into the model to characterize the photochemical 

process of NOx (details in SI. Section S2), which has been successfully applied to the 

SIRANE dispersion model (Soulhac et al., 2017). 

(2) Supplement Section S3. NOx photochemical parameter scheme.  

The NOx photochemical parameter scheme applied in this study includes two reactions: 

{
NO2  +  hv →  NO + O3 

NO + O3  →  NO2
 

Kim et al. compared two-reaction scheme with CB05 gas phase chemical mechanism by 

incorporated them into SinG model to estimate roadside NO2 concentration, and found a 

similar results, while the computing time cost of two-reaction scheme was significantly 

less than that of the CB05 mechanism (Kim et al., 2018). Therefore, the simplified two-

reaction scheme was incorporated into the model in this study to characterize the NOx 

photochemical process. During simulation, the NOx (NO+NO2) emitted from vehicles is 

first regarded as an inert gas and only the primary concentration after diffusion is simulated. 
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Then, assuming a photo-stationary equilibrium condition, the concentrations of NO, NO2 

and O3 are calculated using the two-reaction scheme, as follows:  

{
 
 

 
 [NO2] = (𝑏 − √𝑏

2 − 4𝑐)/2
[NO] = [NO]b + [NO2]b + [NOx]d − [NO2]

[O3] = [O3]b + [NO2]b + 𝜁[NOx]d − [NO2]

𝑏 = 𝑘1/𝑘2 + [O3]b + [NO]b + 2[NO2]b + (1 + 𝜁)[NOx]d
𝑐 = ([O3]b + [NO2]b + ζ[NOx]d)([NO]b + [NO2]b + [NOx]d)

 

where, [NOx]d is the primary concentration of NOx directly simulated by RLINE model 

when taken as an inert gas. [NO]b, [NO2], and [O3]b are the background concentrations of 

NO, NO2 and O3 from non-vehicle sources, respectively, which are provided by CMAQ-

ISAM model. The unit of concentrations in these formulas is mol/m3. ζ is the ratio of NO2 

to NOx in vehicle emissions, with a value of 0.2 (Benavides et al., 2019; Valencia et al., 

2018). The reaction rates of the photolysis of NO2 and the oxidation of NO were set to be 

k1 and k2 respectively, and calculated as follows (Hurley, 2005): 

{
𝑘1 = 10−4 × 𝛿 × TSR

𝑘2 = 9.24 × 105 × exp(−1450/𝑇) /𝑇
 

𝛿 = {

4.23 + 1.09/ cos𝑍 ,       0 ≤ 𝑍 ≤ 47
5.82,                  47 < 𝑍 ≤ 64

−0.997 + 12(1 − cos𝑍), 64 < 𝑍 ≤ 90
 

where, all parameters were from the WRF model. TSR is the total solar radiation (W/m2). 

Z is the solar zenith angle (°). T is the ambient temperature (K). 

 

Question 5 

A "vertical mixing scheme" is mentioned on page 6, which accounts for the "influence of 

atmospheric turbulence and building geometry on the vertical mixing" and seems to mix 

background air from roof level into the street canyons. The scheme requires wind speeds 

at the surface and at roof level, but it is not entirely clear which winds are used here. From 

the MLSCF scheme? What is the motivation for using the ratio between wind speeds at 

roof level and street level to compute the contribution of background air? I can only guess, 

but decisions like this need to be motivated thoroughly. 

Response: 

Thanks for your suggestions. For motivation of this scheme, since the settings of vertical 

pressure layer in the CMAQ and the WRF model are the same, the concentrations from 
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non-vehicle sources provided by the CMAQ-ISAM model are regarded as the background 

concentration at the top of the urban canopy layer. If the influence of turbulence changes 

on the mixing of background concentration is not taken into account, the pollutant 

concentrations near surface at night stable boundary layer is easy to be significantly 

overestimated (Benavides et al., 2019). 

In this scheme, the wind speed at the roof level is from the WRF model. The surface wind 

is from MLSCF scheme when the gird receptor is located in the street canyon, and 

otherwise the logarithmic wind profile is used to calculate the wind speed at the specified 

height. We have added a brief introduction of the "vertical mixing scheme" in Materials 

and Methods and details in Supplement Materials (Section S2. Vertical mixing 

scheme). 

Revisions in Manuscript: 

(1) Materials and Methods. Line 163-165. 

In this scheme, the surface wind was from MLSCF scheme when the gird receptor is 

located within the street canyon, and otherwise the logarithmic wind profile was used to 

calculate the wind speed at the specified height, and details were showed in the Supplement 

Section S1. 

(2) Supplement Section S2. Vertical mixing scheme.  

Since the settings of vertical pressure layers in the CMAQ and the WRF model are same, 

the concentrations induced by non-vehicle sources provided by the CMAQ-ISAM model 

can be regarded as the background concentration at the top of the urban canopy layer 

(UCL). If the influence of turbulence changes on the mixing of background concentration 

is not taken into account, the pollutant concentration at night stable boundary layer is easy 

to be significantly overestimated (Benavides et al., 2019). Therefore, we assumed that the 

concentration relationship between the top of UCL and the near surface is affected by 

atmospheric stability, local street canyons and building morphology. 

In this study, based on the method proposed by Benavides et al. (2019), the ratio of wind 

speed between the near surface of the road and the top of surrounding buildings was used 

as a proxy parameter in the model to characterize the turbulence intensity which affects 

the vertical concentration mixing between the top of UCL and near surface. However, 
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Benavides et al. assumed that the average wind speed in the street canyon was proportional 

to the angel between the top wind direction and the central axis of the road, and the 

logarithmic wind profile to was still used to represent the change of wind speed within 

UCL, resulting in the influence of the street canyon effect on vertical mixing of background 

concentration was not considered. In this study, when the grid receptor is located in the 

street canyon, the MLSCF scheme was used to describe the wind profile within UCL. 

Otherwise, the logarithmic wind profile was used to calculate the wind speed at the 

specified height. This parameter scheme mainly calculated the background concentration 

mixing ratio (facbg), which was multiplied by the background concentration provided by 

the CMAQ-ISAM model to estimate the background concentration at the specified height 

near the ground. Based on the estimated sensible heat flux (Hu, W/m2) from the WRF 

model, convective boundary layer (Hu>0) and stable boundary layer (Hu<0) were 

distinguished, and the effect of building density around the receptor site on facbg was also 

considered, as follows: 

facbg =

{
 
 
 
 

 
 
 
 1 − 𝐹 + 𝐹 ×

WSsfc
WSbh

,          bd > 0.1&𝐻u > 0

WSsfc
WSbh

,                     bd > 0.1&𝐻u ≤ 0

1 − 5bd + 5bd ×
WSsfc
WSbh

,      bd ≤ 0.1&𝐻u > 0

1 − 10bd + 10bd ×
WSsfc
WSbh

, bd ≤ 0.1&𝐻u ≤ 0

 

where, F=m+abs(0.25-bd), where m is an empirical parameter with value of 0.1.  

 

Question 6 

Why was a resolution of 50 m x 50 m chosen? Note that in Section 2.1 it is suggested that 

the resolution is only 100 m x 100 m. As mentioned on line 152, the average width of 

streets in Beijing is about 50 m. Thus, a resolution of 50 m is by far not sufficient to resolve 

gradients within street canyons. 

Response: 

Thanks for your reminding, and the original description was misleading. The grid spatial 

resolution of the hybrid model was 50 m x 50 m rather than 100 m x 100 m. This grid 

resolution over the whole urban area is limited due to the long computing time at present. 
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Since the addition parameterization schemes applied into the hybrid model, especially for 

the MLSCF, the meteorological field of each street needs to be calculated separately, 

leading to the large computational burden. However, when we focus on the distribution of 

concentration gradient near the street, the resolution of grid receptors will be improved to 

several meters level. For example, in Figure 8b and d, the grid resolution near SJZ street 

was improved to be 2 m. We will make efforts to develop a parallel computing method to 

reduce the computing time, in order to improve the grid resolution of a relatively large-

scale simulation. We have modified the writing and added this discussion in Conclusions. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 116-117. 

In our model, a NO2 pollution map with a high temporal (1 h) and spatial resolution (50 

m×50 m) can finally be obtained. 

(2) Conclusion and Discussions. Line 519-522. 

At present, considering the running cost, the grid resolution of area in Beijing 5th ring road 

and its surroundings can reach 50 m×50 m. We will make efforts to develop a parallel 

computing method to reduce the computing time, in order to improve the grid resolution 

of a relatively large-scale simulation. 

 

Question 7 

The machine-learning model is rather simple and little convincing. Complex models are 

often replaced by artificial intelligence methods using neural networks or Gaussian process 

models, see for example Beddows et al. (2017, doi:10.1021/acs.est.6b05873). A good 

summary of methods applied in the context of air quality simulations is presented in 

Conibear et al. (2021, doi: doi.org/10.1029/2021GH000391). Here, a random forest (RF) 

regression and a MARS approach are used, but these choices are not motivated at all. The 

RF approach seems to generate quite noisy wind profiles (see Figure 5), but in most cases 

performs better than MARS The combination of RF and MARS is referred to as "ensemble 

learning", but according to page 11, there RF and MARS models have been trained 

completely independently and there is only a simple switch between the two methods 

depending on whether the input values are within the range of the predictors used in the 



 14 

training or not. There is a long way from such a simple approach to "ensemble learning". 

Response: 

Thanks for your suggestions. As your suggested, the applications of machine learning 

models on air quality predictions were investigated. In general, Random Forest (RF) and 

Multivariate Adaptive Regression Splines (MARS) are common machine learning 

methods which run efficiently on large data sets, and are relatively robust to outliers and 

noise. Furthermore, compared with other models (e.g. ANN), RF and MARS never require 

the specification of underlying data model and the complex parameter tuning (Kühnlein et 

al., 2014), and they can still provide efficient alternatives and generally show a high 

accuracy in many applications of predicting air pollutant concentrations (Chen et al., 2018; 

Geng et al., 2020; Hu et al., 2017; Kamińska, 2019). Therefore, RF and MARS are selected 

in this study, and the validation results with a little deviation (R was 0.99 and median of 

RE was less than 10%) indicated a good performance of our model (details see Section 

3.1). A brief review of the applications of machine learning models, and the advantages of 

RF and MARS models have been both discussed in the revised Materials and Methods.  

As for another question about the “ensemble learning” used in the manuscript, we agreed 

that we just combined the results of two different models depends on whether the input 

value was within the range of predictors or not. We realized that it is not appropriate to 

name this kind of combination as “ensemble learning”, so the description about our model 

has been modified in the manuscript. 

Revisions in Manuscript: 

(1) Abstract. Line 16-17. 

A Machine Learning-based Street Canyon Flow (MLSCF) scheme was constructed based 

on Computational Fluid Dynamic and two machine learning methods. 

(2) Introduction. Line 101-103. 

We developed a Machine Learning-based Street Canyon Flow (MLSCF) parameterization 

scheme, which was based on two machine learning methods using wind data from 1,600 

CFD simulations. 

(3) Materials and Methods. Line 258-272. 

Data driven method, such as machine learning and deep learning, is now a successful 
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operational geoscientific processing schemes and has co-evolved with data availability 

over the past decade (Reichstein et al., 2019). Specially, these models have been used as 

computationally efficient emulators of explicit mechanism models, to explore 

uncertainties (Aleksankina et al., 2019) and sensitivities or replace complex gas-phase 

chemistry schemes (Keller and Evans, 2019; Conibear et al., 2021). In addition, meta-

models (Fang et al., 2005) such as neural networks and Gaussian process (Beddows et al., 

2017) are also used to produce a quick to run model surrogate and show reliable 

performance. Random Forest (RF) model algorithm is an ensemble learning method that 

generates many decision trees and aggregates their results, which has been developed to 

solve the high variance errors typical of a single decision tree (Breiman, 2001). 

Multivariate Adaptive Regression Splines (MARS) is a nonparametric and nonlinear 

regression method, which can be regarded as an extension of the multivariate linear model 

(Friedman, 1991). RF and MARS are common machine learning methods which run 

efficiently on large data sets, and are relatively robust to outliers and noise. Furthermore, 

they never require the specification of underlying data model and the complex parameter 

tuning, and they can still provide efficient alternatives and generally show a high accuracy 

in applications for predict air pollutant concentrations (Hu et al., 2017; Chen et al., 2018; 

Kamińska, 2019; Geng et al., 2020). 

 

Question 8 

The introduction section does a fairly poor job in citing relevant literature. Quite many 

multi-scale air pollution models have been developed recently and also machine learning 

methods are increasingly used. It is important to place the present study in context and 

explain where it is different or better than other approaches. 

Response: 

Thanks for your comments. As mentioned in the above response, a brief review of the 

applications of machine learning models has been added in the Materials and Methods. We 

have also added a review on multi-scale model in the Introduction. Compared with 

previous studies, the innovation of our model lies in its comprehensiveness, which takes 

the influence of street canyons, the chemical process, and background schemes into 
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consideration. In addition, the MLSCF scheme built here is a machine learning based 

scheme which is suitable for a wide range of street canyon wind environment simulation 

without huge computational cost. 

Revisions in Manuscript: 

(1) Introduction. Line 84-96. 

Considering the respective strengths and limitations of regional models and local models, 

several studies have been carried out on coupling of air quality models applicable to 

different scales (Ketzel et al., 2012; Stocker et al., 2012;  Lefebvre et al., 2013; Jensen et 

al., 2017; Kim et al., 2018; Mallet et al., 2018; Hood et al., 2018; Benavides et al., 2019; 

Kamińska, 2019; Mu et al., 2022). Although these models performed accurately in near-

road simulation, the influence of street canyons is still hard to be considered. In some 

hybrid models (Stocker et al., 2012; Jensen et al., 2017; Mallet et al., 2018), OSPM was 

still applied to calculate concentration levels within the street, where the application of 

logarithmic wind profile probably overestimated the bottom wind speed in a deep street 

canyon as abovementioned. Other models simply assumed that in street canyons, wind 

direction followed the street direction, and wind speed was uniform, which was not 

sufficient to resolve the concentration gradient within street canyons ( Kim et al., 2018; 

Benavides et al., 2019). Berchet et al. (2017) proposed a cost-effective method for 

simulating city-scale pollution taking advantage of high-resolution accurate CFD, while 

the primary NOx was predicted due to the lack of a chemical module. Therefore, it is 

essential to build an integrated model to predict long-term and near-road air pollution 

suitable for the urban complex underlying surface environment. 

 

Minor comments 

Question 9 

I was confused by the usage of the term "receptor". It seems that a receptor can be a grid 

point but it can also be any other point in the domain, e.g. the location of a measurement 

station. This needs to be explained much more clearly and earlier in the manuscript. Note 

that receptor modelling has quite a distinct meaning in air quality modelling and is usually 

associated with source-apportionment modeling like chemical mass balance or positive 
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matrix factorization. 

Response: 

Thanks for your reminding. As you mentioned, the term “receptor” in our manuscript 

referred to the location where the concentration was predicted by the model. The receptors 

included both grid receptors and monitor receptors. The grid receptors were set at a spatial 

resolution of 50 m×50 m, and the monitor receptors were 10 observation stations located 

in the normal urban environment and 5 near-road monitoring sites. We have revised the 

writing in the manuscript to avoid misleading. Due to too many revisions, these revisions 

are not shown in this response. Please see the word with red color in the manuscript. 

 

Question 10 

The workflow illustrated in Figure 1 is not entirely clear to me: First of all, the arrow 

between the boxes "receptors in street canyon?" and "receptor information" likely points 

in the wrong direction. The most confusing thing is that there is a distinction between "Is 

a street canyon" and "Receptor in a street canyon". How is it possible that a point can be 

in a street canyon and at the same time not be inside? Why is there only "road information" 

needed as input to decide whether we are in a street canyon or not? Shouldn't there also be 

3D building data? How the first decision "is a street canyon" is applied is not clear to me 

at all. Do you choose a road segment and then decide if it is inside a canyon or not? What 

about points between roads? How do you decide to which road a given point in the city 

belongs? What about other areas of the city without roads, e.g. parks? 

Response: 

Thank you very much for suggestion. We apologize for misleading the reviewer about the 

workflow figure. The box "Is a street canyon" was actually not correct in the workflow 

and removed in this revision. However, the arrow between the boxes "receptors in street 

canyon?" and "receptor information" points is in the right direction. In fact, the first 

criterion is “Receptor in a Street Canyon?”, which is depended on the receptor information 

(e.g. coordinates of the receptor) and road information (e.g. coordinates and geometry 

parameters). The 3D building data was processed into the geometry parameters of each 

road segment as stated in the Section 2.2.1. The coordinates and road width were used to 
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decide whether the receptor is within a street canyon or not. If the receptor is not located 

within a street canyon, it will be regarded as located in the open terrain area, where the 

logarithmic wind profile will be used rather than MLSCF scheme. Now the corrected 

workflow is shown in Figure 1 in the revised manuscript. 

Revisions in Manuscript: 

(1) Figures.  

 

Figure 1: The framework of multiscale hybrid model CMAQ-RLINE_URBAN. 

 

Question 11 

At many instances in the paper, references to figures, tables and other sections are made in 

past tense (".. was shown in Figure 1", ".. were discussed in the following section", etc.) 

but should be in present tense (" .. are shown in Figure 1", " .. are discussed in the following 

section", etc.) 

Response: 

Thanks for your advice. We have corrected the tense in Results. Due to too many revisions, 



 19 

these revisions are not shown in this response. Please see the word with red color in the 

manuscript. 

 

Question 12  

Data and code availability: Both are only available upon request. Code is only available 

upon "reasonable request". What is reasonable? Why is the code not made accessible more 

easily? Advancements in science critically depend on open science and open data. 

Response: 

Thanks for your question. We agreed that advancements in science critically depend on 

open science and open data. Now the code of MLSCF scheme is open to the public. We 

have added the expressions and coefficients of MARS model in the Supplement 

Materials (Table S2 and S3), and the code of both RF and MARS models in the R 

language are now available on the Github website. We are pleased to share our data and 

code for the purpose of a scientific research.  

Revisions in Manuscript: 

(1) Code availability. Line 541-543. 

The RF and MARS model for MLSCF are both available on Github 

(https://github.com/claus0224/MLSCF-RF-MARS), and other codes are available from 

the corresponding author on reasonable request. 

(2) Supplement Materials. Tables 

 Table S2. Coefficients in Vx fitting of Multivariate Adaptive Regression Splines 

Terms Expression Coefficients 

1 Intercept 0.532 

2 max(0.5-Vbgx, 0) -0.623 

3 max(Vbgx-0.5, 0) 0.111 

4 max(2.5-Vbgy, 0) -0.131 

5 max(Vbgy-2.5, 0) -0.010 

6 max(0.5-H/W, 0) 2.315 

7 max(H/W-0.5, 0) -0.259 

8 max(0.774-z/H, 0) -0.812 

9 max(z/H-0.774, 0) 2.774 

10 max(2.5-Vbgx, 0)×max(0.5-H/W, 0) -1.103 

11 max(Vbgx-2.5, 0)×max(0.5-H/W, 0) 0.249 

12 max(0.87-Vbgx, 0)×max(0.774-z/H, 0) 0.481 



 20 

13 max(Vbgx-0.87, 0)×max(0.774-z/H,0) -0.444 

14 max(2.5-Vbgx, 0)×max(z/H-0.774, 0) -1.151 

15 max(Vbgx-2.5, 0)×max(z/H-0.774, 0) -1.139 

16 max(0.5-Vbgy, 0)×max(0.5-H/W, 0) -3.536 

17 max(Vbgy-0.5, 0)×max(0.5-H/W, 0) 0.028 

18 max(0.5-H/W, 0)×max(0.774-z/H, 0) 0.897 

19 max(H/W-0.5, 0)×max(0.774-z/H, 0) 0.664 

20 max(Vbgx-2.5, 0)×max(Hl/Hr-1.33, 0)×max(z/H-0.774,0) -2.054 

21 max(Vbgx-2.5, 0)×max(1.33-Hl/Hr, 0)×max(z/H-0.774,0) 6.242 

 

Table S3. Coefficients in Vy fitting of Multivariate Adaptive Regression Splines 

Terms Expression Coefficients 

1 Intercept 2.117 

2 max(2.5-Vbgy, 0) -0.812 

3 max(Vbgy-2.5, 0) 0.624 

4 max(1-H/W, 0) 0.455 

5 max(H/W-1, 0) -0.335 

6 max(0.75-Hl/Hr, 0) -0.081 

7 max(Hl/Hr-0.75, 0) -0.690 

8 max(0.079-z/H, 0) -14.220 

9 max(z/H-0.079, 0) 0.200 

10 max(0.5-Vbgx, 0)×max(Hl/Hr-0.75, 0) 0.428 

11 max(Vbgx-0.5, 0)×max(Hl/Hr-0.75, 0) -0.036 

12 max(2.5-Vbgy, 0)×max(H/W-1, 0) 0.152 

13 max(2.5-Vbgy, 0)×max(1-H/W, 0) -0.265 

14 max(2.5-Vbgy, 0)×max(Hl/Hr-0.75, 0) 0.230 

15 max(Vbgy-2.5, 0)×max(Hl/Hr-0.75, 0) 0.109 

16 max(2.5-Vbgy, 0)×max(z/H-0.079, 0) -0.090 

17 max(2.5-Vbgy, 0)×max(0.079-z/H, 0) 5.602 

18 max(Vbgy-2.5, 0)×max(z/H-0.226, 0) 0.536 

19 max(Vbgy-2.5, 0)×max(0.226-z/H, 0) -2.361 

20 max(1-H/W, 0)×max(Hl/Hr-0.75, 0) 0.480 

21 max(H/W, 0)×max(Hl/Hr-0.75, 0) -0.052 

 

 

Question 13 

Parts of the code seem to be written in Fortran, other parts in R, but it is not clear which. 

If only CMAQ and WRF are written in Fortran and all other parts in R, then it is not 

justified to state that a multiscale hybrid model was developed based on Fortran (and R), 

because there was no development but only application of Fortran code. 
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Whether the model was implemented on Linux (page 5, line 96) or another platform seems 

irrelevant to me. 

Response: 

Thanks for your question. The MLSCF scheme is written in R language. Other 

parameterization schemes, including surface roughness scheme, UHI scheme, vertical 

mixing scheme and NOx photochemical scheme, were all written in Fortran language and 

then added in to the original RLINE source code. We have revised the description about 

the development language in the manuscript to make it clearer. And as you suggested, the 

statement about Linux platform was removed.  

Revisions in Manuscript: 

(1) Materials and Methods. Line 110-112. 

Here, we established the MLSCF scheme based on R language, and modified the code of 

RLINE model to add other parameterization schemes with FORTRAN language. Finally, 

a multiscale air quality hybrid model was developed to achieve a high-resolution NO2 

pollution mapping in urban areas. 

 

Question 14 

The wind profiles predicted by the MOST scheme presented in Figure 7 look very strange. 

Apparently, wind speeds reduce to zero at the displacement height, but then jump back to 

a non-zero value below. Why is this kink in the profile at lower altitude in Figure 7c than 

in Figures 7a and 7b (despite the higher aspect ratio H/W in case (c) than in (a) and (b)) 

and why is it not present at all in Figure 7d? Why are the winds at z/H = 1 different between 

the MOST and the MLSCF schemes? Shouldn't the wind at this level be constrained by 

the same WRF model output? 

Response: 

Thanks for your question. The differences in kink altitude among Figure 7a-d refer to the 

calculation of displacement height (dh). In RLINE model, the dh is calculated by 

multiplying surface roughness length (z0) times a factor which is recommended to be set 

as 5. Due to the great differences in z0 (highly depends on the local geometry of buildings) 

of each street, dh is also different. Moreover, the height of each street is also different, and 
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the y axis of Figure 7a-d represented z/h, so the kink altitudes (dh/h) in different streets of 

these figures are not comparable. And the Figure 7 mainly illustrates the different 

predictions of wind speed between MOST and MLSCF schemes. We added the calculation 

method of dh in the manuscript to make the statement clearer. 

The differences in winds at z/H = 1 between the MOST and the MLSCF schemes are 

mainly because the influence of turbulence in the street canyon on wind at the roof level 

is considered in the MLSCF scheme. However, in the MOST and MLSCF schemes, the 

wind environment higher than the roof level (z/H>1) were both from WRF model and 

remained the same. 

Revisions in Manuscript: 

(1) Results. Line 366-369. 

As shown in Figure 7(a)-(d), the wind profile estimated by MOST showed a logarithmic 

change at the height above displacement height (𝑑ℎ) (the 𝑑ℎ  is calculated by multiplying 

surface roughness length (z0) times a factor which is recommended to be set as 5) with a 

decrease to 0 at 𝑑ℎ, and remained constant below 𝑑ℎ. 

 

Question 15 

Figure 8 shows differences between simulations with and without the MLSCF scheme. 

Why are these differences limited to very narrow lines? It is very difficult to see details in 

this figure. It would be useful to see a zoom into a subregion. 

Response: 

Thanks for your question. It is because MLSCF scheme only affects the concentration of 

grid receptors inside the street canyon. The concentrations of grid receptors outside the 

street canyon are not affected, so the difference shown in Figure8 is a narrow strip visually. 

The detailed differences in the spatial distribution of concentrations within in a street 

canyon has already been described in Figure 8b and d, where the SJZ street was taken as 

an example. 
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Response to Reviewers #2’s Comments 

Summary 

The regional to urban coupling allows the consideration of regional weather effects in local 

models and plays an important role in the improved prediction of local air pollution. The 

development of such multiscale modelling framework is interesting. This paper developed 

a hybrid CMAQ-RLINE_URBAN, which coupled the regional CMAQ Chemical 

Transport Model, RLINE local dispersion model and urban thermodynamic scheme. 

Intensive CFD street canyon simulations have been conducted for the application of 

Machine Learning. The hybrid model has been applied to one month simulation in Summer 

for Beijing as a case study. It performed better than the regional CMAQ model in 

predicting NO2 concentrations for roadside sites. However, there are still a number of 

major comments to be addressed. 

Response: 

Thank you very much to give us constructive comments. Upon learning through them, we 

greatly improved our manuscript. We believe all the concerns you mentioned at this time 

were addressed in this revision.  

Major comments 

Question 1 

Literature review: Lack of discussion about the computational fluid dynamic (CFD). CFD 

can be classified into two categories: Reynolds-averaged Navier-Stokes (RANS) and 

Large-Eddy Simulation (LES), based on turbulence closure schemes (e.g. 

https://doi.org/10.1016/j.envpol.2016.04.052). Discussion about the comparison between 

RANS and LES is needed, and to justify the use of RANS in the present study (e.g. 

computationally faster than LES, but only resolve the mean time-averaged properties). 

Response: 

Thanks for your advice. Considering the topic of this paper is “coupled model”, the 

description of CFD method and its turbulence closure schemes was not included in the 

Introduction. As you mentioned, we agreed that it was necessary to discussion about the 

comparison between RANS and LES. We have added the review of turbulence closure 

schemes in the CFD method section (Section 2.2.2). Furthermore, we clarified the reason 

for the use of the RANS, as follows: 
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a. A total of 1600 simulations are implemented in this study. Due to such a huge 

computation cost, we must choose the RANS which is much faster than the LES. 

b. The geometry of street canyons in our modelling is uncomplicated, so the RANS can 

meet our experimental accuracy requirements. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 203-211. 

The turbulence closure schemes for CFD include the Reynolds-Averaged Navier-Stokes 

(RANS) and the Large-Eddy Simulation (LES), and the choice of them depends on the 

computational cost, the accuracy required and the purpose of application. The RANS 

resolves the mean time-averaged properties with all the turbulence motions to be modelled, 

while LES adopts a spatial filtering operation and consequently resolves large-scale eddies 

directly and parameterizes small-scale eddies (Zhong et al., 2016). Compared with the LES, 

the RANS is more easily established and computationally faster (Xie and Castro, 2006). 

However, the LES can provide a better prediction of air flow than that from the RANS 

when handling complex geometries (Dejoan et al., 2010; Santiago et al., 2010). In this 

study, considering the huge computational burden of a large number of simulations and the 

relatively simple geometry of street canyons in our modelling, the RANS was selected to 

characterize the air flow. 

 

Question 2 

Literature review: there is not enough information about local RLINE model, and also the 

coupled CMAQ-RLINE model. Then to justify the need of the further development of 

CMAQ-RLINE_URBAN in the present study. Also, the literature about the current status 

of regional-to-urban coupling is missing (e.g. https://doi.org/10.5194/acp-18-11221-2018, 

2018). 

Response: 

Thanks for your advice. We apologized that the detailed introduction of RLINE was 

missing in our original manuscript. In general, the RLINE is a Gaussian dispersion model 

specially for the line source simulation. In this revision, we have added the description of 

RLINE model including its mechanism and application in Method Section 2.1.  



 27 

Although RLINE has been successfully used in many studies to evaluate the impacts from 

traffic emissions on air quality, there are still large uncertainties in predictions from 

induced by the provided meteorological conditions and background concentrations, 

especially the application in urban areas. It is similar with other Gaussian dispersion 

models, where the natural logarithm function is still used to characterize the vertical profile 

of wind speed in both the inertial and rough sublayers, neglecting the influence of urban 

complex underlying surface compositions on the wind field. Thus, it is essential to develop 

a coupled model, such as CMAQ-RLINE_URBAN in our study. The detailed discussions 

about this weakness have been already presented in the Introduction section in the 

original manuscript. 

In this revision, as you suggested, we have also added a review on about the current status 

of regional-to-urban coupling in the Introduction section to further describe the 

innovation of our model. 

Revisions in Manuscript: 

(1) Introduction. Line 84-96. 

Considering the respective strengths and limitations of regional models and local models, 

several studies have been carried out on coupling of air quality models applicable to 

different scales (Ketzel et al., 2012; Stocker et al., 2012;  Lefebvre et al., 2013; Jensen et 

al., 2017; Kim et al., 2018; Mallet et al., 2018; Hood et al., 2018; Benavides et al., 2019; 

Kamińska, 2019; Mu et al., 2022). Although these models performed accurately in near-

road simulation, the influence of street canyons is still hard to be considered. In some 

hybrid models (Stocker et al., 2012; Jensen et al., 2017; Mallet et al., 2018), OSPM was 

still applied to calculate concentration levels within the street, where the application of 

logarithmic wind profile probably overestimated the bottom wind speed in a deep street 

canyon as abovementioned. Other models simply assumed that in street canyons, wind 

direction followed the street direction, and wind speed was uniform, which was not 

sufficient to resolve the concentration gradient within street canyons ( Kim et al., 2018; 

Benavides et al., 2019). Berchet et al. (2017) proposed a cost-effective method for 

simulating city-scale pollution taking advantage of high-resolution accurate CFD, while 

the primary NOx was predicted due to the lack of a chemical module. Therefore, it is 
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essential to build an integrated model to predict long-term and near-road air pollution 

suitable for the urban complex underlying surface environment. 

(2) Materials and Methods. Line 119-128. 

RLINE is a Gaussian line source dispersion model developed by Snyder et al. (2013) to 

predict pollutant concentrations in near-road environments. In the RLINE model, the 

mobile source is considered as a finite line source, from which the concentration is found 

by approximating the line as a series of point sources and integrating the contributions of 

point sources using an efficient numerical integration scheme. The number of points 

needed for convergence to the proper solution is a function of distance from the source line 

to the receptor, and each point source is simulated using a Gaussian plume formulation. 

The RLINE model performs generally comparable results when evaluated with other line 

source models for on-road traffic emissions dispersion (Snyder et al., 2013; Heist et al., 

2013; Chang et al., 2015), and has been successfully used in many studies to evaluate the 

impacts from traffic emissions on air quality (Zhai et al., 2016; Valencia et al., 2018; 

Benavides et al., 2019; Filigrana et al., 2020; Zhang et al., 2021a). 

 

Question 3 

Resolution for the hybrid model CMAQ-RLINE_URBAN. The resolution of 50 m x 50 m 

is still coarse to resolve the street scale dispersion of road sources. Could such resolution 

be flexible (i.e. further to higher resolutions) in the hybrid model? The justification of the 

use of 50 m x 50 m in the present study is needed 

Response: 

Thanks for your question. Actually, the grid resolution in our hybrid model is flexible. 

However, the grid resolution over the whole urban area is limited to 50 m×50 m due to 

the long computing time for such a large domain at present. Since the addition developed 

parameterization schemes were applied in the hybrid model, especially for the MLSCF, 

the meteorological field of each street needs to be calculated separately, leading to the large 

computational burden. However, when we focus on the distribution of concentration 

gradient near the street, the resolution of grid receptors will be improved to several meters 

level. For example, in Figure 8b and d, the grid resolution near SJZ street was improved 
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to be 2 m. In the future, we will make efforts to develop a parallel computing method with 

multi cores to reduce the computing time, in order to improve the grid resolution of a 

relatively large-scale simulation. We have modified the writing and added this discussion 

in the Conclusions section. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 116-117. 

In our model, a NO2 pollution map with a high temporal (1 h) and spatial resolution (50 

m×50 m) can finally be obtained. 

(2) Conclusion and Discussions. Line 519-522. 

At present, considering the running cost, the grid resolution of area in Beijing 5th ring road 

and its surroundings can reach 50 m×50 m. We will make efforts to develop a parallel 

computing method to reduce the computing time, in order to improve the grid resolution 

of a relatively large-scale simulation. 

 

Question 4 

Machine learning is for air flow (wind speed) only. How is it linked to the pollutant 

dispersion? Would it be better than a traditional street canyon model (e.g. 

https://doi.org/10.1080/10962247.2020.1803158)?  

Response: 

Thanks for questions. In this study, the MLSCF is developed to estimate the wind velocity 

and direction at different height in the street canyon. In other words, outputs from the 

MLSCF model are wind vectors. Therefore, the impact of turbulence induced by street 

canyon effect on wind environment is considered. When the receptor is located within a 

street canyon, the wind field within the UCL was simulated by MLSCF scheme and used 

to calculate the pollutant dispersion, which has been already shown in Figure 1 and 

discussed in section 2.1. As shown in the Figure 8, the impacts of the MLSCF scheme on 

simulated NO2 concentration were identified by the differences between modeling 

scenarios with and without MLSCF. For example, in the SZJ standard canyon, the 

application of MLSCF led to the wind direction at the bottom in street canyon opposite to 

that at the roof, increasing the upwind concentrations (Figure 8b and Section 3.2 in the 

https://doi.org/10.1080/10962247.2020.1803158
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manuscript). 

Compared with the traditional street canyon model, such as the OSPM, the MLSCF in our 

model considered the influence of geometry of buildings on the air flow with high aspect 

ratio up to 2 (see Table 1), and the wind profile is affected by the geometry of buildings 

instead of a logarithmic wind profile. However, when compared with research of a “box 

model” simulation you mentioned (Hood et al., 2021), it is hard to compare which one is 

better due to different computation framework and mode. However, we are committed to 

comparing our model with other researches through real cases in the future.  

 

Question 5 

It is not clear how NOx photochemical scheme works? Does it explicitly resolve the simple 

NOx-O3 cycle? If VOCs chemistry is further considered, then it would likely make a 

substantial difference in predicting NO2 concentration (e.g. 

https://doi.org/10.1016/j.envpol.2017.01.076). It is suggested to add some discussion on 

this aspect.   

Response: 

Thank you for questions. We apologized those unclear descriptions on the NOx 

photochemical reactions in the original manuscript. In general, we used the two-reaction 

method applied in other studies, such as the SIRANE model (Soulhac et al., 2017). The 

NOx photochemical scheme includes two main chemical reactions, namely the photolysis 

of NO2 and the oxidation of NO as follows: 

{
NO2  +  hv →  NO + O3 

NO + O3  →  NO2
 

During simulation, the NOx (NO+NO2) emitted from vehicles is first regarded as an inert 

gas and only the primary concentration after diffusion is simulated. Then, assuming a 

photo-stationary equilibrium condition, the concentrations of NO, NO2 and O3 are 

calculated. 

We have added a brief introduction of the "two-reaction scheme" in Materials and 

Methods and details in Supplement Materials (Section S3. NOx photochemical 

parameter scheme). 

For the question about VOCs chemistry, Kim has already compared a simple mechanism 
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only involving NOx and O3 (Leighton mechanism), with the CB05 gas phase chemical 

mechanism including VOCs chemistry by incorporated them into SinG model to estimate 

roadside NO2 concentration respectively, and found a very similar predictions (Kim et al., 

2018b). Therefore, the Leighton mechanism was selected in an operational version of SinG 

due to the halved computational time. However, Zhong et al. found the NO2 and Ox inside 

the canyon was enhanced by 30–40% via OH/HO2 chemistry in the canyon (Zhong et al., 

2017). The difference of the influence of VOCs chemistry on concentrations in these 

studies mainly due to the differences in local meteorological conditions, emissions and 

other factors (e.g. geometry of canyons). Considering that the input emission data of two-

reaction scheme are more accessible and the computational cost is lower compared with 

those in the O3-NOx-VOC chemistry, we chose two-reaction scheme in this study. We will 

make effort on investigate the influence of chemistry scheme on simulation in the future, 

and this is added in the Conclusions now. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 167-170. 

In this study, a simplified two-reaction scheme, including the photolysis of NO2 and the 

oxidation of NO, was incorporated into the model to characterize the photochemical 

process of NOx (details in the Supplement Section S3), which has been successfully applied 

in the SIRANE dispersion model (Soulhac et al., 2017). 

(2) Conclusion and Discussions. Line 522-527. 

In our study, a simplified two-reaction scheme was incorporated into the model to 

characterize the photochemical process of NOx, since it performed similar predictions and 

less computational time compared with those of the complicated CB05 gas phase chemical 

mechanism (Kim et al., 2018). However, another study pointed that the impact of nonlinear 

O3-NOx-VOC chemistry on NO2 concentrations in the deep canyon was nonnegligible 

(Zhong et al., 2017). The influence of different chemistry schemes on near-road simulation 

will be investigated in the future. 

(3) Supplement Materials Section S3. NOx photochemical parameter scheme.  

The NOx photochemical parameter scheme applied in this study includes two reactions: 
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{
NO2  +  hv →  NO + O3 

NO + O3  →  NO2
 

Kim et al. compared two-reaction scheme with CB05 gas phase chemical mechanism by 

incorporated them into SinG model to estimate roadside NO2 concentration, and found a 

similar results, while the computing time cost of two-reaction scheme was significantly 

less than that of the CB05 mechanism (Kim et al., 2018). Therefore, the simplified two-

reaction scheme was incorporated into the model in this study to characterize the NOx 

photochemical process. During simulation, the NOx (NO+NO2) emitted from vehicles is 

first regarded as an inert gas and only the primary concentration after diffusion is simulated. 

Then, assuming a photo-stationary equilibrium condition, the concentrations of NO, NO2 

and O3 are calculated using the two-reaction scheme, as follows:  

{
 
 

 
 [NO2] = (𝑏 − √𝑏

2 − 4𝑐)/2
[NO] = [NO]b + [NO2]b + [NOx]d − [NO2]

[O3] = [O3]b + [NO2]b + 𝜁[NOx]d − [NO2]

𝑏 = 𝑘1/𝑘2 + [O3]b + [NO]b + 2[NO2]b + (1 + 𝜁)[NOx]d
𝑐 = ([O3]b + [NO2]b + ζ[NOx]d)([NO]b + [NO2]b + [NOx]d)

 

where, [NOx]d is the primary concentration of NOx directly simulated by RLINE model 

when taken as an inert gas. [NO]b, [NO2], and [O3]b are the background concentrations of 

NO, NO2 and O3 from non-vehicle sources, respectively, which are provided by CMAQ-

ISAM model. The unit of concentrations in these formulas is mol/m3. ζ is the ratio of NO2 

to NOx in vehicle emissions, with a value of 0.2 (Benavides et al., 2019; Valencia et al., 

2018). The reaction rates of the photolysis of NO2 and the oxidation of NO were set to be 

k1 and k2 respectively, and calculated as follows (Hurley, 2005): 

{
𝑘1 = 10−4 × 𝛿 × TSR

𝑘2 = 9.24 × 105 × exp(−1450/𝑇) /𝑇
 

𝛿 = {
4.23 + 1.09/ cos𝑍 ,       0 ≤ 𝑍 ≤ 47

5.82,                  47 < 𝑍 ≤ 64
−0.997 + 12(1 − cos𝑍), 64 < 𝑍 ≤ 90

 

where, all parameters were from the WRF model. TSR is the total solar radiation (W/m2). 

Z is the solar zenith angle (°). T is the ambient temperature (K).  

Minor comments 

Question 6 

Line 39: Which pollutant does these measures of industrial and domestic sources aim to tackle? 

Is it for PM2.5, rather than NO2? 
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Response: 

Thanks for your reminding. This research (Zhang et al., 2019) is aim to track PM2.5. However, 

the main air pollution control measures on industrial, domestic and mobile sources mentioned 

in this study will also relieve the NO2 pollution, such as the strengthen industrial emissions 

standards, upgrades and phase out on industrial capacities. We have revised the statement now 

for better understanding.  

Revisions in Manuscript: 

(1) Introduction. Line 38-40. 

The improvement of PM2.5 in China was mainly due to the emission reduction and control 

measures of industrial and domestic sources (Zhang et al., 2019), which also relieved the 

NO2 pollution, but the reduction potential of these sources has been gradually declining. 

 

Question 7 

Lines 42-43: The poor dispersion caused by buildings along the street would also play a key 

role in it. High pollutant concentrations in street canyon environment are caused by combined 

effects of poor dispersion, increased traffic emissions and chemistry processes. 

Response: 

Thanks very much for your advice. We agreed that this statement should be more precise. 

We have revised the original description. 

Revisions in Manuscript: 

(1) Introduction. Line 41-43. 

Due to the low release height of vehicle emissions, combined with the negative dispersion 

condition caused by nearby buildings, air pollutants will be significantly accumulated near 

the street. 

 

Question 8 

Line 58: “has” should be “have”. 

Response: 

Thanks for your comments. We have revised it now. 

Revisions in Manuscript: 
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(1) Introduction. Line 55-59. 

Regional-scaled air quality models, represented by Chemical Transport Models (CTMs) 

including Community Multi-scale Air Quality (CMAQ) model (Byun and Schere, 2006), 

Comprehensive Air quality Model with extensions (CAMx), and Weather Research and 

Forecasting/Chemistry model (WRF-Chem) (Grell et al., 2005), have been used 

extensively in assessment on the impacts of vehicle emissions on the regional atmospheric 

environment. 

 

Question 9 

Line 96: “Based on FORTRAN and R languages”, it is not clear. Which part is based on 

R? Is it for a post-processing tool? 

Response: 

Thanks for your reminding. The MLSCF scheme (including RF and MARS) was 

established based on R language, and we further modified the code of RLINE model to 

add other parameterization schemes with FORTRAN language. We added more 

description to make it clearer in the manuscript. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 110-111. 

Here, we established the MLSCF scheme based on R language, and modified the code of 

RLINE model to add other parameterization schemes with FORTRAN language. 
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Response to Reviewers #3’s Comments 

Summary 

In this work, a hybrid model has been developed and evaluated to analyse the effects of 

vehicle emissions on urban roadside concentrations of NO2 in Beijing. The article is well 

written and raises an important topic, the link between the simulations done using regional 

chemistry transport models and the simulations at the urban level done using 

gaussian/dispersion models. However, there are a few points that should be clarified in 

order to make clearer the evaluation of the model and the scenarios tested. 

Response: 

Thank you very much for spending time to give us so many constructive comments. Upon 

learning through them, we improved our manuscript. We try our best to address all the 

concerns in this revision. 

 

Major comments 

Question 1 

The introduction clearly shows the differences between chemistry transport models and 

dispersion/gaussian models highlighting the difficulties of the former in predicting the 

roadside concentrations. However, there isn’t a clear link between regional models and 

urban models. Few works have been published and few models have been already 

developed to couple regional and urban models and these should be mentioned in the 

introduction. 

Response: 

Thanks for your advice. In recent years, considering the respective strengths and 

limitations of chemistry transport models and dispersion/gaussian models, several studies 

have been carried out on coupling of air quality models applicable to different scales. And 

we apologized that the introduction of coupled model was missing in our original 

manuscript. Now we have added a review about the current status of coupled model in the 

Introduction to further describe the innovation of our model. 

Revisions in Manuscript: 

(1) Introduction. Line 84-96. 

Considering the respective strengths and limitations of regional models and local models, 
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several studies have been carried out on coupling of air quality models applicable to 

different scales (Ketzel et al., 2012; Stocker et al., 2012;  Lefebvre et al., 2013; Jensen et 

al., 2017; Kim et al., 2018; Mallet et al., 2018; Hood et al., 2018; Benavides et al., 2019; 

Kamińska, 2019; Mu et al., 2022). Although these models performed accurately in near-

road simulation, the influence of street canyons is still hard to be considered. In some 

hybrid models (Stocker et al., 2012; Jensen et al., 2017; Mallet et al., 2018), OSPM was 

still applied to calculate concentration levels within the street, where the application of 

logarithmic wind profile probably overestimated the bottom wind speed in a deep street 

canyon as abovementioned. Other models simply assumed that in street canyons, wind 

direction followed the street direction, and wind speed was uniform, which was not 

sufficient to resolve the concentration gradient within street canyons ( Kim et al., 2018; 

Benavides et al., 2019). Berchet et al. (2017) proposed a cost-effective method for 

simulating city-scale pollution taking advantage of high-resolution accurate CFD, while 

the primary NOx was predicted due to the lack of a chemical module. Therefore, it is 

essential to build an integrated model to predict long-term and near-road air pollution 

suitable for the urban complex underlying surface environment. 

 

Question 2 

The methodology highlights only part of the process defined in Figure 1. The authors focus 

their discussion on the urban model but WRF and CMAQ configuration and outputs should 

also be mentioned and discussed. 

Response: 

Thanks for your advice. The configuration of WRF and CMAQ model was introduced in 

detail in our previous study (Lv et al., 2020), where each input data and parameterization 

schemes are discussed. This information has been already provided in the Method section. 

The prediction of CMAQ model has also already shown and discussed in Figure 9-11 and 

Table 2, including the outputs of CMAQ, the comparison of different models and the 

validation of CMAQ. In this revision, we added the validation of predictions from WRF 

model compared with observations in Table S6 in in Supplement Materials. 

Revisions in Manuscript: 
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(1) Supplement Materials. Table S6.  

Table S6. The performance of WRF model compared with observations. 

Variables 
Sample 

size 

Observed 

Average 

Simulated 

Average 
MB NMB RMSE R 

WS10 (m/s) 732 2.5 3.7 1.2 46 1.9 0.6 

WD10 (°) 456 190.4 169.0 -8.0 -4 49.5 0.4 

T2 (℃) 742 25.8 29.0 3.2 12 3.5 0.9 

RH (%) 741 64.3 50.4 -13.9 -22 17.4 0.9 

*WS10: wind speed at the height of 10 m; WD10: wind direction at the height of 10 m; T2: 

Temperature at the height of 2 m; RH: Relative humidity; MB: Mean bias; RSME: Root mean 

squared error; NMB: Normalized mean bias; R: correlation coefficient. 

 

Question 3 

The simulations are run for a period of high photochemical activity. This is surely 

dependent on weather conditions that are completely absent from the article? 

Response: 

Thanks for your advice. We apologized that the description about weather conditions in 

simulation period is missing. In this study, we choose summer (August 1st to 31th in 2019) 

as simulation period since the strong photochemical reactions, induced by the high 

temperature (the average of daily high temperatures higher than 30 ℃) and strong solar 

radiation conditions (sunlight hours longer than 13 hours). Now we revised this statement 

to make it clearer. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 300-302. 

The near-ground NO2 concentrations were simulated from August 1st to 31th in 2019 when 

the average of daily high temperatures was higher than 30 ℃ and sunlight duration was 

longer than 13 hours, leading to strong photochemical reactions. 

 

Question 4 

The NOx-O3 system include also VOCs. There is no mention of this in the methodology 

or in the results. Are VOCs included in the simulations? It would be good to add the 

chemical mechanism somewhere in the supplementary material?  
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Response: 

Thanks for your advice. We apologized those unclear descriptions on the NOx 

photochemical reactions in the original manuscript. In general, the VOCs is not included 

in our study, where a simple mechanism only involving NOx and O3 was used. We used 

the two-reaction method applied in other studies, such as the SIRANE model (Soulhac et 

al., 2017). The NOx photochemical scheme includes two main chemical reactions, namely 

the photolysis of NO2 and the oxidation of NO as follows: 

{
NO2  +  hv →  NO + O3 

NO + O3  →  NO2
 

During simulation, the NOx (NO+NO2) emitted from vehicles is first regarded as an inert 

gas and only the primary concentration after diffusion is simulated. Then, assuming a 

photo-stationary equilibrium condition, the concentrations of NO, NO2 and O3 are 

calculated. 

Following your suggestions, we have added a brief introduction of the "two-reaction 

scheme" in Materials and Methods and details in Supplement Materials (Section S3. 

NOx photochemical parameter scheme). 

For comments about VOCs chemistry, Kim has already compared a simple mechanism 

only involving NOx and O3 (Leighton mechanism), with the CB05 gas phase chemical 

mechanism including VOCs chemistry by incorporated them into SinG model to estimate 

roadside NO2 concentration respectively, and found a very similar predictions (Kim et al., 

2018). Therefore, the Leighton mechanism was selected in an operational version of SinG 

due to the halved computational time. However, Zhong et al. found the NO2 and Ox inside 

the canyon was enhanced by 30–40% via OH/HO2 chemistry in the canyon (Zhong et al., 

2017). The difference of the influence of VOCs chemistry on concentrations in these 

studies mainly due to the differences in local meteorological conditions, emissions and 

other factors (e.g. geometry of canyons). Considering that the input emission data of two-

reaction scheme are more accessible and the computational cost is lower compared with 

those in the O3-NOx-VOC chemistry, we chose two-reaction scheme in this study. We will 

make effort on investigate the influence of chemistry scheme on simulation in the future, 

and this is added in the Conclusions now. 
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Revisions in Manuscript: 

(1) Materials and Methods. Line 167-170. 

In this study, a simplified two-reaction scheme, including the photolysis of NO2 and the 

oxidation of NO, was incorporated into the model to characterize the photochemical 

process of NOx (details in the Supplement Section S3), which has been successfully applied 

in the SIRANE dispersion model (Soulhac et al., 2017). 

(2) Conclusion and Discussions. Line 522-527. 

In our study, a simplified two-reaction scheme was incorporated into the model to 

characterize the photochemical process of NOx, since it performed similar predictions and 

less computational time compared with those of the complicated CB05 gas phase chemical 

mechanism (Kim et al., 2018). However, another study pointed that the impact of nonlinear 

O3-NOx-VOC chemistry on NO2 concentrations in the deep canyon was nonnegligible 

(Zhong et al., 2017). The influence of different chemistry schemes on near-road simulation 

will be investigated in the future. 

(3) Supplement Materials Section S3. NOx photochemical parameter scheme.  

The NOx photochemical parameter scheme applied in this study includes two reactions: 

{
NO2  +  hv →  NO + O3 

NO + O3  →  NO2
 

Kim et al. compared two-reaction scheme with CB05 gas phase chemical mechanism by 

incorporated them into SinG model to estimate roadside NO2 concentration, and found a 

similar results, while the computing time cost of two-reaction scheme was significantly 

less than that of the CB05 mechanism (Kim et al., 2018). Therefore, the simplified two-

reaction scheme was incorporated into the model in this study to characterize the NOx 

photochemical process. During simulation, the NOx (NO+NO2) emitted from vehicles is 

first regarded as an inert gas and only the primary concentration after diffusion is simulated. 

Then, assuming a photo-stationary equilibrium condition, the concentrations of NO, NO2 

and O3 are calculated using the two-reaction scheme, as follows:  

{
 
 

 
 [NO2] = (𝑏 − √𝑏

2 − 4𝑐)/2
[NO] = [NO]b + [NO2]b + [NOx]d − [NO2]

[O3] = [O3]b + [NO2]b + 𝜁[NOx]d − [NO2]

𝑏 = 𝑘1/𝑘2 + [O3]b + [NO]b + 2[NO2]b + (1 + 𝜁)[NOx]d
𝑐 = ([O3]b + [NO2]b + ζ[NOx]d)([NO]b + [NO2]b + [NOx]d)
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where, [NOx]d is the primary concentration of NOx directly simulated by RLINE model 

when taken as an inert gas. [NO]b, [NO2], and [O3]b are the background concentrations of 

NO, NO2 and O3 from non-vehicle sources, respectively, which are provided by CMAQ-

ISAM model. The unit of concentrations in these formulas is mol/m3. ζ is the ratio of NO2 

to NOx in vehicle emissions, with a value of 0.2 (Benavides et al., 2019; Valencia et al., 

2018). The reaction rates of the photolysis of NO2 and the oxidation of NO were set to be 

k1 and k2 respectively, and calculated as follows (Hurley, 2005): 

{
𝑘1 = 10−4 × 𝛿 × TSR

𝑘2 = 9.24 × 105 × exp(−1450/𝑇) /𝑇
 

𝛿 = {
4.23 + 1.09/ cos𝑍 ,       0 ≤ 𝑍 ≤ 47

5.82,                  47 < 𝑍 ≤ 64
−0.997 + 12(1 − cos𝑍), 64 < 𝑍 ≤ 90

 

where, all parameters were from the WRF model. TSR is the total solar radiation (W/m2). 

Z is the solar zenith angle (°). T is the ambient temperature (K). 

 

Minor comments 

Question 5 

Line 32: the reference (Cui et al., 2021), (Shah et al., 2020) should be (Cui et al., 2021; 

Shah et al., 2020). 

Response: 

Thanks for your reminding. We apologized that the citation format is wrong and corrected 

it now in this revision. 

Revisions in Manuscript: 

(1) Introduction. Line 30-33. 

During the last decade, benefiting from the implementations of several air pollution control 

strategies by the Chinese government, the air quality has improved (Jin et al., 2016; Zheng 

et al., 2018), and the vertical column densities of NO2 displayed a decreasing trend after 

2013 (Shah et al., 2020; Cui et al., 2021). 

 

Question 6 

Line 33: delete that: it is still much more severe than that in developed. 

Response: 
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Thanks for your advice. We apologized that this statement is not appropriate and deleted 

it now in this revision. 

 

Question 7 

Line 40 – 42: The comparison with the emission in Lyon is quite specific. I suggest 

explaining a bit more or in an alternative to make a more general case of “other urban areas. 

Response: 

Thanks for your suggestion. We agreed that the case in Lyon introduced here was too 

specific and deleted it now in this revision. 

Revisions in Manuscript: 

(1) Introduction. Line 40-41. 

Meanwhile, as the population of vehicles is growing rapidly, vehicle emissions have 

become a major source of NO2 pollution, especially in urban areas (Nguyen et al., 2018). 

 

Question 8 

Line 102: the spatial resolution should be precise: please substitute < 100 m x 100 m with the 

real spatial resolution. 

Response: 

Thanks for your reminding, and the original description was misleading. The grid spatial 

resolution of the hybrid model over the urban area was 50 m x 50 m. We revised the 

statement to be precise. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 116-117. 

In our model, a NO2 pollution map with a high temporal (1 h) and spatial resolution (50 

m×50 m) can finally be obtained. 

 

Question 9 

Line 107 -108: The choice of the midpoint height of 22.5m suggests that the CMAQ has a 

first vertical layer at 45m of height. In the first instance, this would be in my opinion too 

high. Generally, CTMs have the first 9-10 vertical layers below the boundary layer but, to 

improve the prediction on the ground level, keep the 1st layer around 20m from the ground. 
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Could the authors enforce their statements with one or more references that justify this 

choice. 

Response: 

Thanks for your question. We agreed that in traditional CTMs, it is useful to improve the 

prediction when the first layer was set to be lower. However, in our hybrid model, we 

planned to get the wind environment and the background concentrations at the top of the 

canyon, so the midpoint height of the first layer in both WRF and CMAQ model must be 

similar with the height of street canyon. In Beijing, the average height of street canyon is 

23.6 m, so we set 22.5 m as the midpoint height of the first layer. This setting is similar 

with that in Benavides’s study (Benavides et al., 2019), where the bottom layer in the 

model was set to be 40.6 m, of which midpoint height was similar to the average building 

height. Now we added the reference in the Materials and Methods section to enforce our 

statements. 

Revisions in Manuscript: 

(1) Materials and Methods. Line 132-134. 

The height of midpoint in the bottom layer to the ground was set as 22.5 m, which is close 

to the average height of buildings near street canyons, similar to the settings in the previous 

study (Benavides et al., 2019). 

 

Question 10 

Line 277 – 279: The authors describe the performance of the model in terms of “high” and 

“low” RE. It would be good to provide a more quantitative description or a reference value 

for this particular metric. 

Response: 

Thanks for your question. We have already provided a quantitative description about the 

“high” and “low” RE. The “high” RE referred to the value of 42.5% and 43% in previous 

sentence. And the “low” RE referred to the value of 9.8% and 2.7% in this sentence. There 

is not a quantitative criterion to judge whether the RE is high or low, which generally 

depends on the specific requirement of the experiment. Now we revised our statement and 

put the quantitative description in this one sentence. 
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Revisions in Manuscript: 

(1) Results. Line 337-339. 

Although the average of the relative error (RE) were a little high (42.5% and 43%), 

particularly when the predicted wind speed was low, the median RE were relatively low 

with 9.8% and 2.7%, respectively, indicating an acceptable performance. 

 

Question 11 

Line 280 – 283: I’m not sure that the MARS model performs better than RD in Figure 5. I 

suggest clarifying this paragraph better. In the a) figure the CFD is the closest to the 

observations, followed by RF (red slope) and MARS (yellow slope). In figure b) again 

CFD is the closest to the observations, RF is completely underestimated and MARS is 

overestimated from values of z/H > 0.25. 

Response: 

Thanks for your question. Figure 5 was aimed to compare the performance of RF and 

MARS in two different cases, so we should find between MARS and RF which one is 

closer to the CFD and observations. In the first case (Figure 5a), the MARS model 

performed not very well when compared with the RF. However, in another uncommon 

case when 𝑉𝑏𝑔𝑦=17 m/s >>5 m/s (Figure 5b), RF failed to respond to the parts beyond 

the range of prediction variables, and the predictions from MARS is closer to the CFD and 

observations. Therefore, by comparing the performance of two models in Figure 5, the 

MLSCF scheme was established based on a method to combine the advantages of each 

model. The RF model was used when the input value was within the range of predictors 

shown in Table 1, otherwise the predictions from the MARS model were used. We have 

corrected the description of x-lable in Figure 5b and revised the text under this figure for 

better understanding. 

Revisions in Manuscript: 

(1) Manuscript. Figure 5.  
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Figure 5: Performances of machine learning on velocity profile in wind tunnel experiments. 

The street canyon was perpendicular (a) or parallel (b) to the wind direction at the roof 

level in different experiments. The detailed description of each experiment was introduced 

in Section 2.2.3. 

 

Question 12  

Line 378 – 383: The authors mention NOx emissions leading to high NO2 observations 

among all sites. They also say that the CMAQ model underestimates the NO2 

concentrations near ring roads (MB = -15µg/m3). The NOx emissions account for 

NO+NO2, if this variable is NOx before being inserted in CMAQ, it has to be divided 

between NO and NO2. In roadside sites generally, the NO emissions are high, could the 

underestimation in CMAQ be related to a not precise division of the original emissions of 

NOX in NO and NO2? 

Response: 

Thanks for your question. The setting of the division of the original NOx emissions in NO 

and NO2 depends on what emission source it is, rather than what model we use. For 

example, divisions of NOx emission from industry and vehicle are different, but the 

divisions of NOx emission from vehicles in both CMAQ or our hybrid model remained 

the same. In our study, the ratio of NO2 to NOx in vehicle emission was set as 0.2 according 

to previous studies (Benavides et al., 2019; Valencia et al., 2018), which was introduced 

in the Supplement Materials Section S3. NOx photochemical parameter scheme now. 
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Revisions in Manuscript: 

(1) Supplement Materials Section S3. NOx photochemical parameter scheme. 

ζ is the ratio of NO2 to NOx in vehicle emissions, with a value of 0.2 (Benavides et al., 

2019; Valencia et al., 2018). 

 

Question 13 

Line 390 – 394: The model actually improves the performance of O3 in comparison with 

CMAQ only model. This agrees with the underestimation in NO2 that the CMAQ only 

shows and was previously described by the authors. Being the O3 chemistry dependent not 

only on NO, and NO2 but also on VOCs I would spend some words introducing these 

pollutant classes and giving more details on them. 

Response: 

Thanks for your advice. In this study we focused on near-source process, where the O3 was 

largely affected by the titration of NOx. As mentioned in the previous study (Biggart et al., 

2020), roads with higher NOx emissions led to lower NO2/NOx concentration ratios within 

distances of 100m, indicating greater O3 loss through its titration by NO. This is one of the 

reasons why a simple mechanism only involving NOx and O3 was used in this study. 

The influence of VOCs concentrations on pollutant concentrations have been discussed in 

several studies (Kim et al., 2018; Zhong et al., 2017), and in this study we didn’t take it 

into consideration. Details about this has been described in the Question 4. 

Revisions in Manuscript: 

(1) Conclusion and Discussions. Line 522-527. 

In our study, a simplified two-reaction scheme was incorporated into the model to 

characterize the photochemical process of NOx, since it performed similar predictions and 

less computational time compared with those of the complicated CB05 gas phase chemical 

mechanism (Kim et al., 2018). However, another study pointed that the impact of nonlinear 

O3-NOx-VOC chemistry on NO2 concentrations in the deep canyon was nonnegligible 

(Zhong et al., 2017). The influence of different chemistry schemes on near-road simulation 

will be investigated in the future. 
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