

1 **Different physicochemical behaviors of nitrate and ammonium**
2 **during transport: a case study on Mt. Hua, China**

3
4 Can Wu¹, Cong Cao^{2,a}, Jianjun Li², Shaojun Lv¹, Jin Li^{2,b}, Xiaodi Liu¹, Si Zhang¹,
5 Shijie Liu¹, Fan Zhang¹, Jingjing Meng⁴, Gehui Wang^{1,3*}

6
7
8 ¹ Key Lab of Geographic Information Science of the Ministry of Education, School of
9 Geographic Sciences, East China Normal University, Shanghai 200062, China

10
11 ² State Key Laboratory of Loess and Quaternary Geology, Institute of Earth
12 Environment, Chinese Academy of Sciences, Xi'an 710061, China

13 ³ Institute of Eco-Chongming, Chenjia Zhen, Chongming, Shanghai 202162, China

14 ⁴ School of Environment and Planning, Liaocheng University, Liaocheng 252000,
15 China

16
17 ^a Now at The State University of New York at Stony Brook.

18 ^b Now at Institute for Environmental and Climate Research, Jinan University.

19
20
21
22
23
24 *Corresponding author. Gehui Wang (ghwang@geo.ecnu.edu.cn)

36 **Abstract:** To understand the chemical evolution of aerosols in the transport process,
37 the chemistry of PM_{2.5} and nitrogen isotope compositions on the mountainside of Mt.
38 Hua (~1120 m a.s.l.) in inland China during the 2016 summertime were investigated
39 and compared with parallel observations collected at surface sampling site (~400 m
40 a.s.l.). PM_{2.5} exhibited a high level at the mountain foot site (MF) (aver. 76.0±44.1
41 µg/m³) and could be transported aloft by anabatic valley winds, leading to the gradual
42 accumulation of daytime PM_{2.5} with a noon peak at the mountainside sampling site
43 (MS). As the predominant ion species, sulfate exhibited nearly identical mass
44 concentrations in both sites, but its PM_{2.5} mass fraction was moderately enhanced by
45 ~4% at the MS site. The ammonium variations were similar to the sulfate variations,
46 the chemical forms of both of which mainly existed as ammonium bisulfate (NH₄HSO₄)
47 and ammonium sulfate ((NH₄)₂SO₄) at the MF and MS sites, respectively. Unlike
48 sulfate and ammonium, nitrate mainly existed as ammonium nitrate (NH₄NO₃) in fine
49 particles and exhibited decreasing mass concentration and proportion trends with
50 increasing elevation. This finding was ascribed to NH₄NO₃ volatilization, in which
51 gaseous HNO₃ from semi-volatile NH₄NO₃ subsequently reacted with dust particles to
52 form nonvolatile salts, resulting in significant nitrate shifts from fine particles into
53 coarse particles. Such scavenging of fine-particle nitrate led to an enrichment in the
54 daytime ¹⁵N of nitrate at the MS site compared with to the MF site. In contrast to nitrate,
55 at the MS site, the ¹⁵N in ammonium depleted during the daytime. Considering the lack
56 of any significant change in ammonia (NH₃) sources during the vertical transport
57 process, this ¹⁵N depletion in ammonium was mainly the result of unidirectional

58 reactions, indicating that additional NH₃ would partition into particulate phases and
59 further neutralize HSO₄⁻ to form SO₄²⁻. This process would reduce the aerosol acidity,
60 with a higher pH (3.4±2.2) at MS site and lower ones (2.9±2.0) at MF site. Our work
61 provides more insight into physicochemical behaviors of semi-volatile nitrate and
62 ammonium, which will facilitate the improvement in model for a better simulation of
63 aerosol composition and properties.

64 **Keywords:** Ammonium; Nitrate; Stable nitrogen isotope; Haze; Volatilization

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80 **1 Introduction**

81 Atmospheric particulate matter measuring equal to or less than 2.5 μm in
82 aerodynamic diameter (PM_{2.5}) is a worldwide air pollution burden that can deteriorate
83 the urban air quality and induce adverse human health effects that contribute to
84 lowering life expectancies (Shiraiwa et al., 2017; Lelieveld et al., 2015; Fuzzi et al.,
85 2015; Wang et al., 2016). Recent studies have disclosed that the mechanisms underlying
86 these effects are profoundly dependent on particle properties, e.g., the size,
87 concentration, mixing state and chemical compositions of particles (Li et al., 2016; Liu
88 et al., 2021; Guo et al., 2014). Thus, since 2013, China has issued strict emission
89 directives to mitigate haze pollution. Consequently, the annual PM_{2.5} concentration in
90 China fell by approximately one-third from 2013–2017 (Zheng et al., 2018).
91 Notwithstanding, the PM_{2.5} levels in most cities in China still exceed the least-stringent
92 target of the World Health Organization (WHO 2021; 35 $\mu\text{g}/\text{m}^3$), especially in rural
93 areas and small cities (Lv et al., 2022; Li et al., 2023).

94 Near-surface PM can also be transported to the upper air, and this process critically
95 impacts radiative forcing, cloud precipitation and the regional climate by
96 scattering/absorbing solar radiation and by influencing aerosol-cloud interactions (Van
97 Donkelaar et al., 2016; Andreae and Ramanathan, 2013; Fan et al., 2018). Past
98 assessments of these effects have been characterized by large uncertainties (Carslaw et
99 al., 2013); for example, Bond et al. (2013) found that black carbon climate forcing
100 varied from +0.17 W/m^2 to +2.1 W/m^2 with a 90% uncertainty. Such massive
101 uncertainties are mainly due to our limited knowledge regarding the spatiotemporal

102 distribution, abundance and compositions of airborne PM (Seinfeld and Johnh, 2016;
103 Raes et al., 2000). In addition, aerosols may undergo aging during the vertical transport
104 process, causing increasingly complex compositions and changes in aerosol properties.

105 Despite these factors, to date, vertical observations remain comparatively scarce
106 compared to surface measurements. Therefore, to obtain an improved understanding of
107 the fundamental chemical and dynamical processes governing haze development, more
108 field observations of upper-layer aerosols are necessary, as these measurements could
109 provide updated kinetic and mechanistic parameters that could serve to improve model
110 simulations.

111 Currently, various monitoring approaches have been developed and applied to
112 measure vertical aerosols, e.g., satellite remote sensing and in situ lidar methods; these
113 approaches can be used to obtain the pollution concentration profiles (Van Donkelaar
114 et al., 2016; Reid et al., 2017). To accurately measure chemical compositions, aircraft
115 and unmanned aerial vehicles (UAVs) equipped with a variety of instruments can be
116 utilized in short-term sampling campaigns (Lambey and Prasad, 2021; Zhang et al.,
117 2017), but these tools are unsuitable for long-term continued observations due to their
118 high operational costs. In cases of near-surface vertical urban atmosphere observations,
119 techniques involving tethered balloons, meteorological towers and skyscrapers are
120 usually adopted (Zhou et al., 2020; Xu et al., 2018; Fan et al., 2021). However, the
121 vertical application range of these methods are limited to only ~500 m, thus hardly
122 meeting the requirements of research conducted above the boundary layer. Therefore,
123 high-elevation mountain sites have long been regarded as suitable places for long-term

124 research on the upper-layer aerosol (including its compositions, chemical-physical
125 properties and formation processes, etc.) (Dzepina et al., 2015; Zhou et al., 2021; Wang
126 et al., 2013), which are conducive to better understanding of the haze episodes in the
127 lower troposphere. Although the fixed observation position is the key drawback of this
128 monitoring approach, it has still been widely selected for use in various vertical
129 observation campaigns, e.g., in past studies conducted in Salt Lake Valley (Baasandorj
130 et al., 2017), in Terni Valley (Ferrero et al., 2012) and on Mt. Tai (Meng et al., 2018;
131 Wang et al., 2011).

132 Mt. Hua adjoins the Guanzhong Basin of inland China, where haze pollution has
133 been a persistent environmental problem (Wu et al., 2020b; Wu et al., 2021; Wang et
134 al., 2016). In our previous studies conducted at the mountaintop of Mt. Hua, we found
135 that air quality was significantly affected by surface pollution, and distinctive
136 differences were found in the aerosol compositions and size distributions at the
137 mountaintop compared to those measured at lower elevations ground level (Wang et al.,
138 2013; Li et al., 2013). With the implementation of strict emission controls, the
139 atmospheric environment in this region has changed dramatically from the SO₂/sulfate-
140 dominated previous environment to the current NO_x/nitrate-dominated environment
141 (Baasandorj et al., 2017; Wu et al., 2020c). However, the fundamental chemical and
142 dynamical processes driving this PM_{2.5}-loading explosion are unclear under the current
143 atmospheric state with increasing O₃ and NH₃ levels. To better rationalize these
144 processes, in this work, 4-hr integrated aerosol samples were synchronously collected
145 on the mountainside and at the lower-elevation land surface, and the chemical

146 components and stable nitrogen isotope compositions of nitrate and ammonium were
147 analyzed in the collected PM_{2.5} samples. We compared the chemical compositions and
148 diurnal cycles between the two sampling sites and then discussed the changes in the
149 chemical forms of secondary inorganic ions during their vertical transport from lower
150 to higher elevations. Our study revealed that nitrate and ammonium exhibited distinct
151 physicochemical behaviors during the aerosol-aging process.

152 **2 Experiment**

153 **2.1 Sample collection**

154 In this campaign, the PM_{2.5} samples were synchronously collected at two locations
155 in the Mt. Hua area during the period from 27 August to 17 September 2016. One
156 sampling site was located on a building belonging to the Huashan Meteorological
157 Bureau (34°32'N, 110°5'E, 400 m a.s.l.) at the foot of Mt. Hua. Surrounded by several
158 traffic arteries and dense residential and commercial buildings, as shown in Figure 1b,
159 this site is an ideal urban station for studying the impacts of anthropogenic activities on
160 local air quality and is referred to hereafter as the “MF” site. The mountainous sampling
161 site (34°29'N, 110°3'E, 1120 m a.s.l.) was located approximately 8 km from the city
162 site horizontally (Figure 1c) at an elevation of 720 m above the average Huashan town
163 level of ~400 m (a.s.l.). This site was situated on a mountainside that experiences little
164 anthropogenic activity due to its steep terrain and is abbreviated hereafter as the “MS”
165 site. Furthermore, this location adjoins one of the larger valleys of Mt. Hua; therefore,
166 the measurements taken at this location were strongly affected by the lower-elevation
167 air pollutants transported upwards by the valley winds. At both measurement sites, the

168 PM_{2.5} aerosol samples with a 4-hr interval in were collected onto prebaked (at 450°C
169 for 6 hrs) quartz filters using high-volume (1.13-m³/min) air samplers (Tisch
170 Environmental, Inc., USA). All air samplers were installed on the roofs of buildings,
171 approximately 15 m above the local ground surface. Furthermore, size-resolved aerosol
172 sampling was synchronously conducted at two sites during summertime (10-22 August,
173 2020); and these samples with nine size bins (cutoff points were 0.43, 0.65, 1.1, 2.1,
174 3.3, 4.7, 5.8 and 9.0 μm , respectively) were collected using an Anderson sampler at an
175 airflow rate of 28.3 L/min for ~72 h. After sampling, the filter samples were stored in a
176 freezer (at -18°C) prior to analysis.

177 The hourly PM_{2.5}, NO_x and O₃ mass concentrations were detected at the
178 mountainside sampling site using an E-BAM, a chemiluminescence analyzer (Thermo,
179 Model 42i, USA) and a UV photometric analyzer (Thermo, Model 49i, USA),
180 respectively. At the MF site, only PM_{2.5} was monitored, using another E-BAM, while
181 the data of the other species were downloaded from the Weinan Ecological
182 Environment Bureau (<http://sthjj.weinan.gov.cn/>). Meteorological data characterizing
183 both sampling sites throughout the whole campaign were obtained from the Shaanxi
184 Meteorological Bureau website (<http://sn.cma.gov.cn/>).

185 **2.2 Chemical analysis**

186 Four punches (1.5-cm diameter) of each aerosol sample were extracted into 10-mL
187 Milli-Q pure water (18.2 MΩ) under sonication for 30 min. Subsequently, the extracts
188 were filtered with 0.45- μm syringe filters and detected for water-soluble ions (Na⁺,
189 NH₄⁺, K⁺, Mg²⁺, Ca²⁺, SO₄²⁻, NO₂⁻, NO₃⁻ and Cl⁻) by using ion chromatography; the

190 detection limit for these nine ions was < 0.01 $\mu\text{g}/\text{mL}$. A DRI-model 2001 thermal–
191 optical carbon analyzer was used herein following the IMPROVE-A protocol to analyze
192 the organic carbon (OC) and elemental carbon (EC) in each $\text{PM}_{2.5}$ filter sample (in
193 0.526 cm^2 punches). For more details regarding the utilized methods, readers can refer
194 to our previous studies (Wu et al., 2020b).

195 To quantify the stable nitrogen isotope compositions of nitrate ($\delta^{15}\text{N-NO}_3^-$) and
196 ammonium ($\delta^{15}\text{N-NH}_4^+$) in $\text{PM}_{2.5}$ samples, the filter samples were pretreated as
197 described for the water-soluble ion analysis. The ammonium in the extracts
198 (approximately half of the resulting solution) was oxidized by hypobromite (BrO^-) to
199 nitrite (NO_2^-), which was subsequently reduced by hydroxylamine (NH_2OH) in a
200 strongly acidic environment. The above product (N_2O) was then analyzed by a
201 commercially available purge and cryogenic trap system coupled to an isotope ratio
202 mass spectrometer (PT-IRMS). A bacterial method (*Pseudomonas aureofaciens*, a
203 denitrifying bacterium without N_2O reductase activity) was used herein to convert the
204 sample NO_3^- into N_2O , which was ultimately quantified through PT-IRMS. As revealed
205 in previous studies (Fang et al., 2011), the presence of NO_2^- in aerosols may interfere
206 with the denitrifier method when measuring $\delta^{15}\text{N}$. Nonetheless, NO_2^- generally
207 composed tiny portions in most of our samples and, on average, contributed <1.0% to
208 $\text{NO}_3^- + \text{NO}_2^-$. Thus, we believed that the proportion of NO_2^- in the sample was too small
209 to affect the resulting $\delta^{15}\text{N}$ measurements based on the discussions reported by Wankel
210 et al. (2010). More details regarding the analytical artifact and quality control protocols
211 can be found elsewhere (Wu et al., 2021; Liu et al., 2014).

212 **2.3 Concentration-weighted trajectory (CWT) analysis**

213 CWT is a powerful tool used herein to reveal the potential spatial sources responsible
214 for the high PM_{2.5} loadings measured on Mt. Hua; this method has been used previously
215 in similar studies (Wu et al., 2020c; Wu et al., 2020a). In this study, the CWT analysis
216 was conducted using the Igor-based tool coupled with hourly PM_{2.5} concentrations and
217 12-hr air mass backward trajectories that were simulated by using the Hybrid-Single
218 Particle Lagrangian Integrated Trajectory (HYSPPLIT) model (Petit et al., 2017).

219 **2.4 Theoretical calculations of the partial pressures of NH₃ and HNO₃ and the
220 dissociation constant of NH₄NO₃**

221 To obtain the product of the partial pressures of NH₃ and HNO₃, the NH₄NO₃
222 deliquescence relative humidity (DRH) was first calculated using equation (1) (Eq. 1).
223 The average DRH of NH₄NO₃ between the two sites was 65.0±2.9%, slightly lower
224 than the atmospheric RH (66.0±19.3%). As the works by Wexler and Seinfeld (1991)
225 and Tang and Munkelwitz (1993) revealed, aerosols are multicomponent mixtures, and
226 which the aerosol DRH is always lower than the DRH of the individual salts in the
227 particles. Thus, the actual DRH of the aerosols observed in this study would be lower
228 than the calculated DRH of NH₄NO₃. Based on these analyses, the particles would be
229 deliquescent most of the time, but for simplification, we always assumed that NH₄NO₃
230 was in an aqueous state, corresponding to the following dissociation reaction (R1):

$$\ln(\text{DRH}) = \frac{723.7}{T} + 1.6954 \quad (\text{Eq. 1})$$

231 According to the approach illustrated in the referenced work (Seinfeld and Johnh,

232 2016), the equilibrium constant of the dissociation reaction can be described as the
233 equation (2).

$$K_{AN} = \frac{\gamma_{NH_4NO_3}^2 m_{NH_4^+} m_{NO_3^-}}{p_{HNO_3} p_{NH_3}} \quad (Eq. 2)$$

$$K_{AN} = 4 \times 10^{17} \exp \left\{ 64.7 \left(\frac{298}{T} - 1 \right) + 11.51 \left[1 + \ln \left(\frac{298}{T} \right) - \frac{298}{T} \right] \right\} \quad (Eq. 3)$$

$$\ln(K_p) = 118.7 - \frac{24084}{T} - 6.025 \ln(T) \quad (Eq. 4)$$

234 where K_{AN} ($\text{mol}^2/(\text{kg}^2 \text{ atm}^2)$) is the equilibrium constant of R1 (this value is
235 temperature-dependent and can be calculated by Eq. 3), $\gamma_{NH_4NO_3}$ is the binary activity
236 coefficient for NH_4NO_3 ($\gamma_{NH_4NO_3} = \gamma_{NH_4} \gamma_{NO_3}$), and $m_{NH_4^+}$ and $m_{NO_3^-}$ are the molalities of
237 NH_4^+ and NO_3^- , respectively. To calculate $\gamma_{NH_4NO_3}$ and $m_{NH_4^+} m_{NO_3^-}$, the activity
238 coefficients of the corresponding ions and the aerosol water content were assessed using
239 the E-AIM (IV) model (<http://www.aim.env.uea.ac.uk/aim/model4/model4a.php>).

240 Combining equations (2) and (3), we obtained the product of the partial pressures of
241 NH_3 and HNO_3 ($P_{HNO_3} P_{NH_3}$), obtaining an average of $\sim 15.2 \pm 26.0 \text{ ppb}^2$ at the MF site.

242 This value was within the range of values (1.0~37.7 ppb^2) measured by the IGAC in
243 the summer of 2017 in Xi'an, a metropolitan city located in the Guanzhong Basin of
244 inland China that has suffered from serious haze pollution (Wu et al., 2020a). Thus, we

245 believe that $P_{HNO_3} P_{NH_3}$ variations can be assessed using the above method to a certain
246 extent. For simplification, the dissociation constant of dry NH_4NO_3 particle (K_p , ppb^2)

247 was thus applied in this study, which can be calculated as a function of temperature
248 using Eq. 4, as was revealed by Mozurkewich (1993). Despite without considering the
249 aerosol properties (e.g, acidity, mixing state) that may induce the shift of NH_4NO_3
250 equilibrium states, this assessment method was also applied in the similar work

251 conducted by Lindaas et al. (2021).

252 **3 Results and discussion**

253 **3.1 Overview of PM_{2.5} at both sites**

254 **3.1.1 Meteorological conditions and temporal variations in PM_{2.5} concentrations**

255 The temporal variations in the 4-hr PM_{2.5} mass concentrations, water-soluble ions
256 and meteorological factors measured at the two sampling sites are illustrated in Figure
257 2, and the comparisons of the above variables are summarized in Table 1. The average
258 temperature (T) and relative humidity (RH) at the MF site were 23.2±4.2 °C and
259 68.9±18.2% (Table 1), respectively, and these values were characterized by marked
260 diurnal variations, as shown in Figure 2a. However, relatively cold and moist weather
261 frequently occurred at the MS site, which exhibited less pronounced diurnal T and RH
262 variations, with variations approximately 8 °C and 6% lower than the mean values
263 derived at the MF site, respectively. Windy weather (wind speed: 3.2±2.0 m/s) also
264 prevailed at this sampling site with gusts above 10.0 m/s; this condition is conducive
265 to the dissipation of pollutants.

266 Overall, the PM_{2.5} concentrations measured at the MF site varied from 22.8 µg/m³ to
267 245.6 µg/m³, with a mean value of 76.0±44.1 µg/m³, approximately corresponding to
268 Grade II (75 µg/m³) of the National Ambient Air Quality Standard in China. Even so,
269 the PM_{2.5} levels at Huashan town (i.e., at the MF site) were still higher than those
270 measured in many typical megacities in the summertime, e.g., Xi'an (37 µg/m³ in
271 2017) (Wu et al., 2020b) and Beijing (46.3 µg/m³ in 2016) (Lv et al., 2019).
272 Noticeably, stagnant meteorological conditions with increasing RH (> 77%) and

273 relatively low wind speeds (< 2.0 m/s) occurred during the relatively late stage of
274 observation, leading to a buildup of high PM_{2.5} loadings (78.7 $\mu\text{g}/\text{m}^3$ to 245.6 $\mu\text{g}/\text{m}^3$).
275 Such typical haze events last approximately 4 days (12 September to 16 September,
276 2016), indicating that aerosol pollution is still severe in rural towns despite the notable
277 air quality improvements recorded in most Chinese urban areas. A similar temporal
278 PM_{2.5} pattern was seen at the MS site, where the average PM_{2.5} concentration
279 (47.0 \pm 38.0 $\mu\text{g}/\text{m}^3$) was only 0.62-fold that at the MF site and was within the range of
280 that measured at the summit of Mt. Tai (37.9 $\mu\text{g}/\text{m}^3$ in 2016) (Yi et al., 2021) and on
281 Mt. Lushan (55.9 $\mu\text{g}/\text{m}^3$ in 2011) (Li et al., 2015) in summertime. As shown in Figure
282 2d, a multiday episode (mean PM_{2.5}: 106.3 $\mu\text{g}/\text{m}^3$) also appeared at the MS site during
283 the period from 12 September to 15 September, corresponding to the days on which
284 high surface pollution was recorded. This was indicative of the potential impacts of
285 surface pollution on air quality in mountainous areas.

286 **3.1.2 Diurnal variation in PM_{2.5}**

287 As shown in Figure 2c and 2d, regular diurnal PM_{2.5} variations were seen throughout
288 the whole campaign, especially at the MS site. To reveal the differences in the daily
289 changes in PM_{2.5} between the two sampling sites, the mean diurnal cycles of hourly
290 PM_{2.5} and the boundary layer height (BLH) are depicted in Figure 3. At the MF site, the
291 PM_{2.5} concentration was moderately enhanced during the nighttime, with a daily
292 maximum (88.2 \pm 53.0 $\mu\text{g}/\text{m}^3$) observed at 6:00 local standard time (LST). After sunrise,
293 PM_{2.5} exhibited a decreasing trend until \sim 15:00 LST, corresponding to thermally driven
294 boundary-layer growth. Conversely, the aerosol concentrations at the MS site

immediately increased as the boundary layer uplifted in the early morning and peaked at 14:00 LST, when the MS site was located completely within the interior of the boundary layer. Proverbially, anabatic valley winds prevail in mountainous regions during the daytime. Thus, the aerosol-rich air at MF site may be transported aloft by the prevailing valley breeze, leading to significantly enhanced PM_{2.5} levels at the MS site in short time periods. This finding was further verified by the similar diurnal NO₂ pattern identified at the MS site, as illustrated in Figure S1. In the forenoon period, continuous enhancement in the NO₂ level was observed at the MS site, with a daily maximum of $14.4 \pm 53.0 \text{ } \mu\text{g}/\text{m}^3$ (at 11:00 LST); this maximum was ~7-fold the early-morning NO₂ concentration. However, O₃ exhibited indistinctive variations during this period, and this was indicative of less NO₂ being generated from photochemical reactions. As mentioned above, there are no obvious anthropogenic emission sources around the MS site; therefore, our observations indicate the remarkable transport of pollutants from the lower ground surface to higher elevations during the daytime.

Moreover, the PM_{2.5} concentrations at the MS site exhibited less nighttime variation, with a modest abatement (Figure 3b). The nocturnal BLH usually remained below the elevation of the MS site; thus, the surface PM_{2.5} may have contributed less to the aerosol levels at the MS site at night. To identify the potential spatial sources of nocturnal PM_{2.5} at the MS site, a high-elevation CWT analysis was conducted. As illustrated in Figure 4, the CWT values in the daylight hours were mostly concentrated over the sampling site, consistent with our above discussions. However, relatively high nighttime CWT loadings were distributed on Mt. Hua and in its surrounding regions, indicating that

317 regional transport may be a major source of PM_{2.5} at the MS site at night. Thus, the
318 constituents and variations in nocturnal PM_{2.5} at the MS site may be mainly the results
319 of regional features. For verifying the feasibility of vertical transport of air parcel, the
320 WRF-Chem model was applied here to simulate wind field and the divergence that
321 represents the expansion-rate of the air mass in unit time. From Figure 5(a), the
322 southerly winds prevailed at mountain foot area during the whole campaign, which
323 would blow the pollutants into the valley. And these pollutants at low-elevation can be
324 transported to the upper layer by the updrafts as indicated by the positive values of
325 vertical divergence at MF area that decreased with enhanced elevation (Figure 5(b)).
326 Besides that, we also analyzed the organic compounds in PM_{2.5} samples, e.g.,
327 levoglucosan, BkF and IP+BghiP, which are major tracers for the emissions from
328 biomass burning, coal combustion and vehicle exhausts, respectively (Wang et al., 2009;
329 Wu et al., 2020b; Wang et al., 2007). From Figure S2, the indistinctive divergences of
330 diagnostic ratios and proportion of these organic tracers were found among both
331 sampling sites, suggesting an insignificant change of the corresponding emission
332 sources during the transport.

333 **3.2 Characterization of water-soluble ions in PM_{2.5}**

334 **3.2.1 Comparisons of water-soluble ions between the two sites**

335 Figure 6 shows the fractional contributions of the chemical compositions to the
336 PM_{2.5} at both sampling sites. As summarized in Table 1, the water-soluble ion level
337 (WSI, 24.0±15.0 $\mu\text{g}/\text{m}^3$) at MF site was comparable to that of organic matter (OM,
338 OM=1.6×OC) (Wang et al., 2016), with a fractional contribution of ~31% to PM_{2.5}

339 (Figure 6). At the MS site, the WSI exhibited lower values ($19.5\pm16.0\text{ }\mu\text{g}/\text{m}^3$), yet the
340 proportion was moderately enhanced by ~6%. Notably, this elevated contribution of
341 WSIs was mostly attributed to sulfate and ammonium. Similar patterns in which the
342 secondary inorganic ions (sulfate, nitrate and ammonium, (SNA)) mass fraction
343 increased with altitude within the mixing height have also been observed in Terni
344 Valley (central Italy) (Ferrero et al., 2012) and Salt Lake Valley (US) (Baasandorj et
345 al., 2017). Among the SNA components, sulfate was the predominant species,
346 exhibiting slight mass concentration differences between the two sampling sites
347 ($10.1\pm6.4\text{ }\mu\text{g}/\text{m}^3$ versus $9.0\pm7.1\text{ }\mu\text{g}/\text{m}^3$). However, an ~4% enhancement in the mass
348 fraction of sulfate was measured at the MS site. Ammonium also exhibited a similar
349 feature, accounting for ~5%-7.5% of the $\text{PM}_{2.5}$. These sulfate and ammonium mass
350 concentration homogeneities across the two sites were indicative of the further
351 formation of these two ions during transport. Unlike sulfate and ammonium, nitrate
352 and its proportions showed opposite trends, decreasing with elevation; this was
353 consistent with most of the measured components. Above variation features of SNA
354 among two sites were found at most of moments in the campaign, except for 12-13
355 September with a higher SNA concentration at MS site (Figure 2e and 2f). On these
356 two days MS site remained outside the boundary layers (a.s.l., ~550 m), suggesting
357 less effect of the surface pollutants on the aerosol upper layers. While, the precursor
358 masses (~ $12.3\text{ }\mu\text{g}/\text{m}^3$ for SO_2 and $8.4\text{ }\mu\text{g}/\text{m}^3$ for NO_2) were insufficient to form so
359 much SNA at MS site. Thus, the higher SNA aloft on above two days may be mostly
360 driven by regional or long-range transport. This can be verified by the CWT analysis,

361 of which high loadings were mainly distributed in the west and southwest areas of Mt.
362 Hua (Figure S3a), and the cities on the air mass transport pathways (e.g., Xi'an and
363 Weinan) also suffered from moderate haze pollution on these two days (Figure S3b).
364 On account of the different sources of PM_{2.5} between these two days and the
365 remaining periods, the samples during 12-13 September were excluded in the
366 followed discussion. Whereas, the residual SNA data still exhibited the similar
367 variations as mentioned above, and the divergence in nitrate mass concentration and
368 fractional contribution to PM_{2.5} among two sites even became more pronounced
369 (Figure S4). Moreover, distinct nitrate size distributions were also observed between
370 the different sites in the summertime of 2020 (Figure S5). From the Figure S5, we can
371 note that the nitrate at low-elevation was enriched in the fine mode with a minor peak
372 in the coarse fraction. However, the high-elevation nitrate exhibited a bimodal pattern
373 with two equivalent peaks in the fine and coarse fractions and was well correlated
374 with coarse mode calcium but poorly correlated with ammonium ($R^2=0.51$, $p<0.05$).
375 To our knowledge, ammonium nitrate, a major form of fine-mode particulate nitrate,
376 can be easily volatilized and converted into gas-phase NH₃ and HNO₃ (Pakkanen,
377 1996; Harrison and Pio, 1983). Thus, the gaseous HNO₃ volatilized from fine PM
378 may react with coarse-modal cations (e.g., Ca²⁺, Mg²⁺ and Na⁺) to form nonvolatile
379 salts, leading to that significant nitrate shifts from fine particles to large particles. A
380 similar phenomenon was also found in our previous study conducted at the summit of
381 Mt. Hua (Wang et al., 2013). Nonvolatile sulfate was predominantly found in the fine
382 fraction at both sampling sites, which may support this concept. More evidence for

383 this hypothesis is presented below in section 3.3.

384 The diurnal cycles of the 4-hr sulfate, nitrate and ammonium are illustrated in
385 Figure S6. As shown in Figure S6, the total SNA concentration at the MF site
386 exhibited a morning peak from 8:00-12:00 LST; this variation was quite different
387 from that of PM_{2.5}. Such a difference between the total SNA and PM_{2.5} at the MF site
388 could partially be attributed to the lower sampling resolution and enhanced formation
389 of SNA in the morning. The diurnal total SNA pattern identified at the MS site
390 coincided with the PM_{2.5} pattern, exhibiting a daily maximum reaching $\sim 21.2 \pm 19.9$
391 $\mu\text{g}/\text{m}^3$ (from 12:00-16:00 LST), a 1.2-fold increase compared to that measured at the
392 MF site. Among the SNA components, morning peaks of nitrate and ammonium (from
393 8:00-12:00 LST) were also observed at the MF site. These nitrate and ammonium at
394 MF site can contribute to that at the MS site through vertical transport, leading to a
395 significant enhancement in nitrate and ammonium concentrations aloft with the
396 afternoon peaks during 12:00-16:00 LST. Even so, the maximum nitrate concentration
397 at the MS site ($6.5 \pm 7.4 \mu\text{g}/\text{m}^3$) was still lower than that measured at the MF site
398 ($8.9 \pm 6.8 \mu\text{g}/\text{m}^3$) due to the NH₄NO₃ volatilization under the transport process, while
399 ammonium exhibited the opposite trend. This finding was consistent with the above
400 discussion. Unlike nitrate and ammonium, similar diurnal variations in sulfate were
401 observed between the two sampling sites, with daily maxima observed from 12:00-
402 16:00 at both sites. The major sulfate formation pathway during the daytime in
403 summer is the photooxidation of SO₂ with an OH radical, and the formation rate
404 facilitated by this process is much lower than that of the nitrate formation process

405 (Seinfeld and Johnh, 2016; Rodhe et al., 1981). Thus, sulfate formation may occur
406 continuously during vertical transport, leading to smaller difference in the diurnal
407 cycle of sulfate between the two sites.

408 **3.2.2 Chemical forms of SNA at both sites**

409 As shown in Figure 6, the water-soluble ions considered herein mainly included
410 sulfate, nitrate and ammonium, which usually exist in the form of ammonium salts
411 (NH_4HSO_4 , $(\text{NH}_4)_2\text{SO}_4$, NH_4NO_3 , and so on). In the $\text{H}_2\text{SO}_4\text{-HNO}_3\text{-NH}_3$
412 thermodynamic system, H_2SO_4 and HNO_3 are neutralized by NH_3 under ammonia-
413 rich conditions and mainly exist as $(\text{NH}_4)_2\text{SO}_4$ and NH_4NO_3 in aerosols. Conversely,
414 H_2SO_4 is converted to HSO_4^- in environments with relatively low NH_3 availabilities.
415 Thus, NH_4HSO_4 and NH_4NO_3 may be the dominant aerosol components under such
416 environmental conditions (Rodhe et al., 1981; Seinfeld and Johnh, 2016). To reveal
417 the major SNA forms at the different sampling sites considered herein, the theoretical
418 ammonium concentration was calculated according to thermodynamic equilibrium
419 with the atmospheric sulfate and nitrate levels. The theoretical ammonium levels were
420 calculated as follows:

$$\text{NH}_4^+_{\text{theory}} = \left(\frac{[\text{SO}_4^{2-}]}{48} + \frac{[\text{NO}_3^-]}{62} \right) \times 18 \quad (\text{Eq. 5})$$

$$\text{NH}_4^+_{\text{theory}} = \left(\frac{[\text{SO}_4^{2-}]}{96} + \frac{[\text{NO}_3^-]}{62} \right) \times 18 \quad (\text{Eq. 6})$$

421 where $[\text{SO}_4^{2-}]$ and $[\text{NO}_3^-]$ represent atmospheric concentrations ($\mu\text{g}/\text{m}^3$). When
422 $(\text{NH}_4)_2\text{SO}_4$ and NH_4NO_3 are the dominant species, the $\text{NH}_4^+_{\text{theory}}$ can be calculated
423 using equation (5). In contrast, equation (6) suggests that NH_4HSO_4 and NH_4NO_3 are
424 abundantly present in the analyzed aerosols. Figure 7 compares the measured NH_4^+

425 concentrations with the theoretical NH_4^+ concentrations derived by the two equations
426 above. As illustrated in Figure 7(a), the slope of the observational NH_4^+ values against
427 the theoretical NH_4^+ values calculated using equation (6) was much closer to unit at the
428 MF site than at the MS site, meaning that NH_4HSO_4 and NH_4NO_3 were the major
429 chemical forms of SNA at the MF site. However, the opposite pattern was revealed at
430 the MS site; thus, the upper aerosols were characterized by abundant $(\text{NH}_4)_2\text{SO}_4$ and
431 NH_4NO_3 . We also found that the diurnal variations of the SNA chemical forms in $\text{PM}_{2.5}$,
432 which we mainly concerned in this study, were insignificant at both sampling sites.
433 Based on observational data collected during the 2020 summertime, the NH_3 level at
434 MF site (36.0 ± 68.0 ppb) was ~ 9 -fold that at MS site (4.1 ± 2.5 ppb). Under such
435 abundant NH_3 environment, the S(VI) was in the major form of NH_4HSO_4 but
436 $(\text{NH}_4)_2\text{SO}_4$ in relatively low NH_3 environment, which was somewhat unexpected. As
437 can be inferred from earlier studies (Seinfeld and Johnh, 2016; Shi et al., 1999), the
438 NH_3 Henry's law coefficients generally increase in value as the temperature decreases.
439 Therefore, the lower temperatures measured at the MS site would create a more
440 favorable environment for ammonia, thus shifting its partitioning toward the particulate
441 phase. The HSO_4^- transported from the MF site would thus be further neutralized to
442 SO_4^{2-} by this additional ammonium during transport, leading to the significant
443 difference observed in the chemical forms of SNA between the two sites. Moreover, as
444 the chemical component change from NH_4HSO_4 to $(\text{NH}_4)_2\text{SO}_4$, the aerosol acidity
445 moderately decreased, showing a higher bulk $\text{PM}_{2.5}$ pH (3.4 ± 2.2) at relatively clean
446 upper layer and a lower value (2.9 ± 2.0) at heavily polluted grounds (Table 1). However,

447 the previous studies were generally recognized that the aerosol would become more
448 acidic when the air parcels were transported from the polluted to cleaner/remote regions
449 (Liu et al., 1996; Nault et al., 2021). As shown in Table 1, the change in aerosol liquid
450 water content (ALWC) has an indistinctive difference among both sampling sites (*t*-test,
451 $p>0.05$). Thus, we think that such a reduced aerosol acidity with increasing elevation
452 in our study was mainly due to the change in chemical component, which was caused
453 by the different physicochemical behaviors of the semi-volatile species nitrate and
454 ammonium during transport. More discussions are included in the following section.

455 **3.3 Physicochemical behaviors of nitrate and ammonium during transport**

456 According to the above discussion, a conceptual model illustrating the
457 physicochemical behaviors of nitrate and ammonium during vertical transport was
458 proposed to explain the chemical composition differences between the two sites. As
459 shown in Figure 8, surface air parcels containing abundant NH_4HSO_4 and NH_4NO_3
460 particles can be transported to the upper atmosphere by the prevailing valley winds,
461 and during this process, the volatile NH_4NO_3 is easily converted to gaseous NH_3 and
462 HNO_3 . Subsequently, heterogeneous reactions of the gaseous HNO_3 with fugitive dust
463 occur, thus forming nonvolatile salts and resulting in the accumulation of nitrate on
464 the coarse-mode particles. However, as the temperature decreased, the NH_3 that
465 volatilized from the fine particles or was derived from the surface can re-enter the
466 particulate phase through the gas–particle partition. Therefore, $(\text{NH}_4)_2\text{SO}_4$ would be
467 formed in the aerosol phase and would gradually replace NH_4HSO_4 .

468 To investigate the likelihood of NH_4NO_3 volatilization during the transport process,

469 the dissociation constant of NH_4NO_3 (K_p) and the partial pressures of gas-phase NH_3
470 and HNO_3 were calculated in this study. More details regarding the calculation steps
471 of the above factors can be found in section 2.4. Based on the thermodynamic
472 principles presented by Stelson and Seinfeld (1982), when the product of the partial
473 pressures of NH_3 and HNO_3 ($P_{\text{HNO}_3} \times P_{\text{NH}_3}$) is greater than K_p , the equilibrium of the
474 system shifts toward the aerosol phase, thus increasing NH_4NO_3 formation. In
475 contrast, a relatively low $P_{\text{HNO}_3} \times P_{\text{NH}_3}/K_p$ value (<1) suggests that NH_4NO_3
476 dissociation is induced and that NH_4NO_3 is transferred to the gas phase. Figure 9
477 depicts the ratio of the product of the partial pressures of NH_3 and HNO_3 with
478 different ambient temperatures. As shown in Figure 9, approximately 85% of the
479 samples collected at both sampling sites were located within the region with
480 $P_{\text{HNO}_3} \times P_{\text{NH}_3}/K_p$ less than 1, demonstrating a common NH_4NO_3 dissociation
481 phenomenon during the observed period. For the samples with $P_{\text{HNO}_3} \times P_{\text{NH}_3}/K_p$ ratios
482 <1, the mean value of the MS-site ratios was approximately half that of the MF-site
483 ratios, indicating that NH_4NO_3 dissociation may be more likely at higher elevations
484 than that at lower elevations. This finding was inconsistent with the aircraft
485 observations of the wildfire smoke plumes collected by Lindaas et al. (2021), who
486 revealed that $P_{\text{HNO}_3} \times P_{\text{NH}_3}/K_p$ exhibited an increasing trend within 1-3 km (a.s.l.). As
487 we know, the abundant NH_3 and NO_x can be emitted by the wildfire, which would be
488 transported aloft and lead to a higher NH_3 and HNO_3 mixing ratio compared to that at
489 lower elevation. This may drive a higher $P_{\text{HNO}_3} \times P_{\text{NH}_3}/K_p$ ratio at the upper layers of
490 aircraft observations in the western U.S. (Lindaas et al., 2021).

Moreover, the nitrogen isotope compositions of nitrate and ammonium in PM_{2.5} that can retain invaluable information regarding physicochemical processes (Wiedenhaus et al., 2021; Elliott et al., 2019), were thus measured to further verify the conceptual model. As previously mentioned, unlike daytime pollutants, nocturnal pollutants exhibited different sources between the two sampling sites. Thus, their nitrogen isotope compositions were more complicated and less comparable. However, for simplicity, only the daytime samples were analyzed herein based on the hypothesis that the sources of the high-elevation pollutants were the same as those of the pollutants collected at the MF site. As shown in Figure 10, a discrepancy in the $\delta^{15}\text{N}$ value of nitrate ($\delta^{15}\text{N-NO}_3^-$) featuring more ¹⁵N-enriched NO_3^- was observed at the MS site, with a *p* value less than 0.05. This finding can be ascribed to the evaporation of a portion of the particulate NH_4NO_3 due to a dissociation shift in equilibrium; in this shift, the lighter ¹⁴N was preferentially incorporated into the atmosphere, leading to ¹⁵N enrichment in the remaining nitrate. Similar phenomenon was also revealed by Wiedenhaus et al. (2021), who thought that the ammonium nitrate dissociation may be an important reason for the accumulation of ¹⁵N in aerosol particles. Additionally, Freyer et al. (1993) revealed that gas-phase isotopic exchanges between NO and NO_2 result in the enrichment of the heavier ¹⁵N isotope in the more oxidized form and may further affect $\delta^{15}\text{N-NO}_3^-$ through nitrate formation reactions. The above isotopic exchange between NO_2 and NO_x can be roughly described as follows: $[\delta^{15}\text{N}(\text{NO}_2) - \delta^{15}\text{N}(\text{NO}_x)] = (1 - K) \times (1 - f_{\text{NO}_2})$, where *K* and *f_{NO}2* are the temperature-dependent exchange constant and mole fraction of NO_2 , respectively. Based on trace gas

513 observations, the f_{NO_2} values of the air aloft were very high due to the frequently
514 undetectable NO concentration, indicating a rather limited isotopic exchange between
515 NO_2 and NO. Therefore, the evaporation of particulate NH_4NO_3 have been the
516 significant factor affecting the measurement of a higher $\delta^{15}\text{N-NO}_3^-$ at the MS site than
517 at the MF site in our observations. According to the above analysis, the ammonium at
518 MS site should theoretically be more and more enriched in $\delta^{15}\text{N}$ with the continuous
519 NH_4NO_3 volatilization. However, our observation of $\delta^{15}\text{N-NH}_4^+$ did not correspond to
520 above pattern, namely, ammonium at the MS site depleted in $\delta^{15}\text{N}$ compared to that at
521 MF site ($p < 0.05$, Figure 10). Given the unchanged NH_3 sources as verified in section
522 3.1.2, such seemingly unreasonable observations were mainly caused by the gas-to-
523 particle conversion of ammonia. In this process, the reversible phase-equilibrium
524 reactions between $\text{NH}_3(\text{g})$ and $\text{HNO}_3(\text{g})/\text{HCl}(\text{g})$ would yield positive enrichment in
525 $\delta^{15}\text{N}$ of aerosol NH_4^+ (Walters et al., 2019); nevertheless, unidirectional reactions
526 involving $\text{NH}_3(\text{g})$ and $\text{SO}_4^{2-}/\text{HSO}_4^-$ favored ^{15}N depletion in the particle form as
527 revealed by Heaton et al. (1997). Thereby, the lower $\delta^{15}\text{N-NH}_4^+$ values at MS site
528 were mostly driven by those irreversible reactions, rather than the reversible
529 equilibrium ones. This result further confirmed our conjecture that the additional NH_3
530 would partition into particulate phases and further neutralize the acidic NH_4HSO_4 ,
531 leading to an increasing pH at MS site compared to that at MF site. Taken together,
532 this compelling evidence verifies that fine-mode nitrate and ammonium exhibit
533 distinctly different physicochemical behaviors during their transport.

534 **4 Conclusions and atmospheric implications**

535 In this study, aerosol samples were collected at 4-hr intervals on the mountainside
536 of Mt. Hua, and the OC, EC, water-soluble ions and isotope compositions of nitrate
537 and ammonium were measured and compared with simultaneous observations taken
538 at a lower-elevation site (MF site). The particle mass at the MF site was
539 approximately 1.5-fold that at the MS site, and distinctly different diurnal cycles were
540 observed between the two sampling sites. Based on the BLH variation, we revealed
541 that near-surface PM_{2.5} could be transported to the upper layers by the mountain-
542 valley breeze, leading to the gradual accumulation of pollutants on the mountainside
543 during the daytime.

544 Sulfate, the predominant species found among ions at both sampling sites,
545 exhibited nearly identical mass concentrations at the two sites but had a moderately
546 enhanced mass fraction at MS site. Such homogeneity was also observed in
547 ammonium, which mainly existed as NH₄HSO₄+NH₄NO₃ and (NH₄)₂SO₄+NH₄NO₃ at
548 the MF and MS sites, respectively. This observation indicated the further formation of
549 ammonium during the transport process. Unlike sulfate and ammonium, nitrate at the
550 MS site exhibited abated trends in both its concentration and proportion, mainly due
551 to the volatilization of NH₄NO₃. With the help of nitrate and ammonium nitrogen
552 isotopes, we proposed a conceptual model to illustrate the different behaviors of
553 nitrate and ammonium during vertical transport; in this model, the semivolatile
554 NH₄NO₃ in surface air parcels was easily converted into gaseous NH₃ and HNO₃.
555 Subsequently, heterogeneous reactions occurred between this gaseous HNO₃ and
556 fugitive dust, forming nonvolatile salts and leading to a significant nitrate shift from

557 fine particles into coarse particles. In addition, the decreasing temperature was
558 favorable for NH₃ partitioning toward the particle phase, and the addition of
559 ammonium further neutralized HSO₄⁻ to form SO₄²⁻. This process would reduce the
560 aerosol acidity, with bulk PM_{2.5} pH increasing from 2.9±2.0 at MF site to 3.4±2.2 at
561 MS site.

562 Over the past decade, the relative abundance of NH₄NO₃ has been enhanced in
563 most urban areas of China because strict emission directives have been promulgated
564 to abate the emission and environmental impacts of SO₂ (Xie et al., 2020; Song et al.,
565 2019). In this work, we observed that NH₄NO₃ volatilization was a ubiquitous
566 phenomenon for particles during transport, resulting in a shift in partwise nitrate from
567 the fine mode to the coarse fraction; this shift has also been reported in the offshore
568 areas of the UK (Yeatman et al., 2001). Thus, we think that considering only fine-
569 fraction nitrate may result in the conversion rate of NO_x to nitrate being partly
570 underestimated at some times, especially in the summer. Moreover, the deposition
571 velocity of coarse particles is usually faster than that of fine particles; therefore, the
572 above process would appreciably elevate the deposition of N into the environment.
573 Indeed, abundant NO₂, O₃ and NH₃ co-occurrence is common in the East Asian
574 atmosphere, and under these conditions, secondary inorganic aerosols can be
575 effectively produced, leading to a PM_{2.5} loading explosion in the urban atmosphere of
576 China (Wu et al., 2020c; Wang et al., 2016). Given this, harmonious reductions in
577 NO₂, O₃ and NH₃ will be urgent in further mitigation strategies to improve air quality
578 and alleviate other potential effects.

579

580 **Author contributions.** GW designed the experiment. CW, JiaL and CC collected the
581 samples. CW and CC conducted the experiments. CW and GW performed the data
582 interpretation and wrote the paper. All authors contributed to the paper with useful
583 scientific discussions or comments.

584

585 **Competing interests.** The authors declare that they have no conflict of interest.

586

587 **Acknowledgements.** This work was financially supported by the National Natural
588 Science Foundation of China (No. 42130704, 42007202), Shanghai Science and
589 Technology Innovation Action Plan (20dz1204000) and ECNU Happiness Flower
590 program. We thank Lang Liu from School of Public Policy and Administration,
591 Northwestern Polytechnical University, Xi'an, China for his support of model
592 simulation in meteorological data during the campaign.

593

594

595

596 **References**

597 Andreae, M. O. and Ramanathan, V.: Climate's Dark Forcings, *Science*, 340, 280-281,
598 10.1126/science.1235731, 2013.

599 Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin, R., Kelly, K.,
600 Zarzana, K. J., Whiteman, C. D., Dube, W. P., Tonnesen, G., Jaramillo, I. C., and Sohl, J.: Coupling
601 between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions:
602 Evolution of Wintertime PM2.5 Pollution Events and N2O5 Observations in Utah's Salt Lake Valley,
603 *Environ. Sci. Technol.*, 51, 5941-5950, 10.1021/acs.est.6b06603, 2017.

604 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G.,
605 Ghan, S., Kaercher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M.
606 G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P.
607 K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo,
608 T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A

609 scientific assessment, *J. Geophys. Res.-Atmos.*, 118, 5380-5552, 10.1002/jgrd.50171, 2013.

610 Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G. W.,
611 Spracklen, D. V., Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.: Large contribution of natural
612 aerosols to uncertainty in indirect forcing, *Nat.*, 503, 67-+, 10.1038/nature12674, 2013.

613 Dzepina, K., Mazzoleni, C., Fialho, P., China, S., Zhang, B., Owen, R. C., Helmig, D., Hueber, J., Kumar,
614 S., Perlinger, J. A., Kramer, L. J., Dziobak, M. P., Ampadu, M. T., Olsen, S., Wuebbles, D. J., and
615 Mazzoleni, L. R.: Molecular characterization of free tropospheric aerosol collected at the Pico
616 Mountain Observatory: a case study with a long-range transported biomass burning plume, *Atmos.*
617 *Chem. Phys.*, 15, 5047-5068, 10.5194/acp-15-5047-2015, 2015.

618 Elliott, E. M., Yu, Z., Cole, A. S., and Coughlin, J. G.: Isotopic advances in understanding reactive
619 nitrogen deposition and atmospheric processing, *Sci. Total Environ.*, 662, 393-403,
620 10.1016/j.scitotenv.2018.12.177, 2019.

621 Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., Martin, S. T., Yang, Y.,
622 Wang, J., Artaxo, P., Barbosa, H. M. J., Braga, R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes,
623 H. B., Mei, F., Poehlker, C., Poehlker, M. L., Poeschl, U., and de Souza, R. A. F.: Substantial
624 convection and precipitation enhancements by ultrafine aerosol particles, *Science*, 359, 411-+,
625 10.1126/science.aan8461, 2018.

626 Fan, M.-Y., Zhang, Y.-L., Lin, Y.-C., Hong, Y., Zhao, Z.-Y., Xie, F., Du, W., Cao, F., Sun, Y., and Fu, P.:
627 Important Role of NO₃ Radical to Nitrate Formation Aloft in Urban Beijing: Insights from Triple
628 Oxygen Isotopes Measured at the Tower, *Environ. Sci. Technol.*, 10.1021/acs.est.1c02843, 2021.

629 Fang, Y. T., Koba, K., Wang, X. M., Wen, D. Z., Li, J., Takebayashi, Y., Liu, X. Y., and Yoh, M.:
630 Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a
631 nitrogen-polluted city in southern China, *Atmos. Chem. Phys.*, 11, 1313-1325, 10.5194/acp-11-
632 1313-2011, 2011.

633 Ferrero, L., Cappelletti, D., Moroni, B., Sangiorgi, G., Perrone, M. G., Crocchianti, S., and Bolzacchini,
634 E.: Wintertime aerosol dynamics and chemical composition across the mixing layer over basin
635 valleys, *Atmos. Environ.*, 56, 143-153, 10.1016/j.atmosenv.2012.03.071, 2012.

636 Freyer, H. D., Kley, D., Volz-Thomas, A., and Kobel, K.: On the interaction of isotopic exchange
637 processes with photochemical reactions in atmospheric oxides of nitrogen, *Journal of Geophysical
638 Research*, 98, 14791-14796, 10.1029/93jd00874, 1993.

639 Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., van der Gon, H. D., Facchini, M. C., Fowler, D.,
640 Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M.,
641 Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., Williams, M., and Gilardoni, S.: Particulate
642 matter, air quality and climate: lessons learned and future needs, *Atmos. Chem. Phys.*, 15, 8217-
643 8299, 10.5194/acp-15-8217-2015, 2015.

644 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L.,
645 Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, *Proc. Natl. Acad.
646 Sci. USA*, 111, 17373-17378, 10.1073/pnas.1419604111, 2014.

647 Harrison, R. M. and Pio, C. A.: Size-differentiated composition of inorganic atmospheric aerosols of both
648 marine and polluted continental origin, *Atmos. Environ.*, 17, 1733-1738, 10.1016/0004-
649 6981(83)90180-4, 1983.

650 Heaton, T. H. E., Spiro, B., Madeline, S., and Robertson, C.: Potential canopy influences on the isotopic
651 composition of nitrogen and sulphur in atmospheric deposition, *Oecologia*, 109, 600-607,
652 10.1007/s004420050122, 1997.

653 Lambey, V. and Prasad, A. D.: A Review on Air Quality Measurement Using an Unmanned Aerial Vehicle,
654 Water, Air, & Soil Pollution, 232, 10.1007/s11270-020-04973-5, 2021.

655 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air
656 pollution sources to premature mortality on a global scale, Nat., 525, 367-+, 10.1038/nature15371,
657 2015.

658 Li, D., Wu, C., Zhang, S., Lei, Y., Lv, S., Du, W., Liu, S., Zhang, F., Liu, X., Liu, L., Meng, J., Wang, Y.,
659 Gao, J., and Wang, G.: Significant coal combustion contribution to water-soluble brown carbon
660 during winter in Xingtai, China: Optical properties and sources, J. Environ. Sci., 124, 892-900,
661 10.1016/j.jes.2022.02.026, 2023.

662 Li, J. J., Wang, G. H., Cao, J. J., Wang, X. M., and Zhang, R. J.: Observation of biogenic secondary
663 organic aerosols in the atmosphere of a mountain site in central China: temperature and relative
664 humidity effects, Atmos. Chem. Phys., 13, 11535-11549, 10.5194/acp-13-11535-2013, 2013.

665 Li, T., Wang, Y., Li, W. J., Chen, J. M., Wang, T., and Wang, W. X.: Concentrations and solubility of trace
666 elements in fine particles at a mountain site, southern China: regional sources and cloud processing,
667 Atmos. Chem. Phys., 15, 8987-9002, 10.5194/acp-15-8987-2015, 2015.

668 Li, W., Shao, L., Zhang, D., Ro, C.-U., Hu, M., Bi, X., Geng, H., Matsuki, A., Niu, H., and Chen, J.: A
669 review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state,
670 source, and heterogeneous reactions, Journal of Cleaner Production, 112, 1330-1349,
671 10.1016/j.jclepro.2015.04.050, 2016.

672 Lindaas, J., Pollack, I. B., Calahorrano, J. J., O'Dell, K., Garofalo, L. A., Pothier, M. A., Farmer, D. K.,
673 Kreidenweis, S. M., Campos, T., Flocke, F., Weinheimer, A. J., Montzka, D. D., Tyndall, G. S., Apel,
674 E. C., Hills, A. J., Hornbrook, R. S., Palm, B. B., Peng, Q., Thornton, J. A., Permar, W., Wielgasz,
675 C., Hu, L., Pierce, J. R., Collett, J. L., Jr., Sullivan, A. P., and Fischer, E. V.: Empirical Insights Into
676 the Fate of Ammonia in Western US Wildfire Smoke Plumes, J. Geophys. Res.-Atmos., 126,
677 10.1029/2020jd033730, 2021.

678 Liu, D., Fang, Y., Tu, Y., and Pan, Y.: Chemical Method for Nitrogen Isotopic Analysis of Ammonium at
679 Natural Abundance, Anal. Chem., 86, 3787-3792, 10.1021/ac403756u, 2014.

680 Liu, L. J. S., Burton, R., Wilson, W. E., and Koutrakis, P.: Comparison of aerosol acidity in urban and
681 semirural environments, Atmos. Environ., 30, 1237-1245, 10.1016/1352-2310(95)00438-6, 1996.

682 Liu, T., Chan, A. W. H., and Abbatt, J. P. D.: Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles:
683 Implications for Sulfate Formation in Polluted Environments, Environ. Sci. Technol., 55, 4227-4242,
684 10.1021/acs.est.0c06496, 2021.

685 Lv, D., Chen, Y., Zhu, T., Li, T., Shen, F., Li, X., and Mehmood, T.: The pollution characteristics of PM10
686 and PM2.5 during summer and winter in Beijing, Suning and Islamabad, Atmospheric Pollution
687 Research, 10, 1159-1164, 10.1016/j.apr.2019.01.021, 2019.

688 Lv, S., Wang, F., Wu, C., Chen, Y., Liu, S., Zhang, S., Li, D., Du, W., Zhang, F., Wang, H., Huang, C.,
689 Fu, Q., Duan, Y., and Wang, G.: Gas-to-Aerosol Phase Partitioning of Atmospheric Water-Soluble
690 Organic Compounds at a Rural Site in China: An Enhancing Effect of NH₃ on SOA Formation,
691 Environ. Sci. Technol., 56, 3915-3924, 10.1021/acs.est.1c06855, 2022.

692 Meng, J., Wang, G., Hou, Z., Liu, X., Wei, B., Wu, C., Cao, C., Wang, J., Li, J., Cao, J., Zhang, E., Dong,
693 J., Liu, J., Ge, S., and Xie, Y.: Molecular distribution and stable carbon isotopic compositions of
694 dicarboxylic acids and related SOA from biogenic sources in the summertime atmosphere of Mt.
695 Tai in the North China Plain, Atmos. Chem. Phys., 18, 15069-15086, 10.5194/acp-18-15069-2018,
696 2018.

697 Mozurkewich, M.: The dissociation constant of ammonium nitrate and its dependence on temperature,
698 relative humidity and particle size, *Atmospheric Environment. Part A. General Topics*, 27, 261-270,
699 1993.

700 Nault, B. A., Campuzano-Jost, P., Day, D. A., Jo, D. S., Schroder, J. C., Allen, H. M., Bahreini, R., Bian,
701 H., Blake, D. R., Chin, M., Clegg, S. L., Colarco, P. R., Crounse, J. D., Cubison, M. J., DeCarlo, P.
702 F., Dibb, J. E., Diskin, G. S., Hodzic, A., Hu, W., Katich, J. M., Kim, M. J., Kodros, J. K., Kupec, A.,
703 Lopez-Hilfiker, F. D., Marais, E. A., Middlebrook, A. M., Andrew Neuman, J., Nowak, J. B., Palm,
704 B. B., Paulot, F., Pierce, J. R., Schill, G. P., Scheuer, E., Thornton, J. A., Tsigaridis, K., Wennberg,
705 P. O., Williamson, C. J., and Jimenez, J. L.: Chemical transport models often underestimate
706 inorganic aerosol acidity in remote regions of the atmosphere, *Communications Earth &*
707 *Environment*, 2, 10.1038/s43247-021-00164-0, 2021.

708 Pakkanen, T. A.: Study of formation of coarse particle nitrate aerosol, *Atmos. Environ.*, 30, 2475-2482,
709 10.1016/1352-2310(95)00492-0, 1996.

710 Petit, J. E., Favez, O., Albinet, A., and Canonaco, F.: A user-friendly tool for comprehensive evaluation
711 of the geographical origins of atmospheric pollution: Wind and trajectory analyses, *Environmental*
712 *Modelling & Software*, 88, 183-187, 10.1016/j.envsoft.2016.11.022, 2017.

713 Raes, F., Van Dingenen, R., Vignati, E., Wilson, J., Putaud, J. P., Seinfeld, J. H., and Adams, P.: Formation
714 and cycling of aerosols in the global troposphere, *Atmos. Environ.*, 34, 4215-4240, 10.1016/s1352-
715 2310(00)00239-9, 2000.

716 Reid, J. S., Kuehn, R. E., Holz, R. E., Eloranta, E. W., Kaku, K. C., Kuang, S., Newchurch, M. J.,
717 Thompson, A. M., Trepte, C. R., Zhang, J., Atwood, S. A., Hand, J. L., Holben, B. N., Minnis, P.,
718 and Posselt, D. J.: Ground-based High Spectral Resolution Lidar observation of aerosol vertical
719 distribution in the summertime Southeast United States, *J. Geophys. Res.-Atmos.*, 122, 2970-3004,
720 10.1002/2016jd025798, 2017.

721 rganization, W. H.: WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone,
722 nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization2021.

723 Rodhe, H., Crutzen, P., and Vanderpol, A.: Formation of sulfuric and nitric acid in the atmosphere during
724 long-range transport, *Tellus*, 33, 132-141, 1981.

725 Seinfeld and JohnH: *Atmospheric chemistry and physics : from air pollution to climate change / 3nd ed.*,
726 *Atmospheric chemistry and physics : from air pollution to climate change / 3nd ed*2016.

727 Shi, Q., Davidovits, P., Jayne, J. T., Worsnop, D. R., and Kolb, C. E.: Uptake of gas-phase ammonia. 1.
728 Uptake by aqueous surfaces as a function of pH, *J. Phys. Chem. A*, 103, 8812-8823,
729 10.1021/jp991696p, 1999.

730 Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio, A. M.,
731 Froehlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino,
732 Y., Poeschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol
733 Health Effects from Molecular to Global Scales, *Environ. Sci. Technol.*, 51, 13545-13567,
734 10.1021/acs.est.7b04417, 2017.

735 Song, S., Nenes, A., Gao, M., Zhang, Y., Liu, P., Shao, J., Ye, D., Xu, W., Lei, L., Sun, Y., Liu, B., Wang,
736 S., and McElroy, M. B.: Thermodynamic Modeling Suggests Declines in Water Uptake and Acidity
737 of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015-2018/2019, *Environmental*
738 *Science & Technology Letters*, 6, 752-760, 10.1021/acs.estlett.9b00621, 2019.

739 Stelson, A. W. and Seinfeld, J. H.: Relative humidity and temperature dependence of the ammonium
740 nitrate dissociation constant, *Atmos. Environ.*, 16, 983-992, 10.1016/0004-6981(82)90184-6, 1982.

741 Tang, I. N. and Munkelwitz, H. R.: Composition and temperature dependence of the deliquescence
742 properties of hygroscopic aerosols, *Atmos. Environ.*, 27, 467-473, 1993.

743 van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin, A., Sayer,
744 A. M., and Winker, D. M.: Global Estimates of Fine Particulate Matter using a Combined
745 Geophysical-Statistical Method with Information from Satellites, Models, and Monitors, *Environ.*
746 *Sci. Technol.*, 50, 3762-3772, 10.1021/acs.est.5b05833, 2016.

747 Walters, W. W., Chai, J., and Hastings, M. G.: Theoretical Phase Resolved Ammonia-Ammonium
748 Nitrogen Equilibrium Isotope Exchange Fractionations: Applications for Tracking Atmospheric
749 Ammonia Gas-to-Particle Conversion, *ACS Earth Space Chem.*, 3, 79-89,
750 10.1021/acsearthspacechem.8b00140, 2019.

751 Wang, G., Kawamura, K., Hatakeyama, S., Takami, A., Li, H., and Wang, W.: Aircraft measurement of
752 organic aerosols over China, *Environ. Sci. Technol.*, 41, 3115-3120, 10.1021/es062601h, 2007.

753 Wang, G., Kawamura, K., Xie, M., Hu, S., Gao, S., Cao, J., An, Z., and Wang, Z.: Size-distributions of
754 n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over
755 East Asia, *Atmos. Chem. Phys.*, 9, 8869-8882, 10.5194/acp-9-8869-2009, 2009.

756 Wang, G., Kawamura, K., Xie, M., Hu, S., Li, J., Zhou, B., Cao, J., and An, Z.: Selected water-soluble
757 organic compounds found in size-resolved aerosols collected from urban, mountain and marine
758 atmospheres over East Asia, *Tellus Series B-Chemical and Physical Meteorology*, 63, 371-381,
759 10.1111/j.1600-0889.2011.00536.x, 2011.

760 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Zamora, M. L., Hu, M., Lin, Y., Peng, J., Guo, S., Meng,
761 J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J.,
762 Tian, P., Marrero-Ortiz, W., Secretst, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W.,
763 Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld,
764 D., Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London
765 Fog to Chinese haze, *Proc. Natl. Acad. Sci. USA*, 113, 13630-13635, 10.1073/pnas.1616540113,
766 2016.

767 Wang, G. H., Zhou, B. H., Cheng, C. L., Cao, J. J., Li, J. J., Meng, J. J., Tao, J., Zhang, R. J., and Fu, P.
768 Q.: Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009:
769 differences in composition and size distribution between the urban ground surface and the mountain
770 atmosphere, *Atmos. Chem. Phys.*, 13, 819-835, 10.5194/acp-13-819-2013, 2013.

771 Wankel, S. D., Chen, Y., Kendall, C., Post, A. F., and Paytan, A.: Sources of aerosol nitrate to the Gulf of
772 Aqaba: Evidence from delta N-15 and delta O-18 of nitrate and trace metal chemistry, *Mar. Chem.*,
773 120, 90-99, 10.1016/j.marchem.2009.01.013, 2010.

774 Wexler, A. S. and Seinfeld, J. H.: Second-generation inorganic aerosol model, *Atmos. Environ.*, 25A,
775 2731-2748, 1991.

776 Wiedenhaus, H., Ehrnsperger, L., Klemm, O., and Strauss, H.: Stable N-15 isotopes in fine and coarse
777 urban particulate matter, *Aerosol Sci. Technol.*, 55, 859-870, 10.1080/02786826.2021.1905150,
778 2021.

779 Wu, C., Liu, L., Wang, G., Zhang, S., Li, G., Lv, S., Li, J., Wang, F., Meng, J., and Zeng, Y.: Important
780 contribution of N2O5 hydrolysis to the daytime nitrate in Xi'an, China during haze periods: Isotopic
781 analysis and WRF-Chem model simulation, *Environmental pollution (Barking, Essex : 1987)*, 288,
782 117712-117712, 10.1016/j.envpol.2021.117712, 2021.

783 Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Liu, S., Du, W., Zhao, Z., and Cao, F.:
784 Non-agricultural sources dominate the atmospheric NH3 in Xi'an, a megacity in the semi-arid region

785 of China, *Sci. Total Environ.*, 722, 137756, 10.1016/j.scitotenv.2020.137756, 2020a.

786 Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Li, X., Xue, G., Wang, X., Zhao, Z.,
787 and Cao, F.: The characteristics of atmospheric brown carbon in Xi'an, inland China: sources, size
788 distributions and optical properties, *Atmos. Chem. Phys.*, 20, 2017-2030, 10.5194/acp-20-2017-
789 2020, 2020b.

790 Wu, C., Zhang, S., Wang, G., Lv, S., Li, D., Liu, L., Li, J., Liu, S., Du, W., Meng, J., Qiao, L., Zhou, M.,
791 Huang, C., and Wang, H.: Efficient Heterogeneous Formation of Ammonium Nitrate on the Saline
792 Mineral Particle Surface in the Atmosphere of East Asia during Dust Storm Periods, *Environ. Sci.*
793 *Technol.*, 54, 15622-15630, 10.1021/acs.est.0c04544, 2020c.

794 Xie, Y., Wang, G., Wang, X., Chen, J., Chen, Y., Tang, G., Wang, L., Ge, S., Xue, G., Wang, Y., and Gao,
795 J.: Nitrate-dominated PM_{2.5} and elevation of particle pH observed in urban Beijing during the
796 winter of 2017, *Atmos. Chem. Phys.*, 20, 5019-5033, 10.5194/acp-20-5019-2020, 2020.

797 Xu, Z., Huang, X., Nie, W., Shen, Y., Zheng, L., Xie, Y., Wang, T., Ding, K., Liu, L., Zhou, D., Qi, X.,
798 and Ding, A.: Impact of Biomass Burning and Vertical Mixing of Residual-Layer Aged Plumes on
799 Ozone in the Yangtze River Delta, China: A Tethered-Balloon Measurement and Modeling Study of
800 a Multiday Ozone Episode, *J. Geophys. Res.-Atmos.*, 123, 11786-11803, 10.1029/2018jd028994,
801 2018.

802 Yeatman, S. G., Spokes, L. J., Dennis, P. F., and Jickells, T. D.: Can the study of nitrogen isotopic
803 composition in size-segregated aerosol nitrate and ammonium be used to investigate atmospheric
804 processing mechanisms?, *Atmos. Environ.*, 35, 1337-1345, 10.1016/s1352-2310(00)00457-x, 2001.

805 Yi, Y., Meng, J., Hou, Z., Wang, G., Zhou, R., Li, Z., Li, Y., Chen, M., Liu, X., Li, H., and Yan, L.:
806 Contrasting compositions and sources of organic aerosol markers in summertime PM(2.5)from
807 urban and mountainous regions in the North China Plain, *Sci. Total Environ.*, 766,
808 10.1016/j.scitotenv.2020.144187, 2021.

809 Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P., Perring, A. E., Jimenez, J. L.,
810 Campuzano-Jost, P., Wang, Y., Nenes, A., and Weber, R. J.: Top-of-atmosphere radiative forcing
811 affected by brown carbon in the upper troposphere, *Nat. Geosci.*, 10, 486-+, 10.1038/ngeo2960,
812 2017.

813 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang,
814 Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since
815 2010 as the consequence of clean air actions, *Atmos. Chem. Phys.*, 18, 14095-14111, 10.5194/acp-
816 18-14095-2018, 2018.

817 Zhou, S., Wu, L., Guo, J., Chen, W., Wang, X., Zhao, J., Cheng, Y., Huang, Z., Zhang, J., Sun, Y., Fu, P.,
818 Jia, S., Tao, J., Chen, Y., and Kuang, J.: Measurement report: Vertical distribution of atmospheric
819 particulate matter within the urban boundary layer in southern China - size-segregated chemical
820 composition and secondary formation through cloud processing and heterogeneous reactions,
821 *Atmos. Chem. Phys.*, 20, 6435-6453, 10.5194/acp-20-6435-2020, 2020.

822 Zhou, Y., Hakala, S., Yan, C., Gao, Y., Yao, X., Chu, B., Chan, T., Kangasluoma, J., Gani, S., Kontkanen,
823 J., Paasonen, P., Liu, Y., Petaja, T., Kulmala, M., and Dada, L.: Measurement report: New particle
824 formation characteristics at an urban and a mountain station in northern China, *Atmos. Chem. Phys.*,
825 21, 17885-17906, 10.5194/acp-21-17885-2021, 2021.

826

827

828

829

830

831 **Table caption**

832 Table 1 Mass concentrations of species in the PM_{2.5} samples and the meteorological
833 conditions at the two sampling sites.

834

835

836

837 **Figure captions**

838

839 Figure 1 (a) Location of the study sites in China, (b) topographic view of Mt. Hua
840 with the sampling sites mark, and (c) vertical views of the two sampling sites and the
841 horizontal distance between them. (The maps are produced by mapbox,
842 <https://account.mapbox.com/>, last access, 31 Dec. 2021).

843

844 Figure 2 Time series of the temperature (T), relative humidity (RH), boundary layer
845 height (BLH) and mass concentrations of PM_{2.5} and the water-soluble ions in PM_{2.5}
846 during the observation period at the two sampling sites.

847

848 Figure 3 Diurnal variations in PM_{2.5} and the boundary layer height (BLH) at the
849 different observation sites.

850

851 Figure 4 Concentration-weighted trajectory (CWT) analyses of PM_{2.5} in both the
852 daytime (8:00-20:00) and nighttime (21:00-7:00) at the MS site.

853

854 Figure 5 The distribution of averaged diurnal divergence over the whole campaign, with
855 corresponding wind field. (a) Horizontal distribution at surface. (b) Longitude-pressure
856 cross-sections at 34°29'N. Wind speeds were represented by arrow sizes, and the W
857 component of wind vectors was magnified 10 times.

858

859 Figure 6 Mass closure of PM_{2.5} during the observed period (OM=1.6×OC).

860

861 Figure 7 Comparison of the calculated and observed NH₄⁺ concentrations at the MF
862 and MS sampling sites.

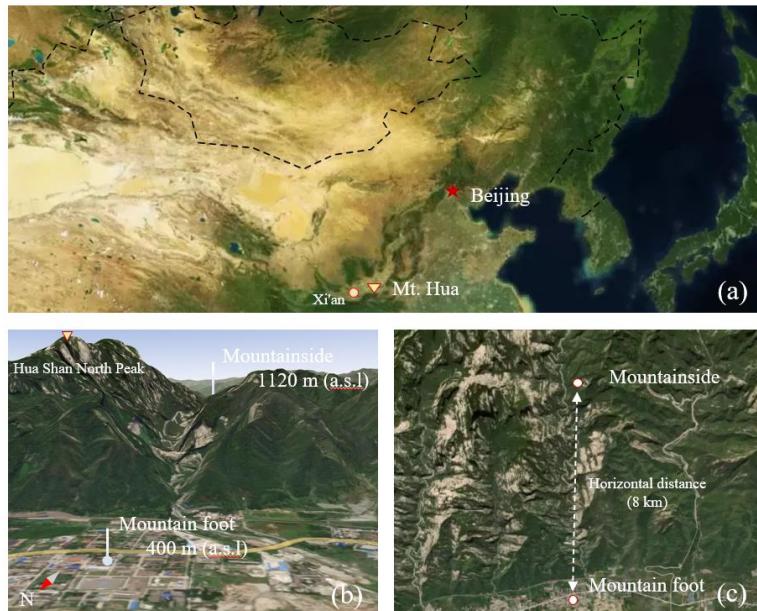
863

864 Figure 8 Schematic of the physicochemical behaviors of nitrate and ammonium during
865 the transport process.

866

867 Figure 9 Temperature dependence of the ratio of the product of the partial pressures of
868 NH₃ and HNO₃ with the dry dissociation constant of NH₄NO₃.

869

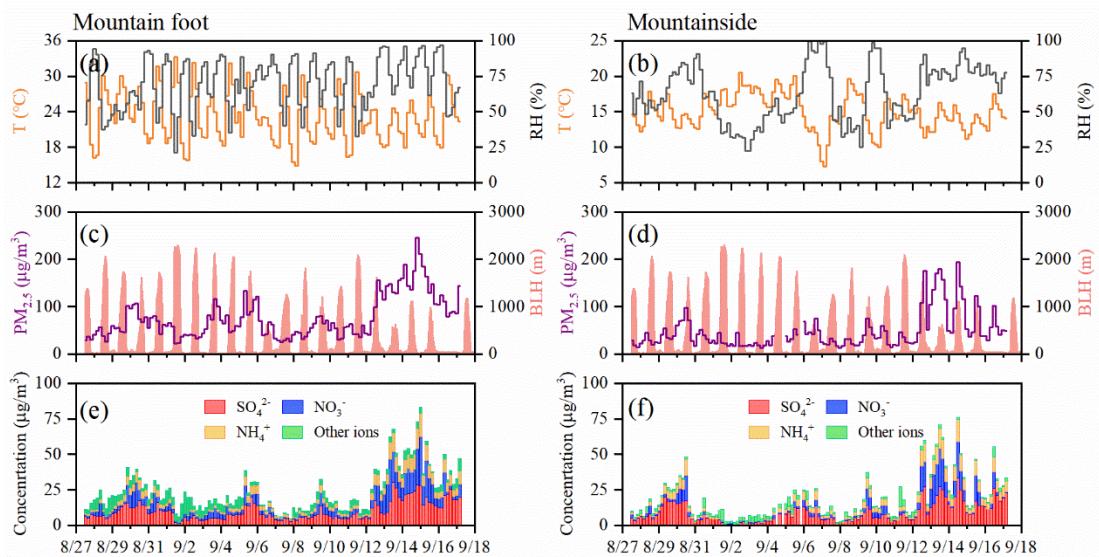

870 Figure 10 Nitrate and ammonium δ¹⁵N values at the two sampling sites in the daytime.

871
872
873
874
875
876
877

878 Table 1 Mass concentrations of species in the PM_{2.5} samples, pH and the
879 meteorological conditions at the two sampling sites.

	Mountain foot	Mountainside
(i) Mass concentration of species and ALWC (µg/m³) and pH		
SO ₄ ²⁻	10.1±6.4	9.0±7.1
NO ₃ ⁻	6.1±6.3	3.8±5.8
NH ₄ ⁺	3.9±3.3	3.9±3.5
Cl ⁻	0.4±0.5	0.37±0.50
Na ⁺	0.70±0.8	0.47±0.62
K ⁺	0.2±0.3	0.37±0.5
Mg ²⁺	0.1±0.1	0.07±0.06
Ca ²⁺	2.5±2.0	0.9±1.2
OC	14.0±4.7	5.0±2.8
EC	4.3±2.0	1.1±0.7
PM _{2.5}	76.0±44.1	47.0±38.0
ALWC	27.6±63.9	26.9±71.4
pH	3.4±2.2	2.9±2.0
(ii) Meteorological parameters		
T (°C)	23.2±4.2	15.0±2.5
RH (%)	68.9±18.2	62.8±20.0
Wind speed (m/s)	1.3±1.1	3.2±2.0
Visibility (km)	14.1±9.5	22.2±12.1

880 ALWC and pH are predicted by the thermodynamic model (E-AIM (IV))
881


882

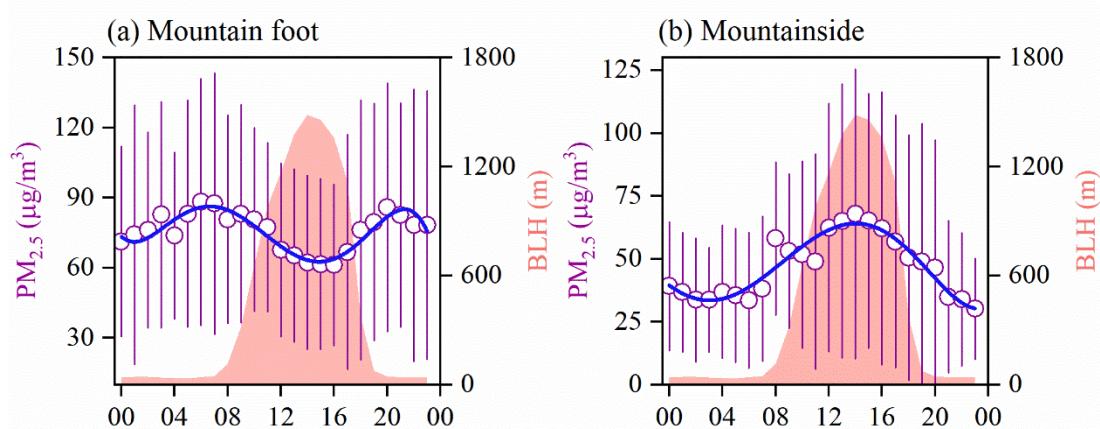
883 Figure 1 (a) Location of the study sites in China, (b) topographic view of Mt. Hua
 884 with the sampling sites mark, and (c) vertical views of the two sampling sites and the
 885 horizontal distance between them. (The maps are produced by mapbox,
 886 <https://account.mapbox.com/>, last access, 31 Dec. 2021).

887

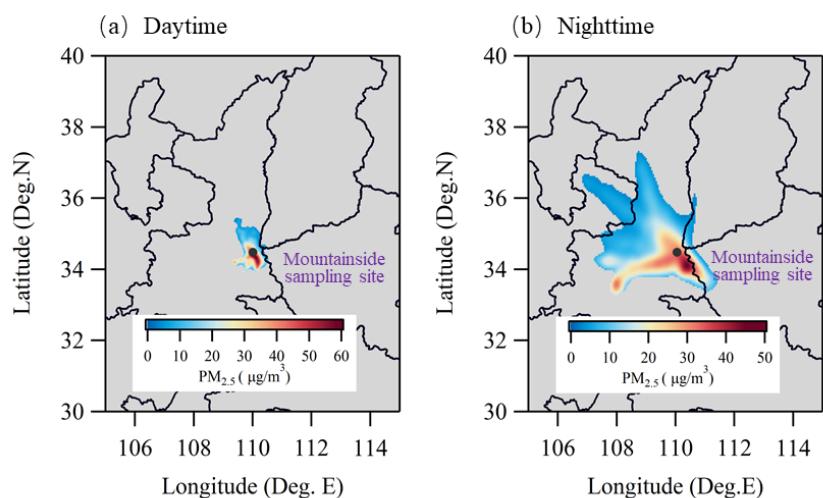
888

889

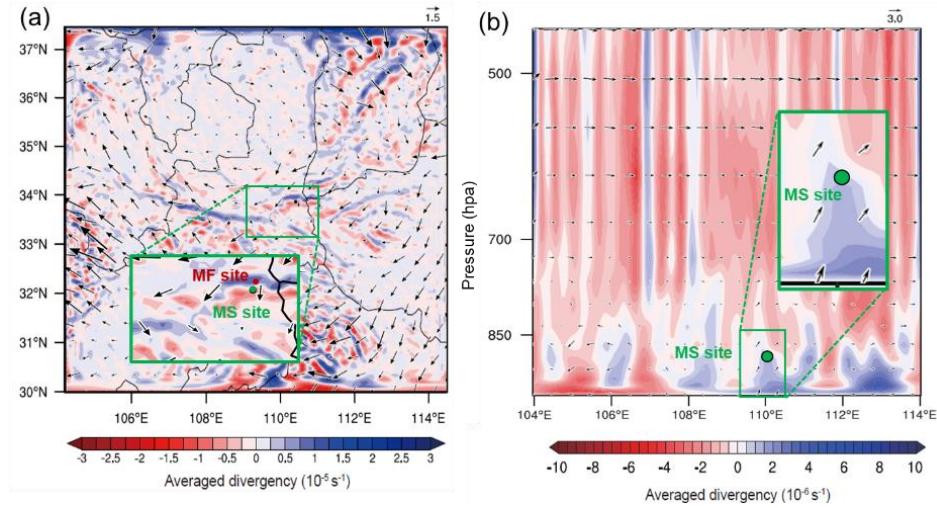
890


891 Figure 2 Time series of the temperature (T), relative humidity (RH), boundary layer
 892 height (BLH) and mass concentrations of $\text{PM}_{2.5}$ and the water-soluble ions in $\text{PM}_{2.5}$
 893 during the observation period at the two sampling sites.

894

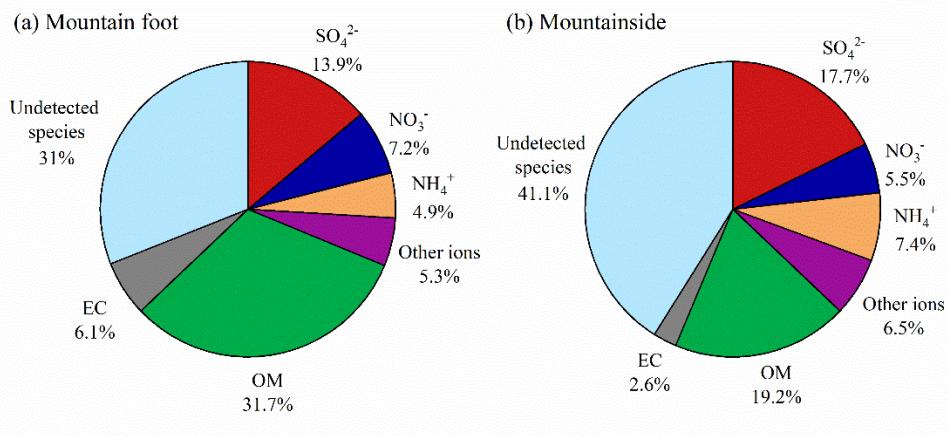

895

896


897
898
899
900
901

902
903 Figure 3 Diurnal variations in $PM_{2.5}$ and the boundary layer height (BLH) at the two
904 sampling sites.
905
906
907
908
909
910
911

912
913 Figure 4 Concentration-weighted trajectory (CWT) analyses of $PM_{2.5}$ in both the
914 daytime (8:00-20:00) and nighttime (21:00-7:00) at the MS site.
915
916
917


918

919

920 Figure 5 The distribution of averaged diurnal divergence over the whole campaign, with
 921 corresponding wind field. (a) Horizontal distribution at surface. (b) Longitude-pressure
 922 cross-sections at 34°29'N. Wind speeds were represented by arrows sizes, and the W
 923 component of wind vectors was magnified 10 times.

924

925

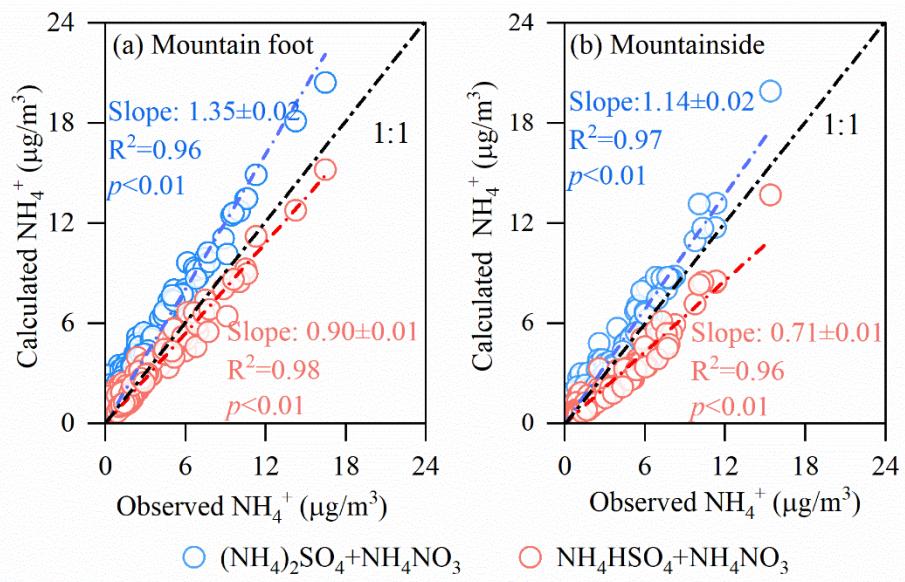
926

927 Figure 6 Mass closure of $\text{PM}_{2.5}$ during the observed period ($\text{OM}=1.6 \times \text{OC}$).

928

929

930


931

932

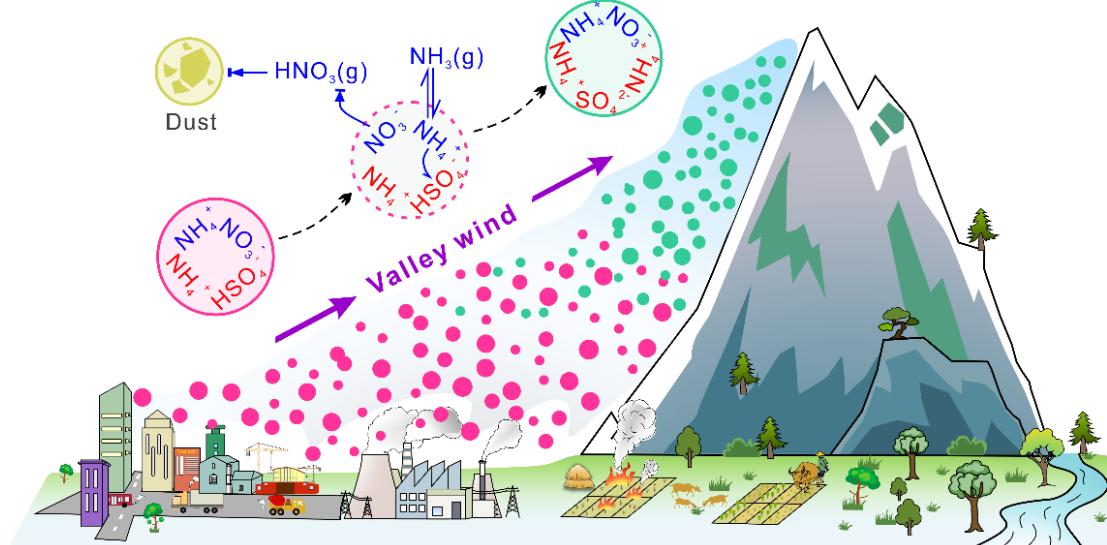
933

934

935

936

937 Figure 7 Comparison of the calculated and observed NH_4^+ concentrations at both
938 sampling sites.

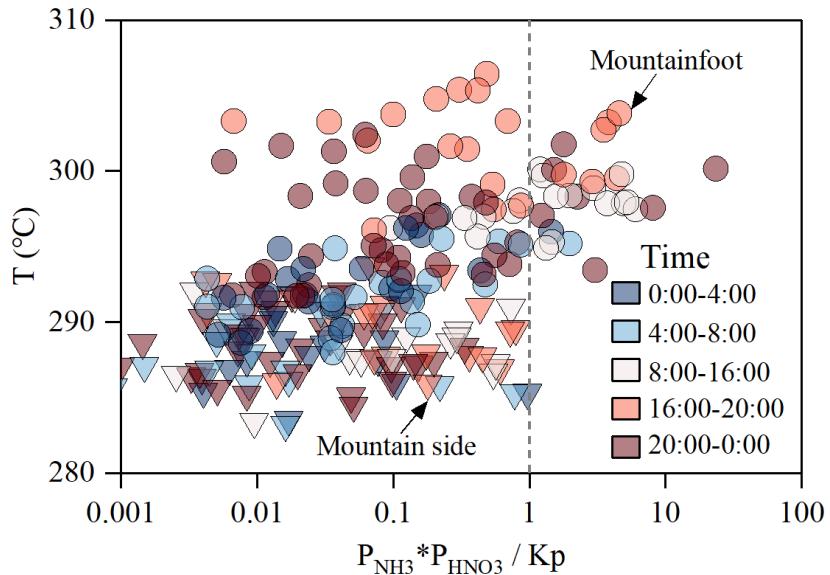

939

940

941

942

943



944

945 Figure 8 Schematic of the physicochemical behaviors of nitrate and ammonium during
946 the transport process.

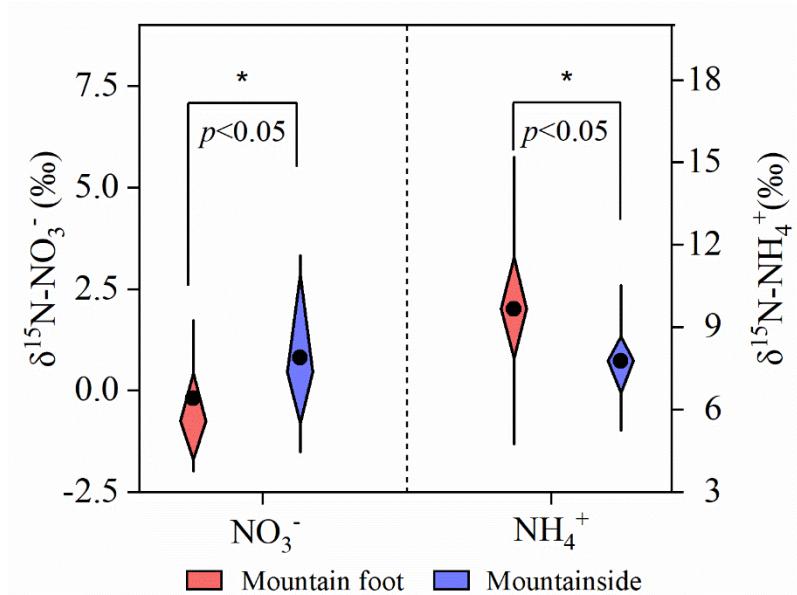
947

948

949

950 Figure 9 Temperature dependence of the ratio of the product of the partial pressures of
 951 NH₃ and HNO₃ with the dry dissociation constant of NH₄NO₃.

952


953

954

955

956

957

958

959 Figure 10 Nitrate and ammonium δ¹⁵N values at the two sampling sites in the daytime.
 960