Supporting Information: African Smoke Acts as Cloud Condensation Nuclei in the Wintertime Tropical North Atlantic Boundary Layer over Barbados

Haley M. Royer¹, Mira L.-Pöhlker^{2,3,4*} Ovid Krüger², Edmund Blades^{5,6}, Peter Sealy⁵, Nurun Nahar Lata⁷, Zezhen Cheng⁷, Swarup China⁷, Andrew P. Ault⁸, Patricia K. Quinn⁹, Paquita Zuidema¹, Christopher Pöhlker², Ulrich Pöschl², and Cassandra J. Gaston^{1*}

¹Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149

²Department of Multiphase Chemistry, Max Planck Institute for Chemistry, Mainz, Germany 55128

³Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany

⁴Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany

⁵Barbados Atmospheric Chemistry Observatory, Ragged Point, Barbados

⁶Queen Elizabeth Hospital Barbados, Bridgetown, Barbados

⁷Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA

⁸Department of Chemistry, University of Michigan, Ann Arbor, MI 48109

⁹Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA 98115

*Corresponding Authors:

Mira L. Pöhlker: Email: poehlker@tropos.de, Phone: +49 6131 305 7020

Cassandra J. Gaston: Email: cgaston@rsmas.miami.edu, Phone: (305)-421-4979

I. Fire Map

Figure S1 – Active fires (red shading) present between January 29th through February 20th of 2020 plotted using NASA's Fire Information for Resource Management System (FIRMS) model. Red shading is produced using NOAA's Visible Infrared Imaging Radiometer Suite (VIIRS NOAA-20), which shows active fire detections and thermal anomalies.

Figure S2 – Carbon monoxide (CO) column density measurements and total aerosol optical depth collected from July 2018 through January 2022 at BACO. Region outlined in blue box indicates time period for EUREC⁴A/ATOMIC campaigns.

II. CO Column Density Measurements during EUREC⁴A/ATOMIC

Figure S3 – Monthly averages for carbon monoxide (CO; a proxy for smoke), aerosol optical depth, and aerosol optical thickness collected at Barbados from 2018 - 2022, 2016 - 2022, and 1983 - 2022, respectively.

III. Size-Resolved Chemistry During EUREC⁴A/ATOMIC

Figure S4 – Number fractions of 6 main submicron particle types plotted as a fraction of aerodynamic diameter (Da). CAT Event 2 and 3 includes size-resolved chemical data from the 2^{nd} (2/10/2020 0:00 – 2/12/2020 6:00 GMT) and 3^{rd} (2/15/2020 12:00 – 2/20/2020 18:00 GMT) period in which dust and wildfire smoke were observed over Barbados, respectively. Particle counts in bins for CAT Event 2 range from 9 to 476 particles, with an average bin size of 253 particles. Particle counts in bins for CAT Event 3 range from 22 to 792 particles, with an average bin size of 266 particles.