
Record-breaking statistics detect islands of cooling in a sea of warming 
 

Answers to reviewer 1 
 
 
"In this study, the authors investigate the observed record-breaking SST events by comparing 
with the expected rate for a trend-free random variable (TFRV). The authors find the 
asymmetric nature of the high and low records and reveal islands of cooling in the North 
Atlantic and Southern Ocean." 
 
We thank the reviewer for their comments and the time spent with this review. But we must 
point out that the findings far exceed what is selected above. Below is a list of the findings 
reported in the original manuscript: 
 
i) A new tool: maps of the number of high and low records of SST based on 75 years of 
global observations are introduced in Figure 1. 
 
ii) The global spatial distribution of the number of observed high and low records of SST 
over the expected number of records for a trend-free random variable (TFRV), showing 
that in 83% of the grid cells, the number of high records is above the expected, and in 17% 
it is more than twice the expected value for a TFRV, while the number of low records very 
rarely exceed the expected value for a TFRV (Figures 2a, 2b, 3a and 3b).  This is an 
overwhelming evidence for ocean warming from a novel perspective. 
 
iii) The global spatial distribution of the ratio between the number of high over low records 
of SST, showing that the ratio of high to low records is exceeds unity in 88% of the globe, 
and higher than 2 in 51% of the pixels, again pointing to robust trends in the SST time 
series (Figures 2c and 3c). 
 
iv) The significance of the trends for each pixel was estimated using global maps of the 
deviation of number of records from expectation in standard deviation units, showing that 
in 15.8% of the pixels, the number of high records exceeds the expected TFRV value by 
more than 2 standard deviations (Figure 5). 
 
v) Another important result of this study is the analysis of the collective trends in sets of 
pixels. The maps of the trends display spatial coherence while the bulk significance of the 
trends, quantified by the Kolmogorov-Smirnov test, is well above 99.9% (Figure 4c). 
 
vi) Without any "tuning", the approach reveals islands of cooling, such as the well-known 
"cold blob" in the North Atlantic and a surprising result: a coherent cooling area in the 
Southern Ocean, near the Ross sea gyre, not previously reported. 
 
The reviewers comments helped us to clarify the above points. 
 
"The record-breaking theory is interesting; however, the assumption of the theory may not be 
enough reliable and the results may be sensitive to the length of a time series. " 
 
We are glad that the reviewer finds the theory interesting.  We must add, however, that 
contrary to their statement, record-breaking is more robust than conventional methods, 
commonly used to estimate trends in time series. Specifically, unlike most regression 
methods, record-breaking statistics is distribution-invariant (that is, it does not depend on 
the distribution of the underlying random variable). Moreover, it is unit-insensitive, handles 



non-uniform or intermittent sampling, and can also be used to identify non-linear trends. 
When applied in tandem with spatial information of many adjacent pixels (as is done in this 
work for the 1st time, to the best of our knowledge), such analyses detect coherent spatial 
structures of trends and their significance.  
 
Returning to the reviewer’s specific point: sensitivity to a length of time series, we offer the 
following technical remarks.   
  
For a TFRV, the probability of breaking a record decreases monotonically at a rate of 1/n. 
Therefore, the expected number of records in a TFRV is given by Equation 2, that is, 
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Hence as time passes (n increases), it becomes harder to break a record. This is the 
crucial property that implies that record-breaking statistics is actually less sensitive to time 
series length than other regression methods. For example, consider the following: for a 
time series of a 1000 years (points), the expected number of records (NR) for a TFRV is 
about 7. Meanwhile, in our 75-year time series (expected NR = 5) there are many pixels 
with NR > 8 and even reaching NR=14.  Hence, n=75 is "as good as" n=1000.  Thus, this 
is a conclusion hardly “sensitive to a length of a time series”, and unmatched by the 
conventional regression methods. 
 
We revised the manuscript to clarify this point by emphasizing the robustness of the 
record-breaking statistics its insensitivity to time series length. We also applied record-
breaking statistics to CMIP6 GCM pre-industrial control runs and compared them to the 
expected TFRV results, as suggested by the reviewer (see below). The main conclusion 
from these analyses was that the distribution of records from GCM PI control run samples 
is very similar to the one from a TFRV. The revised manuscript includes the main results 
(Figures S2 and S6 below) and conclusions from this analysis. The focus of this paper, 
however, remains on identifying trends in SST observations with a robust method. 
 
Major comments: 
 
1. “The results of this study depend mainly on the comparison with the TFRV model. However, 
the climate system is clearly not a TFRV. Significant trends in SST can be detected even without 
the influence of human-induced greenhouse gases. As Deser et al.(2013) and Wallace et al. 
(2015), the internal variability is important for multi-decadal trends in climate variables, which 
are independent of human activities.” 
 
As explained above, no claim is made in the paper that climate system is a TFRV.  We use 
TFRV merely as a reference which, in contrast to other methods, is distribution-
independent, e.g., whether the fluctuations are uniform, normal, lognormal, etc.  
 
As for the reviewer’s second point: the goal of this study was only to identify trends in SST 
time series and discuss their significance using a robust method, rather than to separate 
the anthropogenic influence from the internal natural variability of the climate system.  
These points are amplified in the revised  manuscript.  
 
"The authors use only a trend-free model for comparison, which is more of a hypothesis 
testing tool to test observed trends and is of little implication for the climate community to 
understand the observations and climate change. 



It is suggested that considering internal trends of the climate variables, such as add the 
trend distribution of Pre-industrial experiments from CMIP5/6 into the record-breaking 
statistics and comparing it with observed data, may yield more valuable results." 

 
We thank the reviewer for the suggestion. Our study did not aim to separate human-
induced warming from natural variability and, therefore, in the original manuscript, pre-
industrial experiments from CMIP5/6 were not considered. Rather, our aim was to identify 
observed trends. Therefore we used one of the best-sampled, high-quality data set of SST 
observations.  However, as pointed out by the reviewer, record-breaking statistics can be applied 
to global climate models to explore the contribution of the internal climate variability to SST trends.  
 
Following the reviewer’s comments, we performed a thorough analysis aiming to compare SST 
trends from observations, TFRV and GCM pre-industrial (PI) GHG runs. We have analyzed MRI-
ESM2-0 CMIP6 global climate model (GCM). This model was chosen because, according to Meehl 
et al., 2020, it has a transient climate response (TCR) of 1.6 K (midrange suggested by the 
reviewer 2), and because it predicts moderate increases in temperature, relative to other CMIP6 
models and presents low residues (Zelinka et al., 2020 – supplementary material). 
 

Record breaking statistics was applied to global time series of simulated SST (1 x 1 degree lat/lon) 
in the pre-industrial control run (PI control) from the model, which keeps the GHG levels steady 
after 1850 (considered the reference year for the transition from the pre-industrial era to the 
present). 701 years of PI control run were available for this model. As suggested by reviewer 2, for 
each grid cell we took 1000 random 75-year chunks from the PI control global simulation of MRI-
ESM2-0 model to explore the effect of natural variability in the number of records. Ties were dealt 
with by adding a small random noise to each SST value. 

We compared the number of records of the modelled PI control (which accounts only for internal 
variability of the climate system – without an increase in GHG) with that of a TFRV. Note that our 
trend-free random variable (TFRV), it is devoid of trends not only in the mean value but in variance 
and other moments. In the parlance of probability this is an independent, identically distribution 
(I.I.D.) random variable. Thus, one expects the climate internal variability to affect both, record 
highs and lows and exceed I.I.D variance. Yet, the PI control run samples are much closer to the 
expected results of TFRV than the observational data set.  

Histograms of rho and of the high and low number of observed records over the TFRV expected 
values (NR/Exp) show that for the model's PI control realizations these are much closer to TFRV 
than to the observational SST dataset (ERSST-v5). While for the observations (Fig. 2 of the 
original manuscript), the peaks of the distribution the number of high (low) records was clearly 
above (below) the expected TFRV value, for the PI control run samples, the peak of the NR/Exp 
distributions is at 1 (Figure S1 below). The comparison of rho histograms of confirm this result. For 
the observations, the distribution of rho peaks much higher than 0 (Fig. 2 of the original 
manuscript), while in the Figure S1 below rho peaks at 0.  

Recall that the internal variability alone is expected to increase the number of record highs and 
record lows evenly. However, we do not see this. The expected standard deviation of the records 
for TFRV is 1.8, and the model’s PI control realizations have a standard deviation of 1.9. This 
resemblance of the records drawn from the GCM PI control with the TFRV reaffirms robustness of  
record-breaking in this novel context.  



Fig S1: Histograms of observed over expected number of records and rho for the PI control run 
samples of the MRI-ESM2-0 CMIP6 global climate model. 

 

The similarity between the number of records of TFRV and the PI control run samples, in contrast 
to the distribution of the observed number of records, is confirmed in the boxplots of Figure S2 
below. (Readers may recall that boxplots allow comparison of distributions at a glance. The colored 
box is delimited by the first and third quartiles, Q1=P25 and Q3=P75. The thick line inside the box 
shows the median for each distribution. The size of the whiskers is 1.5 the interquartile range. 
Therefore, any point outside the whiskers is considered an outlier.) 
 

Figure S2 also shows boxplots of the modelled SST NR/Exp of the PI control run samples and the 
projected SST NR/Exp for 2015-2100 (using the SSP2-4.5 scenario), towards addressing question 
2 of the reviewer 2.  



 
Fig S2: Boxplots of the expected number of high and low records and of rho for the observed SST 
between 1946-2020, TRFV, modelled SST of the PI control run samples, modelled SST between 
1946-2020, projected SST between 2015-2100 (using the SSP2-4.5 scenario). The simulations 
were from the MRI-ESM2-0 CMIP6 global climate model. 

 

Figure S3 shows the mean spatial distribution of the high and low NR/Exp and rho calculated from 
1000 maps of the number of records (each of them for a random 75-year sample) of the modelled 
PI control run samples. We observe that the spatial pattern is almost homogeneous with weak 
values of NR/Exp and rho (close to 1 and 0, respectively). Unlike the observational results, there 
are no robust cooling or warming islands in these maps. The cooling and warming regions are due 
to sampling fluctuations, in contrast to our observational results 



 

Figure S3: Mean spatial distribution of the high and low NR/Exp and rho calculated from 1000 
maps of the number of records (each of them for a random 75-year sample) of the modelled MRI-
ESM2-0 PI control run samples. 

 
The Kolmogorov-Smirnov (KS) test shows the following statistics for the MRI-ESM2-0 PI-control 
run samples: 
 
Dhigh = 0.041 
Dlow = 0.035 
 
The statistics of the test indicate that the number of records of the MRI-ESM2-0 PI control run 
samples are significantly different from those expected for a TFRV distribution, both for RHigh and 
RLow. However, for the observations in the manuscript we got much higher D values, around 0.3 
(far off the scale of the figure).  
 



 

 
Figure S4: Cumulative frequency distributions of the high and low number of records for the MRI-
ESM2-0 PI-control run samples compared to the TRFV distribution (a and b). Figure c shows the 
results of the statistics D of the Kolmogorov-Smirnov (KS) test for PI-control run samples 
compared to distribution of D we would get from a TFRV Monte-Carlo distribution. 

 
We also compared the rho distribution from the modelled PI control run samples with the values of 
rho we got from Monte-Carlo simulations for TFRV. We see that the difference between these two 
distributions is very small. The statistics of the KS test for these distributions was Drho=0.015. 

Figure S4: Comparison between the frequency distribution of rho for the MRI-ESM2-0 PI-control 
run samples and Montecarlo simulations of a TRFV. 
 

The distribution of the deviation from expectancy (in standard deviation units) of the PI control run 
samples also peaks at 0 (Figure S5), unlike our results for the observational dataset, which were 
clearly shifted to positive values in the case of high records and negative values for low records 
(Figure 5 of the original manuscript). 



Figure S5: Histograms of the high and low deviation from expectancy of the number of records for 
PI control run samples the MRI-ESM2-0 CMIP6 global climate model. 

 

Boxplots show that the deviation from the expectancy of the PI control run samples is very similar 
to that of a TRFV (Figure S6). On the other hand, the deviation from expectacy for the observed, 
modelled and projected SSTs number of records are quite different from that of a TFRV, 
corroborating the results shown in Figure S2. 



 

Figure S6: Boxplots of the high and low deviation from expectancy of the number of records for 
the: observed SST between 1946-2020, TRFV, modelled SST of the PI control run samples, 
modelled SST between 1946-2020, projected SST between 2015-2100 (using the SSP2-4.5 
scenario). The simulations were from the MRI-ESM2-0 CMIP6 global climate model.  

 
 
"2. The results may depend to a large extent on the sample size. As shown in Equation 2, the 
broken k-record varies with the length of the time series. In other words, the results may be 
sensitive to the length of the time series and not robust." 
 
 
 



As argued above, record-breaking statistics is less sensitive to the time series length than 
other methods. We revised the manuscript accordingly. Specifically, we emphasize that, as 
the probability of breaking a record decreases monotonically at a rate of 1/n, the expected 
number of records in a TFRV (Equation 2), increases logarithmically, the slowest possible 
convergence.   
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