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We thank the reviewers for their careful review of the manuscript. The comments greatly improved
our manuscript. We revised our manuscript according to the reviewers’ comments and suggestions.
Overall, we have changed the mass concentration (pug m'3) to the emission rate (pg min'l) to avoid
the influence of cooking time and sampling time according to the comments of the referees. We add
more details to the volatility distributions of cooking emissions. We also added more comparisons

with different studies. Following are our responses to the comments.

Response to referee #3:

This manuscript investigates the impact of cooking style and oil on the emissions from traditional
Chinese cooking. A significant number of chemical species including aromatics, alkanes, oxygenated
compounds, and PAHs have been detected. The authors observed that in addition to VOC species,
S/IVOCs made up an important fraction of cooking emissions and SOA precursors. In general, dishes
cooked by stir-frying and deep-frying styles emit more pollutants than relatively mild cooking styles.
A volatility-polarity distribution framework of cooking emissions has been developed. Unlike the
emissions that showed great variation, the volatility-polarity distribution of different cooking styles
was similar. PLS-DA and MPCA analyses revealed that cooking oil was a critical influencing factor
in the 2D distribution. Overall, this is a comprehensive study investigating the relationship among
cooking emissions, cooking styles, and cooking materials. The manuscript is well written, and the
results are valuable to the literature. |1 would like to recommend its publication in Atmospheric
Chemistry and Physics, subject to minor revisions.

Thank you for your comments. The valuable suggestions addressed have greatly improved our

manuscript. Following are our point-to-point responses to the comments.

1. Table S1: In regard to oil temperature, how was oil temperature measured and monitored? Was
oil temperature controlled and maintained the same during the cooking? There seems to be a positive
relationship between oil temperature (Table S1) and emissions (Figure S3). Have the authors tried to
cook the dishes at the same oil temperature and compare the emission results?

Thank you for your comment. The oil temperature was measured by a thermometer placed in the oil.
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The thermometer was removed from the oil before placing the cooking materials. As a result, the
initial temperature of the oil was maintained the same for each dish. Dishes cooked at the same oil
temperature were not conducted in this work. Further investigation will be carried on to illustrate the
relationship between oil temperature and cooking emissions.

We revised Table S1 as follows.

Table S1. Details of cooking procedures.

Domestic Material Oil
cooking temperature *
Fried chicken 170 g chicken, 500 mL oil (corn, peanut, soybean, or sunflower 145 ~
oil), a few condiments 150 °C
Kung Pao 150 g chicken, 50 g peanut, 40 mL corn oil, a few condiments Not stable
chicken
Pan-fried tofu 500 g tofu, 200 mL corn oil, a few condiments 100 ~
110 °C
Stir-fried 300 g chicken, 40 mL corn oil, a few condiments 95 ~105°C
cabbage

* The oil temperature was measured by a thermometer placed in the oil. The thermometer was
removed from the oil before placing the cooking materials. The temperatures listed in Table S1 were

initial cooking temperatures and were maintained the same for each dish.

2. Line 117: What’s the dimension of the Tenax TA tube? A flow rate of 0.5 L min-1 was used in
this study. Do you have any idea what were the collection efficiencies of chemical species with
different volatility under this flow rate condition? How long was the sampling? What about the
breakthrough of Tenax TA tubes?

Thank you for your comment. The Tenax TA tube is Gerstel 6 mm 97 OD, 45 mm ID glass
tube filled with ~290 mg Tenax TA. A Tenax TA breakthrough experiment was conducted by
introducing pure nitrogen gas (N) with a flow of 0.5 L min™ to the desorption tube with pre-added
standard chemicals (Figure S2). No significant breakthrough was observed within 24 h (<3% of TIC).
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The sampling time in this work is 15 ~ 30 min (0.5 L min™) which is much less than 24h. The
chemical species quantified in this work was stable on Tenax TA tubes even after 24h of N, flowing.
We have revised the manuscript accordingly.

Cooking fumes were sampled directly without dilution. After collecting particles on quartz filters,
gas-phase organics were sampled by pre-conditioned Tenax TA tubes (Gerstel 6 mm 97 OD, 4.5
mm ID glass tube filled with ~290 mg Tenax TA) with a flow of 0.5 L min™. The
removal of particles on the quartz filter in front of the Tenax TA tubes affects the S/IVOC
measurements, causing positive and negative artifacts. Some of the gaseous SVOCs could be lost to
sorption onto filters, and some particle-phase SVOCs could evaporate off the filter. The emission
pattern of the particulate organics diverged from gas-phase organics, and a small overlap of species is
identified. Aromatics, aldehydes, and short-chain acids mainly occurred in the gas-phase. For
instance, the detection of short-chain olefinic aldehydes in the gas-phase was 40 times that of the
particle-phase aldehydes. The artifacts of particulates on gas-phase aromatics and oxygenated
compounds could be less than 5%. A typical system blank chromatogram is displayed in Figure S1. A
daily blank sampling of the air in the kitchen ventilator was conducted before cooking and was
subtracted in the quantification procedure. All samples were frozen at -20°C before analyzing. A
Tenax TA breakthrough experiment was conducted by introducing pure nitrogen gas (N2) with a flow
of 0.5 L min™ to the desorption tube with pre-added standard chemicals (Figure S2). No significant
breakthrough was observed within 24 h (<3% of TIC). The sampling time in this work is 15 ~ 30 min

(0.5 L min™) which is much less than 24h.
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Figure S2. The chromatograms of standard chemicals after 6h (brown), 24h (blue), 48h (red), and
72h (blue) of flowing by pure nitrogen gas. The flow of nitrogen gas is set to be the same as the

sampling flow (0.5 L min™). No significant breakthrough was observed within 24 h (<3%).

3. Lines 120-131: Chemical analysis using TD may have the following concerns (taking SVOCs
as examples):

a) Some of the SVOCs are of relatively low volatility. A TD temperature of 280 °C may not be
sufficient to thermally released all the SVOCs in a short period of time.

b) SVOCs such as acids may get decomposed during the TD processes.

c) The decomposition of SVOCs may produce small molecules that can be mistakenly
identified as VOCs.
Both items a and b lead to underestimations of SVOCs. Item ¢ may result in an overestimation of
VOCs. In regard to these concerns, how long was the TD process in this study? Have the authors
quantified the desorption efficiency of SVOC standards?
Thank you for your comment. The programming of the TD process was ramped 30°C to 280°C
(60°C/min) and then retained at 280°C for 10 min (Table S2). The total thermal desorption time was
14 min. 280°C was chosen for thermal desorption temperature due to the less bleeding of Tenax TA
compared with 300°C. The linearities of undecanoic acid (C11-acid), C31, and C32 were 0.97, 0.99,

and 0.99 (Table S5). The good linearity of SVOC compounds under different concentration levels
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showed a good desorption efficiency of SVOCs. Furthermore, the deportation of SVOC occurred in
both standards and samples, making the quantification face less uncertainty. Though the direct
desorption efficiency of SVOC is not quantified, we add more uncertainty discussions to the
implication part of the manuscript as follows.

We still need to stress that although GC>GC is utilized, UCMs still occur sharing a proportion of
5% of the total response in this work. Acids and aldehydes tail in the second column and cause
uncertainties in the quantification procedure. Meanwhile, TD-GC>GC-MS does not
comprehensively measure all compounds. Acids can decompose during thermal desorption if no
derivatization was performed. Meanwhile, the decomposition of SVOC compounds could produce
small molecules in the VOC or IVOC range. The TD process could introduce underestimation for
SVOC compounds while causing overestimations of VOC and IVOC species. Highly polar
compounds do not elute from the GC column. This may lead to biases in estimating volatility and
polarity distributions. Comparisons between GC>GC and chemical ionization mass spectrometers

(CIMS) should be further implemented to give a full glimpse of cooking organic compounds.

4. Line 126: The authors mentioned that the chromatogram was cut into different volatility bins
(B9 to B31 with a decrease in volatility). However, Figure 2 and Table S3 start from “B8 before”.
Please clarify.
Please add a sentence in the text defining the volatility of each bin (e.g., B8). Please also add a
sentence in the text defining the polarity of each bin (e.g., P1). In this way, other studies can compare
their results to this study when the volatility-polarity distribution framework is used.
Thank you for your comment. We have changed the statement of B9 to B8 as the 1D bins started
with B8 before. We add instances of C12 and benzophenone to the main text to further illustrate the
2D binning method.

The total chromatogram was cut into volatility bins (B8 to B31 with a decrease in volatility)
following the pipeline of previous studies (Tang et al., 2021; Zhao et al., 2014, 2017, 2018), while it
was cut into slices by an increase of 0.5 s in the second retention time (called 2D bins, from P1 to

P12 with an increase of polarity). For instance, C12 lies in B12 (saturated vapor concentration ~ 10°
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ng m>, IVOC range) and P2 bins (low polarity). Benzophenone lies in B16 (saturated vapor

concentration ~ 10° ug m™, IVOC range) and P6 bins (medium to high polarity). A two-dimensional
panel was developed in this way to investigate the emission of contaminants from aspects of their

volatility and polarity properties (Song et al., 2022).

5. Equation 2: SOA vyield of VOC can increase with increasing particle loading (Odum et al.,
ES&T, 1996). Were the values of SOA yields used herein the maximum SOA yields? Please clarify.
Thank you for your comment. The SOA vyields utilized in this work are under high NO, conditions
which are underestimation of SOA due to the lower yields compared to low NO conditions. We have
revised the manuscript as follows.

SOA (ug min™) was estimated by the following equation, where [HC;] is the emission rate of
precursor i (ug min) with OH reaction rate of ko ;, (cm® molecules™ s*) and SOA yield of ;
(Table S3). The SOA yields of precursors were from literature (Algrim and Ziemann, 2016, 2019;
Chan et al., 2009, 2010; Harvey and Petrucci, 2015; Li et al., 2016; Liu et al., 2018; Loza et al., 2014;
Matsunaga et al., 2009; McDonald et al., 2018; Shah et al., 2020; Tkacik et al., 2012; Wu et al., 2017)
or surrogates from n-alkanes in the same volatility bins (Zhao et al., 2014, 2017). The SOA Yyields
utilized in this work are under high NOy conditions which are underestimation of SOA due to the
lower yields compared to low NOy conditions. [OH] X At is the OH exposure and was set to be
14.4 10" molecules €m™ s (~ 1.1 days in OH concentration of 1.5 x<10° molecules €m™) in order to
keep pace with our previous work (Zhang et al., 2021b; Zhu et al., 2021).

SOA = Y[HC;] x (1 — e koniX[OHIXAty sy (3)

6. Lines 220-222: The authors mentioned that “an enhancement of ozone formation contribution
and a decrease of SOA formation contribution were observed”. The sentence is confusing. In regard
to “enhancement” and “decrease”, what were you comparing? Different types of VOCs, or VOCs vs.
S/IVOCs, or VOC emissions from different cooking styles?

Thank you for your comment. We compared the contribution to the mass proportion of VOCs in ERs.

We have revised the manuscript as follows.
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Although chemicals in the VOC range dominated ozone and SOA formation, an increase in ozone
formation contribution and a decrease in SOA formation contribution compared with the mass
proportion of VOCs in ERs were observed. VOCs contributed 90.3% - 99.8% of the ozone
estimation, and 68.0% - 89.8% of the total SOA estimation, compared with 81.4% - 95.6% in ERs.

S/IVOCs explained 10.2% - 32.0% of the SOA estimation.

7. Lines 236-237: The authors mentioned that “the emission patterns diverged from heated oil
fumes as heated sunflower oil and peanut oil emitted more organics”. It seems that this statement
conflicts with the results shown in Figure S7 (dishes cooked by sunflower oil had the lowest
emission).

Thank you for your comment. We have revised the manuscript as follows.

Chicken fried with corn oil emitted the most abundant gaseous contaminants. The emission patterns
in this work diverged from heated oil fumes (Liu et al., 2018) as in their work heated sunflower oil

and peanut oil emitted more organics.
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Figure 4. Emission rate (ER), ozone formation potential (OFP), and secondary organic aerosol (SOA)

Corn
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estimation from emissions of fried chicken cooked with corn, peanut, soybean, and sunflower oils.

The unit of the y-axis is pg min™.

8. Lines 265-266: “In contrast, the volatility-polarity distributions of dishes did not vary much
when corn oil was used for cooking”. Please add a reference to Figure 2.

Thank you for your comment. We have deleted this statement. The revised manuscript is shown as
follows.

Although pollutants were dominated by aromatics, alkanes, and oxygenated compounds with
volatility bins of B9 to B12 (VOC-IVOC range, saturated vapor concentration > 10° ug m?) and
polarity bins of P1 to P5 (low to medium polarity), significant diversities of volatility-polarity

distributions were observed (Figure S9). The chemical compositions in each volatility bin were also
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distinct (Figure S11). IVOCs accounted for as much as 22.8% and 23.7% of the total ERs when
peanut and sunflower oils were utilized for frying (Kostik et al., 2013; Ryan et al., 2008). The peanut
oil was much more abundant in oleic acid (41.5%), while the proportion of linoleic acid in sunflower
is 36.6% (Figure S10). The proportion of unsaturated acids in peanut and sunflower oils is higher

than that of other oils.

9. Line 278: SOA production or reduction?

Thank you for your comment. We revised the manuscript as follows.

Despite the importance of aldehydes revealed in previous studies (Klein et al., 2016; Liu et al., 2018),
our results demonstrated that alkanes, pinenes, and short-chain acids are also key precursors in

cooking SOA production (Huang et al., 2020).

10. Lines 294-295: What do you mean by “physical reactions (evaporation)”? Evaporation of
what?

Thank you for your comment. We revised the manuscript as follows.

The PLS-DA result showed that cooking emissions diverged from oils (Figure 5 (c)), indicating that
the physical reactions (evaporation of edible oils) were not the main reactions during the cooking

procedure.

11. Lines 295-296: “MPCA results showed the chromatogram similarities (positive loading) of oils
and emissions.” Please add a reference to Figure 3d. What is the color bar of Figure 3d?

Thank you for your comment. We add a reference to Figure 5d. The color bar in Figure 5(d) is the
positive loading of pixels. We revised the manuscript as follows.

MPCA results showed the chromatogram similarities (positive loading) of oils and emissions

(Figure 5(d)).
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Figure 5. PLS-DA classification results in setting the cooking style (a) or oil (b) as grouping

variables. When oil was set as the grouping variable, the separation of groups was much better than

setting the dish as the grouping variable. The PLS-DA comparison result of cooking emissions and

oils is displayed in (c), indicating that the cooking fume is not just the evaporation of oil itself.

Positive loadings of oil and cooking fume chromatograms (d) demonstrated the key components

contributing to the similarities of samples. The color bar in (d) is the positive loading of pixels.

Technical comments:

1.

Line 167: duplicate word “form”

Thank you for your comment. We revised the manuscript as follows.

Chromatograms were imported from the network common data form (netCDF).
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208 2. Line 174: Change “results” to “result”

209  Thank you for your comment. We revised the manuscript as follows.

210 PLS-DA is a supervised method for the classification of grouped data. The main influencing factor
211  could be apportioned if one separation result of PLS-DA is much better than the other.

212

213 3. Line 313: Change “gas-phase” to “gas phase”

214 Thank you for your comment. We revised the manuscript as follows.

215  These highly volatile contaminants escape from oil immediately and lead to an accumulation of
216  oxygenated compounds in the gas phase.

217

218  Reference:

219  Algrim, L. B. and Ziemann, P. J.: Effect of the Keto Group on Yields and Composition of Organic
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227  doi:10.1590/50103-50532005000600020, 2005.
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