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Abstract. Record-breaking statistics are combined here with geographic mode of exploration to construct a new object: a 

record-breaking map. Such maps are shown here to reveal surprisingly robust statistical results and spatial content.  10 

Specifically, we examine a time series of sea surface temperature (SST) values and show that high SST records have been 

broken far more frequently than the expected rate for a trend-free random variable (TFRV) over the vast majority of oceans 

(83% of the grid cells). This, together with the asymmetry between high and low records and their deviation from a TRFV, 

indicate SST warming over most oceans, obtained by using a general and simple-to-use method. The spatial patterns of this 

warming are coherent and reveal islands of cooling, such as the "cold blob" in the North Atlantic and a surprising elliptical 15 

area in the Southern Ocean, near the Ross sea gyre, not previously reported. 

1 Introduction 

Man-made greenhouse gas (GHG) emissions have caused staggering changes to the climate system (Masson-Delmotte, 

2021), made evident by trends in various types of observations, including i) an increasing trend in the mean global 

temperature and ocean heat content (Hansen et al., 2010, Cheng et al., 2017); ii) sea-level rise, mostly due to the thermal 20 

expansion of the oceans and, to a lesser extent, due to ice melting over land (Llovel et al., 2019, Watson et al., 2015, 

Dangendorf et al., 2017), and iii) the elevated frequency and intensity of extreme events, and land and marine heatwaves 

(Alexander, et al., 2016, Pendergrass and Hartmann, 2014, Myhre et al., 2019, Frölicher et al, 2018, Laufkötter et al., 2020, 

Oliver et al., 2018). 

Nevertheless, the analysis of climatological time series poses many challenges to quantitative trend extraction because 25 

probability distributions of climatological variables are usually not known a priori (Wilcon 2003, Ghil et al., 2002, 

Gluhovsky and Agee, 2007), non-linearity effects arise from the complex processes and mechanisms involved, and the 

entanglement of natural and anthropogenic effects obscures true trends in short time series. Besides these factors, 

climatological time series are often composed of datasets measured by different instruments (satellites, for example) or use 

slightly different measuring methodologies, which may lead to discontinuities, among other problems. All these factors point 30 
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to the need to pursue robust distribution-invariant ways of extracting trends from intermittently sampled climatological time 

series, and record-breaking statistics is one such approach (e.g., Anderson and Kostinski, 2011). 

Unlike extreme value statistics, which is not concerned with the position of the observations in the time series, in record-

breaking statistics, this information is crucial, rendering trend detection possible. In their seminal 1954 paper, Foster and 

Stuart used the asymmetry between low and high records to identify trends and variance in time series, using examples of 35 

athletics and meteorological data. Since then, this technique, along with various improvements, has been applied to answer a 

myriad of questions related to the statistical behavior of time series in finance (Wergen et al., 2011), geophysics (Yoder et 

al., 2010, Van Aalsburg et al., 2010), climate (Benestad, 2004, Redner and Petersen, 2006), and many other fields (Krug and 

Jain, 2005, Shcherbakov et al., 2013). Some examples of applications of record-breaking statistics in climatological time 

series are the study of trends, variability, stationarity, and independence in surface temperature (Anderson and Kostinski, 40 

2010; 2011; 2016; Kostinski and Anderson, 2014), rainfall (Lehmann et al., 2015; 2018), and flood events (Vogel et al., 

2001). The advantages of this method are its simplicity and generality. Since only serial ordering matters, the method is not 

limited to linear trends.  It is robust insofar as it is distribution-invariant, unit-insensitive (independent of magnitude), 

handles non-uniform or intermittent sampling, and is non-parametric. Moreover, when applied together with spatial 

information (as is done in this work), such analysis easily detects spatial structures of trends and their significance. This can 45 

be useful for analyzing the statistics of climate variables.     

Sea surface temperature (SST) is one of the most important and well-sampled physical properties of the ocean, describing 

the important interface between the ocean and the lower atmosphere. Ocean-atmosphere interactions are key processes in the 

climate system, affecting energy, moisture, and particle fluxes. The ocean stores energy, distributes heat and moisture, and 

drives weather systems. Long-term measurements of global SST are readily available from climate archives, allowing an 50 

analysis of large-scale trends (Huang et al., 2017, Alexander et al., 2018). We use record-breaking statistics to explore local 

trends and identify their spatial patterns in 75 years of global SST data (from 1946 to 2020), a variable that has been shown 

to increase over time (Wuebbles et al., 2017, Hartmann et al., 2013), using linear regression analysis. The use of record-

breaking statistics, presented below, has not been applied to SST data analysis, to the best of our knowledge.  

To identify excess or deficits in the records, which are good trend indicators, the observed number of records is scaled by the 55 

expected value calculated for a trend-free random variable (TFRV). The asymmetry between the number of high and low 

records is another metric employed here to assess a trend in the mean value of the time series. The results are discussed for 

different oceanic regions, and the spatial patterns of record-breaking are examined. The deviation of the observed number of 

records from the expected value (in units of standard deviation) is used to gauge the significance of the results. Similar 

analyses can be performed on many other key climatological variables to explore their trends and significance. 60 
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2 Methods 

2.1 A brief summary of the record-breaking theory  

For a given time series of a random variable (x), the likelihood of breaking a record at the nth element is equal to the 

likelihood that all the preceding values in this time series are smaller than it. Therefore, if the time series is of a trend-free, 

independently drawn random variable (TFRV), the likelihood of breaking a record decreases monotonically with n. The first 65 

sample is defined to be record-breaking. For a TFRV (arbitrary distribution), the probability that the second sample will be 

higher than the first is ½, for the 3rd to be higher than the first two is 1/3, etc. Accordingly, the probability for the nth variable 

is:  

𝑃(𝑛) = max(𝑥*,… , 𝑥-)) =
*
-
.  (1) 

 70 

Therefore, the expected number of records after n time steps, H(n), is given by:  

𝐻(𝑛) = ∑ 𝑃(𝑖) = 1 + *
4
+ *

5
+. . . + *

-
-
67* .  (2) 

 

H(n) is the expected average number of records that numerous TFRV data vectors of length n will converge to. The complete 

distribution of records is a function of all possible permutations for record-breaking sequences. Arnold et al. (2011) have 75 

shown that the exact probability of a TFRV to break k records in a time series of length n is given by the unsigned Stirling 

number of the first kind divided by the factorial of the time series length:  

𝑃(𝑘) = |:(-,;)|
-!

,   (3) 

 

where |S(n,k)| are the coefficients of xk in a rising factorial of n terms, that is, 80 

∏ (𝑥 + 𝑖 − 1) = ∑ |𝑆(𝑛, 𝑘)|𝑥;-
;7@ .-

67*   (4) 

A complete description of the Stirling numbers and how to calculate them using a recurrence relation can be found in e.g., 

Jordan (1950). 

Glick (1978) used an indicator function, replacing the random vector 𝒙(𝒏) with a binary function 𝒚(𝒏) that counts record-

breaking events. 𝒚(𝒏) is zero everywhere but on 𝒙𝒊 samples that break the record of all samples before them. Therefore, the 85 

mean of the 𝒊𝒕𝒉  sample, 𝑬(𝒚𝒊) =
𝟏
𝒊
, and the variance can be calculated directly as 𝑽(𝒚𝒊) = 𝑬(𝒚𝒊𝟐) − 𝑬(𝒚𝒊)𝟐 , namely 

𝑽(𝒚𝒊) =
𝟏
𝒊
− 𝟏

𝒊𝟐
.  Since there are no correlations between any pair of the 𝒚𝒊 -s, the sum of 𝒚𝒊 that measures the average 

expectations for the number of  𝒙𝒏 breaking is, as expected, 𝑯(𝒏) = ∑ 𝟏
𝒊

𝒏
𝒊7𝟏  and the variance 𝑽(𝒏) = 𝑽(𝒙𝒏) is simply the 

sum of all 𝒚𝒊 variances: 

𝑉(𝑛) = ∑ *
6
−-

67* ∑ *
6M

-
67*    (5) 90 
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By knowing the expected mean and variance for the TFRV number of record-breaking events, one can estimate the 

magnitude and significance of the deviations from them. 

In this work, we present ‘record-breaking maps’ that provide information on the geographical structure of SST trends.   

 

2.2 Significance assessment with the Kolmogorov-Smirnov test 95 

The collective significance of SST trends over the entire globe was assessed by the one-sample non-parametric Kolmogorov-

Smirnov (KS) test. For that, the CDF of the observed number of records was compared with the TFRV theoretical 

distribution from Eq. (3). The maximum distance D between the CDFs was used to infer the significance of the observed 

records. We compared the observed D values with the distribution of D values obtained by applying the KS test to 3000 

CDFs obtained from three million Monte Carlo simulations of TFRV records, 75 samples long each. A detailed explanation 100 

of how to calculate the significance using the KS test is provided in Glienke et al. (2020). 

2.3 Data 

The method is applied to 3D datasets in which the horizontal x and y indices represent the location (longitude and latitude), 

and the third dimension is the time of the sea surface temperature (SST) measurement. We treat each pixel as an independent 

time series and estimate the deviations from randomness.  105 

The dataset used in the analyses comprises the monthly global estimates of SST from NOAA's extended reconstructed sea 

surface temperature, version 5 (NOAA-ERSST-v5), from 1946 to 2020 (Huang et al., 2017). It is a combination of in situ 

observations from ships, buoys, and Argo floats above 5 meters, and the Hadley Centre version 2 ice-SST concentration 

(HadISST-v2) derived from the International Comprehensive Ocean-Atmosphere Dataset (ICOADS) Release 3.0. Based on 

monthly error estimates (Huang et al., 2016), the SST annual mean error was set at 0.1oC. To avoid many ties, pixels covered 110 

by more than 90% of sea ice were excluded from the analysis, as in this case, the SST is set to the freezing point temperature 

of -1.8oC. Although this dataset provides SST estimates since 1854 in a 2o x 2o grid resolution, the analysis period was 

restricted to 1946 until the present to avoid biases and artifacts due to bucket design, different measurement approaches, and 

data truncation that resulted in spurious SST measurements, especially by Japanese and German ships before the end of 

World War II (Chan et al., 2019). This dataset is being continuously improved and current and previous versions have 115 

already been applied to infer SST trends (e.g., Deser et al., 2010, Wuebbles et al., 2017, Chan et al., 2019).  

3 Results 

The record-breaking maps of the observed number of high and low records of SST during the 75-years of the study period 

are presented in Fig. 1a,b. To illustrate the procedure, we chose time series of annual mean SST for two pixels located in 

points A (0ºN; 95ºE) and B (40ºN; 195ºE) (panels 1c and 1d). High and low records of SST are marked with red and blue 120 
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dots, respectively. There is an increasing trend at point A, with 15 high records and 3 low records. In contrast, point B series 

presents more low than high records, i.e., 7 vs. 4, respectively. This asymmetry is further explored by using the number of 

records to gauge trends in the SST and identify their spatial patterns. 

Some simple metrics proposed by Foster and Stuart (1954) and Anderson and Kostinski (2011), may be used as indicators of 

possible trends in the time series of highly variable data. One such metric is obtained simply by dividing the number of 125 

observed records, R(n), by the expected number of records for a TFRV, H(n). The ratio R(n)/H(n) can be used to quantify by 

how much the observed number of records exceeds or falls short of the TFRV expectation for both the high and low records. 

In addition to the previous indicators, the asymmetry between the number of high and low records can also be used as a 

metric for the time series trend. Here, we use the natural logarithm of the ratio between RHigh and RLow as a trend indicator to 

complement the previous analyses (Anderson and Kostinski, 2011), 130 

𝜌 = 𝑙𝑛 P
QRSTU
QVWX

Y. (6) 

r distinguishes between increasing and decreasing trends, and its magnitude is related to the slope of the curve. These tests 

explore different aspects of the record-breaking statistics and offer additional support for the presence of a trend in noisy 

data. 

The record-breaking maps of the observed number of high and low SST records over the TFRV expected number of records 135 

(R(n)/H(n)), the trend indicator index 𝝆 (Eq. 6), and their frequency distributions are shown in Fig. 2. The red (blue) color in 

the maps indicates excess (deficit) of high records in panel a, deficit (excess) of low records in panel c, and positive 

(negative) values of 𝝆 in panel e. The contrast between the distributions of the high and low records is evident. The expected 

number of records for a TFRV time series of length 75 is ~5. As Figs. 1 and 2 demonstrate, for most of the global oceans, the 

observed number of high records far exceeds the TFRV expected value of 5, while for the low records, it is below 5 in most 140 

pixels. In 83% of the grid cells, the number of high records is above the expected, and in 17% it is more than twice the 

expected value for a TFRV. It is particularly evident in the tropical and subtropical Atlantic, the Central Pacific, the Eastern 

Indian Ocean, and the Southern sea. Conversely, the number of low records seldom exceeds the TFRV expected value by 

more than twice (less than 0.1% of the pixels), and RLow(n)/H(n) is below 1 in more than 72% of the grid cells. Fig. 2c 

depicts the trend indicator index 𝝆. Positive values of 𝝆 are observed over most of the globe. The ratio between high and low 145 

records is higher than 1 in 88% of the globe, and higher than 2 in 51% of the pixels. This asymmetry in the number of high 

and low records is a good indicator of a trend in the SST. It is interesting to notice that, even though the overwhelming 

majority of the oceanic area is warming (as evidenced by the predominance of the red color in all record-breaking maps), 

there are some islands of consistent cooling (where the spatial patterns show a coherent persistence of the color blue in many 

neighboring pixels). We will discuss some of the most interesting cooling islands' features in the next section. 150 

We also examined differences in regional trends (the regions are marked in Fig. 1b). Fig. 3 presents box plots of the 

distribution of high and low SST records over the expected TFRV value (R(n)/H(n)) and of 𝝆 for each region. Once again, 

the results confirm the asymmetry between the number of high and low records. The global distribution of high records is 
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shifted to the right (towards higher values) compared to the expected distribution of records for a TFRV. All regions show an 

excess of high records compared to both the expected value for a TFRV and to the number of low records. The asymmetry 155 

between the number of high and low records is evident in all oceanic regions since the medians of the distribution of the 

observed high (low) records were higher (lower) than 1 in all of them (Figs. 3a and 3b). The Arctic, Indian, South Pacific, 

South and North Atlantic Oceans are the regions where the excess of high records is more prominent, all of them exhibiting 

values of over 75% above the expected number (Fig. 3a). The South Atlantic ocean maintains the highest ratio between high 

and low records (Fig. 3c). These results further confirm the global extent of the positive trend in SST; global warming of the 160 

oceans. 

Are the number of records observed in the global SST 75-year time series significantly different from those calculated for a 

TFRV time series of the same length? To answer this question, Fig. 4 compares the cumulative distribution of the observed 

number of high (red) and low (blue) records of all the pixels (over the whole globe) with the theoretical TFRV distribution of 

records (green). It is clear that the number of high records is always larger than the one for the theoretical distribution; that 165 

is, the observed curve is shifted to the right compared to the theoretical one. The opposite behavior is observed for the 

number of low records. The Kolmogorov-Smirnov (KS) test indicates that the maximum distance D between the distribution 

of observed high (low) records and the theoretical cumulative distribution function (CDF) of the number of records expected 

for a TRFV (Eq. 3) is DH=0.32 (DL=0.31). To assess the significance of the D values obtained for the observed records, the 

KS test was applied on 3000 CDFs of the number of records obtained for TFRV Monte Carlo simulations. The probability 170 

distribution function (PDF) of the maximum distance D for the Monte Carlo simulations is shown in Fig. 4c. The green 

dashed line shows the 99.9% percentile (D99.9), and the maximum deviations, DH and DL, are highlighted in red and blue 

dashed lines, respectively. The results show that the observed DH and DL are overwhelmingly significant, both about 6 times 

D99.9, the distance expected for the 99.9% percentile of the Monte Carlo simulations' PDF. Thus, the global ocean SST does 

not represent a TFRV, and warming is evident. 175 

 Having established the global (bulk) significance of  SST trends, we next consider the local significance in order to explore 

spatial patterns. To that end, for each 2º by 2º pixel of the grid, we analyzed the deviation from expectation in standard 

deviation units, given by the difference between the observed number of records, R(n), and the expected number of records, 

H(n), for a TFRV, divided by the theoretical standard deviation, 𝝈 = \𝐕(𝐧), where V(n) is the variance of the TFRV 

distribution, 180 

𝑫𝒆𝒗 = 𝐑(𝐧)c𝐇(𝐧)
𝛔

 .    (7) 

 

The record-breaking maps in Fig. 5 show that in 15.8% of the pixels, the number of high records exceeds the expected TFRV 

value by more than 2 standard deviations, about 12 times as many pixels as for TFRV. In about 2.4% of the pixels, it is above 

3 standard deviations, in contrast to a TFRV value of (virtually) zero. We note the clear positive record-breaking trend over 185 

almost the entire Atlantic Ocean (except for high latitudes in the northern hemisphere), the tropical Pacific Ocean, and most 
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of the Indian Ocean (especially near India and Western Australia). These positive regional anomalies are more 

comprehensively addressed below. 

The low records show large deviations from TFRV in the Arctic region, in the North and South Atlantic, and in some regions 

of the Indian and Pacific Oceans (where the colors are dark red, signaling fewer records than expected). The histograms in 190 

panels 5c and 5d show 𝑫𝒆𝒗 values as high as 6 for high records and 3 for low records. Although the associated theoretical 

PDF of the number of records for a TFRV is asymmetric, the difference between the mean and the median of the distribution 

for 75 observations is very small (4.9 and 5, respectively). Therefore, using the normal approximation, the deviations 

displayed in Fig. 3 are again highly significant and demonstrate that the number of records of the SST time series of each 

pixel is far from that calculated for a TFRV. For example, a 2-standard-deviation value would be very unlikely for the 195 

theoretical distribution of the records of a TFRV time series, being above the 95th percentile. 

4 Discussion 

This work uses record-breaking statistics for identifying trends in a global dataset of SST time series (between 1946 and 

2020) and explores their spatial patterns. This method has many advantages, and it is free from assumptions on the 

distribution. The record-breaking maps allow for both estimating the existence and significance of trends locally (per pixel, 200 

see Figs. 2 and 5 as examples) and revealing spatial structures (such as areas with significantly strong trends or, in contrast, 

areas with opposite trends). These spatial patterns can hint at the geophysical processes controlling the explored variable. 

This method is particularly well-suited for datasets consisting of many but relatively short time series, as is often the case in 

climatology. 
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The asymmetry between the numbers of high and low records and their deviation from the theoretical calculation for a TRFV 205 

indicate a significant increasing trend in SST over most of the Oceans but also expose some cooling regions (Figs. 2-5). 

Comparing panels 2a and 2c reveals extensive warming regions, associated with large numbers of high records and small 

numbers of low records, in the tropical and mid-latitude Northern Atlantic Ocean, the whole South Atlantic Ocean, south of 

Australia, in the vicinity of Indonesia (in the Indian Ocean), and near the west coast of Mexico (in the Pacific Ocean). 

Despite the overwhelming warming, coherent cooling patterns are also observed in regions characterized by a small number 210 

of high records (Fig. 2a) and a large number of low records (Fig. 2c). Some of the regions where low records were broken 

more frequently (like in the tropical eastern Pacific and in the Indian Ocean) may be associated with strong events of the 

negative phase of natural climate oscillations like El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) 

in the Southern Hemisphere. Previous observations that showed cooling in part of the North Atlantic Ocean followed by 

warming in the last two decades (Deser et al., 2010) are consistent with the maps in Fig. 2. Also noteworthy are the large 215 

spatial clusters that show the same trend signals, proving the consistency in the spatial correlations of R(n)/H(n). Next, we 

focus on some interesting islands of cooling, such as the high latitudes of the Northern Atlantic, near Greenland, some areas 

in the North Pacific, and, even more interestingly, in the Southern Ocean between Australia and South America. 

The cooling observed here in the North Atlantic region is consistent with a phenomenon known as "the cold blob", a region 

in the ocean near Greenland that has been experiencing cooling over the years despite global warming. The causes for this 220 

cooling have been associated with ice melting in high latitudes that induces changes in the ocean circulation due to increased 

freshwater fluxes, causing a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) and reduced heat 

transport to that region (Josey, et al., 2018, Rahmstorf et al., 2015). More recently, other factors, such as heat transport out of 

the "cold blob" to higher latitudes and increased cloudiness over the area, have also been linked to the cooling in this region 

(Keil et al., 2020). The causes of such cooling have been linked to human footprint, mainly the anthropogenic release of 225 

greenhouse gases into the atmosphere, as opposed to natural variability (Chemke  et al., 2020). A similar cooling pattern is 

observed here near Antarctica, around longitude 200o. Cooling in the surface of the Southern Ocean and warming of the 

subsurface have been previously reported (Masson-Delmotte, 2021, Haumann et al., 2020). However, unlike previous 

findings, in the present analysis, the cooling trend seems to appear in a very specific geographical spot, i.e., near the Ross 

gyre (Fig. 2). The mechanisms associated with such cooling are still under investigation. Upwelling delays the warming of 230 

the sea surface but cannot explain the cooling. Haumann et al. (2020) proposed that the cooling is due to wind-driven sea-ice 

transport and its subsequent melting, decreasing the salinity of the upper ocean. Freshening of the upper ocean weakens 

convection and vertical mixing, preventing the warming of the ocean surface (Armour et al., 2016). Finally, the cooling 

pattern in the North Pacific is not as consistent as the other ones. The time series in this region presents an SST increase until 

around the 1980s and then a decrease. Analyzing SST from observations and models, Deser et al. (2010) found a low 235 

significance of trends in this region. The analysis performed here shows that record-breaking statistics is a powerful tool 

capable of detecting trends in noisy global time series and demonstrates how to evaluate their significance in climate science 

studies. 
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 350 
Figure 1: Number of observed high (a) and low (b) records of SST for the period between 1946 to 2020. Panels (c) and (d) 

show examples of time series of annual SST for two pixels, marked by yellow dots on panel (a): points A (0ºN; 95ºE) and B 

(40ºN; 195ºE), high/low records are marked by red/blue dots on the time series. Location A shows a clear increasing trend, 

with high records exceeding the low ones, while at location B, the opposite holds. The asymmetry between the number of 

high and low records and their deviation from the expected value for a TFRV were used to identify trends and their 355 

significance in each pixel's time series. The boxes in (b) divide  the global oceans for subsequent analysis: Antarctic (ANT - 

gray), Arctic (ARC - dark green), Indian (IND - green), North Pacific (NP - orange), South Pacific (SP - magenta), North 

Atlantic (NA - red), and South Atlantic (SA - navy blue). 
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Figure 2: Number of observed high (a) and low (c) records of SST over the expected value for a TFRV in a 75-years time 

series. The trend indicator r, given by the asymmetry between the number of high and low records, r = ln(RHigh/RLow) (e), 

and their respective distributions for the whole globe (b, d, f) are presented. The red dashed lines mark the thresholds where 

observed records exceed the expected value in (b) and (d) or when the number of high records is larger than the low records 365 

in (f). These three different indicators combined can be used to efficiently and robustly detect trends in noisy time series. The 

asymmetry between high and low records is evident, with a large number of high records and a small number of low records 

over most of the globe, particularly in the tropical and subtropical Atlantic, the Central Pacific, the eastern Indian Ocean, and 

the Southern sea. Note that, although the overwhelming majority of the ocean is warming, some islands of consistent cooling 

are observed in the maps. 370 
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Figure 3: Box-plots of the number of high (a) and low (b) records over the expected value for a TFRV, and r = ln(high/low) 

records (c) for different oceanic regions (as marked in Fig. 1): Antarctic (ANT - gray), Arctic (ARC - dark green), Indian 

(IND - green), North Pacific (NP - orange), South Pacific (SP - magenta), North Atlantic (NA - red), and South Atlantic (SA - 375 

navy blue). The red dashed lines in (a,b) mark a ratio of 1 between the observed number of records and the expected value 

for a TFRV, and in (c) when the high records number is larger than the number of low records. An excess of high records 

compared to both the expected value for a TFRV and to low records is observed for all regions. The South Atlantic Ocean 

exhibits the largest ratio between high and low records. 
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Figure 4: Cumulative distribution functions (CDFs) of the theoretical TFRV number of records from Eq. (3) (in green) and 390 

number of observed high (red) (a), and low (blue) (b) records. The Kolmogorov-Smirnov test was applied to the 

distributions, and the maximum distances, DH and DL, were obtained for the high and low records, respectively (black 

vertical lines). Notice that the exact theoretical distribution of the number of records of a TFRV time series of length 75, 

given by Eq. (3), was used, and it is a discrete distribution (since the number of records in a time series is an integer > 0).  

The probability distribution function of the maximum distance D for Monte Carlo simulations of the number of records of 395 

TFRV (c) was used to assess the significance of the results. The 99.9% percentile and the maximum deviations, DH and DL, 

are shown in green, red, and blue dashed lines, respectively. Both DH and DL are far above the 99.9% percentile, 

demonstrating the high statistical significance of SST global trends in high and low records. 
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 400 
 

 
Figure 5: Departure of the observed number of high (a) and low (b) records from expectation, in units of standard deviation, 

and their frequency distributions (c and d). In 15.8% of the pixels, the number of high records exceeds 2 standard deviations 

above expectation. This value is about 12 times as many pixels with that property for a TFRV and is very unlikely to result 405 

from a TFRV time series. Large deviations are observed over all the oceans for high records and predominantly in the Arctic 

and Atlantic Oceans for low records. 
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