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Abstract  26 
The role of mineral dust aerosol in global radiative energy budget is often quantified by 27 

the dust direct radiative effect (DRE). The dust DRE strongly depends on dust aerosol optical 28 

depth (DAOD), therefore, DRE efficiency (DREE=DRE/DAOD) is widely compared across 29 

different studies to eliminate difference due to the various dust load. Nevertheless, DREE is still 30 

influenced by the uncertainties associated with dust particle size distribution (PSD) and optical 31 

properties. In this study, we derive a global clear-sky size-resolved DREE dataset in both 32 

shortwave (SW) and longwave (LW) at top of the atmosphere (TOA) and surface based on satellite 33 

observations (i.e., satellite-retrieved dust extinction spatial and vertical distributions). In the DREE 34 

dataset, dust geometric diameter from 0.1µm to 100 µm is divided into 10 bins and the 35 

corresponding monthly mean DREE (with respect to DAOD at 532nm) for each size bin is derived 36 

by using the Rapid Radiative Transfer Model (RRTM). Three sets of state-of-the-art dust refractive 37 

indices (RI) and two sets of dust shape models (sphere vs. spheroid) are adopted to investigate the 38 

sensitivity of dust DREE to dust absorption and shape. As a result, the size-resolved dust DREE 39 

dataset contains globally distributed monthly mean dust DREE at TOA and surface for each of 10 40 

size bins with 5∘  (longitude) ×	2∘  (latitude) resolution as well as for each dust RI and shape 41 

combination. The size-resolved dust DREE dataset can be used to readily calculate global dust 42 

DRE for any DAOD and dust PSD, including the uncertainty in the DRE induced by dust 43 

microphysical properties (e.g., dust PSD, RI and shape). By calculating dust DRE based on DAOD 44 

climatology retrieved from different satellite sensors and based on different dust PSD, we find that 45 

uncertainty in the spatial pattern of DAOD induces more than 10% of the uncertainty in SW dust 46 

DRE at TOA. The observation-based dust PSD induces around 15%~20% uncertainty in dust DRE 47 

at TOA and in the atmosphere. The sensitivity assessments of dust DRE to dust RI and shape 48 
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further suggest that dust non-sphericity induces a negligible effect on dust DRE estimations, while 49 

dust RI turns out to be the most important factor in determining dust DRE, particularly in SW. 50 

  51 
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1 Introduction 53 

Mineral dust is an important component of the atmospheric aerosol (Textor et al., 2006; 54 

Choobari et al., 2014). They can influence the radiative energy budget of the Earth-Atmosphere 55 

system directly through their interaction with both solar and thermal infrared radiation, which is 56 

known as the direct radiative effect (DRE) of dust. The DRE of dust consists of two components. 57 

In the solar shortwave (SW) spectral region, dust aerosols reflect a fraction of solar radiation back 58 

to the space which generally leads to a negative cooling effect at both top of the atmosphere (TOA) 59 

and surface (Tegen et al., 1996; Myhre et al., 2003). In the longwave (LW) thermal infrared region, 60 

dust aerosols trap the thermal radiation emitted from Earth’s surface by absorption, which 61 

generally leads to a positive warming radiative effect at TOA and surface (Sokolik et al., 1998). 62 

In addition to DRE, dust can also influence the radiation and the hydrological cycles indirectly 63 

through serving as cloud condensation nuclei and ice nuclei and affecting cloud microphysical 64 

properties and cloud lifetime, known as indirect effects of dust (Twomey, 1977; Albrecht, 1989).  65 

The dust DRE depends on many factors including primarily the atmospheric dust content, 66 

represented by its optical depth (DAOD), vertical distribution (especially important for LW DRE), 67 

and particles’ physico-chemical properties that are the particle size distribution (PSD), complex 68 

refractive index (RI), and shape. Besides dust PSD, RI and shape, the dust DRE also depends on 69 

the atmospheric composition and structure, notably the atmospheric vertical profile of clouds, 70 

water vapor, and temperature, as well as surface properties (Yu et al., 2006). All of these properties 71 

vary in space and time and need to be characterized at the best possible spatio-temporal resolution 72 

in order to get realistic dust DRE estimates. 73 
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Among all these factors, DAOD is of first order importance in determining dust DRE since 74 

dust DRE is approximately linear with DAOD (Satheesh and Ramanathan, 2000). Many previous 75 

studies related to dust DRE are based on DAOD distributions from model simulations. For 76 

example, Kok et al. (2017) used four global model simulations to estimate global mean dust DRE 77 

efficiency (DREE is defined as DRE/DAOD) and further derive global mean dust DRE. Di Biagio 78 

et al. (2020) derived dust DRE based on model-simulated DAOD distributions with global annual 79 

mean DAOD constrained by observations. The main advantage of these studies is the availability 80 

of continuous and detailed DAOD spatial and temporal variation from model simulations. On the 81 

other hand, model-simulated DAOD could be subject to large uncertainties and biases in 82 

reproducing DAOD due to parameterizations of various physical processes, therefore need 83 

observational constraints for evaluation and improvement.   84 

Satellite observations are important sources of data for evaluating model simulations, 85 

because of their routine sampling on a global scale and over decadal time periods. Previous studies 86 

have developed sensor-specific methods to distinguish dust aerosol from total aerosol based on the 87 

size and shape characteristics of dust particles. Some are based on passive satellite observations 88 

such as Moderate Resolution Imaging Spectroradiometer (MODIS, Remer et al. (2005)) and others 89 

are based on active observations such as Cloud-Aerosol Lidar with Orthogonal Polarization 90 

(CALIOP, Winker et al. (2009)). The wide spectral coverage of MODIS measurements allows the 91 

retrieval of aerosol particle size information, such as effective radius, fine-mode fraction, aerosol 92 

Angstrom exponent, as well as spectral gradient of absorption (Remer et al., 2005; Hsu et al., 2013). 93 

Based on the fact that dust aerosols are generally larger in size than other aerosols and have a 94 

decreasing absorption from ultraviolet (UV) to the near infrared, the combinations of these 95 

retrievals provide the basis for dust separation and dust aerosol optical depth (DAOD) retrievals 96 
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from MODIS (Kaufman et al., 2005; Ginoux et al., 2012; Voss and Evan, 2020; Yu et al., 2009, 97 

2019). In addition, some recent studies have also characterized dust distribution through 98 

integrating MODIS measurements with other data sources and model simulations, for example, 99 

using the DAOD-to-AOD ratio from MERRA-2 (Modern-Era Retrospective analysis for Research 100 

and Applications, version 2 ), Gkikas et al. (2021) converted the MODIS AOD retrievals to DAOD. 101 

However, passive sensors do not provide the vertical structure of aerosol that is critical for studying 102 

aerosol–cloud interactions, LW radiative effects and aerosol influences on the thermal structure of 103 

the atmosphere (e.g., Meloni et al., 2005, 2015). By contrast, the active sensor CALIOP can 104 

provide the vertical profiles of aerosol extinction and particle properties such as depolarization 105 

ratio and color ratio, which have been used for improving DAOD retrievals in thermal infrared 106 

(TIR) (Zheng et al., 2022) and evaluating global dust simulations (Yu et al., 2010; Wu et al., 2020). 107 

The CALIOP dust identification is mainly based on dust aerosols being non-spherical in shape and 108 

their linear depolarization ratio being much larger than spherical aerosols (Sakai et al., 2010).  109 

Using CALIOP retrievals, Song et al. (2021) derived a three-dimensional (3D) decadal 110 

(2007-2019) global scale dust extinction profile climatology, which provides an observational 111 

constraint on both the spatial DAOD pattern and the vertical dust distribution for studying dust 112 

DRE and evaluating models. In their study, Song et al. (2021) also compared dust retrievals, in 113 

particular DAOD, based on different methods (i.e., CALIOP-based and MODIS-based DAOD 114 

retrievals), showed that DAOD often differ significantly between the different products and further 115 

discussed the potential reasons of causing the differences (e.g., instrument calibration errors and 116 

errors in discriminating cloud from aerosol, globally uniform dust Lidar Ratio assumption in 117 

CALIOP DAOD retrieval and so on). They showed that DAOD derived from CALIOP 118 

observations is generally smaller and more concentrated over ‘dust belt’ regions - extending from 119 
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the west coast of north Africa to the Middle East, central Asia, and China - than that derived from 122 

MODIS observations. These differences in DAOD in turn lead to different dust DRE estimations, 123 

making it difficult to compare different studies to reach meaningful conclusions. Even an 124 

agreement of DRE could be a result of the compensation between differences in DAOD and other 125 

aforementioned factors, such as dust microphysical properties. Therefore, DRE provides only a 126 

weak constraint on model. Instead, a normalized quantity, DRE efficiency (DREE) as the ratio of 127 

DRE to DAOD, has been widely used in inter-comparison studies and model evaluations (Di 128 

Biagio et al. 2020). Because of the elimination of DAOD, the DREE provides a stronger constraint 129 

on dust microphysical properties and their impacts on the dust DRE from different dust source 130 

regions (García et al., 2008). 131 

In addition to DAOD, dust size is also an important factor in determining dust DRE 132 

(Mahowald et al., 2014). Smaller particles are more effective at scattering SW radiation and super-133 

micron particles are more effective at absorbing both SW and LW radiation (Tegen and Lacis, 134 

1996).Therefore, when other parameters are equal, fine dust would generally have a more negative 135 

SW DRE and a less positive LW DRE than coarse dust. Unfortunately, despite its importance, the 136 

simulation of dust PSD in the models and satellite retrievals of dust size remain challenging tasks 137 

(Ryder et al., 2019). As a result, there is a large uncertainty in our understanding of dust PSD. For 138 

example, several recent studies suggested that model simulations tend to underestimate dust size, 139 

especially the very coarse dust with diameter in excess of 5 µm (Adebiyi and Kok, 2020). 140 

Moreover, dust RI and shape can be important for DRE estimation as well because besides dust 141 

PSD they are the other two factors that determine dust spectral optical properties. As such, it is 142 

important to investigate the sensitivity of dust DRE to dust PSD, RI and shape. Previous studies 143 

suggest that large dust PSD and RI uncertainty leads to a large uncertainty in dust DRE and thereby 144 
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DREE estimations. For example, Song et al., (2018) shows that the SW DREE of a dust model 145 

with a large size and less absorptive RI is very similar to that of a dust model with a smaller size 146 

and more absorptive RI, both in the range of satellite derived values in the NE Atlantic region. Not 147 

surprisingly, even DREE cannot provide sufficient constraints due to this possible compensation 148 

of effects in the dust PSD and RI.     149 

The main objective of this study is to derive a global clear-sky size-resolved dust DREE 150 

dataset based on satellite observations and demonstrate its usefulness in constraining, comparing, 151 

and understanding the dust DRE estimations. As explained below, the size-resolved DREE 152 

decomposes the DREE of dust into several size bins and therefore provide a way to take into 153 

account the effects of dust PSD explicitly. The sensitivity of dust DRE to dust RI and shape are 154 

also assessed in this study. Due to the inhomogeneous spatio-temporal distribution of those 155 

aforementioned factors, it is thus important to consider the spatio-temporal variation of dust DREE. 156 

Therefore, we organize the DREE dataset at 5∘ (longitude) ×	2∘ (latitude) horizontal resolution 157 

and at monthly temporal resolution. To the best of our knowledge, this work presents the first such 158 

dataset based on retrieved dust properties (i.e., DAOD vertical and horizontal distributions) from 159 

satellite observations, although size-resolved DREE from model simulations have been used in 160 

previous studies. We will show that our size-resolved DREE can allow users to readily compute 161 

the DREE and DRE of dust based on any dust PSD (e.g., from model simulations, satellite 162 

retrievals or in-situ measurements). We will also carry out an inter-comparison of the global dust 163 

DRE estimations based on different dust PSD and compare the results with previous studies. With 164 

these functions, we expect that the size-resolved DREE will be a useful tool for both observational 165 

and modeling studies of dust DRE. 166 
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The rest of the paper is organized as follows. Section 2 provides a description of the data 167 

and models used in this study. Section 3 describes the methodology of deriving the size-resolved 168 

DREE dataset. In section 4, we describe a methodology of calculating the dust DRE with the size-169 

resolved DREE dataset and its validation. In section 5, we compare the regional and global dust 170 

DRE estimations based on different DAOD, dust PSD and compare the results with previous 171 

studies. Section 6 provides a summary of the study along with the main conclusions. 172 

2 Data and Models 173 

2.1 Satellite-based DAOD climatology 174 

We use CALIOP-based DAOD climatology and dust vertical distribution derived in Song 175 

et al. (2021) to derive a size-resolved dust DREE. The reason for choosing CALIOP-based DAOD 176 

climatology is discussed in detail in section 3.2. The CALIOP-based dust climatology dataset 177 

contains monthly mean DAOD and dust vertical extinction profile on a 5∘  (longitude) ×	2∘ 178 

(latitude) spatial resolution grid for the period 2007-2019. The CALIOP-based DAOD and dust 179 

vertical distribution climatology from 2007 to 2010 are used to derive monthly mean size-resolved 180 

dust DREE dataset in this study. The selection of 4 years (2007-2010) for DREE calculations is 181 

based on several considerations. Firstly, the multi-year DREE calculations allow us to investigate 182 

the effect of interannual variations of atmospheric and surface properties to dust DRE. Secondly, 183 

this selection is consistent with Song et al. (2018), making it easier to compare our results with 184 

previous work. Thirdly, considering the computational efficiency, we do not extend the calculation 185 

to more years. 186 

In addition to CALIOP-based DAOD climatology, we will use the MODIS-based DAOD 187 

climatology to investigate the sensitivity of dust DRE to DAOD spatial pattern in section 5.2. The 188 

MODIS-based DAOD climatology achieves global coverage on a 5∘ (longitude) ×	2∘ (latitude) 189 
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spatial resolution for the period 2003-2019 by combining the monthly mean Aqua MODIS over-190 

ocean (Yu et al., 2020) and over-land (Pu and Ginoux, 2018) DAOD. In contrast to CALIOP-based 191 

DAOD climatology which is based on dust non-sphericity to separate dust aerosol from CALIOP 192 

total aerosol observations, MODIS-based DAOD retrieval is mainly based on dust large size to 193 

partition DAOD from MODIS total aerosol observations. The two sensor-specific dust partition 194 

methods result in different DAOD magnitude and spatial pattern retrievals.  195 

Figure 1 shows annual mean DAOD from 2007 to 2010 based on CALIOP and MODIS 196 

observations. CALIOP-based and MODIS-based DAOD climatology differ in terms of both 197 

magnitude and spatial pattern. MODIS-based DAOD is generally larger than CALIOP-based 198 

DAOD. For example, the global (60°𝑆 − 60°𝑁) 4-year mean MODIS-based DAOD is 0.047, while 199 

CALIOP-based DAOD is 0.032. High DAOD are seen from both CALIOP-based and MODIS-200 

based DAOD over the ‘dust belt’ regions, where large-scale dust activities occur persistently 201 

throughout the year. However, the CALIOP-based DAOD is rather low in some other regions that 202 

are known to be dusty in certain seasons, such as South America, Australia, and South Africa. In 203 

other words, the two satellite-based DAOD spatial pattern differs significantly with CALIOP-204 

based DAOD more concentrated over ‘dust belt’ regions. 205 

 206 

Figure 1. Global (60°𝑆 − 60°𝑁) spatial pattern of CALIOP-based and MODIS-based 4-year (2007-2010) mean 207 
DAOD (Song et al., 2021) and their difference. 208 
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2.2 Dust physical and optical models 212 

To study the sensitivity of dust DREE to dust RI and dust shape, we adopt three sets of 213 

dust RI (Figure 2) and two dust shapes and compute a total of 6 sets of DREE based on their 214 

combinations. The three dust RI sets represent less absorptive, mean absorptive and more 215 

absorptive dust aerosols and the two dust shapes include spherical and spheroidal dust shapes (dust 216 

shape distribution is shown in Figure 4 (a) in Song et al. 2018). The mean, 10th and 90th percentile 217 

of calculated RI for 19 dust samples over 8 regions in Di Biagio et al. (2019) are used to represent 218 

mean, less and more absorptive dust in SW. We combine RI of wavelengths from 0.37𝜇𝑚 to 219 

0.95𝜇𝑚 measured in Di Biagio et al. (2019) and RI of other wavelengths up to 3𝜇𝑚 reported in 220 

Balkanski et al. (2007) to get full spectral coverage in SW. The mean, minimum and maximum RI 221 

of wavelengths beyond 3𝜇𝑚 measured in Di Biagio et al. (2017) are used to represent mean, less 222 

and more absorptive dust in LW. Two dust shapes are used to investigate the effect of dust 223 

nonsphericity on dust DRE. One is spherical dust shape, the other one is spheroidal dust shape 224 

with dust aspect ratio distribution described by Figure 4 (a) in Song et al. (2018) which is originally 225 

from Dubovik et al. (2006). Each combination of dust RI and dust shape is considered as a dust 226 

model. As a result, the three dust RI and two dust shapes constitute six dust models in SW and 227 

LW, respectively, as shown in Table 1. 228 

 229 
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 233 

Figure 2. The SW and LW spectral refractive indices (RI) used in this study obtained from Di Biagio et al. (2017,2019) 234 
and Balkanski et al. (2007). The black curves represent the mean RI which indicates the mean absorptive dust. The 235 
grey shading represents the upper and lower limits indicating more absorptive and less absorptive dust, respectively.  236 

Table 1. Dust models used in this study. Three dust RI are used in shortwave (SW) and longwave (LW) to represent 237 
less, mean, and more absorptive dust, respectively. Two dust shape models are used to represent spherical and 238 
spheroidal dust shape. The three dust RI sets and two dust shapes constitute 6 dust models in SW and LW respectively. 239 

 SW RI  
(Balkanski et al. 2007; Di Biagio et al. 2019) 

LW RI  
(Di Biagio et al. 2017) 

 10% Mean 90% Minimum Mean Maxmum 
Sphere MinSWRI-

Sphere 
MeanSWRI-

Sphere 
MaxSWRI-

Sphere 
MinLWRI-

Sphere 
MeanLWRI-

Sphere 
MaxLWRI-

Sphere 
Spheroid MinSWRI-

Spheroid 
MeanSWRI-

Spheroid 
MaxSWRI-

Spheroid 
MinLWRI-
Spheroid 

MeanLWRI-
Spheroid 

MaxLWRI-
Spheroid 

 240 

3 Methodology 241 

3.1 Size-resolved dust scattering properties 242 

Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997) is used to compute both 243 

SW and LW radiative fluxes for both clean (i.e., cloud-free and aerosol-free) and dusty 244 

atmospheres (i.e., free of clouds and non-dust aerosols). RRTM retains reasonable accuracy in 245 
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comparison with line-by-line results for single column calculations (Mlawer and Clough, 1998; 249 

Mlawer et al., 1997). It divides the solar spectrum into 14 continuous bands ranging from 0.2 to 250 

12.2 µm and the thermal infrared (3.08–1000 µm) into 16 bands. We explicitly specify the spectral 251 

DAOD, single scattering albedo (ω), and asymmetry parameter (𝑔) of dust aerosols for every band 252 

in the RRTM radiative transfer simulations. In contrast to radiative transfer scheme in most global 253 

models, which do not account for LW scattering, scattering capability is available through the 254 

discrete-ordinate-method radiative transfer (DISORT) in RRTM_LW (Stamnes et al., 1988). Four 255 

streams are used in DISORT. The Henyey-Greenstein phase function is used and only the first 256 

moment of the phase function (i.e., asymmetry parameter) needs to be specified in the RRTM.  257 

Dust scattering properties (extinction efficiency 𝑄𝑒, 𝜔 and 𝑔 ) depend on several factors 258 

including dust PSD, RI, and dust shape. To account for the impact of dust PSD, we divide dust 259 

diameters into 10 logarithmically spaced size bins. The 10 size bins represent a wide range of dust 260 

geometric diameters (i.e., diameter of a sphere with the same volume) ranging from 0.1𝜇𝑚 to 261 

100𝜇𝑚. The geometric diameter (hereafter diameter or 𝐷) range of each size bin is listed in Figure 262 

3. For each size bin 𝑘, the spectral scattering properties (𝑄𝑒#$, 𝜔#$	and	𝑔#$	) are calculated for each 263 

dust model shown in Table 1 and each spectral band. In the calculations of scattering properties 264 

(𝑄𝑒#$, 𝜔#$	and	𝑔#$	), dust particle number (dN/dD) is assumed to be uniformly distributed within 265 

each size bin. We use the Lorenz–Mie theory code of Wiscombe (1980) to compute the spectral 266 

optical properties of dust particles in the assumption of sphericity. The spectral optical properties 267 

of spheroidal dust particles are derived from the database of  Meng et al. (2010). Figure 3 shows 268 

𝑄𝑒#$, 𝜔#$	and	𝑔#$ for MeanSWRI-MeanLWRI-Spheroid dust model. In SW, finer dust has a larger 269 

𝜔 and smaller 𝑔, implying a more effective SW backscattering of finer dust. As a result, finer dust 270 

is expected to have stronger cooling effect (more negative DREE values) at TOA generally. In 271 
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LW, %&"
#$%&

%&"
'()*& is generally enhanced as dust size increases, which implies that coarser dust has larger 272 

extinction in LW (optically represented by 𝐷𝐴𝑂𝐷'()*)  than finer dust when 𝐷𝐴𝑂𝐷+,-.*  is 273 

constrained by CALIOP retrieval. As a result, larger 𝐷𝐴𝑂𝐷'()* will enhance the LW warming 274 

(more positive LW DREE) at TOA of coarser size bins. On the other hand, the increased 𝜔 𝑎𝑛𝑑	𝑔 275 

of the coarser size bins indicates stronger forward scattering, which reduces the enhancement in 276 

LW warming induced by larger 𝐷𝐴𝑂𝐷'()*.   277 

 278 

Figure 3. Spectral scattering properties (i.e., 𝑄+:	extinction efficiency, 𝜔:	single scattering property, 𝑔:	asymmetry 279 
parameter) of each size bin for the MeanSWRI-MeanLWRI-Spheroid dust model. The scattering properties of each 280 
size bin are represented by the corresponding curve indicated in the legend. Each size bin is defined with respect to 281 
dust diameter with unit of micrometers (𝜇𝑚). 282 
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3.2 DREE dataset  283 

Based on the dust scattering properties shown in Figure 3 and the procedures summarized 284 

in Figure 4, we compute the size-resolved dust DREE for the MeanSWRI-MeanLWRI-Spheroid 285 

dust model in SW and LW. In this section, we focus on demonstrating the method of deriving size-286 

resolved dust DREE for one dust model, but this method is applicable to all six dust models listed 287 

in Table 1.  288 

First, we use RRTM to simulate monthly mean dust DRE from 2007 to 2010 for each 5∘ 289 

(longitude) ×	2∘  (latitude) grid with CALIOP-based 𝐷𝐴𝑂𝐷+,-.*  exceeding 0.01. The 290 

𝐷𝐴𝑂𝐷+,-.*>=0.01 threshold ensures most dusty regions over the globe are covered (see Figure 291 

S1 and Figure S2 in the Supplement) and in the meanwhile balances the computational cost. Dust 292 

DRE are calculated for each size bin using the extinction properties of the corresponding size bin 293 

shown in Figure 3 (denoted as 𝐷𝑅𝐸#,0,1, hereafter 𝑘 indicates size bin index and (𝑖, 𝑗) indicates 294 

longitude-latitude grid index, unless specified otherwise). Note that we do not consider dust RI 295 

spatial variation and dust size vertical variation due to the lack of observation-based dust 296 

minerology and size estimation on global scale. In 𝐷𝑅𝐸#,0,1 calculations, we constrain the monthly 297 

mean dust extinction vertical distributions using the CALIOP-based climatological dataset of Song 298 

et al. (2021). Worth to mention, our target in this section is 𝐷𝑅𝐸𝐸#,0,1 calculations. Considering 299 

dust DRE is approximately linear to DAOD (Satheesh and Ramanathan, 2000), the DAOD used 300 

in dust DRE calculations will not affect dust DREE results significantly, we simply calculate dust 301 

𝐷𝑅𝐸#,0,1  with respect to 𝐷𝐴𝑂𝐷0,1+,-.*  from CALIOP-based DAOD climatology. As a result, 302 

𝐷𝑅𝐸#,0,1 calculated in this section are only intermediate variables used to calculate dust DREE, 303 

they do not represent actual DRE contributed by kth size bin. The atmospheric profiles such as 304 

water vapor (H2O), ozone (O3) and temperature (𝑇23*) vertical profiles of 72 levels are from 3-305 
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hourly MERRA2 assimilated meteorological fields data (Gelaro et al., 2017). We combine the 1-308 

hourly surface albedo for visible beam from MERRA2 radiation diagnostics with the instantaneous 309 

spectral surface albedo from the integrated CALIPSO, Cloud-Sat, CERES, and MODIS merged 310 

product (CCCM) (Kato et al., 2011) to get time-dependent spectral surface albedo. Surface 311 

temperature is obtained from 1-hourly MERRA2 radiation diagnostics data. The atmospheric and 312 

surface properties are all aggregated to monthly mean values at eight UTC times: 0:30, 3:30, 6:30, 313 

9:30, 12:30, 15:30, 18:30, 21:30 to obtain monthly-mean diurnal cycle for radiative transfer 314 

simulations. Considering DRESW strongly depends on solar zenith angle (SZA), we calculate 315 

DRESW for every 1 hour using the corresponding hourly SZA in midmonth day. As a result, every 316 

three SZA share the same atmospheric and surface properties in DRESW calculations due to their 317 

different temporal resolution.  318 

Table 2 List of definitions of variables and their indices. 319 

Variable Definition 
k size bin index  

i, j longitude-latitude grid index 
t 8 UTC times with 3-hour interval (i.e., 0:30, 3:30, 6:30, 9:30, 12:30, 15:30, 18:30, 21:30) 
tt 24 UTC times with 1-hour interval 

daymm The midmonth day of the month 
𝑅(𝑡), 𝐻,𝑂(𝑡), 𝑂-(𝑡), 
𝐶𝑂,(𝑡), 𝑇./0(𝑡)	6666666666 

3-hourly monthly mean surface albedo and vertical profile of water vapor, ozone, carbon 
dioxide and atmospheric temperature 

𝜁1 dust properties such as DAOD, dust extinction vertical profile and scattering properties 
𝐷𝑅𝐸23 4,6,7

89 (𝑡𝑡) 1-hourly monthly mean DRESW (i.e., monthly mean DRESW at each of 24 UTC times) of 
kth size bin and (ith, jth) grid 

𝐷𝑅𝐸-3 4,6,7
:9 (𝑡) 3-hourly monthly mean DRELW (i.e., monthly mean DRELW at each of 8 UTC times) of kth 

size bin and (ith, jth) grid 
𝐷𝑅𝐸4,6,789 , 𝐷𝑅𝐸4,6,7:9  The monthly and diurnally mean dust DRESW and DRELW of kth size bin and in (ith, jth) grid 

𝐷𝑅𝐸𝐸4,6,7 The monthly and diurnally mean dust DREESW and DREELW of kth size bin and (ith, jth) 
grid 

𝐷𝐴𝑂𝐷666666666,7;-,<0 The monthly mean dust optical depth at 532nm of (ith, jth) grid 
 320 

The definitions of variables and indices used to derive size-resolved dust DREE dataset are 321 

summarized in Table 2. Eq. (1) shows the way of deriving 1-hourly monthly mean DRESW.  322 
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 𝐷𝑅𝐸23 4,6,7
89 (𝑡𝑡) = 𝐷𝑅𝐸4,6,789 	(𝑅(𝑡), 𝐻,𝑂(𝑡), 𝑂-(𝑡), 𝐶𝑂,(𝑡), 	𝜁1 , 𝑆𝑍𝐴(𝑑𝑎𝑦00, 𝑡𝑡)), (1) 

where ‘t’ indicates 8 UTC times with 3-hour interval. ‘tt’ indicates 24 UTC times with 1-hour 323 

interval. ‘𝑑𝑎𝑦**’ indicates the midmonth day of the month, and ‘𝑅(𝑡)’ represents ( ) 3-324 

hourly monthly mean surface albedo. We include 3-hourly monthly mean vertical profile of water 325 

vapor, ozone, carbon dioxide (𝐻-𝑂(𝑡), 𝑂,(𝑡), 𝐶𝑂-(𝑡)) to account for gaseous absorption. The 326 

temporal resolution inconsistency of SZA as well as atmospheric and surface properties requires 327 

every three SZA share the same atmospheric and surface properties in the calculations. ‘𝜁4 ’ 328 

represents dust properties such as DAOD, dust extinction vertical profile and scattering properties 329 

which are independent of UTC time in our calculations. Dust extinction vertical profile is 330 

interpolated to the 72 levels in consistency with vertical profiles of water vapor, ozone and 331 

temperature from MERRA2. 332 

Eq. (2) shows the way of deriving 3-hourly monthly mean DRELW.  333 

 𝐷𝑅𝐸-3 4,6,7
:9 (𝑡) = 𝐷𝑅𝐸4,6,7:9 (𝐸, 𝐻,𝑂(𝑡), 𝑂-(𝑡), 𝐶𝑂,(𝑡), 𝑇./0(𝑡),6666666666 𝜁1) (2) 

Surface spectral emissivity (‘E’) is obtained from Huang et al. (2016), which contains 334 

monthly mean spectral surface emissivity with 0.5-degree spatial resolution based on MODIS-335 

retrieved mid-IR surface emissivity and modeled different types of surface spectral emissivity. 336 

𝑇23*(𝑡)	LLLLLLLLLLrepresents 3-hourly monthly mean vertical profile of atmospheric temperature. With the 337 

aid of the 3-hourly monthly mean atmospheric properties, monthly mean DRELW is calculated for 338 

every 3 hours.  339 

 𝐷𝑅𝐸-3 4,6,7
:9 (𝑡) = 𝐷𝑅𝐸4,6,7:9 (𝐸, 𝐻,𝑂(𝑡), 𝑂-(𝑡), 𝐶𝑂,(𝑡), 𝑇./0(𝑡),6666666666 𝜁1)  

Then the 1-hourly monthly mean dust DRESW ( 𝐷𝑅𝐸23 4,6,7
89 (𝑡𝑡)) derived from Eq. (1) is 340 

averaged diurnally (over 24 points) to get the monthly and diurnally mean dust DRESW (𝐷𝑅𝐸𝑘,𝑖,𝑗𝑆𝑊  ) 341 

as indicated by Eq. (3).  342 
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𝐷𝑅𝐸4,6,789 = ∑ 𝐷𝑅𝐸23 4,6,7
89 (𝑡𝑡)//

∑𝑡𝑡
 

(3) 

 349 

Similarly, the 3-hourly monthly mean DRELW ( 𝐷𝑅𝐸-3 4,6,7
:9 (𝑡)) derived from Eq. (2) is 350 

averaged diurnally (over 8 points) to get the monthly and diurnally mean dust DRELW (𝐷𝑅𝐸𝑘,𝑖,𝑗𝐿𝑊  ) as 351 

indicated by Eq. (4).  352 

𝐷𝑅𝐸4,6,7:9 = ∑ 𝐷𝑅𝐸-3 4,6,7
:9 (𝑡)	/

∑𝑡
 

(4) 

The method described by Eq. (1) - Eq. (4) will be referred to as the ‘conventional’ method 353 

of calculating monthly mean dust DRE in Section 4.  354 

Based on the monthly mean size-resolved dust DRESW (𝐷𝑅𝐸𝑘,𝑖,𝑗𝑆𝑊 ) and DRELW (𝐷𝑅𝐸𝑘,𝑖,𝑗𝐿𝑊 ), we 355 

derive the monthly mean size-resolved dust DREE (𝐷𝑅𝐸𝐸#,0,1) using Eq. (5) for SW and LW 356 

respectively. Note that the monthly mean size-resolved dust DREE ( 𝐷𝑅𝐸𝐸#,0,1 ) is calculated by 357 

dividing by monthly mean 𝐷𝐴𝑂𝐷+,-.* since the size-resolved 𝐷𝑅𝐸#,0,1 was initially derived with 358 

respect to monthly mean 𝐷𝐴𝑂𝐷+,-.*.  359 

 
𝐷𝑅𝐸𝐸#,0,156	89	:6 =	

𝐷𝑅𝐸#,0,156	89	:6

𝐷𝐴𝑂𝐷LLLLLLLL0,1+,-.*
 

(5) 

Finally, we average the monthly mean size-resolved dust DREE ( 𝐷𝑅𝐸𝐸#,0,1) over 4 years 360 

to get monthly mean size-resolved dust DREE datasets in addition to the associated interannual 361 

standard deviation (std). The std indicates the DREE uncertainty caused by interannual variation 362 

of monthly mean atmospheric and surface properties as well as dust vertical distribution. Finally, 363 

the dataset developed in this study contains monthly mean size-resolved dust DREE and its 364 

associated interannual std at TOA and surface with dimension of 10 bins, 12 months, 90 latitudes, 365 
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72 longitudes for each of six dust models in SW and LW respectively. Figure S1 and Figure S2 in 368 

the Supplement demonstrate the global distribution of the monthly mean size-resolved DREESW 369 

and DREELW at TOA for June. 370 

It is important to note that dust DREE of each grid cell rarely depends on the DAOD 371 

because dust DRE is approximately linear with DAOD (Satheesh and Ramanathan, 2000). 372 

Therefore, the choice of CALIOP- or MODIS-based DAOD climatology to derive the global 373 

(5∘ × 2∘) size-resolved DREE dataset will not lead to large difference. In other words, the size-374 

resolved DREE dataset is rarely related to the robustness of the DAOD used in the derivation 375 

process. We select CALIOP-based DAOD to derive the size-resolved dust DREE dataset because 376 

that the CALIOP-based dust climatology contains dust vertical distribution, which is especially 377 

important for obtaining LW DREE. Nevertheless, using CALIOP-based dust retrieval to derive 378 

size-resolved dust DREE dataset has several limitations: (1) The size-resolved dust DREE dataset 379 

may miss some regions with tenuous dust layers that below the CALIOP sensitivity. (2) The LW 380 

DREE is related to the quality of dust vertical distribution retrieval. By contrast, dust DRE highly 381 

depends on DAOD, therefore we will use different DAOD climatological datasets retrieved from 382 

different sensors (i.e., CALIOP and MODIS) to investigate global dust DRE in section 5.2. 383 

Furthermore, even though dust DREE of each grid cell is rarely related to DAOD, regional or 384 

global mean dust DREE will depend on the DAOD spatial distribution (i.e., DAOD 2D distribution) 385 

in the region of interest (see details in section 5.2). 386 

Based on the monthly mean size-resolved dust DREE datasets derived above, we further 387 

calculate globally annual mean size-resolved dust DREESW and DREELW at TOA and surface for 388 

the six dust models (Figure 5). As discussed above, the global mean dust DREEs depends on the 389 

DAOD spatial distribution, the global mean dust DREEs shown in Figure 5 is based on CALIOP-390 
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based DAOD spatial distribution from Song et al. (2021). Generally smaller bins cause stronger 393 

cooling in SW and less warming in LW, which is consistent with our discussions in 3.1. This 394 

observationally informed globally annual mean size-resolved dust DREE is also consistent with 395 

the model-simulated results shown in supplementary Figure S3 in Kok et al. (2017) in terms of the 396 

variation trend of DREE with respect to dust size. Moreover, our study explicitly shows the 397 

sensitivity of dust DREE to dust RI and dust shape. For example, Figure 5 shows that DREESW is 398 

strongly sensitive to dust RI as DREESW of different dust RI is widely separated. Depending on 399 

dust RI, DREESW switches from cooling effect (negative value) to warming effect (positive value) 400 

at different size bins. More absorptive dust starts to warm the Earth system in SW at smaller dust 401 

size, and vice versa. In addition, our results suggest that DREESW is generally not sensitive to dust 402 

shape. Specifically, dust shape is not important for DREESW in most size bins, while it is important 403 

in the fourth size bin (𝐷: 0.79𝜇𝑚	~	1.58𝜇𝑚) with DREESW of spheroidal dust obviously higher 404 

(less negative) than spherical dust. In the DREELW, dust shape is almost as important as RI for 405 

several size bins. 406 

 407 

Figure 4. Schematic of the methodology used to derive size-resolved dust DREE dataset. Orange boxes denote dust 408 
models used to calculate dust scattering properties. Red boxes denote inputs for RRTM. Green boxes denote outputs 409 
from RRTM.   410 
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 411 

Figure 5. Globally annual mean size-resolved dust DREE in SW (a) and LW (b) for six dust models (six markers). 412 
Horizontal bars indicate the dust diameter range of each size bin. Note: LW DREE is on a logarithm scale; in contrast 413 
to global model simulations, we consider dust LW scattering in LW DRE Efficiency calculations. 414 

Our size-resolved dust DREE dataset is unique in many aspects: First, our DREE dataset 415 

is derived based on CALIOP-based dust 3D distribution. Size-resolved DREE is derived for all 416 

grids with CALIOP-based DAOD >= 0.01. Second, our size-resolved DREE dataset covers a wide 417 

range of dust diameters, specifically, they include dust DREE for ten dust diameter size bins 418 

ranging from 0.1𝜇𝑚 to 100 𝜇𝑚. This is challenging, if not impossible, to obtain from global 419 

models because these models generally simulate dust particles with diameter only up to 20	𝜇𝑚 and 420 

coarse dust particles in models deposit quickly and could not be sustained to the remote transport 421 

regions (Huneeus et al., 2011; Adebiyi and Kok, 2020) where coarse particles have been observed 422 

by in-situ measurements (Weinzierl et al., 2017). As a result, our size-resolved DREE dataset 423 

achieves a wide spatial coverage for a large range of dust size. This is critical for investigating 424 

impacts of coarse dust and even giant dust particles on dust DRE on both regional and global scales. 425 

Third, considering that the dust vertical distribution is important for quantifying DRELW, we 426 

constrain dust vertical distribution using CALIOP-based dust retrievals in DREELW computation. 427 

Fourth, our size-resolved dust DREE dataset accounts for dust LW scattering in DREELW 428 

calculations since scattering capability is available through the DISORT in RRTM_LW (Stamnes 429 
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et al., 1988). Dufresne et al., (2002) suggests that dust LW scattering enhances dust LW warming 430 

effect at TOA by a factor of up to 50%. However, dust LW scattering is generally not considered 431 

in most global models. Therefore, many previous studies artificially account for dust LW scattering 432 

by increasing the radiative perturbation due to LW absorption by a certain fraction. For example, 433 

Kok et al. (2017) accounts for LW scattering by artificially augmenting DRELW by 23% and Di 434 

Biagio et al. (2020) augmented DRELW by 50%.  435 

On the other hand, our size-resolved dust DREE dataset has several limitations. First, 436 

possible vertical and horizontal variations of dust particle size in each grid box (5∘ ×	2∘) are not 437 

accounted for in our calculation. The entire dust-loading column in each grid box is assumed to 438 

have the same dust size distribution. Second, we do not explicitly account for spatial variation of 439 

dust RI, in other words, dust RI is assumed to be globally uniform. This uncertainty is assessed 440 

through the sensitivity tests of DREE to dust RI using three sets of state-of-the-art dust RI based 441 

on laboratory measurement of 19 dust samples all over the world. Third, dust 3D distribution in 442 

the DREE calculation is constrained by CALIOP observations. The limits on the sensitivity of 443 

CALIOP will affect the 3D distribution of dust in our calculation. Fourth, we account for dust 444 

nonsphericity by using spheroidal shape model. This shape can’t perfectly represent the highly 445 

irregular shape and roughness of real dust. In addition, several studies suggest that dust non-446 

sphericity is underestimated by the spheroidal shape model (Huang et al., 2020). The spheroidal 447 

shape model assumption thus might produce systematic errors. 448 

Overall, the size-resolved dust DREE dataset is useful in many dust-related studies. First, 449 

with our size-resolved dust DREE dataset, dust DRE could be calculated efficiently for any DAOD 450 

magnitude, DAOD spatial pattern and any dust PSD for any regions or the globe (see details in 451 

Section 4.1). Second, our size-resolved DREE dataset is derived for different RI and different dust 452 
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shapes respectively. As a result, we could estimate dust DRE uncertainty coming from DAOD, 454 

PSD, RI, and shape separately to better understand major uncertainty sources in dust DRE 455 

estimations. Third, our size-resolved DREE dataset could be used to evaluate model simulated 456 

DREE for each size bin. 457 

4 DRE calculation methodology and its validation 458 

4.1 DRE calculation based on DREE dataset 459 

With the size-resolved dust DREE dataset derived in section 3.2, DRE of dust with any 460 

PSD and DAOD could be computed very efficiently without performing radiative transfer 461 

simulations as we do in conventional method. This section introduces the methodology of applying 462 

the size-resolved DREE dataset to calculate DRE of dust with any PSD and DAOD.   463 

DRE of full-size range of dust can be expressed as the sum of DRE from each size bin 464 

(𝐷𝑅𝐸#). Dust 𝐷𝑅𝐸# is approximated to be linearly proportional to DAOD of 𝑘3; size bin (𝐷𝐴𝑂𝐷#) 465 

(Satheesh and Ramanathan, 2000). The similar concept of calculating dust DRE has been used in 466 

previous studies e.g., Kok et al. (2017). Eq. (6) shows the process of computing dust DRE using 467 

the size-resolved DREE dataset.  468 

 𝐷𝑅𝐸 = ∑ 𝐷𝑅𝐸## =∑ 𝐷𝑅𝐸𝐸# × 𝐷𝐴𝑂𝐷## =∑ 𝐷𝑅𝐸𝐸# × 𝑓## × 𝐷𝐴𝑂𝐷,	 (6) 

where 𝐷𝑅𝐸 represents dust DRE induced by full size range of dust with optical depth of 𝐷𝐴𝑂𝐷. 469 

𝑓# is the fraction of the DAOD contributed by the 𝑘3; size bin.  470 

Each variable in Eq. (6) can be obtained or derived from datasets developed in this study 471 

and other studies. For example, the size-resolved DREE dataset (𝐷𝑅𝐸𝐸#,0,1) derived in this study 472 

is essential for utilizing this efficient and novel DRE calculation method. DAOD can be obtained 473 

from CALIOP-based or MODIS-based DAOD climatological datasets (Song et al., 2021). 𝑓# can 474 
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be derived from dust extinction efficiency (𝑄𝑒), the geometric cross-sectional area (A) and dust 475 

PSD (	𝑑𝑁/𝑑𝐷) based on Eq. (7).  476 

 
𝑓# ≡

𝐷𝐴𝑂𝐷#
𝐷𝐴𝑂𝐷 = ∫ 𝑄𝑒+,-.*(𝐷)𝐴(𝐷)

𝑑𝑁
𝑑𝐷 𝑑𝐷

<"C

<"D

∫ 𝑄𝑒+,-.*(𝐷)𝐴(𝐷)
𝑑𝑁
𝑑𝐷 𝑑𝐷

<&EF

(

 (7) 

𝑄𝑒 is defined according to 𝑄𝑒 ≡ =G
>

 , where 𝜎& is extinction cross section, the geometric 477 

cross-sectional area of the particle (𝐴) can be expressed as 𝐴 = 𝜋𝑟-. Under the assumption of 478 

spherical dust particle, 𝑟 is the radius. Under the assumption of spheroidal dust particle, Vouk 479 

(1948) shows that the average projected area of a convex body (e.g., spheroidal particle) is 𝐴 =480 

𝜋𝑟- , where	𝑟 is the radius of a surface area-equivalent sphere. The average is taken over all 481 

possible orientations in space, which is consistent with our assumption of randomly oriented dust 482 

particles in the atmosphere. 𝑄𝑒+,-.*(𝐷) for the six dust models are shown in Figure 6 (a), they 483 

all converge to 2 as the dust diameter becomes much larger than the wavelength, which is 484 

consistent with the principle of geometric optics (van de Hulst, 1957). By contrast, 𝑄&++(.*(𝐷) of 485 

non-spherical dust in Kok et al. (2017) has a much larger value than spherical dust for dust 𝐷 ≥486 

1𝜇𝑚 (see their Figure 1(b)). This discrepancy is probably due to the different 𝑄& definitions used 487 

in the two studies. Kok et al. (2017) defined 𝑄& as dust extinction per unit cross section of volume-488 

equivalent sphere. Figure 6 (b) shows that 𝑓# of a specific PSD is not sensitive to dust RI and dust 489 

shape, this is also suggested by the similar 𝑄𝑒+,-.*	v.s. geometric diameter (𝐷) trends of the six 490 

dust models shown in Figure 6 (a). In contrast, 𝑓? (i.e., 𝑓# for the fourth size bin with 𝐷 ranging 491 

from 0.79𝜇𝑚	𝑡𝑜	1.58𝜇𝑚) is more sensitive to dust shape than other size bins, this is in line with 492 

the larger difference in 𝑄𝑒+,-.* with shape shown in Figure 6 (a). 493 
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 494 

Figure 6. (a) Dust extinction efficiency (𝑄𝑒) at 532nm for six dust models. (b) The colorful bars represent 𝑓𝑘 495 
calculated for six dust models based on a specific dust PSD (𝑑𝑉/𝑑𝑙𝑛𝐷) indicated by black curve. Note, 𝑓𝑘 is not 496 
sensitive to different dust models such as dust RI and dust shape.  497 

In summary, the size-resolved dust DREE dataset provides an efficient way to compute 498 

DRE for any dust PSD and any DAOD by using Eq. (6) and Eq. (7). To distinguish from the 499 

conventional method introduced in section 3.2, this method of calculating dust DRE based on size-500 

resolved DREE dataset is referred to as ‘DREE-integration’ method. 501 

4.2 Validation of DRE calculation methodology 502 

In this section, we select the Sahara Desert (14°N-30°N, 15°W-30°E) to validate the 503 

DREE-integration method. We choose MeanSWRI-MeanLWRI-Spheroid dust model and Fennec-504 

Fresh dust PSD (see red curve in Figure 7) measured within 12h of dust uplift in remote Sahara 505 

locations by Fennec field campaign to represent microphysical properties of Saharan dust (Ryder 506 

et al., 2013a, b). Monthly mean DAOD is from CALIOP-based DAOD climatology.  507 
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 508 

Figure 7. Normalized atmospheric dust volume distribution (dV/dlnD) described in Table 5 (Kok et al., 2017; Ryder 509 
et al., 2013a; b; 2018; 2019). 510 

Figure 8 shows the comparison of 4-year (2007-2010) monthly mean dust DRE between 511 

the Conventional and DREE-integration method. In Conventional DRE calculation, dust scattering 512 

properties (𝑄𝑒,𝜔	𝑎𝑛𝑑	𝑔) are calculated based on the Fennec-Fresh PSD and then used to calculate 513 

monthly mean dust DRE from 2007 to 2010 with RRTM as described in Section 3.2 (Eq. 1 – Eq. 514 

4). While the DREE-integration method is based on the monthly mean size-resolved DREE dataset 515 

derived based on 4-year (2007-2010) data as described in Section 4.1 (Eq. 6 – Eq. 7). The excellent 516 

agreement in monthly mean dust DRE between two methods validates the DREE-integration DRE 517 

calculation methodology.  518 

 519 
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 522 

Figure 8. Monthly mean dust DRESW (a) and DRELW (b) comparison between Conventional and DREE-integration 523 
calculation from 2007 to 2010 over Sahara Desert. The DRE Difference line represents the difference between DREE-524 
integration and Conventional calculation. Shaded area along DREE-integration DRE indicates the one standard 525 
deviation caused by the atmospheric and surface variations as well as dust vertical distribution variation within the 526 
four years.  Orange curves indicate CALIOP-based monthly mean DAOD. The variation of dust DRE match well with 527 
DAOD variation. 528 

The shaded-area associated with DREE-integration DRE corresponds to the one standard 529 

deviation of DREE caused by the 4-year (2007-2010) interannual variation of factors except dust 530 

microphysical properties such as monthly mean atmospheric and surface properties as well as dust 531 

vertical distributions (hereafter those factors is referred to as non-dust-factors for short). The 532 

narrow shaded-area along DREE-integration DRE suggests non-dust-factors cause very small 533 

uncertainty in dust DRE estimations. However, the small effects of 4-year interannual variation of 534 

non-dust-factors may not necessarily be representative due to the limited number of years 535 

considered. Section 2.1 discusses in detail for the reason of choosing 2007-2010 to derive size-536 

resolved DREE dataset. To check the representative of 4-year interannual variation for non-dust-537 

factors, we compare the 4-year (2007-2010) and 10-year (2007-2017) interannual standard 538 

deviation (std) of monthly mean non-dust-factors (e.g., surface albedo, surface temperature and 539 

dust vertical distribution) in Figure 9. To evaluate the interannual variation of dust vertical 540 

distribution, we define dust mean extinction height (𝑍@) referring to Koffi et al. (2012)  as 𝑍@ =541 

∑ BGFH,I×DI
*
IJ#

∑ BGFH,I*
IJ#

, where 𝛽&E3,0 is the dust extinction coefficient at 532nm at level i, and 𝑍0 is the altitude 542 
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of level i. Nevertheless the 10-year std is slightly larger than 4-year std, they are both close to zero 543 

and on the same order of magnitude. As such, even though our monthly mean size-resolved DREE 544 

dataset is derived from 4-year (2007-2010) data, they could be used to represent DREE and 545 

calculate DRE for other years considering the small sensitivity of monthly mean dust DRE to 546 

interannual variation of non-dust-factors. 547 

 548 

Figure 9. Probability density function (PDF) of 4-year and 10-year interannual standard deviation (std) in monthly 549 
mean (a) surface albedo, (b) surface temperature, and (c) dust mean extinction height. The PSD analyses include 550 
interannual std in 12 months and all 5∘ (longitude) ×	2∘ (latitude) grid cells over the world and their mean values are 551 
indicated as ‘std_mean’ on each figure. 552 

5 Regional and global dust DRE based on size-resolved DREE dataset 553 

After the validation of DREE-integration method in Section 4, we use the DREE-integration 554 

method to calculate regional and global dust DRE in this section. There are three main objectives 555 

in this section: (1) the most important objective throughout this section is to demonstrate the 556 

usefulness of the size-resolved DREE dataset for calculating regional and global dust DRE for any 557 

given dust PSD; (2) the second objective is to validate the size-resolved DREE dataset by 558 

comparing with regional dust DREE reported by field studies based on satellite and ground-based 559 

observations (section 5.1); (3) the third objective to assess the sensitivity of dust DRE to DAOD 560 

spatial pattern (section 5.2) as well as dust microphysical properties such as dust PSD, RI and 561 

shape (section 5.3). 562 
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5.1 Comparison with observation-based regional dust DREE 563 

Table 3 shows the comparison of our calculations of clear-sky regional mean SW and LW 564 

DREE with those reported by field studies based on satellite and ground-based observations. We 565 

first calculated regional mean dust DRE using the DREE-integration method, then divided by the 566 

corresponding regional mean DAOD to get regional mean DREE, and then compared this with 567 

observation-based results from previous studies. Comparing DREE allows eliminating differences 568 

due to the variation in regional dust loading, optically represented by DAOD.  569 

Knowledge of regional dust PSD is necessary for estimating dust DRE regionally. There are 570 

several in-situ measurements of dust PSD over Sahara and tropical eastern Atlantic. The state-of-571 

the art airborne observations of Saharan dust from the Fennec field campaign (Fennec-Fresh) and 572 

transported Saharan dust over tropical eastern Atlantic within Saharan Air Layer (SAL) from both 573 

AER-D and Fennec fieldwork campaigns are adopted (Ryder et al., 2013 a, b, 2018, 2019) (see 574 

Figure 7). Both campaigns include giant dust particles, measuring up to 100𝜇𝑚 diameter for AER-575 

D and up to 300𝜇𝑚 for Fennec. The wide coverage of dust diameter in our size-resolved DREE 576 

dataset allows for dust DRE calculations for giant dust up to 100𝜇𝑚 over both dust source and 577 

transported regions where giant particles are observed in those campaigns. This is an advantage of 578 

our size-resolved DREE dataset compared to modeled dust DREE, because climate models 579 

generally cut off dust diameter at 20 𝜇𝑚 and could not sustain coarse dust to remote transport 580 

regions due to several missing mechanisms in models (Van Der Does et al., 2018; Drakaki et al., 581 

2022; Meng et al., 2022). 582 

The Fennec-Fresh dust PSD includes measurements within 12h of dust uplift in remote 583 

Sahara locations. It is used to calculate dust DRE for Saharan dust in this section. In reality, dust 584 

over the wide Sahara Desert region (15N~30N, 10W~30E) is not all lifted within 12h, so using 585 
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Fennec-Fresh to represent dust PSD over the wide Sahara Desert could bias dust size coarse, which 586 

could partially explain the warm bias in our DREESW estimation over the Sahara Desert compared 587 

to the satellite-based result. Over the tropical Atlantic, both AER-D and Fennec-SAL measured 588 

PSD are used to assess the sensitivity of dust DREE to dust PSD. In addition, dust DRE is 589 

calculated for three dust RIs to evaluate the sensitivity of dust DREE to dust RI as shown in Table 590 

3. Generally, our dust DREE estimations achieve good agreement with observation-based dust 591 

DREE. However, there is a significant uncertainty caused by dust RI in DREE, especially for SW. 592 

In addition, DRE comparisons between AER-D and Fennec-SAL over the Tropical Atlantic 593 

suggests that in-situ measured dust PSD uncertainty leads to a large uncertainty in regional DREE 594 

in both SW and LW. 595 

Based on the regional DREE study with the state-of-the art RI and PSD, we found DREESW 596 

uncertainty could come from both dust RI and dust PSD, while DRELW uncertainty is mainly from 597 

dust PSD. 598 

Table 3. Comparison of our DREE estimations for different PSD and RI with Clear-Sky regional SW and LW dust 599 
DREE reported by field studies based on satellite and ground-based observations. Specifically, we calculated regional 600 
dust DREE for different RI (Min, Mean, Max) and different PSD (AER-D and Fennec-SAL for Tropical Atlantic) and 601 
then compare with observation-based results from previous studies. Note, spheroidal dust shape is assumed in our 602 
DREE-integration DRE calculations. 603 

Shortwave Spectral Range 
Region Season Level Satellite-

Based 
This study 

DREESW DREESW PSD 
Min RI Mean RI Max RI 

Sahara Desert (a) 

(15N~30N, 10W~30E) 
JJA TOA 0 2.8 16.0 26.6 Fennec-Fresh 

Ilorin(f), Nigeria 
(8.5N, 4.7E) 

Annual TOA -15 ~ -35 -28.3 -24.1 -19.9 AER-D 
-23.4 -17.7 -12.9 Fennec-SAL 

Surface -49 ~ -75 -43.1 -51.7 -59.3 AER-D 
-46.0 -57.1 -66.0 Fennec-SAL 

Cape Verde(f) 

(16.7N, 22.9W) 
Annual TOA -36 ~ -48 -42.3 -38.0 -33.7 AER-D 

-36.6 -30.8 -26.0 Fennec-SAL 
Surface -68 ~ -90 -59.6 -68.7 -77.7 AER-D 

-61.5 -74.6 -85.3 Fennec-SAL 
Tropical Atlantic (b) 

(10N~30N, 20W-45W) 
JJA TOA -28 -44.6 -39.9 -35.3 AER-D 

-38.4 -32.1 -27.0 Fennec-SAL 
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Surface -82.1 -61.1 -71.9 -81.7 AER-D 
-64.4 -78.5 -90.0 Fennec-SAL 

Tropical Atlantic (c) 

(15N~25N,15W~45W) 
JJA TOA -35 -41.2 -36.3 -31.5 AER-D 

-35.1 -28.5 -23.1 Fennec-SAL 
Surface -65 -57.9 -68.6 -78.1 AER-D 

-61.2 -75.1 -86.3 Fennec-SAL 
Longwave Spectral Range 

Region Season Level Satellite-
Based 

This study  

   DREELW DREELW PSD 
Min RI Mean RI Max RI 

Sahara Desert (a) 

(15N~30N, 10W~30E) 
JJA TOA 11~26 13.4 11.8 11.4 Fennec-Fresh 

North Africa (d-e) 

(15N~35N, 18W~40E) 
JJA TOA 15~22 14.4 12.8 12.4 Fennec-Fresh 

Tropical Atlantic (b) 

(10N~30N, 20W~45W) 
JJA TOA 10.5 8.2 8.1 8.5 AER-D 

13.1 11.8 11.6 Fennec-SAL 
Cape Verde(g) 

(16.7N, 22.9W) 
Sept Surface 16 8.0 11.8 15.1 AER-D 

13.0 17.0 19.8 Fennec-SAL 
(a) Patadia et al. (2009). (b) Song et al. (2018). (c) Li et al. (2004). (d) Zhang and Christopher (2003). (e) 

Brindley and Russell (2009). (f) Zhou et al. (2005). (g) Hansell et al. (2010) 
 604 

5.2 Global dust clear-sky DRE based on different DAOD climatology  605 

The DAOD is the most important factor in determining dust DRE. As illustrated in Song et 606 

al. (2021), the DAOD retrieved from different satellite sensors have a large difference in terms of 607 

magnitude and spatial distribution. To evaluate how the current DAOD uncertainty affects dust 608 

DRE estimations, the global dust DRE computed based on monthly mean DAOD climatology 609 

retrieved from CALIOP observations and MODIS observations are compared in this section. To 610 

separate the effect of DAOD from other factors, we use the same dust PSD, RI and shape in the 611 

two sets of dust DRE calculations in this section. Specifically, we use the Fennec-Fresh PSD for 612 

three major dust source regions (i.e., Sahara (14-30°N, 15°W-30°E), Middle East (10-35°N, 40-613 

85°E) and eastern Asia (30-50°N, 75-130°E), they are indicated by three black boxes in Figure 10) 614 

and use AER-D PSD for other regions (hereafter Campaign-PSD, see Table 5). The MeanSWRI-615 

MeanLWRI-Spheroid dust model described in Table 1 is used to represent dust RI and shape. 616 
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The two DAOD climatological datasets result in distinct dust DRE spatial pattern as shown 617 

in Figure 10, which is consistent with the DAOD spatial patterns shown in Figure 1 suggesting 618 

CALIOP DAOD is more concentrated over ‘dust belt’ regions than MODIS DAOD. The global 619 

mean dust DRESW, DRELW and DRENET based on the two DAOD climatology are significantly 620 

different (Table 4), which is mainly caused by two factors. The first is the difference in DAOD 621 

magnitude. The CALIOP-based global mean DAOD is 0.032, while MODIS-based is 0.047. The 622 

other factor is the difference in DAOD spatial pattern. After we scale dust DRE to the same global 623 

mean DAOD (𝐷𝐴𝑂𝐷LLLLLLLL = 0.03) to eliminate the effect of DAOD magnitude difference (values in 624 

parentheses in Table 4), the DRESW difference reduced from 0.55 W m–2 (-0.69 vs. -1.24 W m–2) 625 

to 0.15 W m–2 (-0.64 vs. -0.79 W m–2). Similarly, differences in DRELW and DRENET also reduce 626 

significantly. It indicates that the global mean DAOD magnitude difference is more important than 627 

the subtle difference in spatial pattern. Nevertheless, after scaling to the same global mean DAOD 628 

there is still more than 10% difference between the two dust DRESW, with CALIOP-based being 629 

the more positive one. This is probably because CALIOP-based DAOD is more concentrated over 630 

dust sources where dust aerosols induce less negative or even positive DRESW (For example the 631 

positive DRESW over the Sahara Desert and Arabia shown in Figure 10), which result in a less 632 

negative global mean DRESW than MODIS. 633 
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 634 

Figure 10. Annual mean dust DRE global distribution based on CALIOP-based and MODIS-based DAOD 635 
climatology. MeanSWRI-MeanLWRI-Spheroid dust model are used to represent dust RI and shape in the calculation. 636 
Campaign-PSD is used to represent dust PSD, specifically, Fennec-Fresh PSD is used to represent dust PSD over the 637 
three major dust source regions indicated by three black boxes. AER-D PSD is used to represent dust PSD over other 638 
regions. 639 

Table 4. Globally annual mean DAOD, DRESW, DRELW and DRENET based on CALIOP DAOD and MODIS DAOD 640 
climatology. Note, values in the parentheses are for the two DAOD scaled to the same value of 0.03. 641 

 𝐷𝐴𝑂𝐷66666666 𝐷𝑅𝐸896666666666 [Wm-2] 𝐷𝑅𝐸:9666666666 [Wm-2] 𝐷𝑅𝐸LMN66666666666 [Wm-2] 
CALIOP 0.032	(0.03) −0.69	(−0.64)	 0.25	(0.23) −0.44	(−0.41) 
MODIS 0.047 (0.03) −1.24	(−0.79) 0.34	(0.22) −0.90	(−0.57) 

 642 

5.3 Global dust clear-sky DRE based on different dust PSD 643 

In the section 5.2, we showed the dust DRE based on the Campaign-PSD. As aforementioned, 644 

one of the main advantages of our size-resolved DREE is that it can be combined with different 645 

dust PSDs to estimate the dust DRE. To demonstrate this, we calculate another set of dust DRE 646 

based on the Kok2017-PSD. Table 5 describes the two dust PSDs used for global dust DRE 647 

calculations and their references. Kok2017-PSD is a globally averaged dust PSD and used to 648 

represent dust PSD for each dusty grid cell. It is constrained with observations and includes coarse 649 
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dust particles up to 20𝜇𝑚. Although our primary goal here is to demonstrate the capability of our 650 

size-resolved DREE, the comparison between the two DRE can also help us understand the 651 

impacts of dust PSD uncertainty on the dust DRE estimation. Moreover, we also investigate the 652 

sensitivity of DRE to dust RI and dust shape explicitly in this section. The same DAOD 653 

climatology (CALIOP-based DAOD climatology) is used for dust DRE calculations to eliminate 654 

the impact of dust loading difference. 655 

Several recent observation-constrained dust PSDs (e.g., Di Biagio et al., 2020, Adebiyi et 656 

al., 2020) suggest that dust size is coarser than Kok2017-PSD. As such, Kok2017-PSD is used to 657 

represent the lower limit of the observation-based global dust PSD to investigate the sensitivity of 658 

dust DRE to dust PSD. The Campaign-PSD is purely based on aircraft in-situ measurements and 659 

the aircraft was extensively equipped to measure giant particles with diameter larger than 20𝜇𝑚. 660 

We use the dust PSD measured over Sahara (from the Fennec field campaign) to represent dust 661 

PSD over three major dust source regions and use dust PSD measured in the Saharan Air Layer 662 

over the tropical eastern Atlantic (from AER-D field campaign) to represent dust PSD over dust 663 

transport regions. Of course, representing the spatial and temporal variation of global dust PSD 664 

with only two PSDs from the field campaigns is only a crude approximation due to the lack of 665 

PSD measurements. Dust aerosol over the three wide dust source regions may not be all uplifted 666 

within 12 hours as in the Fennec-Fresh measurements, in addition, dust size after long-range 667 

transport could be a bit finer than dust PSD measured over tropical eastern Atlantic (Weinzierl et 668 

al., 2017). Thus, Campaign-PSD likely represents the upper limit of the observation-based global 669 

dust PSD for the investigation of sensitivity to dust PSD. By contrast, the climate models miss 670 

most of coarse dust (D>5	𝜇𝑚) in the atmosphere (Adebiyi and Kok, 2020), as a result, the purely 671 

modeled dust PSD without observational constraints will lead to a substantially different dust DRE. 672 

Deleted: spatially673 
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Therefore, the sensitivity test to dust PSD conducted in this study can only represent the 675 

uncertainty induced by the current understanding of observation-based dust PSD. 676 

Table 5. The two observation-based dust PSDs used in DRE calculations (see Figure 7). 677 

PSD Description Reference 
Kok2017-PSD A globally averaged atmospheric PSD derived from observation 

constrained globally averaged emitted PSD and model simulated 
globally averaged dust lifetime. This globally averaged PSD is used 
to represent dust PSD for each dusty grid cell. 
Dust diameter is cutoff at 20𝜇𝑚 (Figure 2a in Kok et al.2017).  

Kok et al. (2017) 

Campaign-PSD Fennec-Fresh PSD is used for three major dust source regions (i.e., 
Sahara (14-30°N, 15°W-30°E), Middle East (10-35°N, 40-85°E) and 
eastern Asia (30-50°N, 75-130°E)), which are indicated by the three 
black boxes in Figure 10. 
AER-D PSD is used for other regions. 

Ryder et al. (2013a, 
b, 2018, 2019)  

 678 

We calculated dust DRE of each grid cell (𝐷𝑅𝐸0,1) using DREE-integration method based 679 

on the dust PSD described in Table 5. Global mean dust DRE was then calculated by averaging 680 

dust 𝐷𝑅𝐸0,1 weighted by its surface area. Figure 11 shows the global mean DRESW, DRELW and 681 

DRENET at TOA, surface, and in the atmosphere calculated based on the two sets of PSDs. 682 

Obviously, Kok2017-PSD leads to stronger cooling effect in SW and weaker warming effect in 683 

LW at TOA compared to Campaign-PSD, which is consistent with the fact that Kok2017-PSD is 684 

finer than the Campaign-PSD. In addition, we explicitly include the effects of dust RI and dust 685 

shape on DRE in Figure 11. Comparison of uncertainty induced by dust PSD, RI and shape 686 

suggests that dust RI uncertainty leads to the largest uncertainty in dust DRE, particularly RI 687 

uncertainty induces more than 40% uncertainty in DRESW estimations in the atmosphere (Figure 688 

12). Dust PSD is also important for quantifying dust DRE, we found that the observation-based 689 

dust PSD uncertainty induces around 15%~20% uncertainty in dust DRE at TOA and in the 690 

atmosphere. Dust non-sphericity causes a negligible uncertainty in global mean dust DRE, in line 691 

with previous studies e.g., Raisanen et al. (2013) and Colarco et al. (2014). 692 

Deleted: Kok et al. (2017)693 
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 694 

 695 

Figure 11. Globally annual mean clear-sky DRESW, DRELW and DRENET at TOA, in the atmosphere and surface 696 
calculated based on the two PSDs described in Table 5. The two rows represent dust DRE based on two PSDs. Error 697 
bars indicate uncertainty induced by dust RI uncertainty. Different types of bars indicate dust DRE based on different 698 
dust shapes. This figure explicitly separates the impacts of different dust microphysical properties on dust DRE. Two 699 
values in parenthesis on each plot represent spherical (left) and spheroidal (right) dust DRE corresponding to mean 700 
RI.  701 

 702 

Figure 12. Comparison of uncertainty induced by dust RI, PSD and shape in DRESW, DRELW and DRENET at TOA (a), 703 
in the atmosphere (b) and surface (c). The horizontal lines in each plot represent global mean DRESW (blue line in the 704 
left column), DRELW (red line in the middle column) and DRENET (green line in the right column) averaged over two 705 
dust PSDs (i.e., Kok2017-PSD and Campaign-PSD) based on MeanRI-Spheroid dust model. The three error bars in 706 
each column represent DRE uncertainty induced by dust RI (left), dust PSD (middle) and dust shape (right). 707 
Accordingly, the percentage values on the bottom represent the percentage uncertainty induced by dust RI, PSD and 708 
shape, respectively. 709 

It is tempting to compare our global mean dust DRE with results reported in Kok et al. (2017). 710 

But it must be noted that the global mean dust DRE shown in Figure 11 is for clear sky only, while 711 

the global mean dust DRE reported in Kok et al. (2017) is for all sky. The all-sky dust DRE can 712 

be separated into contributions from clear-sky and cloudy-sky portions (Myhre et al., 2020): 713 
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 𝐷𝑅𝐸.OOPQ4R = (1 − 𝐶𝐹) × 𝐷𝑅𝐸SO+.TPQ4R + 𝐶𝐹	 × 𝐷𝑅𝐸SOUV1RPQ4R, (8) 

where CF is cloud fraction, 𝐷𝑅𝐸FG&29HI#J is dust DRE simulated under the case of removing all 714 

clouds, 𝐷𝑅𝐸FG8K4JHI#J is the dust DRE assuming whole grid is covered by clouds. To compare 715 

our global mean dust DRESW based on Kok2017-PSD with the results reported in Kok et al. (2017), 716 

we convert our clear-sky 𝐷𝑅𝐸FG&29HI#J56  to 𝐷𝑅𝐸2GGHI#J56  by using MODIS L3 monthly mean cloud 717 

fraction. Specifically, we multiply 𝐷𝑅𝐸FG&29HI#J56  by (1-CF) for each grid cell and then calculate 718 

global annual mean values. In this process, we neglect the cloudy-sky dust DRESW portion because 719 

the annual mean cloudy-sky dust DRESW is estimated to be very small, around −0.04 (Zhang et 720 

al., 2016). Finally, our estimated global mean 𝐷𝑅𝐸2GGHI#J56  corresponding to DAOD=0.03 is around 721 

−0.34	Wm-2. Although it is comparable to the −0.48	Wm-2 from Kok et al. 2017, the following 722 

differences between the two studies must be kept in mind when interpreting the results. First, the 723 

rough conversion from global mean 𝐷𝑅𝐸FG&29HI#J56 to global mean 𝐷𝑅𝐸2GGHI#J56  is subject to the 724 

approximation of global mean 𝐷𝑅𝐸FG8K4JHI#J	~0 and the MODIS L3 cloud fraction could be 725 

different from modeled cloud fraction used in Kok et al. (2017). Second, the two studies use 726 

different dust RI. For example, the imaginary part of RI at 550nm in this study ranges from 0.00061 727 

to 0.003, while that in Kok et al. (2017) ranges from 0.0014 as used in GEOS-Chem and GISS 728 

model based on Sinyuk et al., (2003) to 0.003 as used in WRF-Chem based on Zhao et al., (2010). 729 

Third, in this study Kok2017-PSD is used to represent dust PSD in each dusty grid and applied to 730 

our size-resolved dust DREE dataset to calculate global dust DRE. In contrast, the model-731 

simulated dust DREE in Kok et al. (2017) has reduced cooling from SW scattering and enhanced 732 

warming from SW absorption effects because the short lifetime of coarse dust in models 733 

concentrates these particles over bright deserts. Fourth, the two studies use different dust shape 734 

models,	Kok et al. (2017) accounts for more nonspherical shape model (i.e., tri-axial ellipsoids). 735 



 38 

Here we do not compare our global mean 𝐷𝑅𝐸FG&29HI#J:6   with 𝐷𝑅𝐸2GGHI#J:6  suggested in Kok et al. 736 

(2017) because that the lack of knowledge in 𝐷𝑅𝐸FG8K4JHI#J:6  prevent us to convert 𝐷𝑅𝐸FG&29HI#J:6  737 

to 𝐷𝑅𝐸2GGHI#J:6 . Moreover, the two studies use different dust vertical profile, which is critical for 738 

DRELW estimations. For instance, dust vertical profile in Kok et al. (2017) is purely based on model 739 

simulations, while this study constrains dust vertical profile with CALIOP observations. 740 

Considering all these factors, it is hard to tell if the comparison is fair.  741 

6 Summary and Conclusion  742 

This study developed a clear-sky size-resolved dust DREE dataset in both SW and LW 743 

based on CALIOP-based dust DAOD climatology and dust vertical distributions. The dataset 744 

contains global monthly mean dust DREE at TOA and surface with 5∘ (longitude) ×	2∘ (latitude) 745 

spatial resolution for 10 size bins ranging from 0.1𝜇𝑚 to 100𝜇𝑚 diameter, for three state-of-the 746 

art dust RI representing more, mean and less absorptive dust, and for two dust shapes representing 747 

spherical and spheroidal dust, respectively.  748 

The size-resolved DREE dataset allows us to calculate dust DRE of any DAOD 749 

climatology and dust PSD efficiently by using the DREE-integration method presented in section 750 

4.1 without involving radiative transfer simulations. The DREE-integration method is proven to 751 

be in great agreement with conventional DRE calculations. With the DREE-integration 752 

methodology, we firstly calculated clear-sky regional mean DREESW and DREELW over the Sahara 753 

Desert and tropical Atlantic. The comparison of our calculations with those reported by field 754 

studies based on satellite and ground-based observations shows reasonable agreement. Secondly, 755 

we estimated global mean dust DRE with two satellite-based DAOD climatological datasets and 756 

two different global dust PSDs. We found that the global mean DAOD magnitude difference 757 

between the two DAOD climatological datasets is more important than the subtle difference in 758 
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spatial pattern. Nevertheless, after scaling to the same global mean DAOD there is still more than 759 

10% difference between the two dust DRESW, with CALIOP-based being the more positive one. 760 

Moreover, our results explicitly show the uncertainty induced by each dust microphysical property 761 

(i.e., dust PSD, RI and shape) separately. When DAOD is constrained: (a) Dust non-sphericity 762 

induces negligible effect on dust DRE estimations; (b) The current understanding of observation-763 

based dust PSD induces relatively large uncertainty (15%~20%) in dust DRE at TOA and in the 764 

atmosphere (c) Dust RI turns out to be the most important factor in determining dust DRE, 765 

particularly in SW. This implies that better understanding of dust mineral composition and RI will 766 

significantly improve our understanding in dust DRE in the future. 767 

Data availability:  768 

The size-resolved dust DREE dataset and the codes to calculate dust DRE for any given 769 

dust PSD and DAOD are available at 770 

‘https://drive.google.com/drive/folders/15_e28Y9JiSWiJnIM_2flEmt2u6i9phEY?usp=sharing’ 771 

CALIOP- and MODIS-based DAOD climatological datasets are available at 772 

‘https://drive.google.com/drive/folders/1aQVupe7govPwR6qmsqUbR4fJQsp1DBCX?usp=shari773 

ng’ 774 
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1. Demonstration of monthly-mean size-resolved DREE dataset 

 
Figure S1. Global distribution of four-year (2007-2010) June monthly mean DREESW of MeanSWRI-Spheroid dust model at TOA 

obtained from the size-resolved DREE dataset. Grey area indicates area without DREE derivations (e.g., DAOD retrieval is not 

available or 𝐷𝐴𝑂𝐷	!"#$% <=0.01 over the area).  
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Figure S2. Global distribution of four-year (2007-2010) June monthly-mean DREELW of MeanLWRI-Spheroid dust model at TOA 

obtained from the size-resolved DREE dataset. Grey area indicates area without DREE derivations (e.g., DAOD retrieval is not 

available or 𝐷𝐴𝑂𝐷	!"#$% <=0.01 over the area). 
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