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Abstract  24 

The role of mineral dust aerosol in global radiative energy budget is often quantified by 25 

the dust direct radiative effect (DRE). The dust DRE strongly depends on dust aerosol optical 26 

depth (DAOD), therefore, DRE efficiency (DREE=DRE/DAOD) is widely compared across 27 

different studies to eliminate difference due to the various dust load. Nevertheless, DREE is still 28 

influenced by the uncertainties associated with dust particle size distribution (PSD) and optical 29 

properties. In this study, we derive a global clear-sky size-resolved DREE dataset in both 30 

shortwave (SW) and longwave (LW) at top of the atmosphere (TOA) and surface based on satellite 31 

observations (i.e., satellite-retrieved dust extinction spatial and vertical distributions). In the DREE 32 

dataset, dust geometric diameter from 0.1µm to 100 µm is divided into 10 bins and the 33 

corresponding monthly mean DREE (with respect to DAOD at 532nm) for each size bin is derived 34 

by using the Rapid Radiative Transfer Model (RRTM). Three sets of state-of-the-art dust refractive 35 

indices (RI) and two sets of dust shape models (sphere vs. spheroid) are adopted to investigate the 36 

sensitivity of dust DREE to dust absorption and shape. As a result, the size-resolved dust DREE 37 

dataset contains globally distributed monthly mean dust DREE at TOA and surface for each of 10 38 

size bins with 5∘  (longitude) ×  2∘  (latitude) resolution as well as for each dust RI and shape 39 

combination. The size-resolved dust DREE dataset can be used to readily calculate global dust 40 

DRE for any DAOD and dust PSD, including the uncertainty in the DRE induced by dust 41 

microphysical properties (e.g., dust PSD, RI and shape). By calculating dust DRE based on DAOD 42 

climatology retrieved from different satellite sensors and based on different dust PSD, we find that 43 

uncertainty in the spatial pattern of DAOD induces more than 10% of the uncertainty in SW dust 44 

DRE at TOA. The observation-based dust PSD induces around 15%~20% uncertainty in dust DRE 45 

at TOA and in the atmosphere. The sensitivity assessments of dust DRE to dust RI and shape 46 
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further suggest that dust non-sphericity induces a negligible effect on dust DRE estimations, while 47 

dust RI turns out to be the most important factor in determining dust DRE, particularly in SW. 48 

  49 
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 50 

1 Introduction 51 

Mineral dust is an important component of the atmospheric aerosol (Textor et al., 2006; 52 

Choobari et al., 2014). They can influence the radiative energy budget of the Earth-Atmosphere 53 

system directly through their interaction with both solar and thermal infrared radiation, which is 54 

known as the direct radiative effect (DRE) of dust. The DRE of dust consists of two components. 55 

In the solar shortwave (SW) spectral region, dust aerosols reflect a fraction of solar radiation back 56 

to the space which generally leads to a negative cooling effect at both top of the atmosphere (TOA) 57 

and surface (Tegen et al., 1996; Myhre et al., 2003). In the longwave (LW) thermal infrared region, 58 

dust aerosols trap the thermal radiation emitted from Earth’s surface by absorption, which 59 

generally leads to a positive warming radiative effect at TOA and surface (Sokolik et al., 1998). 60 

In addition to DRE, dust can also influence the radiation and the hydrological cycles indirectly 61 

through serving as cloud condensation nuclei and ice nuclei and affecting cloud microphysical 62 

properties and cloud lifetime, known as indirect effects of dust (Twomey, 1977; Albrecht, 1989).  63 

The dust DRE depends on many factors including primarily the atmospheric dust content, 64 

represented by its optical depth (DAOD), vertical distribution (especially important for LW DRE), 65 

and particles’ physico-chemical properties that are the particle size distribution (PSD), complex 66 

refractive index (RI), and shape. Besides dust PSD, RI and shape, the dust DRE also depends on 67 

the atmospheric composition and structure, notably the atmospheric vertical profile of clouds, 68 

water vapor, and temperature, as well as surface properties (Yu et al., 2006). All of these properties 69 

vary in space and time and need to be characterized at the best possible spatio-temporal resolution 70 

in order to get realistic dust DRE estimates. 71 
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Among all these factors, DAOD is of first order importance in determining dust DRE since 72 

dust DRE is approximately linear with DAOD (Satheesh and Ramanathan, 2000). Many previous 73 

studies related to dust DRE are based on DAOD distributions from model simulations. For 74 

example, Kok et al. (2017) used four global model simulations to estimate global mean dust DRE 75 

efficiency (DREE is defined as DRE/DAOD) and further derive global mean dust DRE. Di Biagio 76 

et al. (2020) derived dust DRE based on model-simulated DAOD distributions with global annual 77 

mean DAOD constrained by observations. The main advantage of these studies is the availability 78 

of continuous and detailed DAOD spatial and temporal variation from model simulations. On the 79 

other hand, model-simulated DAOD could be subject to large uncertainties and biases in 80 

reproducing DAOD due to parameterizations of various physical processes, therefore need 81 

observational constraints for evaluation and improvement.   82 

Satellite observations are important sources of data for evaluating model simulations, 83 

because of their routine sampling on a global scale and over decadal time periods. Previous studies 84 

have developed sensor-specific methods to distinguish dust aerosol from total aerosol based on the 85 

size and shape characteristics of dust particles. Some are based on passive satellite observations 86 

such as Moderate Resolution Imaging Spectroradiometer (MODIS, Remer et al. (2005)) and others 87 

are based on active observations such as Cloud-Aerosol Lidar with Orthogonal Polarization 88 

(CALIOP, Winker et al. (2009)). The wide spectral coverage of MODIS measurements allows the 89 

retrieval of aerosol particle size information, such as effective radius, fine-mode fraction, aerosol 90 

Angstrom exponent, as well as spectral gradient of absorption (Remer et al., 2005; Hsu et al., 2013). 91 

Based on the fact that dust aerosols are generally larger in size than other aerosols and have a 92 

decreasing absorption from ultraviolet (UV) to the near infrared, the combinations of these 93 

retrievals provide the basis for dust separation and dust aerosol optical depth (DAOD) retrievals 94 
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from MODIS (Kaufman et al., 2005; Ginoux et al., 2012; Voss and Evan, 2020; Yu et al., 2009, 95 

2019). In addition, some recent studies have also characterized dust distribution through 96 

integrating MODIS measurements with other data sources and model simulations, for example, 97 

using the DAOD-to-AOD ratio from MERRA-2 (Modern-Era Retrospective analysis for Research 98 

and Applications, version 2 ), Gkikas et al. (2021) converted the MODIS AOD retrievals to DAOD. 99 

However, passive sensors do not provide the vertical structure of aerosol that is critical for studying 100 

aerosol–cloud interactions, LW radiative effects and aerosol influences on the thermal structure of 101 

the atmosphere (e.g., Meloni et al., 2005, 2015). By contrast, the active sensor CALIOP can 102 

provide the vertical profiles of aerosol extinction and particle properties such as depolarization 103 

ratio and color ratio, which have been used for improving DAOD retrievals in thermal infrared 104 

(TIR) (Zheng et al., 2022) and evaluating global dust simulations (Yu et al., 2010; Wu et al., 2020). 105 

The CALIOP dust identification is mainly based on dust aerosols being non-spherical in shape and 106 

their linear depolarization ratio being much larger than spherical aerosols (Sakai et al., 2010).  107 

Using CALIOP retrievals, Song et al. (2021) derived a three-dimensional (3D) decadal 108 

(2007-2019) global scale dust extinction profile climatology, which provides an observational 109 

constraint on both the spatial DAOD pattern and the vertical dust distribution for studying dust 110 

DRE and evaluating models. In their study, Song et al. (2021) also compared dust retrievals, in 111 

particular DAOD, based on different methods and showed that DAOD often differ significantly 112 

between the different products. For example, they showed that DAOD derived from CALIOP 113 

observations is generally smaller and more concentrated over ‘dust belt’ regions - extending from 114 

the west coast of north Africa to the Middle East, central Asia, and China - than that derived from 115 

MODIS observations. These differences in DAOD in turn lead to different dust DRE estimations, 116 

making it difficult to compare different studies to reach meaningful conclusions. Even an 117 
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agreement of DRE could be a result of the compensation between differences in DAOD and other 118 

aforementioned factors, such as dust microphysical properties. Therefore, DRE provides only a 119 

weak constraint on model. Instead, a normalized quantity, DRE efficiency (DREE) as the ratio of 120 

DRE to DAOD, has been widely used in inter-comparison studies and model evaluations (Di 121 

Biagio et al. 2020). Because of the elimination of DAOD, the DREE provides a stronger constraint 122 

on dust microphysical properties and their impacts on the dust DRE from different dust source 123 

regions (García et al., 2008). 124 

In addition to DAOD, dust size is also an important factor in determining dust DRE 125 

(Mahowald et al., 2014). Smaller particles are more effective at scattering SW radiation and super-126 

micron particles are more effective at absorbing both SW and LW radiation (Tegen and Lacis, 127 

1996).Therefore, when other parameters are equal, fine dust would generally have a more negative 128 

SW DRE and a less positive LW DRE than coarse dust. Unfortunately, despite its importance, the 129 

simulation of dust PSD in the models and satellite retrievals of dust size remain challenging tasks 130 

(Ryder et al., 2019). As a result, there is a large uncertainty in our understanding of dust PSD. For 131 

example, several recent studies suggested that model simulations tend to underestimate dust size, 132 

especially the very coarse dust with diameter in excess of 5 m (Adebiyi and Kok, 2020). 133 

Moreover, dust RI and shape can be important for DRE estimation as well because besides dust 134 

PSD they are the other two factors that determine dust spectral optical properties. As such, it is 135 

important to investigate the sensitivity of dust DRE to dust PSD, RI and shape. Previous studies 136 

suggest that large dust PSD and RI uncertainty leads to a large uncertainty in dust DRE and thereby 137 

DREE estimations. For example, Song et al., (2018) shows that the SW DREE of a dust model 138 

with a large size and less absorptive RI is very similar to that of a dust model with a smaller size 139 

and more absorptive RI, both in the range of satellite derived values in the NE Atlantic region. Not 140 
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surprisingly, even DREE cannot provide sufficient constraints due to this possible compensation 141 

of effects in the dust PSD and RI.     142 

The main objective of this study is to derive a global clear-sky size-resolved dust DREE 143 

dataset based on satellite observations and demonstrate its usefulness in constraining, comparing, 144 

and understanding the dust DRE estimations. As explained below, the size-resolved DREE 145 

decomposes the DREE of dust into several size bins and therefore provide a way to take into 146 

account the effects of dust PSD explicitly. The sensitivity of dust DRE to dust RI and shape are 147 

also assessed in this study. Due to the inhomogeneous spatio-temporal distribution of those 148 

aforementioned factors, it is thus important to consider the spatio-temporal variation of dust DREE. 149 

Therefore, we organize the DREE dataset at 5∘ (longitude) ×  2∘ (latitude) horizontal resolution 150 

and at monthly temporal resolution. To the best of our knowledge, this work presents the first such 151 

dataset based on retrieved dust properties (i.e., DAOD vertical and horizontal distributions) from 152 

satellite observations, although size-resolved DREE from model simulations have been used in 153 

previous studies. We will show that our size-resolved DREE can allow users to readily compute 154 

the DREE and DRE of dust based on any dust PSD (e.g., from model simulations, satellite 155 

retrievals or in-situ measurements). We will also carry out an inter-comparison of the global dust 156 

DRE estimations based on different dust PSD and compare the results with previous studies. With 157 

these functions, we expect that the size-resolved DREE will be a useful tool for both observational 158 

and modeling studies of dust DRE. 159 

The rest of the paper is organized as follows. Section 2 provides a description of the data 160 

and models used in this study. Section 3 describes the methodology of deriving the size-resolved 161 

DREE dataset. In section 4, we describe a methodology of calculating the dust DRE with the size-162 

resolved DREE dataset and its validation. In section 5, we compare the regional and global dust 163 
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DRE estimations based on different DAOD, dust PSD and compare the results with previous 164 

studies. Section 6 provides a summary of the study along with the main conclusions. 165 

2 Data and Models 166 

2.1 Satellite-based DAOD climatology 167 

We use CALIOP-based DAOD climatology and dust vertical distribution derived in Song 168 

et al. (2021) to derive a size-resolved dust DREE. The reason for choosing CALIOP-based DAOD 169 

climatology is discussed in detail in section 3.2. The CALIOP-based dust climatology dataset 170 

contains monthly mean DAOD and dust vertical extinction profile on a 5∘  (longitude) ×  2∘ 171 

(latitude) spatial resolution grid for the period 2007-2019. The CALIOP-based DAOD and dust 172 

vertical distribution climatology from 2007 to 2010 are used to derive monthly mean size-resolved 173 

dust DREE dataset in this study. The selection of 4 years (2007-2010) for DREE calculations is 174 

based on several considerations. Firstly, the multi-year DREE calculations allow us to investigate 175 

the effect of interannual variations of atmospheric and surface properties to dust DRE. Secondly, 176 

this selection is consistent with Song et al. (2018), making it easier to compare our results with 177 

previous work. Thirdly, considering the computational efficiency, we do not extend the calculation 178 

to more years. 179 

In addition to CALIOP-based DAOD climatology, we will use the MODIS-based DAOD 180 

climatology to investigate the sensitivity of dust DRE to DAOD spatial pattern in section 5.2. The 181 

MODIS-based DAOD climatology achieves global coverage on a 5∘ (longitude) × 2∘ (latitude) 182 

spatial resolution for the period 2003-2019 by combining the monthly mean Aqua MODIS over-183 

ocean (Yu et al., 2020) and over-land (Pu and Ginoux, 2018) DAOD. In contrast to CALIOP-based 184 

DAOD climatology which is based on dust non-sphericity to separate dust aerosol from CALIOP 185 

total aerosol observations, MODIS-based DAOD retrieval is mainly based on dust large size to 186 
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partition DAOD from MODIS total aerosol observations. The two sensor-specific dust partition 187 

methods result in different DAOD magnitude and spatial pattern retrievals.  188 

Figure 1 shows annual mean DAOD from 2007 to 2010 based on CALIOP and MODIS 189 

observations. CALIOP-based and MODIS-based DAOD climatology differ in terms of both 190 

magnitude and spatial pattern. MODIS-based DAOD is generally larger than CALIOP-based 191 

DAOD. For example, the global (60°𝑆 − 60°𝑁) 4-year mean MODIS-based DAOD is 0.047, while 192 

CALIOP-based DAOD is 0.032. High DAOD are seen from both CALIOP-based and MODIS-193 

based DAOD over the ‘dust belt’ regions, where large-scale dust activities occur persistently 194 

throughout the year. However, the CALIOP-based DAOD is rather low in some other regions that 195 

are known to be dusty in certain seasons, such as southwestern United States, South America, 196 

Australia, and South Africa. In other words, the two satellite-based DAOD spatial pattern differs 197 

significantly with CALIOP-based DAOD more concentrated over ‘dust belt’ regions. 198 

 199 

Figure 1. Global (60°𝑆 − 60°𝑁) spatial pattern of CALIOP-based and MODIS-based 4-year (2007-2010) mean 200 
DAOD (Song et al., 2021). 201 

2.2 Dust physical and optical models 202 

To study the sensitivity of dust DREE to dust RI and dust shape, we adopt three sets of 203 

dust RI (Figure 2) and two dust shapes (Figure 4 (a) in Song et al. 2018) and compute a total of 6 204 

sets of DREE based on their combinations. The three dust RI sets represent less absorptive, mean 205 

absorptive and more absorptive dust aerosols and the two dust shapes include spherical and 206 

spheroidal dust shapes. The mean, 10th and 90th percentile of calculated RI for 19 dust samples 207 
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over 8 regions in Di Biagio et al. (2019) are used to represent mean, less and more absorptive dust 208 

in SW. We combine RI of wavelengths from 0.37𝜇𝑚 to 0.95𝜇𝑚 measured in Di Biagio et al. 209 

(2019) and RI of other wavelengths up to 3𝜇𝑚 reported in Balkanski et al. (2007) to get full 210 

spectral coverage in SW. The mean, minimum and maximum RI of wavelengths beyond 3𝜇𝑚 211 

measured in Di Biagio et al. (2017) are used to represent mean, less and more absorptive dust in 212 

LW. Two dust shapes are used to investigate the effect of dust nonsphericity on dust DRE. One is 213 

spherical dust shape, the other one is spheroidal dust shape with dust aspect ratio distribution 214 

described by Figure 4 (a) in Song et al. (2018) which is originally from Dubovik et al. (2006). 215 

Each combination of dust RI and dust shape is considered as a dust model. As a result, the three 216 

dust RI and two dust shapes constitute six dust models in SW and LW, respectively, as shown in 217 

Table 1. 218 

 219 

Figure 2. The SW and LW spectral refractive indices (RI) used in this study. The black curves represent the mean RI 220 
which indicates the mean absorptive dust. The grey shading represents the upper and lower limits indicating more 221 
absorptive and less absorptive dust, respectively. References for the used datasets are provided in Section 2.2. 222 
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Table 1. Dust models used in this study. Three dust RI are used in shortwave (SW) and longwave (LW) to represent 223 
less, mean, and more absorptive dust, respectively. Two dust shape models are used to represent spherical and 224 
spheroidal dust shape. The three dust RI sets and two dust shapes constitute 6 dust models in SW and LW respectively. 225 

 SW RI  

(Balkanski et al. 2007; Di Biagio et al. 2019) 

LW RI  

(Di Biagio et al. 2017) 

 10% Mean 90% Minimum Mean Maxmum 

Sphere MinSWRI-

Sphere 

MeanSWRI-

Sphere 

MaxSWRI-

Sphere 

MinLWRI-

Sphere 

MeanLWRI-

Sphere 

MaxLWRI-

Sphere 

Spheroid MinSWRI-

Spheroid 

MeanSWRI-

Spheroid 

MaxSWRI-

Spheroid 

MinLWRI-

Spheroid 

MeanLWRI-

Spheroid 

MaxLWRI-

Spheroid 

 226 

3 Methodology 227 

3.1 Size-resolved dust scattering properties 228 

Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997) is used to compute both 229 

SW and LW radiative fluxes for both clean (i.e., cloud-free and aerosol-free) and dusty 230 

atmospheres (i.e., free of clouds and non-dust aerosols). RRTM retains reasonable accuracy in 231 

comparison with line-by-line results for single column calculations (Mlawer and Clough, 1998; 232 

Mlawer et al., 1997). It divides the solar spectrum into 14 continuous bands ranging from 0.2 to 233 

12.2 µm and the thermal infrared (3.08–1000 µm) into 16 bands. We explicitly specify the spectral 234 

DAOD, single scattering albedo (ω), and asymmetry parameter (𝑔) of dust aerosols for every band 235 

in the RRTM radiative transfer simulations. In contrast to radiative transfer scheme in most global 236 

models, which do not account for LW scattering, scattering capability is available through the 237 

discrete-ordinate-method radiative transfer (DISORT) in RRTM_LW (Stamnes et al., 1988).  238 

Dust scattering properties (extinction efficiency 𝑄𝑒, 𝜔 and 𝑔 ) depend on several factors 239 

including dust PSD, RI, and dust shape. To account for the impact of dust PSD, we divide dust 240 

diameters into 10 logarithmically spaced size bins. The 10 size bins represent a wide range of dust 241 

geometric diameters (i.e., diameter of a sphere with the same volume) ranging from 0.1𝜇𝑚 to 242 

100𝜇𝑚. The geometric diameter (hereafter diameter or 𝐷) range of each size bin is listed in Figure 243 
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3. For each size bin 𝑘, the spectral scattering properties (𝑄𝑒𝑘
𝜆 , 𝜔𝑘

𝜆  and 𝑔𝑘
𝜆  ) are calculated for each 244 

dust model shown in Table 1 and each spectral band. In the calculations of scattering properties 245 

(𝑄𝑒𝑘
𝜆 , 𝜔𝑘

𝜆  and 𝑔𝑘
𝜆  ), dust particle number (dN/dD) is assumed to be uniformly distributed within 246 

each size bin. We use the Lorenz–Mie theory code of Wiscombe (1980) to compute the spectral 247 

optical properties of dust particles in the assumption of sphericity. The spectral optical properties 248 

of spheroidal dust particles are derived from the database of  Meng et al. (2010). Figure 3 shows 249 

𝑄𝑒𝑘
𝜆 , 𝜔𝑘

𝜆  and 𝑔𝑘
𝜆 for MeanSWRI-MeanLWRI-Spheroid dust model. In SW, finer dust has a larger 250 

𝜔 and smaller 𝑔, implying a more effective SW backscattering of finer dust. As a result, finer dust 251 

is expected to have stronger cooling effect (more negative DREE values) at TOA generally. In 252 

LW, 
𝑄𝑒𝑘

10𝜇𝑚

𝑄𝑒𝑘
532𝑛𝑚 is generally enhanced as dust size increases, which implies that coarser dust has larger 253 

extinction in LW (optically represented by 𝐷𝐴𝑂𝐷10𝜇𝑚) than finer dust when 𝐷𝐴𝑂𝐷532𝑛𝑚  is 254 

constrained by CALIOP retrieval. As a result, larger 𝐷𝐴𝑂𝐷10𝜇𝑚 will enhance the LW warming 255 

(more positive LW DREE) at TOA of coarser size bins. On the other hand, the increased 𝜔 𝑎𝑛𝑑 𝑔 256 

of the coarser size bins indicates stronger forward scattering, which reduces the enhancement in 257 

LW warming induced by larger 𝐷𝐴𝑂𝐷10𝜇𝑚.   258 

https://doi.org/10.5194/acp-2022-350
Preprint. Discussion started: 8 June 2022
c© Author(s) 2022. CC BY 4.0 License.



 14 

 259 

Figure 3. Spectral scattering properties of each size bin for the MeanSWRI-MeanLWRI-Spheroid dust model. The 260 
scattering properties of each size bin are represented by the corresponding curve indicated in the legend. Each size bin 261 
is defined with respect to dust diameter with unit of micrometers (𝜇𝑚). 262 

3.2 DREE dataset  263 

Based on the dust scattering properties shown in Figure 3 and the procedures summarized 264 

in Figure 4, we compute the size-resolved dust DREE for the MeanSWRI-MeanLWRI-Spheroid 265 

dust model in SW and LW. In this section, we focus on demonstrating the method of deriving size-266 

resolved dust DREE for one dust model, but this method is applicable to all six dust models listed 267 

in Table 1.  268 

First, we use RRTM to simulate monthly mean dust DRE from 2007 to 2010 for each 5∘ 269 

(longitude) ×  2∘  (latitude) grid with CALIOP-based 𝐷𝐴𝑂𝐷532𝑛𝑚  exceeding 0.01. The 270 
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𝐷𝐴𝑂𝐷532𝑛𝑚>=0.01 threshold ensures most dusty regions over the globe are covered ( see Figure 271 

S1 and Figure S2 in the Supplement) and in the meanwhile balances the computational cost. Dust 272 

DRE are calculated for each size bin using the extinction properties of the corresponding size bin 273 

shown in Figure 3 (denoted as 𝐷𝑅𝐸𝑘,𝑖,𝑗, hereafter 𝑘 indicates size bin index and (𝑖, 𝑗) indicates 274 

longitude-latitude grid index, unless specified otherwise). Note that we do not consider dust RI 275 

spatial variation and dust size vertical variation due to the lack of observation-based dust 276 

minerology and size estimation on global scale. In 𝐷𝑅𝐸𝑘,𝑖,𝑗 calculations, we constrain the monthly 277 

mean dust extinction vertical distributions using the CALIOP-based climatological dataset of Song 278 

et al. (2021). Dust 𝐷𝑅𝐸𝑘,𝑖,𝑗 is calculated with respect to 𝐷𝐴𝑂𝐷𝑖 ,𝑗
532𝑛𝑚 from CALIOP-based DAOD 279 

climatology. The atmospheric profiles such as water vapor (H2O), ozone (O3) and temperature 280 

(𝑇𝑎𝑡𝑚) vertical profiles of 72 levels are from 3-hourly MERRA2 assimilated meteorological fields 281 

data (Gelaro et al., 2017). We combine the 1-hourly surface albedo for visible beam from 282 

MERRA2 radiation diagnostics with the instantaneous spectral surface albedo from the integrated 283 

CALIPSO, Cloud-Sat, CERES, and MODIS merged product (CCCM) (Kato et al., 2011) to get 284 

time-dependent spectral surface albedo. Surface temperature is obtained from 1-hourly MERRA2 285 

radiation diagnostics data. The atmospheric and surface properties are all aggregated to monthly 286 

mean values at eight UTC times: 0:30, 3:30, 6:30, 9:30, 12:30, 15:30, 18:30, 21:30 to obtain 287 

monthly-mean diurnal cycle for radiative transfer simulations. Considering DRESW strongly 288 

depends on solar zenith angle (SZA), we calculate DRESW
 for every 1 hour using the corresponding 289 

hourly SZA in midmonth day. As a result, every three SZA share the same atmospheric and surface 290 

properties in DRESW
 calculations due to their different temporal resolution.  291 

Table 2 List of definitions of variables and their indices. 292 

Variable Definition 

k size bin index  

i, j longitude-latitude grid index 
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t 8 UTC times with 3-hour interval (i.e., 0:30, 3:30, 6:30, 9:30, 12:30, 15:30, 18:30, 21:30) 

tt 24 UTC times with 1-hour interval 

daymm The midmonth day of the month 

𝑅(𝑡), 𝐻2𝑂(𝑡), 𝑂3(𝑡), 

𝐶𝑂2(𝑡), 𝑇𝑎𝑡𝑚(𝑡) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

3-hourly monthly mean surface albedo and vertical profile of water vapor, ozone, carbon 

dioxide and atmospheric temperature 

𝜁𝑑 dust properties such as DAOD, dust extinction vertical profile and scattering properties 

𝐷𝑅𝐸1ℎ 𝑘,𝑖,𝑗
𝑆𝑊 (𝑡𝑡) 1-hourly monthly mean DRESW (i.e., monthly mean DRESW at each of 24 UTC times) of 

kth size bin and (ith, jth) grid 

𝐷𝑅𝐸3ℎ 𝑘,𝑖,𝑗
𝐿𝑊 (𝑡) 3-hourly monthly mean DRELW (i.e., monthly mean DRELW at each of 8 UTC times) of kth 

size bin and (ith, jth) grid 

𝐷𝑅𝐸𝑘,𝑖,𝑗
𝑆𝑊 , 𝐷𝑅𝐸𝑘,𝑖,𝑗

𝐿𝑊  The monthly and diurnally mean dust DRESW and DRELW of kth size bin and in (ith, jth) grid 

𝐷𝑅𝐸𝐸𝑘,𝑖,𝑗 The monthly and diurnally mean dust DREESW and DREELW of kth size bin and (ith, jth) 

grid 

𝐷𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅
𝑖,𝑗
532𝑛𝑚 The monthly mean dust optical depth at 532nm of (ith, jth) grid 

 293 

The definitions of variables and indices used to derive size-resolved dust DREE dataset are 294 

summarized in Table 2. Eq. (1) shows the way of deriving 1-hourly monthly mean DRESW.  295 

 𝐷𝑅𝐸1ℎ 𝑘,𝑖,𝑗
𝑆𝑊 (𝑡𝑡) = 𝐷𝑅𝐸𝑘,𝑖,𝑗

𝑆𝑊  (𝑅(𝑡), 𝐻2𝑂(𝑡), 𝑂3(𝑡), 𝐶𝑂2(𝑡),  𝜁𝑑 , 𝑆𝑍𝐴(𝑑𝑎𝑦𝑚𝑚 , 𝑡𝑡)), (1) 

where ‘t’ indicates 8 UTC times with 3-hour interval. ‘tt’ indicates 24 UTC times with 1-hour 296 

interval. ‘𝑑𝑎𝑦𝑚𝑚’ indicates the midmonth day of the month, and ‘𝑅(𝑡), 𝐻2𝑂(𝑡), 𝑂3(𝑡), 𝐶𝑂2(𝑡)’ 297 

represent 3-hourly monthly mean surface albedo and vertical profile of water vapor, ozone, carbon 298 

dioxide, respectively. The temporal resolution inconsistency of SZA as well as atmospheric and 299 

surface properties requires every three SZA share the same atmospheric and surface properties in 300 

the calculations. ‘𝜁𝑑’ represents dust properties such as DAOD, dust extinction vertical profile and 301 

scattering properties which are independent of UTC time in our calculations. Dust extinction 302 

vertical profile is interpolated to the 72 levels in consistency with vertical profiles of water vapor, 303 

ozone and temperature from MERRA2. 304 

Eq. (2) shows the way of deriving 3-hourly monthly mean DRELW. Surface emissivity (‘E’) 305 

is obtained from Huang et al. (2016), which contains monthly mean spectral surface emissivity 306 

with 0.5-degree spatial resolution. 𝑇𝑎𝑡𝑚(𝑡) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ represents 3-hourly monthly mean vertical profile of 307 
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atmospheric temperature. With the aid of the 3-hourly monthly mean atmospheric properties, 308 

monthly mean DRELW is calculated for every 3 hours.  309 

 𝐷𝑅𝐸3ℎ 𝑘,𝑖,𝑗
𝐿𝑊 (𝑡) = 𝐷𝑅𝐸𝑘,𝑖,𝑗

𝐿𝑊 (𝐸, 𝐻2𝑂(𝑡), 𝑂3(𝑡), 𝐶𝑂2(𝑡), 𝑇𝑎𝑡𝑚(𝑡),̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜁𝑑) (2) 

Then the 1-hourly monthly mean dust DRESW
 ( 𝐷𝑅𝐸1ℎ 𝑘,𝑖,𝑗

𝑆𝑊 (𝑡𝑡)) derived from Eq. (1) is 310 

averaged diurnally (over 24 points) to get the monthly and diurnally mean dust DRESW (𝐷𝑅𝐸𝑘,𝑖,𝑗
𝑆𝑊  ) 311 

as indicated by Eq. (3). Similarly, the 3-hourly monthly mean DRELW ( 𝐷𝑅𝐸3ℎ 𝑘,𝑖,𝑗
𝐿𝑊 (𝑡)) derived from 312 

Eq. (2) is averaged diurnally (over 8 points) to get the monthly and diurnally mean dust DRELW
 313 

(𝐷𝑅𝐸𝑘,𝑖,𝑗
𝐿𝑊  ) as indicated by Eq. (4). The method described by Eq. (1) - Eq. (4) will be referred to as 314 

the ‘conventional’ method of calculating monthly mean dust DRE in Section 4.  315 

 
𝐷𝑅𝐸𝑘,𝑖,𝑗

𝑆𝑊 =
∑ 𝐷𝑅𝐸1ℎ 𝑘,𝑖,𝑗

𝑆𝑊 (𝑡𝑡)𝑡𝑡

∑ 𝑡𝑡
 

(3) 

 
𝐷𝑅𝐸𝑘,𝑖,𝑗

𝐿𝑊 =
∑ 𝐷𝑅𝐸3ℎ 𝑘,𝑖,𝑗

𝐿𝑊 (𝑡) 𝑡

∑ 𝑡
 

(4) 

Based on the monthly mean size-resolved dust DRESW (𝐷𝑅𝐸𝑘,𝑖,𝑗
𝑆𝑊 ) and DRELW (𝐷𝑅𝐸𝑘,𝑖,𝑗

𝐿𝑊 ), we 316 

derive the monthly mean size-resolved dust DREE (𝐷𝑅𝐸𝐸𝑘,𝑖,𝑗) using Eq. (5) for SW and LW 317 

respectively. Note that the monthly mean size-resolved dust DREE ( 𝐷𝑅𝐸𝐸𝑘,𝑖,𝑗 ) is calculated by 318 

dividing by monthly mean 𝐷𝐴𝑂𝐷532𝑛𝑚 since the size-resolved 𝐷𝑅𝐸𝑘,𝑖,𝑗  was initially derived with 319 

respect to monthly mean 𝐷𝐴𝑂𝐷532𝑛𝑚.  320 

 

𝐷𝑅𝐸𝐸𝑘,𝑖,𝑗
𝑆𝑊 𝑜𝑟 𝐿𝑊 =  

𝐷𝑅𝐸𝑘,𝑖,𝑗
𝑆𝑊 𝑜𝑟 𝐿𝑊

𝐷𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅
𝑖,𝑗
532𝑛𝑚  

(5) 

Finally, we average the monthly mean size-resolved dust DREE ( 𝐷𝑅𝐸𝐸𝑘,𝑖,𝑗) over 4 years 321 

to get monthly mean size-resolved dust DREE datasets in addition to the associated interannual 322 

standard deviation (std). The std indicates the DREE uncertainty caused by interannual variation 323 
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of monthly mean atmospheric and surface properties as well as dust vertical distribution. Finally, 324 

the dataset developed in this study contains monthly mean size-resolved dust DREE and its 325 

associated interannual std at TOA and surface with dimension of 10 bins, 12 months, 90 latitudes, 326 

72 longitudes for each of six dust models in SW and LW respectively. Figure S1 and Figure S2 in 327 

the Supplement demonstrate the global distribution of the monthly mean size-resolved DREESW 328 

and DREELW at TOA for June. 329 

It is important to note that dust DREE of each grid cell rarely depends on the DAOD 330 

because dust DRE is approximately linear with DAOD (Satheesh and Ramanathan, 2000). 331 

Therefore, the choose of CALIOP- or MODIS-based DAOD climatology to derive the global 332 

(5∘ × 2∘) size-resolved DREE dataset will not lead to large difference. In other words, the size-333 

resolved DREE dataset is rarely related to the robustness of the DAOD used in the derivation 334 

process. We select CALIOP-based DAOD to derive the size-resolved dust DREE dataset because 335 

that the CALIOP-based dust climatology contains dust vertical distribution, which is especially 336 

important for obtaining LW DREE. Nevertheless, using CALIOP-based dust retrieval to derive 337 

size-resolved dust DREE dataset has several limitations: (1) The size-resolved dust DREE dataset 338 

may miss some regions with tenuous dust layers that below the CALIOP sensitivity. (2) The LW 339 

DREE is related to the quality of dust vertical distribution retrieval. By contrast, dust DRE highly 340 

depends on DAOD, therefore we will use different DAOD climatological datasets retrieved from 341 

different sensors (i.e., CALIOP and MODIS) to investigate global dust DRE in section 5.2. 342 

Furthermore, even though dust DREE of each grid cell is rarely related to DAOD, regional or 343 

global mean dust DREE will depend on the DAOD spatial distribution (i.e., DAOD 2D distribution) 344 

in the region of interest (see details in section 5.2). 345 
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Based on the monthly mean size-resolved dust DREE datasets derived above, we further 346 

calculate globally annual mean size-resolved dust DREESW and DREELW at TOA and surface for 347 

the six dust models (Figure 5). As discussed above, the global mean dust DREEs depends on the 348 

DAOD spatial distribution, the global mean dust DREEs shown in Figure 5 is based on CALIOP-349 

based DAOD spatial distribution from Song et al. (2021). Generally smaller bins cause stronger 350 

cooling in SW and less warming in LW, which is consistent with our discussions in 3.1. This 351 

observationally informed globally annual mean size-resolved dust DREE is also consistent with 352 

the model-simulated results shown in supplementary Figure S3 in Kok et al. (2017) in terms of the 353 

variation trend of DREE with respect to dust size. Moreover, our study explicitly shows the 354 

sensitivity of dust DREE to dust RI and dust shape. For example, Figure 5 shows that DREESW is 355 

strongly sensitive to dust RI as DREESW of different dust RI is widely separated. Depending on 356 

dust RI, DREESW switches from cooling effect (negative value) to warming effect (positive value) 357 

at different size bins. More absorptive dust starts to warm the Earth system in SW at smaller dust 358 

size, and vice versa. In addition, our results suggest that DREESW
 is generally not sensitive to dust 359 

shape. Specifically, dust shape is not important for DREESW in most size bins, while it is important 360 

in the fourth size bin (𝐷: 0.79𝜇𝑚 ~ 1.58𝜇𝑚) with DREESW of spheroidal dust obviously higher 361 

(less negative) than spherical dust. In the DREELW, dust shape is almost as important as RI for 362 

several size bins. 363 
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 364 

Figure 4. Schematic of the methodology used to derive size-resolved dust DREE dataset. Orange boxes denote dust 365 
models used to calculate dust scattering properties. Red boxes denote inputs for RRTM. Green boxes denote outputs 366 
from RRTM.   367 

 368 

Figure 5. Globally annual mean size-resolved dust DREE in SW (a) and LW (b) for six dust models (six markers). 369 
Horizontal bars indicate the dust diameter range of each size bin. Note: LW DREE is on a logarithm scale; in contrast 370 
to global model simulations, we consider dust LW scattering in LW DRE Efficiency calculations. 371 

Our size-resolved dust DREE dataset is unique in many aspects: First, our DREE dataset 372 

is derived based on CALIOP-based dust 3D distribution. Size-resolved DREE is derived for all 373 

grids with CALIOP-based DAOD >= 0.01. Second, our size-resolved DREE dataset covers a wide 374 

range of dust diameters, specifically, they include dust DREE for ten dust diameter size bins 375 

ranging from 0.1𝜇𝑚 to 100 𝜇𝑚. This is challenging, if not impossible, to obtain from global 376 

models because these models generally simulate dust particles with diameter only up to 20 𝜇𝑚 and 377 

coarse dust particles in models deposit quickly and could not be sustained to the remote transport 378 

regions (Huneeus et al., 2011; Adebiyi and Kok, 2020) where coarse particles have been observed 379 
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by in-situ measurements (Weinzierl et al., 2017). As a result, our size-resolved DREE dataset 380 

achieves a wide spatial coverage for a large range of dust size. This is critical for investigating 381 

impacts of coarse dust and even giant dust particles on dust DRE on both regional and global scales. 382 

Third, considering that the dust vertical distribution is important for quantifying DRELW, we 383 

constrain dust vertical distribution using CALIOP-based dust retrievals in DREELW computation. 384 

Fourth, our size-resolved dust DREE dataset accounts for dust LW scattering in DREELW 385 

calculations since scattering capability is available through the DISORT in RRTM_LW (Stamnes 386 

et al., 1988). Dufresne et al., (2002) suggests that dust LW scattering enhances dust LW warming 387 

effect at TOA by a factor of up to 50%. However, dust LW scattering is generally not considered 388 

in most global models. Therefore, many previous studies artificially account for dust LW scattering 389 

by increasing the radiative perturbation due to LW absorption by a certain fraction. For example, 390 

Kok et al. (2017) accounts for LW scattering by artificially augmenting DRELW by 23% and Di 391 

Biagio et al. (2020) augmented DRELW by 50%.  392 

On the other hand, our size-resolved dust DREE dataset has several limitations. First, 393 

possible vertical variations in dust particle size are not accounted for in our calculation. The entire 394 

dust-loading column is assumed to have the same dust size distribution. Second, we do not 395 

explicitly account for spatial variation of dust RI, in other words, dust RI is assumed to be globally 396 

uniform. This uncertainty is assessed through the sensitivity tests of DREE to dust RI using three 397 

sets of state-of-the-art dust RI based on laboratory measurement of 19 dust samples all over the 398 

world. Third, dust 3D distribution in the DREE calculation is constrained by CALIOP observations. 399 

The limits on the sensitivity of CALIOP will affect the 3D distribution of dust in our calculation. 400 

Fourth, we account for dust nonsphericity by using spheroidal shape model. This shape can’t 401 

perfectly represent the highly irregular shape and roughness of real dust. In addition, several 402 
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studies suggest that dust non-sphericity is underestimated by the spheroidal shape model (Huang 403 

et al., 2020). The spheroidal shape model assumption thus might produce systematic errors. 404 

Overall, the size-resolved dust DREE dataset is useful in many dust-related studies. First, 405 

with our size-resolved dust DREE dataset, dust DRE could be calculated efficiently for any DAOD 406 

magnitude, DAOD spatial pattern and any dust PSD for any regions or the globe (see details in 407 

Section 4.1). Second, our size-resolved DREE dataset is derived for different RI and different dust 408 

shapes respectively. As a result, we could estimate dust DRE uncertainty coming from DAOD, 409 

PSD, RI, and shape separately to better understand major uncertainty sources in dust DRE 410 

estimations. Third, our size-resolved DREE dataset could be used to evaluate model simulated 411 

DREE for each size bin. 412 

4 DRE calculation methodology and its validation 413 

4.1 DRE calculation based on DREE dataset 414 

With the size-resolved dust DREE dataset derived in section 3.2, DRE of dust with any 415 

PSD and DAOD could be computed very efficiently without performing radiative transfer 416 

simulations as we do in conventional method. This section introduces the methodology of applying 417 

the size-resolved DREE dataset to calculate DRE of dust with any PSD and DAOD.   418 

DRE of full size range of dust can be expressed as the sum of DRE from each size bin 419 

(𝐷𝑅𝐸𝑘). Dust 𝐷𝑅𝐸𝑘 is approximated to be linearly proportional to DAOD of 𝑘𝑡ℎ size bin (𝐷𝐴𝑂𝐷𝑘) 420 

(Satheesh and Ramanathan, 2000). The similar concept of calculating dust DRE has been used in 421 

previous studies e.g., Kok et al. (2017). Eq. (6) shows the process of computing dust DRE using 422 

the size-resolved DREE dataset.  423 

 𝐷𝑅𝐸 = ∑ 𝐷𝑅𝐸𝑘𝑘 =∑ 𝐷𝑅𝐸𝐸𝑘 × 𝐷𝐴𝑂𝐷𝑘𝑘 =∑ 𝐷𝑅𝐸𝐸𝑘 × 𝑓𝑘𝑘 × 𝐷𝐴𝑂𝐷, (6) 
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where 𝐷𝑅𝐸 represents dust DRE induced by full size range of dust with optical depth of 𝐷𝐴𝑂𝐷. 424 

𝑓𝑘 is the fraction of the DAOD contributed by the 𝑘𝑡ℎ size bin.  425 

Each variable in Eq. (6) can be obtained or derived from datasets developed in this study 426 

and other studies. For example, the size-resolved DREE dataset (𝐷𝑅𝐸𝐸𝑘,𝑖,𝑗) derived in this study 427 

is essential for utilizing this efficient and novel DRE calculation method. DAOD can be obtained 428 

from CALIOP-based or MODIS-based DAOD climatological datasets (Song et al., 2021). 𝑓𝑘 can 429 

be derived from dust extinction efficiency (𝑄𝑒), the geometric cross-sectional area (A) and dust 430 

PSD ( 𝑑𝑁/𝑑𝐷) based on Eq. (7).  431 

 

𝑓𝑘 ≡
𝐷𝐴𝑂𝐷𝑘

𝐷𝐴𝑂𝐷
=

∫ 𝑄𝑒532𝑛𝑚(𝐷)𝐴(𝐷)
𝑑𝑁
𝑑𝐷

𝑑𝐷
𝐷𝑘+

𝐷𝑘−

∫ 𝑄𝑒532𝑛𝑚(𝐷)𝐴(𝐷)
𝑑𝑁
𝑑𝐷

𝑑𝐷
𝐷𝑚𝑎𝑥

0

 (7) 

𝑄𝑒 is defined according to 𝑄𝑒 ≡
𝜎𝑒

𝐴
 , where 𝜎𝑒 is extinction cross section, the geometric 432 

cross-sectional area of the particle (𝐴) can be expressed as 𝐴 = 𝜋𝑟2. Under the assumption of 433 

spherical dust particle, 𝑟 is the radius. Under the assumption of spheroidal dust particle, Vouk 434 

(1948) shows that the average projected area of a convex body (e.g., spheroidal particle) is 𝐴 =435 

𝜋𝑟2 , where 𝑟 is the radius of a surface area-equivalent sphere. The average is taken over all 436 

possible orientations in space, which is consistent with our assumption of randomly oriented dust 437 

particles in the atmosphere. 𝑄𝑒532𝑛𝑚(𝐷) for the six dust models are shown in Figure 6 (a), they 438 

all converge to 2 as the dust diameter becomes much larger than the wavelength, which is 439 

consistent with the principle of geometric optics (van de Hulst, 1957). By contrast, 𝑄𝑒
550𝑛𝑚(𝐷) of 440 

non-spherical dust in Kok et al. (2017) has a much larger value than spherical dust for dust 𝐷 ≥441 

1𝜇𝑚 (see their Figure 1(b)). This discrepancy is probably due to the different 𝑄𝑒 definitions used 442 

in the two studies. Kok et al. (2017) defined 𝑄𝑒 as dust extinction per unit cross section of volume-443 

equivalent sphere. Figure 6 (b) shows that 𝑓𝑘 of a specific PSD is not sensitive to dust RI and dust 444 
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shape, this is also suggested by the similar 𝑄𝑒532𝑛𝑚  v.s. geometric diameter (𝐷) trends of the six 445 

dust models shown in Figure 6 (a). In contrast, 𝑓4 (i.e., 𝑓𝑘 for the fourth size bin with 𝐷 ranging 446 

from 0.79𝜇𝑚 𝑡𝑜 1.58𝜇𝑚) is more sensitive to dust shape than other size bins, this is in line with 447 

the larger difference in 𝑄𝑒532𝑛𝑚 with shape shown in Figure 6 (a). 448 

 449 

Figure 6. (a) Dust extinction efficiency (𝑄𝑒) at 532nm for six dust models. (b) The colorful bars represent 𝑓
𝑘
 450 

calculated for six dust models based on a specific dust PSD (𝑑𝑉/𝑑𝑙𝑛𝐷) indicated by black curve. Note, 𝑓
𝑘
 is not 451 

sensitive to different dust models such as dust RI and dust shape.  452 

In summary, the size-resolved dust DREE dataset provides an efficient way to compute 453 

DRE for any dust PSD and any DAOD by using Eq. (6) and Eq. (7). To distinguish from the 454 

conventional method introduced in section 3.2, this method of calculating dust DRE based on size-455 

resolved DREE dataset is referred to as ‘DREE-integration’ method. 456 

4.2 Validation of DRE calculation methodology 457 

In this section, we select the Sahara Desert (14°N-30°N, 15°W-30°E) to validate the 458 

DREE-integration method. We choose MeanSWRI-MeanLWRI-Spheroid dust model and Fennec-459 

Fresh dust PSD (see red curve in Figure 7) measured within 12h of dust uplift in remote Sahara 460 

locations by Fennec field campaign to represent microphysical properties of Saharan dust (Ryder 461 

et al., 2013a, b). Monthly mean DAOD is from CALIOP-based DAOD climatology.  462 
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 463 

Figure 7. Normalized atmospheric dust volume distribution (dV/dlnD) described in Table 5 (Kok et al., 2017; Ryder 464 
et al., 2013a; b; 2018; 2019). 465 

Figure 8 shows the comparison of 4-year (2007-2010) monthly mean dust DRE between 466 

the Conventional and DREE-integration method. In Conventional DRE calculation, dust scattering 467 

properties (𝑄𝑒, 𝜔 𝑎𝑛𝑑 𝑔) are calculated based on the Fennec-Fresh PSD and then used to calculate 468 

monthly mean dust DRE from 2007 to 2010 with RRTM as described in Section 3.2 (Eq. 1 – Eq. 469 

4). While the DREE-integration method is based on the monthly mean size-resolved DREE dataset 470 

derived based on 4-year (2007-2010) data as described in Section 4.1 (Eq. 6 – Eq. 7). The excellent 471 

agreement in monthly mean dust DRE between two methods validates the DREE-integration DRE 472 

calculation methodology.  473 

 474 
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 475 

Figure 8. Monthly mean dust DRESW (a) and DRELW (b) comparison between Conventional and DREE-integration 476 
calculation from 2007 to 2010 over Sahara Desert. Shaded area along DREE-integration DRE indicates the one 477 
standard deviation caused by the atmospheric and surface variations as well as dust vertical distribution variation 478 
within the four years.  Orange curves indicate CALIOP-based monthly mean DAOD. The variation of dust DRE match 479 
well with DAOD variation. 480 

The shaded-area associated with DREE-integration DRE corresponds to the one standard 481 

deviation of DREE caused by the 4-year (2007-2010) interannual variation of factors except dust 482 

microphysical properties such as monthly mean atmospheric and surface properties as well as dust 483 

vertical distributions (hereafter those factors is referred to as non-dust-factors for short). The 484 

narrow shaded-area along DREE-integration DRE suggests non-dust-factors cause very small 485 

uncertainty in dust DRE estimations. However, the small effects of 4-year interannual variation of 486 

non-dust-factors may not necessarily be representative due to the limited number of years 487 

considered. Section 2.1 discusses in detail for the reason of choosing 2007-2010 to derive size-488 

resolved DREE dataset. To check the representative of 4-year interannual variation for non-dust-489 

factors, we compare the 4-year (2007-2010) and 10-year (2007-2017) interannual standard 490 

deviation (std) of monthly mean non-dust-factors (e.g., surface albedo, surface temperature and 491 

dust vertical distribution) in Figure 9. To evaluate the interannual variation of dust vertical 492 

distribution, we define dust mean extinction height (𝑍𝛼) referring to Koffi et al. (2012)  as 𝑍𝛼 =493 

∑ 𝛽𝑒𝑥𝑡,𝑖×𝑍𝑖
𝑛
𝑖=1

∑ 𝛽𝑒𝑥𝑡,𝑖
𝑛
𝑖=1

, where 𝛽𝑒𝑥𝑡,𝑖  is the dust extinction coefficient at 532nm at level i, and 𝑍𝑖 is the altitude 494 

of level i. Nevertheless the 10-year std is slightly larger than 4-year std, they are both close to zero 495 
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and on the same order of magnitude. As such, even though our monthly mean size-resolved DREE 496 

dataset is derived from 4-year (2007-2010) data, they could be used to represent DREE and 497 

calculate DRE for other years considering the small sensitivity of monthly mean dust DRE to 498 

interannual variation of non-dust-factors. 499 

 500 

Figure 9. Probability density function (PDF) of 4-year and 10-year interannual standard deviation (std) in monthly 501 
mean (a) surface albedo, (b) surface temperature, and (c) dust mean extinction height. The PSD analyses include 502 
interannual std in 12 months and all 5∘ (longitude) ×  2∘ (latitude) grid cells over the world and their mean values are 503 
indicated as ‘std_mean’ on each figure. 504 

5 Regional and global dust DRE based on size-resolved DREE dataset 505 

After the validation of DREE-integration method in Section 4, we use the DREE-integration 506 

method to calculate regional and global dust DRE in this section. There are three main objectives 507 

in this section: (1) the most important objective throughout this section is to demonstrate the 508 

usefulness of the size-resolved DREE dataset for calculating regional and global dust DRE for any 509 

given dust PSD; (2) the second objective is to validate the size-resolved DREE dataset by 510 

comparing with regional dust DREE reported by field studies based on satellite and ground-based 511 

observations (section 5.1); (3) the third objective to assess the sensitivity of dust DRE to DAOD 512 

spatial pattern (section 5.2) as well as dust microphysical properties such as dust PSD, RI and 513 

shape (section 5.3). 514 

5.1 Comparison with observation-based regional dust DREE 515 

Table 3 shows the comparison of our calculations of clear-sky regional mean SW and LW 516 

DREE with those reported by field studies based on satellite and ground-based observations. We 517 
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first calculated regional mean dust DRE using the DREE-integration method, then divided by the 518 

corresponding regional mean DAOD to get regional mean DREE, and then compared this with 519 

observation-based results from previous studies. Comparing DREE allows eliminating differences 520 

due to the variation in regional dust loading, optically represented by DAOD.  521 

Knowledge of regional dust PSD is necessary for estimating dust DRE regionally. There are 522 

several in-situ measurements of dust PSD over Sahara and tropical eastern Atlantic. The state-of-523 

the art airborne observations of Saharan dust from the Fennec field campaign (Fennec-Fresh) and 524 

transported Saharan dust over tropical eastern Atlantic within Saharan Air Layer (SAL) from both 525 

AER-D and Fennec fieldwork campaigns are adopted (Ryder et al., 2013 a, b, 2018, 2019) (see 526 

Figure 7). Both campaigns include giant dust particles, measuring up to 100𝜇𝑚 diameter for AER-527 

D and up to 300𝜇𝑚 for Fennec. The wide coverage of dust diameter in our size-resolved DREE 528 

dataset allows for dust DRE calculations for giant dust up to 100𝜇𝑚 over both dust source and 529 

transported regions where giant particles are observed in those campaigns. This is an advantage of 530 

our size-resolved DREE dataset compared to modeled dust DREE, because climate models 531 

generally cut off dust diameter at 20 𝜇𝑚 and could not sustain coarse dust to remote transport 532 

regions due to several missing mechanisms in models (Van Der Does et al., 2018; Drakaki et al., 533 

2022; Meng et al., 2022). 534 

The Fennec-Fresh dust PSD includes measurements within 12h of dust uplift in remote 535 

Sahara locations. It is used to calculate dust DRE for Saharan dust in this section. In reality, dust 536 

over the wide Sahara Desert region (15N~30N, 10W~30E) is not all lifted within 12h, so using 537 

Fennec-Fresh to represent dust PSD over the wide Sahara Desert could bias dust size coarse, which 538 

could partially explain the warm bias in our DREESW estimation over the Sahara Desert compared 539 

to the satellite-based result. Over the tropical Atlantic, both AER-D and Fennec-SAL measured 540 
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PSD are used to assess the sensitivity of dust DREE to dust PSD. In addition, dust DRE is 541 

calculated for three dust RIs to evaluate the sensitivity of dust DREE to dust RI as shown in Table 542 

3. Generally, our dust DREE estimations achieve good agreement with observation-based dust 543 

DREE. However, there is a significant uncertainty caused by dust RI in DREE, especially for SW. 544 

In addition, DRE comparisons between AER-D and Fennec-SAL over the Tropical Atlantic 545 

suggests that in-situ measured dust PSD uncertainty leads to a large uncertainty in regional DREE 546 

in both SW and LW. 547 

Based on the regional DREE study with the state-of-the art RI and PSD, we found DREESW 548 

uncertainty could come from both dust RI and dust PSD, while DRELW
 uncertainty is mainly from 549 

dust PSD. 550 

Table 3. Comparison of our DREE estimations for different PSD and RI with Clear-Sky regional SW and LW dust 551 
DREE reported by field studies based on satellite and ground-based observations. Specifically, we calculated regional 552 
dust DREE for different RI (Min, Mean, Max) and different PSD (AER-D and Fennec-SAL for Tropical Atlantic) and 553 
then compare with observation-based results from previous studies. Note, spheroidal dust shape is assumed in our 554 
DREE-integration DRE calculations. 555 

Shortwave Spectral Range 

Region Season Level Satellite-

Based 

This study 

DREESW DREESW PSD 
Min RI Mean RI Max RI 

Sahara Desert (a) 

(15N~30N, 10W~30E) 

JJA TOA 0 2.8 16.0 26.6 Fennec-Fresh 

Ilorin(f), Nigeria 

(8.5N, 4.7E) 

Annual TOA -15 ~ -35 -28.3 -24.1 -19.9 AER-D 

-23.4 -17.7 -12.9 Fennec-SAL 

Surface -49 ~ -75 -43.1 -51.7 -59.3 AER-D 

-46.0 -57.1 -66.0 Fennec-SAL 

Cape Verde(f) 

(16.7N, 22.9W) 

Annual TOA -36 ~ -48 -42.3 -38.0 -33.7 AER-D 

-36.6 -30.8 -26.0 Fennec-SAL 

Surface -68 ~ -90 -59.6 -68.7 -77.7 AER-D 

-61.5 -74.6 -85.3 Fennec-SAL 

Tropical Atlantic (b) 

(10N~30N, 20W-45W) 

JJA TOA -28 -44.6 -39.9 -35.3 AER-D 

-38.4 -32.1 -27.0 Fennec-SAL 

Surface -82.1 -61.1 -71.9 -81.7 AER-D 

-64.4 -78.5 -90.0 Fennec-SAL 

Tropical Atlantic (c) 

(15N~25N,15W~45W) 

JJA TOA -35 -41.2 -36.3 -31.5 AER-D 

-35.1 -28.5 -23.1 Fennec-SAL 

Surface -65 -57.9 -68.6 -78.1 AER-D 

-61.2 -75.1 -86.3 Fennec-SAL 

Longwave Spectral Range 
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Region Season Level Satellite-

Based 

This study  

   DREELW DREELW PSD 
Min RI Mean RI Max RI 

Sahara Desert (a) 

(15N~30N, 10W~30E) 

JJA TOA 11~26 13.4 11.8 11.4 Fennec-Fresh 

North Africa (d-e) 

(15N~35N, 18W~40E) 

JJA TOA 15~22 14.4 12.8 12.4 Fennec-Fresh 

Tropical Atlantic (b) 

(10N~30N, 20W~45W) 

JJA TOA 10.5 8.2 8.1 8.5 AER-D 

13.1 11.8 11.6 Fennec-SAL 

Cape Verde(g) 

(16.7N, 22.9W) 

Sept Surface 16 8.0 11.8 15.1 AER-D 

13.0 17.0 19.8 Fennec-SAL 

(a) Patadia et al. (2009). (b) Song et al. (2018). (c) Li et al. (2004). (d) Zhang and Christopher (2003). (e) 

Brindley and Russell (2009). (f) Zhou et al. (2005). (g) Hansell et al. (2010) 

 556 

5.2 Global dust clear-sky DRE based on different DAOD climatology  557 

The DAOD is the most important factor in determining dust DRE. As illustrated in Song et 558 

al. (2021), the DAOD retrieved from different satellite sensors have a large difference in terms of 559 

magnitude and spatial distribution. To evaluate how the current DAOD uncertainty affects dust 560 

DRE estimations, the global dust DRE computed based on monthly mean DAOD climatology 561 

retrieved from CALIOP observations and MODIS observations are compared in this section. To 562 

separate the effect of DAOD from other factors, we use the same dust PSD, RI and shape in the 563 

two sets of dust DRE calculations in this section. Specifically, we use the Fennec-Fresh PSD for 564 

three major dust source regions (i.e., Sahara (14-30°N, 15°W-30°E), Middle East (10-35°N, 40-565 

85°E) and eastern Asia (30-50°N, 75-130°E), they are indicated by three black boxes in Figure 10) 566 

and use AER-D PSD for other regions (hereafter Campaign-PSD, see Table 5). The MeanSWRI-567 

MeanLWRI-Spheroid dust model described in Table 1 is used to represent dust RI and shape. 568 

The two DAOD climatological datasets result in distinct dust DRE spatial pattern as shown 569 

in Figure 10, which is consistent with the DAOD spatial patterns shown in Figure 1 suggesting 570 

CALIOP DAOD is more concentrated over ‘dust belt’ regions than MODIS DAOD. The global 571 

mean dust DRESW, DRELW
 and DRENET based on the two DAOD climatology are significantly 572 
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different (Table 4), which is mainly caused by two factors. The first is the difference in DAOD 573 

magnitude. The CALIOP-based global mean DAOD is 0.032, while MODIS-based is 0.047. The 574 

other factor is the difference in DAOD spatial pattern. After we scale dust DRE to the same global 575 

mean DAOD (𝐷𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ = 0.03) to eliminate the effect of DAOD magnitude difference (values in 576 

parentheses in Table 4), the DRESW difference reduced from 0.55 W m–2 (-0.69 vs. -1.24 W m–2) 577 

to 0.15 W m–2 (-0.64 vs. -0.79 W m–2). Similarly, differences in DRELW
 and DRENET also reduce 578 

significantly. It indicates that the global mean DAOD magnitude difference is more important than 579 

the subtle difference in spatial pattern. Nevertheless, after scaling to the same global mean DAOD 580 

there is still more than 10% difference between the two dust DRESW, with CALIOP-based being 581 

the more positive one. This is probably because CALIOP-based DAOD is more concentrated over 582 

dust sources where dust aerosols induce less negative or even positive DRESW (For example the 583 

positive DRESW over the Sahara Desert and Arabia shown in Figure 10), which result in a less 584 

negative global mean DRESW than MODIS. 585 

 586 
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Figure 10. Annual mean dust DRE global distribution based on CALIOP-based and MODIS-based DAOD 587 
climatology. MeanSWRI-MeanLWRI-Spheroid dust model are used to represent dust RI and shape in the calculation. 588 
Campaign-PSD is used to represent dust PSD, specifically, Fennec-Fresh PSD is used to represent dust PSD over the 589 
three major dust source regions indicated by three black boxes. AER-D PSD is used to represent dust PSD over other 590 
regions. 591 

Table 4. Globally annual mean DAOD, DRESW
, DRELW

 and DRENET based on CALIOP DAOD and MODIS DAOD 592 
climatology. Note, values in the parentheses are for the two DAOD scaled to the same value of 0.03. 593 

 𝐷𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅  𝐷𝑅𝐸𝑆𝑊̅̅ ̅̅ ̅̅ ̅̅ ̅̅  [Wm-2] 𝐷𝑅𝐸𝐿𝑊̅̅ ̅̅ ̅̅ ̅̅ ̅ [Wm-2] 𝐷𝑅𝐸𝑁𝐸𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ [Wm-2] 

CALIOP 0.032 (0.03) −0.69 (−0.64) 0.25 (0.23) −0.44 (−0.41) 

MODIS 0.047 (0.03) −1.24 (−0.79) 0.34 (0.22) −0.90 (−0.57) 

 594 

5.3 Global dust clear-sky DRE based on different dust PSD 595 

In the section 5.2, we showed the dust DRE based on the Campaign-PSD. As aforementioned, 596 

one of the main advantages of our size-resolved DREE is that it can be combined with different 597 

dust PSDs to estimate the dust DRE. To demonstrate this, we calculate another set of dust DRE 598 

based on the Kok2017-PSD. Table 5 describes the two dust PSDs used for global dust DRE 599 

calculations and their references. Kok2017-PSD is a globally averaged dust PSD and used to 600 

represent dust PSD for each dusty grid cell. It is constrained with observations and includes coarse 601 

dust particles up to 20𝜇𝑚. Although our primary goal here is to demonstrate the capability of our 602 

size-resolved DREE, the comparison between the two DRE can also help us understand the 603 

impacts of dust PSD uncertainty on the dust DRE estimation. Moreover, we also investigate the 604 

sensitivity of DRE to dust RI and dust shape explicitly in this section. The same DAOD 605 

climatology (CALIOP-based DAOD climatology) is used for dust DRE calculations to eliminate 606 

the impact of dust loading difference. 607 

Several recent observation-constrained dust PSDs (e.g., Di Biagio et al., 2020, Adebiyi et 608 

al., 2020) suggest that dust size is coarser than Kok2017-PSD. As such, Kok2017-PSD is used to 609 

represent the lower limit of the observation-based global dust PSD to investigate the sensitivity of 610 

dust DRE to dust PSD. The Campaign-PSD is purely based on aircraft in-situ measurements and 611 
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the aircraft was extensively equipped to measure giant particles with diameter larger than 20𝜇𝑚. 612 

We use the dust PSD measured over Sahara (from the Fennec field campaign) to represent dust 613 

PSD over three major dust source regions and use dust PSD measured in the Saharan Air Layer 614 

over the tropical eastern Atlantic (from AER-D field campaign) to represent dust PSD over dust 615 

transport regions. Of course, representing the spatially and temporally variation of global dust PSD 616 

with only two PSDs from the field campaigns is only a crude approximation due to the lack of 617 

PSD measurements. Dust aerosol over the three wide dust source regions may not be all uplifted 618 

within 12 hours as in the Fennec-Fresh measurements, in addition, dust size after long-range 619 

transport could be a bit finer than dust PSD measured over tropical eastern Atlantic (Weinzierl et 620 

al., 2017). Thus, Campaign-PSD likely represents the upper limit of the observation-based global 621 

dust PSD for the investigation of sensitivity to dust PSD. By contrast, the climate models miss 622 

most of coarse dust (D>5 𝜇𝑚) in the atmosphere (Adebiyi and Kok, 2020), as a result, the purely 623 

modeled dust PSD without observational constraints will lead to a substantially different dust DRE. 624 

Therefore, the sensitivity test to dust PSD conducted in this study can only represent the 625 

uncertainty induced by the current understanding of observation-based dust PSD. 626 

Table 5. The two observation-based dust PSDs used in DRE calculations (see Figure 7). 627 

PSD Description Reference 

Kok2017-PSD A globally averaged atmospheric PSD derived from observation 

constrained globally averaged emitted PSD and model simulated 

globally averaged dust lifetime. This globally averaged PSD is used 

to represent dust PSD for each dusty grid cell. 

Dust diameter is cutoff at 20𝜇𝑚 (Figure 2a in Kok et al.2017).  

Kok et al. (2017) 

Campaign-PSD Fennec-Fresh PSD is used for three major dust source regions (i.e., 

Sahara (14-30°N, 15°W-30°E), Middle East (10-35°N, 40-85°E) and 

eastern Asia (30-50°N, 75-130°E)), which are indicated by the three 

black boxes in Figure 10. 

AER-D PSD is used for other regions. 

Ryder et al. (2013a, 

b, 2018, 2019)  

 628 

We calculated dust DRE of each grid cell (𝐷𝑅𝐸𝑖,𝑗) using DREE-integration method based 629 

on the dust PSD described in Table 5. Global mean dust DRE was then calculated by averaging 630 
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dust 𝐷𝑅𝐸𝑖,𝑗 weighted by its surface area. Figure 11 shows the global mean DRESW, DRELW and 631 

DRENET
 at TOA, surface, and in the atmosphere calculated based on the two sets of PSDs. 632 

Obviously, Kok2017-PSD leads to stronger cooling effect in SW and weaker warming effect in 633 

LW at TOA compared to Campaign-PSD, which is consistent with the fact that Kok2017-PSD is 634 

finer than the Campaign-PSD. In addition, we explicitly include the effects of dust RI and dust 635 

shape on DRE in Figure 11. Comparison of uncertainty induced by dust PSD, RI and shape 636 

suggests that dust RI uncertainty leads to the largest uncertainty in dust DRE, particularly RI 637 

uncertainty induces more than 40% uncertainty in DRESW estimations in the atmosphere (Figure 638 

12). Dust PSD is also important for quantifying dust DRE, we found that the observation-based 639 

dust PSD uncertainty induces around 15%~20% uncertainty in dust DRE at TOA and in the 640 

atmosphere. Dust non-sphericity causes a negligible uncertainty in global mean dust DRE, in line 641 

with previous studies e.g., Raisanen et al. (2013) and Colarco et al. (2014). 642 

 643 

 644 

Figure 11. Globally annual mean clear-sky DRESW, DRELW and DRENET
 at TOA, in the atmosphere and surface 645 

calculated based on the two PSDs described in Table 5. The two rows represent dust DRE based on two PSDs. Error 646 
bars indicate uncertainty induced by dust RI uncertainty. Different types of bars indicate dust DRE based on different 647 
dust shapes. This figure explicitly separates the impacts of different dust microphysical properties on dust DRE. Two 648 
values in parenthesis on each plot represent spherical (left) and spheroidal (right) dust DRE corresponding to mean 649 
RI.  650 
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 651 

Figure 12. Comparison of uncertainty induced by dust RI, PSD and shape in DRESW, DRELW and DRENET
 at TOA (a), 652 

in the atmosphere (b) and surface (c). The horizontal lines in each plot represent global mean DRESW (blue line in the 653 
left column), DRELW (red line in the middle column) and DRENET (green line in the right column) averaged over two 654 
dust PSDs (i.e., Kok2017-PSD and Campaign-PSD) based on MeanRI-Spheroid dust model. The three error bars in 655 
each column represent DRE uncertainty induced by dust RI (left), dust PSD (middle) and dust shape (right). 656 
Accordingly, the percentage values on the bottom represent the percentage uncertainty induced by dust RI, PSD and 657 
shape, respectively. 658 

It is tempting to compare our global mean dust DRE with results reported in Kok et al. (2017). 659 

But it must be noted that the global mean dust DRE shown in Figure 11 is for clear sky only, while 660 

the global mean dust DRE reported in Kok et al. (2017) is for all sky. The all-sky dust DRE can 661 

be separated into contributions from clear-sky and cloudy-sky portions (Myhre et al., 2020): 662 

 𝐷𝑅𝐸𝑎𝑙𝑙−𝑠𝑘𝑦 = (1 − 𝐶𝐹) × 𝐷𝑅𝐸𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦 + 𝐶𝐹 × 𝐷𝑅𝐸𝑐𝑙𝑜𝑢𝑑𝑦−𝑠𝑘𝑦, (8) 

where CF is cloud fraction, 𝐷𝑅𝐸𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦  is dust DRE simulated under the case of removing all 663 

clouds, 𝐷𝑅𝐸𝑐𝑙𝑜𝑢𝑑𝑦−𝑠𝑘𝑦 is the dust DRE assuming whole grid is covered by clouds. To compare 664 

our global mean dust DRESW based on Kok2017-PSD with the results reported in Kok et al. (2017), 665 

we convert our clear-sky 𝐷𝑅𝐸𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦
𝑆𝑊  to 𝐷𝑅𝐸𝑎𝑙𝑙−𝑠𝑘𝑦

𝑆𝑊  by using MODIS L3 monthly mean cloud 666 

fraction. Specifically, we multiply 𝐷𝑅𝐸𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦
𝑆𝑊  by (1-CF) for each grid cell and then calculate 667 

global annual mean values. In this process, we neglect the cloudy-sky dust DRESW portion because 668 

the annual mean cloudy-sky dust DRESW is estimated to be very small, around −0.04 (Zhang et 669 

al., 2016). Finally, our estimated global mean 𝐷𝑅𝐸𝑎𝑙𝑙−𝑠𝑘𝑦
𝑆𝑊  corresponding to DAOD=0.03 is around 670 

−0.34 Wm-2. Although it is comparable to the −0.48 Wm-2 from Kok et al. 2017, the following 671 

differences between the two studies must be kept in mind when interpreting the results. First, the 672 
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rough conversion from global mean 𝐷𝑅𝐸𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦
𝑆𝑊 to global mean 𝐷𝑅𝐸𝑎𝑙𝑙−𝑠𝑘𝑦

𝑆𝑊  is subject to the 673 

approximation of global mean 𝐷𝑅𝐸𝑐𝑙𝑜𝑢𝑑𝑦−𝑠𝑘𝑦  ~0 and the MODIS L3 cloud fraction could be 674 

different from modeled cloud fraction used in Kok et al. (2017). Second, the two studies use 675 

different dust RI. Third, in this study Kok2017-PSD is used to represent dust PSD in each dusty 676 

grid and applied to our size-resolved dust DREE dataset to calculate global dust DRE. In contrast, 677 

the model-simulated dust DREE in Kok et al. (2017) has reduced cooling from SW scattering and 678 

enhanced warming from SW absorption effects because the short lifetime of coarse dust in models 679 

concentrates these particles over bright deserts. Fourth, the two studies use different dust shape 680 

models, Kok et al. (2017) accounts for more nonspherical shape model (i.e., tri-axial ellipsoids). 681 

Here we do not compare our global mean 𝐷𝑅𝐸𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦
𝐿𝑊   with 𝐷𝑅𝐸𝑎𝑙𝑙−𝑠𝑘𝑦

𝐿𝑊  suggested in Kok et al. 682 

(2017) because that the lack of knowledge in 𝐷𝑅𝐸𝑐𝑙𝑜𝑢𝑑𝑦−𝑠𝑘𝑦
𝐿𝑊  prevent us to convert 𝐷𝑅𝐸𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦

𝐿𝑊  683 

to 𝐷𝑅𝐸𝑎𝑙𝑙−𝑠𝑘𝑦
𝐿𝑊 . Moreover, the two studies use different dust vertical profile, which is critical for 684 

DRELW estimations. For instance, dust vertical profile in Kok et al. (2017) is purely based on model 685 

simulations, while this study constrains dust vertical profile with CALIOP observations. 686 

Considering all these factors, it is hard to tell if the comparison is fair.  687 

6 Summary and Conclusion  688 

This study developed a clear-sky size-resolved dust DREE dataset in both SW and LW 689 

based on CALIOP-based dust DAOD climatology and dust vertical distributions. The dataset 690 

contains global monthly mean dust DREE at TOA and surface with 5∘ (longitude) × 2∘ (latitude) 691 

spatial resolution for 10 size bins ranging from 0.1𝜇𝑚 to 100𝜇𝑚 diameter, for three state-of-the 692 

art dust RI representing more, mean and less absorptive dust, and for two dust shapes representing 693 

spherical and spheroidal dust, respectively.  694 

https://doi.org/10.5194/acp-2022-350
Preprint. Discussion started: 8 June 2022
c© Author(s) 2022. CC BY 4.0 License.



 37 

The size-resolved DREE dataset allows us to calculate dust DRE of any DAOD 695 

climatology and dust PSD efficiently by using the DREE-integration method presented in section 696 

4.1 without involving radiative transfer simulations. The DREE-integration method is proven to 697 

be in great agreement with conventional DRE calculations. With the DREE-integration 698 

methodology, we firstly calculated clear-sky regional mean DREESW and DREELW over the Sahara 699 

Desert and tropical Atlantic. The comparison of our calculations with those reported by field 700 

studies based on satellite and ground-based observations shows reasonable agreement. Secondly, 701 

we estimated global mean dust DRE with two satellite-based DAOD climatological datasets and 702 

two different global dust PSDs. We found that the global mean DAOD magnitude difference 703 

between the two DAOD climatological datasets is more important than the subtle difference in 704 

spatial pattern. Nevertheless, after scaling to the same global mean DAOD there is still more than 705 

10% difference between the two dust DRESW, with CALIOP-based being the more positive one. 706 

Moreover, our results explicitly show the uncertainty induced by each dust microphysical property 707 

(i.e., dust PSD, RI and shape) separately. When DAOD is constrained: (a) Dust non-sphericity 708 

induces negligible effect on dust DRE estimations; (b) The current understanding of observation-709 

based dust PSD induces relatively large uncertainty (15%~20%) in dust DRE at TOA and in the 710 

atmosphere (c) Dust RI turns out to be the most important factor in determining dust DRE, 711 

particularly in SW. This implies that better understanding of dust mineral composition and RI will 712 

significantly improve our understanding in dust DRE in the future. 713 

Data availability:  714 

The size-resolved dust DREE dataset and the codes to calculate dust DRE for any given 715 

dust PSD and DAOD are available at 716 

‘https://drive.google.com/drive/folders/15_e28Y9JiSWiJnIM_2flEmt2u6i9phEY?usp=sharing’ 717 
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CALIOP- and MODIS-based DAOD climatological datasets are available at 718 

‘https://drive.google.com/drive/folders/1aQVupe7govPwR6qmsqUbR4fJQsp1DBCX?usp=shari719 

ng’ 720 
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