
The manuscript addresses the variability of atmospheric mercury concentration in a coastal city 

in Southeast China. The manuscript aims to report the main factors driving GEM variability by 

deploying the regression analysis method. The scientific question is relevant to the scientific 

community. However, many issues can be highlighted in the manuscript. 

 

The main concern in the manuscript is its design, how the Generalized Additive Model was 

used, and the premises assumed for the pattern recognition of the factors driving GEM 

variability. The authors lack knowledge of the used method. The signal extracted from the 

matrix of trace gases, PM, and meteorological data used to reconstruct GEM, is not explicitly 

linked to GEM sources, transport, or processes. The factorization was constrained by a 

minimum concentration covariance that led to the meteorologic factor as the main cluster. I am 

afraid that the authors were misled by a spurious correlation in the propagation of the 

eigenvector, where the main factor explaining the GEM was seasonality. The main 

disadvantage of the unsupervised learning technique as the one used by the authors is the fact 

that the possible solution is no-unique. 

Response: Thanks very much for your careful review and valuable comments which are very 

helpful for improving the quality of the manuscript. We have learned more GAM method 

through materials and literature. GAMs seem not like traditional unsupervised learning 

techniques such as PCA. We did not use GAMs to cluster, but to build a well-fitted nonlinear 

regression model and calculate the variation in factors interpretations rate. We carefully read 

the comments and revised the whole manuscript accordingly.  

1. In this study, we assumed that the GEM concentrations were mainly affected by three factors: 

anthropogenic emissions, meteorology and transportation. 16 variables we obtained from site 

observation and web downloads were screened to represent the three factors using two methods: 

Statistical judgment and the meaning of the variables. The detailed screening processes have 

been implemented in the revised manuscript.  

2. To eliminate the effect of seasonality on variance clustering, we have used “seasons” as an 

input variable when building the model with the whole dataset, and then run the model 

separately in summer and winter. We clarified this point in the Section 2.5 Model 

establishment (Line 187-189). At the same time, we focused on inter-annual differences in 

individual seasons instead of seasonal comparisons when discussing the results. 

3. We agree that it’s better to use the variables which are explicitly linked to GEM sources, 

transport, or processes. However, we encountered some difficulties to obtain the high spatial 

resolution of Hg emissions inventory in China. In addition, there is no known explicit 

parameters to represent GEM processes in the atmosphere. The advantage of GAMs is that it 

can use routine monitoring or easily obtained parameters to represent the influencing factors. 

In revised manuscript, we explained the meaning of the retained variables in detail.   

4. Yes, the possible solution of GAMs is no-unique. In this study, the accuracy of GAMs 

simulation was assessed using a 10-fold cross-validation test. The principle of the test is 

dividing the whole dataset into ten subsets randomly, and in each round of cross-validation, 

nine subsets are used to fit the model and the remaining one is predicted. This process is 

repeated 10 times to ensure that every subset is tested. The 10-fold cross-validation results 

showed a good coincidence between the GAMs and cross-validated result. In addition, we also 

use the gam.check function (e.g. Quantile-quantile (QQ) plots) to ensure the validity and 



accuracy of the model. The detailed introduction could be found in Section 2.5 Model Quality 

Control (Line 190-200).  

 

Specific comments: 

Line 236: The authors call data from two months “trend over 2012”; however, it corresponds 

only to ten months of data for a period of nine years. The terminology “trend” is incorrect 

throughout the manuscript and should be revised. After all, it is not clear why the authors used 

only January and July data. 

Response: Thanks for your suggestion. We used “variation” instead of “trend” in the revised 

manuscript. In addition, we added the explanation of the period of GEM observation data to the 

text (Section 2.2, Observation period selection). The main reason was that the period of 

instrument malfunction was different among years. We used representative months of data so 

that the period of GEM data was consistent and the GEM data could be comparable among 

years. We chose January and July data mainly based on two considerations: (1) The 

measurement site, Xiamen, is located in the coastal region of Southeast China under the control 

of East Asian monsoon, which has a significant distinction in meteorology between summer 

and winter; (2) Based on our previous study on GEM observations in Xiamen throughout a year 

(Xu et al., 2015), January is very representative of winter and July is representative of summer.  

 

Line 239-249: The emission data should be presented, and regression with observation should 

be discussed. 

Response: It’s a pity that we do not have the Hg emission inventories data. We summarized the 

published data of anthropogenic Hg emission in China so far, and added it to the supporting 

information (Figure S3,4). The published data did not cover the study period 2012-2020, and 

the small amount of annual emission data might be not suitable for regression analysis. 

According to the published data, Wu et al. (2016) estimated atmospheric Hg emissions in China 

decreasing from 547 tons in 2010 to 530 tons in 2014. The report from AMAP/UNEP showed 

that the anthropogenic Hg emissions in China were 565.2 t in 2015 relative to 575.2 t in 2010. 

An inventory over the period 1978-2017 revealed that China’s anthropogenic Hg emission was 

highest in 2013 and then decreased until 2017 (Liu et al., 2019). It could be expected that the 

anthropogenic Hg emissions in China had a downward trend over the period 2012-2020 and the 

peak emission was most likely to occur in 2012 to 2014. A more detailed description of Hg 

emissions was added in the Section 3.1.1 (Line 225-231). 



 

Figure S3. Anthropogenic mercury emissions from China reported in the literature (Streets et 

al., 2005; Wu et al., 2006; Cheng et al., 2015; Tian et al., 2015; Zhang et al., 2015; Wu et al., 

2016; Liu et al., 2019). 

 

Figure S4. Anthropogenic mercury emissions during 1978-2017 in China (Liu et al., 2019). 

 

Line 243: “aggressive” what does it mean? 

Response: We mean “vigorous measures”. In 2013, the Chinese State council issued an air 

pollution prevention and control action plan. Since then, plenty of emissions control measures, 

like accelerate the elimination of backward production capacity, accelerate the promotion of 

central heating, upgrades and building air pollution control devices, have been widely 

implemented in China (Line 244-247). We changed “aggressive” to “vigorous measures” in the 

revise version. 

 

Line 252: Would it be possible to show the coal consumption in Fujian and China? 

Response: As you suggested, we provided coal consumption in Fujian and China during 2012-

2020 both in Fig. S5. The data came from the Statistical Yearbook of China and Fujian 

(http://www.stats.gov.cn/tjsj/ndsj/: last access: 15 June 2022). The coal consumption in Fujian 

and China exhibited a similar variation, firstly decreasing to a valley in 2016 and then showing 

an upward trend from 2016 to 2020 (Fig. S5).   



 

Figure S5 Statistics of annual coal consumption in China and Fujian Province during 2012 – 

2020. 

 

Line 259: Probably, the authors mean inter-annual variation rather than an inter-annual trend. I 

am afraid that the data exploitation presented by the authors does not allow a proper evaluation 

of the trend. 

Response: We agree with you. We used “inter-annual variation” instead of “inter-annual trend” 

in the text and focused on inter-annual comparison of GEM concentration when revising the 

manuscript.  

 

Section 3.1.2 

 

I am afraid that using only two months is inappropriate for seasonality evaluation. In addition, 

one month represents only 1/3 of the season. 

Perhaps it would be more appropriate to call the section January/July comparison rather than 

“seasonal”.  

Response: According to the climate features in the study region, January and July could well 

reflect the characteristic of the winter and summer seasons, respectively. The observation site 

Xiamen is located in the coastal region of Southeast China under the control of subtropical 

oceanic monsoon, which has a significant distinction in meteorology between summer and 

winter. In addition, a whole year GEM concentration observation in Xiamen supported that the 

GEM data in January can represent the GEM characteristics of winter and July can represent 

summer (Xu et al., 2015). We added the instruction of the season’s representation of January 

and July in Section 2.2 Observation period selection. 

 

Line 271-282: The polar plot does not support the statement of dominant wind from the North 

or a higher concentration of GEM on this wind. If the plots are correct, the predominant source 

of GEM in January is in the west, and long transport does not play a major role in the level of 

GEM at Xiamen. Actually, the plot shows only a low level of GEM at wind from the sea. 



Response: We are sorry we did not explain the air mass and near-ground wind directions clearly. 

The wind speed/direction used in the polar plot analysis was observed near the ground and 

represents a very local scale (within Xiamen city) airflow condition. The wind speed/direction 

was strongly affected by the terrain. The “wind” here refers to the air masses which mainly 

affected by large-scale atmospheric circulation. The air masses in the study region was mostly 

originated from the land area in winter and from the ocean in summer. To be clearer, we’ve 

changed “wind” here to “air mass”. 

 

Line 283-288: It seems confusing; the authors should consider rewording it. 

Response: We rewrote this passage as follows: “The diurnal variations of bihourly GEM 

concentrations were consistent among years (Fig. 3). In general, the GEM concentration peaked 

in the early morning, decreased to a valley in the afternoon, and then rose during the night. The 

diurnal pattern of GEM concentrations in January 2015 were gentle than other years of the same 

period, which might be related to the enhanced effect of air mass transport (Fu et al., 2012; 

Nguyen et al., 2022)”. (Line 277-281) 

 

Line 289: The diurnal pattern observed for July can be potentially constrained by sea/land 

breeze since it is a coastal place. 

Response: We agree that the sea land breeze (SLB) is a potential factor of atmospheric mercury 

concentrations in coastal cities. Our statistics for 2017 – 2020 show that the average number of 

SLB days was only 6 days in January and 3 days in July. In addition, we compared the diurnal 

trend of atmospheric mercury in January and July of 2017 and 2020 on the SLB days and non-

SLB days. As shown in the chart below, there was no significant difference in the diurnal 

pattern of GEM between SLB and non-SLB days. Thus, we infer that sea land breeze was not 

the dominant factor influencing the diurnal trend of mercury concentrations. 

 

Line 297 – 298: For kinetic reasons, photo-oxidation cannot be the explanation for the observed 

reduction of GEM in the daytime. It is most like related to GEM fluxes. The authors speculate 

about the diurnal variation of GEM without a solid clue about the processes driving it. 

Response: We agree with your comment. The photo-oxidation of GEM possible contributed a 

small part to the diurnal variation of GEM, but it was not the dominant factor for the daytime 



GEM reduction in the study region. We clarified this point in the revised manuscript (Line 289-

291).  

 

Polar plots are quite limited in providing emission locations. Concentration-Weighted 

Trajectory could improve this section; it would map GEM, allowing hotspot concentration 

identification. 

Figure 5 does not bring insight into the mercury source location. A different kind of plot should 

be presented. In addition, a clearer CWT method should be presented. 

Response: The polar plots analysis here was used for the identification of local point sources 

mainly within Xiamen city. According to your suggestion, we further performed CWT analysis 

and revised the relevant discussion in the main text (Section 3.2.2).  

 
 

Line 365-370: It seems a last-minute explanation; since only fluxes can explain variation in the 

atmospheric mercury concentration, the authors should look into Hg emission to address a more 

convincing explanation. 

Response: We rewrote this section and considered primarily the impact of Hg emissions, and 

secondarily the impact of meteorology (Line 357-363).  



“The high GEM concentrations in January 2015 was likely due to a combination of high-level 

Hg emissions and adverse meteorological conditions. The annual atmospheric mercury 

emissions in China were about 565 tons in 2015, which was roughly 20% higher than they were 

in 2010 (AMAP/UNEP, 2018). According to anthropogenic mercury emissions inventory in 

China during 1978 – 2017, mercury emissions might peak around 2013, and remained high in 

2015 (Figure S2). In addition, an adverse effect of meteorological conditions due to extreme 

2015 – 2016 El Niño event might result in an increase of GEM concentrations in 2015 (Nguyen 

et al., 2022).” 

 

Section 3.3.2 

 

This section has major concerns 

 

Unsupervised learning techniques are power statistic methods applied successfully to extract 

signal and meaning information from high-dimensional data. Deploying nonnegative matrix 

factorization, we can more than explain covariance; we can extract the pattern of source and 

transport of atmospheric trace gases. However, I am afraid that the authors did not design the 

factorization properly. The species considered in the matrix were chosen without criterium. It 

was only convenient for the authors to have those species there. What is the sense of having 

PM in the matrix? Considering species that do not bring retrieval signals will not provide insight 

into mercury processes/source/fade. It only increases uncertainty and chances of spurious 

correlation, misleading the eigenvector's propagation. 

Response: Thanks very much for your valuable comment. We added a detailed introduction of 

GEM factor selection into Section 2.5 Parameter Selection in the revised manuscript. 

1, 16 variables we obtained from site observation and web downloads generally fell in four 

categories: anthropogenic emissions (SO2, NO2, O3, CO, PM2.5, PM10), surface meteorology (T, 

RH, WS, WD, SP), high-altitude meteorology (BLH, UVB and LCC) and air transmission 

transportation (24h-Latitude and 24h-Longitude). All the variables were standardized by min-

maximum method. The normalized data eliminates the effects of differences in dimension and 

ranges of values between indicators. The standardized variables were then screened using two 

methods: Statistical judgment and the meaning of the variables. 

2, The detailed processes of factor screening are as follows. 1) We performed collinearity 

diagnostics with all the parameters. PM10, SO2, NO2, SP and UVB were rejected into the model 

due to their high collinearity (VIF > 5). 2) we considered the meaning of the remaining 

parameters based on the literature and our research experience. CO is mainly sourced from 

anthropogenic emissions and has a long atmospheric residence time (compared to SO2 and NO2). 

In addition, Hg emissions in Fujian provinces were dominated by combustion sources (Liu et 

al., 2019). Hence, we used CO to represent anthropogenic Hg emissions. Parameters O3 and 

PM2.5 were easily rejected into the model. 3) After determining the first parameter CO, we put 

the remaining parameters (WS, WD, T, RH, BLH, LCC, 24h-Latitude and 24h-Longitude) into 

the model one by one. As the parameters were successively added into the model, the AIC 

decreased and R2 increased. In this step, WS, WD and LCC were rejected. Eventually, 6 

variables including CO, RH, T, BLH, 24h-Latitude and 24h-Longitude were selected into the 

model.  



3, Considering that parameters of the same category may interact, we used interaction functions 

of tensors. RH, T and BLH interaction was used to represent the meteorological factor. 24h-

Latitude and 24h-Longitude interaction was used to represent the transportation factor. Given 

that the 6 selected variables passed the collinearity test, the three factors they represented, i.e., 

anthropogenic Hg emissions, meteorological and transportation were considered to be 

independent of each other.  

 

The major problem in this study was the correlations extracted from the species inserted in the 

factorization. The differences in the GEM concentration through the season, which are 

dependent on the seasonality of the emissions, were correlated with the seasonality of the 

meteorological parameters, which were extracted as the causes of GEM reduction in July. The 

direct incorporation of meteorological parameters into the factorization misled the eigenvector 

propagation. The seasonal differences created cluster minimizing the variance but do not sign 

origin/source/or fluxes of GEM. 

The factor obtained by the authors does not provide any insight into the GEM reducibility 

(computationally speaking) since it does not bring information on the source/or fluxes of GEM. 

Seems that the authors did not plan the species to be considered in the calculation. 

Moreover, the meteorological variables cannot be included directly in the factorization matrix. 

In order to evaluate transport, the authors should use an inversion accoupled with a transport 

model. 

I hope the authors do not feel disappointed or frustrated with my comments. I`m very 

enthusiastic about unsupervised learning methods for pattern recognition and estimation of 

fluxes and the implementation of nonnegative matrix factorization into inversion modeling. 

Indeed, it has great potential to bring new insight into atmospheric mercury reducibility. I hope 

the authors only feel motivated to learn and improve their research. 

Response: We really appreciate your comments and suggestions. We learned a lot from your 

comments. The inversion model is indeed a very meaningful work for regional and global flux 

estimation and has great potential to bring new insight into atmospheric mercury reducibility. 

Whereas, the main purpose of this study was to recognize the factors driving the inter-annual 

variations of GEM concentrations, which is a little different from building an inversion model 

of atmospheric GEM. Some explanations are listed as follows: 

1, We agree with that the seasonal differences may create cluster minimizing the variance.  We 

did take seasons into account. When we built the model with whole dataset, we have used 

“seasons” as an input variable. and then run the model separately in summer and winter. The 

accuracy of GAMs simulation was assessed using a 10-fold cross-validation test. We clarified 

this point in the revised manuscript (Line 187-192). As for the results discussion, we focused 

on inter-annual differences in individual seasons instead of seasonal comparisons. 

2, According to your suggestion, we used the min-maximum method to standardize the 

parameters, including the meteorological variables, before the model running. The normalized 

data eliminates the effects of differences in dimension and ranges of values between indicators.  

3, We have thought over the Hg species and from the characteristics of Hg species and the 

available representative variables (Line 97-104). GEM has a low chemical reactivity comparing 

to GOM and PBM in the atmosphere. GEM concentrations are largely affected by factors like 

anthropogenic emissions and atmospheric physical processes, which could be well represented 



by routine monitoring or easily obtained parameters, like CO, RH, BLH, etc. Whereas, GOM 

and PBM concentrations were strongly affected by chemical transformation processes, which 

have no known suitable indicators. In addition, involving chemical transformation effect in the 

GAM models would make it more complicate.  

4, We have not done studies on the inversion model. We agree that it has great potential to bring 

new insight into atmospheric mercury reducibility. We will learn more about the inversion 

model and we are very willing to provide the atmospheric mercury observation data from the 

two coastal cities of China for the verification of the inversion model. 
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