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Abstract

Dust is an important aerosol affecting air quality in China in winter and spring
seasons. Dust in China is potentially influenced by the interannual climate variability
associated with El Nifio. Here, the impacts of El Nifio with different temporal and
spatial types on dust pollution in boreal winter and spring in China and the potential
mechanisms are investigated using a state-of-the-art earth system model (E3SMv1). We
find that the Eastern Pacific (EP) and Central Pacific (CP) El Nifio both increase
wintertime dust concentrations by 5-50 pug m™ over central-eastern China. Due to a
stronger wind and lower relative humidity, which favor dust emissions near sources,
and a strengthened northwesterly and reduced precipitation, which are conducive to
dust transport, dust concentrations during the CP El Nifio are 5-20 ug m™ higher in
northern China than during the EP El Nifio, although the changes are mostly
insignificant. El Nifio with a short duration (SD) increases boreal winter dust
concentrations by 20-100 ug m™ over northern China relative to the climatological
mean, while there is a decrease of 5-50 pg m™ during the long duration (LD) El Nifio,
which are also related to the El Nifo-induced changes in atmospheric circulation,
precipitation, and relative humidity. In the following spring season, all types of El Nifio
events enhance dust over the northern China, but only the increase during the LD El
Niflo is statistically significant, suggesting that the weaker intensity but longer duration
of the LD El Nifo events can significantly affect spring dust in China. Our results
contribute the current knowledge of the influence of El Nifio on dust pollution, which

have profound implications for air pollution control and dust storm prediction.
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1. Introduction

Dust, one of the most important types of natural aerosols, has significant impacts
on Earth’s radiative balance (Seinfeld et al., 2004), regional and global climate (Kok et
al, 2018; Yang et al.,2017), the hydrological cycle (Huang et al., 2014), agricultural
production (Sivakumar, 2005), public health and transportation activities (Goudie,
2014). The Gobi Desert and the Taklamakan Desert in northwestern China are
important contributors to dust concentrations in East Asia and even globally, and about
30% of the dust from the sources in China can be transported to the downwind areas
over long distances (Chen et al., 2017). Despite China's vigorous efforts to combat
desertification since the beginning of 21 century, strong and widespread dust storms
still occurred in China in recent years (Yin et al., 2021). Therefore, a deeper and more
scientific comprehension of the factors affecting dust aerosols in China is urgently
needed for the early warning and mitigation of dust pollution.

In recent years, the influence of meteorological conditions on dust pollution in
China has attracted considerable attention (Guo et al., 2019; Li et al., 2020; Lou et al.,
2016; Shi et al., 2021; Yin et al., 2021; Zhu et al., 2008). Under global warming in
recent decades, dust emissions and the frequency of dust storms in northern China
decreased (Shi et al., 2021), which was attributed to the reduced frequency and intensity
of Mongolian cyclones, related to the weakened westerly jet stream and atmospheric
pressure in northern China and Mongolia, in a warming climate (Zhu et al., 2008). Due
to a combination of changes in disruptive temperature anomalies in the Mongolian dust
source region, the occurrence of super Mongolian cyclone, and the anomalies of sea ice
in the Barents and Kara Sea and sea surface temperature (SST) in the east Pacific and
northwest Atlantic, China experienced the strongest dust pollution in spring 2021(Yin
etal., 2021). Lou et al. (2016) pointed out that springtime dust concentrations exhibited
a significant negative correlation with the East Asian Monsoon Index over most of
China with a correlation coefficient of —0.64 in their model simulations, and they found
that anomalous northwesterly winds in weak East Asian monsoon years led to a strong
dust transport from Mongolia to China. Mao et al. (2011) illustrated that the negative
(positive) phase of Arctic Oscillation (AO) can lead to an increase (decrease) in the
frequency of dust storms in northern China due to the increase (decrease) in the
frequency of cold air outbreak over Mongolia.

El Nifio-Southern Oscillation (ENSO) is a well-known mode of climate variability
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generated by coupled ocean-atmosphere interactions that can exert a far-reaching
impact on global climate despite its origin in the tropical Pacific Ocean (Trenberth,
1997; Yang et al., 2016a, 2016b; Zeng et al., 2021). Numerous studies have
demonstrated that El Nifo can affect dust emission, concentration and transport by
modulating large-scale atmospheric circulation, precipitation and temperature (Le and
Bae, 2022; Lee et al., 2015; Li et al., 2021). Using observational data over 1961-2002,
Lee et al. (2015) found that under the negative AO phase, frequency of spring dust
events in northern China during El Nifio was 30% higher than that during La Nifa years.
Li et al. (2021) used dust surface concentration data (1982-2019) from MERRA-2
reanalysis to study the impacts of ENSO events on global atmospheric dust loading and
found that dust concentrations were positively correlated with Southern Oscillation
Index (SOI, a consistently negative SOI is El Nifio and the opposite is La Nifia) over
northwestern China, which suggests that El Nifio was associated with a decrease in dust
concentrations. Modeling studies driven by reanalysis data also revealed a relatively
weak positive relationship between SOI and dust emissions over Gobi Desert, although
this correlation has a large spatiotemporal variation (Gong et al.,2006; Hara et al.,2006).
These numerical studies used regional models driven by or nudged to reanalysis
meteorological fields, which could be influenced by factors other than El Nifio. Recent
studies have indicated that the El Nifio impact on air pollutants can be better represented
by the superposed SST perturbation method (Yu et al., 2019; Zhao et al., 2018; Zeng et
al., 2021), considering the influence of ENSO alone. To the best of our knowledge, no
study has yet used this approach to investigate the relationship between El Nifio and
dust pollution in China.

Additionally, previous studies mainly focused on the influences of general El Nifio
on dust over China, while El Nifio can be classified into different temporal types (e.g.,
short duration (SD) and long duration (LD) El Nifio; Guo and Tan, 2018) and spatial
types (e.g., East Pacific (EP) and Central Pacific (CP) El Nifo; Kao and Yu, 2009).
During different spatial and temporal types of El Niflo, patterns of precipitation and
atmospheric circulation are also different in China (Yu et al., 2019; Zeng et al., 2021),
and they could have distinct effects on wintertime and springtime dust pollution in
China. Nevertheless, most of the existing studies have focused on the effects of various
spatial and temporal types of El Nifio events on anthropogenic aerosols, while few
studies have examined their effects on natural aerosols, such as dust, and their
associated mechanisms, which are crucial for predicting and combating dust pollution
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in the near future.

In this work, the effects of different spatial and temporal types of El Nifio on boreal
winter and spring dust pollution in China and the mechanisms behind the impacts are
examined using the Energy Exascale Earth System Model version 1 (E3SMvl). The
methods and model description are described in Section 2. The quantitative impacts of
various temporal and spatial types of El Nifio events on wintertime and springtime dust
concentrations in China and the associated mechanisms are elaborated in Section 3.

Section 4 summarizes the key results and conclusions of the study.

2. Data and Methods

2.1 Data

Global SST patterns and SST anomalies during El Nifio events of different
temporal and spatial types are constructed using the merged Hadley-NOAA/OI dataset
which has a horizontal resolution of 1° x 1° from 1870 to 2017 (Hurrell et al., 2008).
The monthly ERAS reanalysis data (Hersbach et al., 2020) are applied to evaluate the
simulated meteorological parameters during El Nifio events.

Hourly observations of PMio (particulate matter less than 10 pm in diameter)
concentrations in China from 2015 to 2021 derived from the China National
Environmental onitoring Centre (CNEMC) and the Deep Blue aerosol products
(Platnick et al., 2015) from Moderate Resolution Imaging Spectroradiometer (MODIS)
on Terra satellite, including monthly Aerosol Optical Depth (AOD) at 550 nm and the
Angstrom exponent (o) from 2001-2020, are applied to evaluate the performance of
dust simulation in the model. The satellite dust optical depth (DOD) is calculated
following Yu et al. (2021).

2.2 El Niio events identified as different spatial and temporal types

We first clarify the definition of different temporal and spatial types of El Nifio
events here. The notation of year’ is used to denote the first year of El Nifio
development, and Jan®, Feb?, ..., and Dec? indicate the individual months of that year,
while year!> and Jan'?, Feb'> ... and Dec'?, respectively, denote the
following years and months therein. Nifio 3.4 index is defined as area-mean anomalies
of detrended SST in the Nifio 3.4 region (170°W—-120°W, 5°S—5°N). Nifio 3/4 index
(Inifo3/INifio4) 1s same as Nifio 3.4 index, but in the Nifio 3/4 region (150°W-90°W, 5°S—
5°N; 160°E-150°W, 5°S—5°N).
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For the classification of different temporal types, following Wu et al. (2019), El
Nifio events are firstly selected if any of 3-month running averaged Nifo 3.4 index
during Oct’~Feb! greater than 0.75°C . Then the LD El Nifio event is identified once
any of Nifio 3.4 index during Oct'-Feb? is higher than 0.5°C; otherwise, it is a SD El
Nifo event.

Following Yu et al. (2019), the El Nifo events, selected with 3-month running
averaged Nifio 3.4 indices higher than 0.5°C for five consecutive months, are classified
into different spatial types based on the EP El Nifio index (Iep) and the CP El Nifio index
(Icp). The definition of these indices is given below.

Igp = Ininos — @ X Ipisioa (1)

Icp = INifioa — @ X Inifio3 (2)

_ {0-4; Ininos X Inioa > 0 (3)
0, Ininos X Ininos <0

If the mean Igp is greater than the Icp during Oct’~Feb! of an El Nifio, then it is an
EP El Nifio event; else, it is a CP El Nifio event. Note that there also exist mixed El
Nifio events that are not considered separately in this study.

The time series of Nifio 3.4 index derived from Hadley-NOAA/OI 1870-2017 data
is shown in Figure S1. Using the definitions described above, for El Nifio with different
temporal types, 22 SD El Nifo events and 8 LD ones are extracted during this time
period; for El Nifio with different spatial types, 26 EP El Nifio events and 8 CP ones are
extracted. The mechanisms leading to different types of El Nifio are given in Text S1.
2.3 Model description and experimental design

To investigate the impacts of El Nifio of different spatial and temporal types on
dust aerosol in China, this study utilizes the U.S. Department of Energy (DOE)
E3SMvl (Golaz et al., 2019). As a model developed from the well-known CESM1
(Community Earth System Model version 1), E3SMvl provides significant
improvements to the atmospheric component, including processes associated with
aerosol, cloud, turbulence, and chemistry (Rasch et al., 2019). We choose the horizontal
resolution of about 1° and 30 vertical layers. E3SMv1 predicts aerosols including
mineral dust, sea salt, sulfate, primary and secondary organic aerosols, and black carbon
in the four-mode Modal Aerosol Module (MAM4) (Wang et al., 2020). E3SMvl
represents dust-related processes in the atmosphere and land model components (Feng
et al., 2022). Dust emissions are calculated at each model time step according to the

wind erosion dust scheme proposed by Zender et al. (2003), which is related to 10-
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meter wind speed, surface soil moisture content, soil erodibility, vegetation cover and
threshold friction velocity.

The following simulations are performed. A “CLIM” experiment applying the
prescribed climatological mean of monthly SST during 1870-2017 is integrated for 30
years. Four sets of sensitivity simulations, “SD”, “LD”, “EP” and “CP”, are driven by
the monthly SST representing the composite of SD, LD, EP and CP El Nifio events,
respectively, which is generated through adding the mean monthly SST anomalies from
Jul® to Jun! of the SD, LD, EP, and CP El Nifio events (Fig. S1), respectively, to the
climatological SST between 60°S and 60°N. All the sensitivity experiments have 3
ensemble members with diverse initial conditions branched from different years of the
CLIM simulation and the results are based on the ensemble mean. All sensitivity
experiments are run for 13 years with the first 3 years as model spin-up and the last 10
years used for analysis. The differences of model fields between the sensitivity
simulations and CLIM represent the influences of El Nifio events with different spatial
and temporal types on dust aerosols. All other external factors such as greenhouse gas
concentrations, insolation, anthropogenic aerosols and their precursor emissions are
hold at present-day conditions (year 2014). The SST anomalies relative to the 1870—
2017 climatology during SD, LD, EP and CP El Nifio events are shown in Fig. 1.

2.4 Model evaluation

To evaluate the model performance in dust simulation, we compare the simulated
near-surface dust concentration and dust optical depth (DOD) over China with observed
PM;io concentrations and satellite retrieved DOD, respectively. The model can
reproduce the spatial distribution of springtime dust in China, with high dust
concentrations in northwestern China and low in southern and northeastern China (Fig.
S2). The spatial correlation coefficient between the simulated dust concentrations in
E3SMv1 and observed near-surface PM o concentrations is +0.55. However, the model
strongly overestimates dust concentrations over the source regions, which were also
reported in many previous studies using the E3SMv1 and CESM (the predecessor of
E3SMvl) (Wang et al., 2020; Wu et al., 2019). The high model bias near the sources is
also confirmed by comparing DOD between model simulation and satellite retrieval. It
suggests that the dust emissions are overestimated in northwestern China in the model.
The high bias is partly related to the dust treatment in the model that dust is emitted
into a shallow model bottom layer in E3SMv1 for increased model vertical resolution

(Wang et al., 2020). In addition, stronger 10-m wind speed simulated by the model
7
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compared to the observation (Fig. S3) also contributes to the higher dust loading.
However, we also note that the E3SMv1 underestimates the transport of dust from
source regions (Wu et al., 2020; Feng et al, 2022), thus the dust over eastern China is

comparable to observations.
3. Results

3.1 Impacts of different El Nifio types on winter dust pollution

The simulated effects of the four types of El Nifio with different spatial positions
(EP and CP) and durations (SD and LD) on the DJF ground-level dust concentrations
are shown in Fig. 2. As for different spatial types of El Nifio events, the effects on DJF
dust concentrations in China are similar, with an increase in dust concentrations of 5—
50 pg m3 over central-eastern China during EP and CP El Nifio compared to the
climatological means. The spatial pattern of dust changes is consistent with previous
modeling studies (Lee et al., 2015; Li et al., 2021). Although the influences of EP and
CP EI Nifio on the DJF dust concentrations resemble each other in the spatial patterns
over China, the magnitudes of the influences are different. During CP EI Nifio relative
to the climatological mean, dust concentrations increase more significantly over
central-eastern China, with the increases of 2050 pg m, 5-20 ug m higher than that
during EP El Nifo relative to the climatological mean. The large increase during CP El
Nifio relative to the climatological mean is also more widespread than that during EP
El Nifio relative to the climatological mean. Compared to CP El Nifio, dust
concentration over central-eastern China decreased slightly during the EP El Nifio, but
the changes are mostly insignificant.

As for different temporal types of El Nifio events, their effects on DJF dust
concentrations over China are quite different. SD El Nifio events cause an increase in
DJF near-surface dust concentrations of 20—~100 pg m™ in northern China and about 5—
20 pg m? in southern China. Whereas during LD El Nifio events, winter dust
concentrations have a decrease of about 5-50 pg m= in northern and northeastern China
relative to the climatology and no significant change is shown in southern China. In
contrast to LD El Nifo events, SD El Nifio events have positive DJF dust concentration
anomalies of 5-20 pg m™ in southern China and a maximum over 100 pg m> in
northern China and the Gobi Desert. Furthermore, DJF dust concentrations over the
Taklamakan Desert, one of the largest dust sources in China, have an increase during

LD El Nifio events and an insignificant decrease during SD EI Nifio events.
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Overall, these changes in dust concentrations indicate that CP El Nifio events have
stronger and more widespread impacts on DJF dust concentrations than EP El Nifio
relative to the climatological mean, and the SD and LD El Nifio events exert opposite
impacts on DJF dust in China.

3.2 Mechanisms of the different El Nifio impacts on winter dust

Meteorological factors such as 10-m wind speed, relative humidity and
atmospheric circulation play a dominant role in altering dust concentrations by altering
emissions, atmospheric transport, and wet scavenging of dust (Csavina et al., 2014).
Dust changes are also controlled by the El Nifio-related changes in atmospheric
circulation and precipitation (Gong et al., 2006; Hara et al., 2006). The 10-m wind speed,
atmospheric circulation, relative humidity, precipitation anomalies, and related
processes during EP, CP, SD and LD El Nifio are investigated here to reveal the
mechanisms of the influence of the four types of El Nifio on dust over China.

During the CP, EP, and SD EI Nifio, DJF mean 10-m wind speed increases in the
Gobi Desert and northwestern China compared to the climatological mean (Fig. 3),
which favors the local dust emission over these regions. Whereas for the LD EI Nifio
event, the positive 10-m wind speed anomaly is greatly weakened, compared to the
other three types of El Nifio events, and negative 10-m wind speed anomalies are
triggered in the Gobi Desert and northern China (Fig. 3e), which is not conducive to
dust emission during the LD El Nifio events. The CP El Nifio events trigger stronger
positive 10-m wind speed anomalies (0.1-0.3 m s!) than the EP El Nifio events over
the Gobi Desert and northern China (Fig. 3c), which could lead to a greater local dust
emission. Compare to the LD EI Niflo, SD El Nifio events produce significant positive
10-m wind speed anomalies of approximately 0.3 m s™! in the Gobi Desert and northern
China (Fig. 3f), which is consistent with the increase/decrease in local DJF dust
concentrations during the SD/LD El Nifio (Fig. 2). This suggests the importance of 10-
m wind speed in the dust changes during the El Nifio events in China.

Figure 4 shows the atmospheric circulation anomalies for the four El Nifio events.
All types of El Niflo have negative anomalies of sea level pressure (SLP) in central-
eastern China, except the LD EI Nifio that shows a negligible SLP change in winter.
Meanwhile, during the EP, CP, and SD El Nifio events, anomalous Mongolian cyclone
can strengthen the local ascending flow to lift more dust particles into the free
atmosphere. The anomalous northwesterly during CP and SD El Nifio (Figs. 3b and 3d)

can transport these dust aerosols to central-eastern China, leading to the strong increases
9
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in dust concentrations there (Figs. 2b and 2d). While during the LD El Nifo, the lower
atmosphere in the Gobi Desert and northern China is controlled by a weak anomalous
high pressure accompanied by anomalous southeasterly that weakens the prevailing
northwesterly in winter and hinders the vertical lifting and southward transport of dust.

Our previous work has confirmed the ability of E3SM in repreducing capturing

the atmospheric circulation over central-eastern China in El Nifio with different

durations (Zeng et al, 2021). Here we further evaluate the circulations in E3SM
simulations during EP and CP El Nifio events by using ERAS reanalysis data. The
anomalous DJF mean 10-m wind speed and 850 hPa wind fields in the typical EP El
Nifio (2006/07) and CP El Nifio (2014/15) relative to the climatology (1950-2017) from
ERAS are presented in Fig. 5. Although the increase in 10-m wind speed over
northwestern China in the EP El Niflo simulated in the model is inconsistent with the
ERAS results, E3SM does capture the large increase in wind speed over the Gobi Desert
during the CP EIl Nifio relative to the climatological mean and EP EI Nifio. Moreover,
the anomalies in wind fields during EP and CP El Nifio (i.e., anomalous southerly
during EP El Nifio and anomalous northwesterly during CP El Nifio are—welt
reproduecedcan be simulated by E3SM. It suggests that the atmospheric circulation

features over central-eastern China during different types of El Nifio are roughly
captured by the model. However, we note that there are notably differences in
atmospheric circulation over many regions of East Asia. It can be partly attributed to
the model bias in reproducing the atmospheric responses to El Nifo. The observations
can also be induced by other climate factors besides El Nifio, leading to a potential
inconsistency in El Nifio impact between model and observation.

The effect of relative humidity (RH) on dust concentration is also essential,
considering that a decrease in RH leads to a decrease in the threshold friction velocity
at high RHs (>40%), which further enhances dust emission flux and atmospheric
concentration (Csavina et al., 2014). Both EP and CP El Nifio events have negative
anomalies in DJF RH in the Gobi Desert (Figs. 6a and 6b). The decrease in RH reduces
the dust threshold friction velocity and favors dust emission from the Gobi Desert. The
CP EI Nifio produces more pronounced and widespread negative RH anomalies in the
Gobi Desert and northwestern China than the EP El Nifo. It gives approximately 3%
stronger negative RH anomalies (Fig. 6¢), resulting in stronger and more widespread
increases in DJF dust concentrations during the CP El Nifo event (Fig. 2c). As for El
Nifio with different duration, the SD EI Nifio leads to significant decreases in DJF RH

10
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of about 3% near the south part of the Gobi Desert, while increases in RH are located
over north part of the Gobi Desert during the LD El Nino (Figs. 6g and 6j), likely
resulting in the opposite changes in dust emissions. The ERAS reanalysis data also
show the same RH variations during the different spatial and temporal types of El Nifio
as the E3SM simulations described above (Fig. S4). Among all four types of El Nifio
events, RH anomalies are consistent with the distribution of dust concentration
anomalies, which indicates that RH plays an important role in affecting variations in
dust emissions and concentrations in China during El Nifio.

Fig. 7 shows the simulated changes in DJF dust emissions during different El Nifio
events. During the EP and CP El Nifio, DJF dust emissions are enhanced in the Gobi
Desert and northwestern China relative to the climatological average. The dust emission
increase is larger during the CP El Nifio than the EP El Nifio, which is consistent with
the higher positive DJF dust concentration anomalies during the CP El Nifio.
Furthermore, the SD EI Nifio causes a significant increase in dust emissions of about
0.5 g m?2 d! in the Gobi Desert compared to CLIM, while the LD EI Nifio causes a
decrease in dust emissions. These suggest that different types of El Nifio events alter
the DJF dust emissions in China by changing the 10-m wind speed and RH, which is
the important cause of the variation in DJF dust concentrations in China.

Furthermore, a reduced DJF precipitation during both EP and CP El Nifio events
(Fig. S5) should weaken the wet removal of dust from the atmosphere in northern China.
However, only insignificant decreases in wet deposition appear in part of northern
China and significant increases in wet deposition are located in central and southern
China related to increases in dust loading during EP and CP El Nifio events (Fig. S6).
It suggests that El Nifio impact on dust concentrations is mainly through changing the
emission and transport of dust rather than the scavenging in winter.

3.3 Spring dust pollution affected by El Nifio events

The changes in near-surface dust concentrations over China in the following spring
during the decaying phase for different spatial and temporal types of El Nifio are also
examined (Fig. 8). During the following spring, all El Nifio events trigger large positive
anomalies of March-April-May (MAM) dust concentrations in northern China.
However, the increases in dust concentrations during the EP, CP and SD El Nifio relative
to the climatological average fail the 90% significance test, indicating that the effects
of these types of El Nifio events on the dust pollution in northern China in the following

spring are uncertain, likely related to the large internal variability of the climate system.
11
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In contrast to the strong reduction in dust concentrations over the Gobi Desert and
northern China during the LD El Nifo in DJF, the effect in MAM reverses to a
significant increase in dust concentrations over these regions by 50-100 ug m™ (Fig.
8e). It suggests that the weaker intensity but longer duration of LD EI Nifio than the SD
El Nifio can significantly affect spring dust aerosols in China.

During LD EIl Nino events, MAM 10-m wind speed significantly increases over
the Gobi Desert (Fig. S7), which facilitates the local dust emissions, although RH only
shows an insignificant decrease over the dust source region (Fig. S8). It can be
confirmed by the significant increases in MAM dust emissions by about 0.5 g m? d-!
over the Gobi Desert and northwestern China during LD El Nifio events (Fig. 9). Then
the strengthened northwesterly brings more dust to northern China during LD El Nifio
events (Fig. S9). Along the transport pathway, the weakened precipitation (Fig. S10)
partly reduces the dust wet removal (Fig. S11), leading to the strong increase in MAM
dust concentration over northern China during the LD El Nifio. However, this effect is
largely overwhelmed by the increased dust wet removal due to the emission-induced

increase in dust concentrations.

4. Conclusion and discussions

Dust, as an important air pollutant affecting air quality in China in winter and
spring, can be modulated by the interannual variations in El Nifio-induced atmospheric
circulation and precipitation anomalies. In this study, the state-of-the-art E3SM model
is used to simulate the effects of different temporal types of El Nifio events with short
(SD) and long duration (LD) and different spatial locations of El Nifio events with sea
surface temperature anomalies located in Central Pacific (CP) and Eastern Pacific (EP)
on dust concentrations in China.

Both CP and EP El Nifio events cause 5-50 ug m™ positive anomalies in winter
(DJF months) surface dust concentrations in central-eastern China. Compared to the EP
El Nino, the CP El Nino triggers a stronger wind and negative RH anomalies that lead
to greater local dust emissions. Then the anomalous northwesterly transports the dust
aerosols to central-eastern China during the CP El Nino, resulting in 5-20 pug m higher
and more widespread DJF dust concentration increases in northern China, although the
changes are mostly statistically insignificant. For the different temporal types of El

Nifio events, wind speed significantly increases over the Gobi Desert and northern
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China during the SD El Nino, favoring dust emissions. Meanwhile, the anomalous
northwesterly can increase the transport of dust aerosols to central-eastern China,
leading to an increase in DJF near-surface dust concentrations of 20-100 pug m= in
northern China and 5-20 pg m= in southern China relative to the climatological mean.
On the contrary, the LD EIl Nifio reduces wind speed over the Gobi Desert and northern
China, which weakens dust emissions, accompanied with the atmospheric circulation
anomalies unfavorable for dust transport, leading to the DJF dust concentration
decrease by 5-50 pg m™ in northern and northeastern China relative to the
climatological mean.

In the following spring season, the four types of El Niflo events with different
durations and spatial positions all cause positive dust concentration anomalies in
northern China. However, only the changes during the LD El Nifo are statistically
significant. This is mainly due to an increase in 10-m wind speed over the Gobi Desert
during the LD El Nifio, which enhances the local dust emissions, and then the
strengthened northwesterly brings more dust to the northern China. It suggests that the
weaker intensity but longer duration of LD El Nifio events than SD El Nifio can
significantly affect dust aerosols in China in spring.

The mechanisms for the differences of the atmospheric anomalies between

different types of El Nino have been illustrated in many studies. Western North Pacific

anomalous anticyclones (WNPAC), which occur during both EP and CP El Nifio events,

have been proved as a crucial system that links El Nifio and East Asian climate (Li et

al.. 2017). The anomalous southwesterlies at the north of WNPAC transport moisture

to southern China, which can block the prevailing northerlies over central-eastern China

in winter and weaken the Fast Asian winter monsoon (Yuan and Yang, 2012). EP El

Nino exerts larger meteorological changes over southern China than CP El Nifio due to

a stronger WNPAC (Jiang and Li., 2022: Kim et al., 2021). Therefore, the anomalous

northerlies over the Gobi Desert and central China are hindered and weaker during EP

El Nino than CP El Nifio (Fig. 4). SD El Nifio has a relatively deeper thermocline during

its mature phase than LD FEl Nifio and numerous ocean heat can be transported from the

eastern Pacific to the South China Sea and the Western Philippine Sea during SD El

Nino (Guo and Tan, 2018). The transmitted ocean heat leads to anomalous warming of

the North Pacific SST, a smaller-than-normal tilt of the East Asian trough, a weakening

of the mid-latitude westerly flow in front of the trough, and anomalous northerly winds

along the trough line of the subtropical trough, along with reduced precipitation (Wang
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et al.. 2009). These favor dust emission and transport from north to south during SD El

Niflo.

In this study, the dust concentrations are evaluated by comparing modeled
concentrations with MAM PM o concentrations and the dust loading is also evaluated
by comparing modeled DOD with that derived from satellite data. However, the
anomalies of dust concentrations were not compared with observations. This is because
that dust is jointly influenced by many factors in the observation other than El Niflo,
such as Mongolian cyclone, sea ice in the Barents Sea, sea surface temperature in
Atlantic Ocean, Arctic Oscillation, and human activities (Fan et al 2016, 2018; Mao et
al.,2011; Wang et al., 2021; Xiao et al., 2015; Yin et al., 2021), while this study presents
the “pure” effects of El Nifio on dust using an Earth system model. In addition, PMo is
strongly influenced by other anthropogenic aerosols over eastern China, especially in
hazy winter. The comprehensive understanding of the impacts from different types of
El Nifio events on dust in China requires a longer-term observation with sufficient
spatial coverage.

Our results contribute to the current knowledge of the vital influence of different
types of El Nifio on dust pollution in winter and spring over China, which have
profound implications for air pollution control and dust storm prediction in China.
Notwithstanding, we also note that the E3SMv1 overestimates dust emissions from the
source regions and underestimates the long-range transport of dust (Wu et al., 2020;
Feng et al, 2022). This high bias of dust loading near the dust source regions are related
to the dust treatment in the model, dust parameterization and stronger winds in model
than observations. The low bias of long-range transport of dust is due to the strong dust
deposition considering that dust is emitted in the shallow model bottom layer in the
model. Therefore, the estimate of El Niflo impact on dust emissions and concentrations
are likely to be overestimated near the source regions, but impact from changes in large-
scale circulation related to El Nifio on dust transport is possibly underestimated. Also,

results from a single model with relative short simulations may not be representative

and may not well remove the internal atmospheric variability (Deser et al., 2014), which
can be further investigated by conducting large ensemble and longer simulations using
multi-models. In future studies, the influences of different types of La Nifia, the cooling
phase of ENSO, on dust pollution in China, warrants further investigation. Besides,
other natural aerosols, such as sea salt, are also influenced by El Nifo events, which is
not taken into account in this study. In addition to natural sources, dust in China can
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452  also be from anthropogenic emissions (Chen et al., 2019; Xia et al., 2022), and their
453  relations with El Nifio require further study.
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Figure 1. Composite differences in DJF mean SST (°C) between (a) EP, (b) CP, (d) SD, (e) LD El
Niflo events and climatological mean over 1870—2017, and (c) between EP and CP, and (f) between
SD and LD El Nifio events. Statistically significant differences at 99% from a two-tailed T-test are
stippled.
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Figure 2. Composite differences in DJF mean near-surface dust concentrations (ug m™~) between
EP and CLIM in (a), CP and CLIM in (b), EP and CP in (c¢), SD and CLIM in (d), LD and CLIM in
(e), and SD and LD in (f). The stippled areas indicate statistical significance with 90% confidence

from a two-tailed T-test.
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Figure 3. Composite differences in DJF mean 10-m wind speed (m s™') between EP and CLIM in
(a), CP and CLIM in (b), EP and CP in (c), SD and CLIM in (d), LD and CLIM in (e), and SD and
LD in (f). The stippled areas indicate statistical significance with 90% confidence from a two-
tailed T-test.
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Figure 5. Composite differences in DJF mean 10-m wind speed (m s!) (top panels) and sea level
pressure (SLP, shaded; units: hPa) and wind at 850 hPa (WINDS850, vector; units: m s™) (bottom
panels) between 2006/07 EP El Nifio and climatological mean (1950-2017) in (a, d), 2014/15 CP
El Nifio and climatological mean in (b, ¢), and 2006/07 EP El Nifio and 2014/15 CP El Nifio in (c,
f) from the EARS reanalysis data. The data were detrended over 1950-2017.
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Figure 6. Composite differences in DJF mean relative humidity (units: %) between EP and CLIM
in (a), CP and CLIM in (b), and EP and CP in (c), SD and CLIM in (d), LD and CLIM in (e), and
SD and LD in (f). The stippled areas indicate statistical significance with 90% confidence from a
two-tailed T-test.
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Figure 7. Composite differences in DJF mean dust emissions (g m? d™!) between EP and CLIM in
(a), CP and CLIM in (b), EP and CP in (c), SD and CLIM in (d), LD and CLIM in (e), and SD and
LD in (f). The stippled areas indicate statistical significance with 90% confidence from a two-tailed
T-test.
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Figure 8. Composite differences in MAM mean near-surface dust concentrations (ug m™) between
EP and CLIM in (a), CP and CLIM in (b), EP and CP in (c¢), SD and CLIM in (d), LD and CLIM in
(e), and SD and LD in (f). The stippled areas indicate statistical significance with 90% confidence

from a two-tailed T-test.
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Figure 9. Composite differences in MAM mean dust emissions (g m™ d'') between EP and CLIM
in (a), CP and CLIM 1in (b), EP and CP in (c), SD and CLIM in (d), LD and CLIM in (e), and SD
and LD in (f). The stippled areas indicate statistical significance with 90% confidence from a two-
tailed T-test.
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