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Abstract. Bottom-up accounting methods of carbon dioxide (CO2) emissions can provide high-resolution emissions estimates

at a global scale; however, the necessary in situ observations to verify these emissions are limited in coverage. Space-based

observations of CO2 in the Earth’s atmosphere expand this coverage to a near-global scale to inform carbon cycle science

and record emission trends. This work applied an observing system simulation experiment (OSSE) to characterize the flux

information contained in “Snapshot Area Map” (SAM) CO2 measurements from the Orbiting Carbon Observatory-3 (OCO-5

3). Unlike previous space-based carbon-observing systems, OCO-3 SAMs provide spatially dense observations of CO2 over

targeted urban areas at unprecedented coverage. A Bayesian inversion using synthetic data was applied to these SAMs to

explore their effectiveness in optimizing estimates of fossil fuel CO2 (FFCO2) emissions from the Los Angeles Basin. Results

demonstrated that errors in the locations of large point sources diminished the inversion’s ability to reduce errors at the sub-

city-level. Furthermore, reductions in atmospheric transport error exacerbated these issues. Only after geolocation errors in10

large point source locations were removed and atmospheric transport error was reduced did individual SAM observations

provide modest corrections to prior flux estimates. The aggregation of multiple SAMs proved to be effective in reducing

systematic errors in manufacturing- and transportation-related estimates, demonstrating the need for similar measurements in

future space-based missions.

1 Introduction15

Atmospheric carbon dioxide (CO2) is a key driver of global warming (Zhong and Haigh, 2013), and human activity is a signifi-

cant source of this greenhouse gas (GHG) through the combustion of fossil fuels (Masson-Delmotte et al., 2021). Atmospheric

CO2 has increased notably in the past decades (Keeling and Keeling, 2017), driving policy-based efforts to reduce carbon

emissions from anthropogenic sources. A notable example of such international policy is the United Nation’s Paris Agreement
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(2015) aimed at keeping global warming below 1.5◦C (Masson-Delmotte et al., 2018). At the city-level, the C40 Cities Climate20

Leadership Group brings together local leaders from around the globe to focus on climate issues (Davidson et al., 2019). The

governing bodies, who are signatories of these agreements, commit to the use of carbon accounting strategies and emissions re-

duction goals, but the ability to monitor and verify downward trends in CO2 at high spatiotemporal resolution while attributing

them to societal changes remains challenging (Janssens-Maenhout et al., 2020).

Anthropogenic carbon accounting uses “bottom-up” and “top-down” methods to constrain global CO2 fluxes despite exist-25

ing limitations. A typical bottom-up approach uses statistical methods and energy use information to construct spatially explicit

inventories. Typically, multiple data streams from various economic sectors are used to synthesize estimates of total emissions

which are then spatially distributed across geographic regions. Several bottom-up products exist for characterizing the distri-

bution of anthropogenic CO2 emissions at local, national, and global scales. Examples include: Hestia [local; Gurney et al.

(2019)], Vulcan 3.0 [national; Gurney et al. (2020a)], the Emissions Database for Global Atmospheric Research (EDGAR), and30

the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) [global; Janssens-Maenhout et al. (2019); Oda et al. (2018)].

These inventories serve as essential inputs for model simulations and references for climate reduction policies; however, their

construction methods vary, as many rely on self-reported information and physical proxies to allocate spatial distributions of

emissions. For this reason, considerable differences exist between inventories (Hutchins et al., 2016; Gately and Hutyra, 2017;

Oda et al., 2018, 2019). Therefore, these products are often compared with atmospheric observations.35

Top-down constraints on CO2 fluxes use atmospheric observations to infer source emission rates. Ground-based networks

provide high-frequency CO2 observations, although the density of network sites is often sparse. Examples of such networks

include the Utah Urban CO2 Network [UUCON; Bares et al. (2019)], the Indianapolis Flux Experiment [INFLUX; Davis

et al. (2017)], the Berkeley Atmospheric CO2 Observation Network [BEACO2N; Shusterman et al. (2018)] and the Munich

Urban Carbon Column network [MUCCnet; Dietrich et al. (2021)]. All are aimed at constraining urban CO2 emissions at city-40

level and sub-city-level scales (Mitchell et al., 2018b). Novel approaches to increase the spatial coverage of these observations

include mobile platforms such as light rail (Mitchell et al., 2018a) and on-road mobile measurements (Lee et al., 2017).

Atmospheric transport mixes CO2 from a variety of sources, producing a superimposed downwind mixing ratio at the receptors

of these measurement networks. Through inverse modeling methods, information about the sources of CO2 signals can be

retrieved from observations, revealing insights into the dynamics of these signals and the assumptions made in the construction45

of prior estimates (Rodgers, 2000). Previous studies have used long-running time series of surface-based CO2 measurements

in their calculations to optimize prior emissions estimates from inventories at the local/regional level (Lauvaux et al., 2016;

Kunik et al., 2019; Mallia et al., 2020; Turner et al., 2020; Lauvaux et al., 2020), but surface observations are limited to a

handful of cities.

In an effort to increase the spatial coverage of atmospheric CO2 observations and work towards global monitoring of sources50

and sinks, space-based platforms have come online in recent years. Current missions include NASA’s Orbiting Carbon Obser-

vatory [OCO; Crisp et al. (2004)], JAXA’s Greenhouse Gases Observing Satellite [GOSAT; Yokota et al. (2009)], and CNES’s

MicroCarb (Bertaux et al., 2020). Additionally, several instruments are in planning stages with notable examples being NASA’s

GeoCARB (Polonsky et al., 2014) and ESA’s CO2M (Sierk et al., 2019) which are tentatively scheduled for launch in 2024
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and 2025, respectively. Although the original intention of space-based observatories was to monitor columned-averaged CO255

(XCO2) on a global scale, these instruments are also effective at constraining anthropogenic emissions at regional and local

scales. In particular, observations from OCO-2 were used to confirm relationships between city density and CO2 emissions that

were previously demonstrated using only emissions inventories (Wu et al., 2020; Yang et al., 2020) while another study iden-

tified an underestimation of CO2 flux along the Nile River Delta (Shekhar et al., 2020). These studies constrained emissions

from a whole-city perspective, not addressing sub-city-level contributions or individual sectors. Bayesian synthesis inversions60

have also been applied to XCO2 observations at city-level (Ye et al., 2020; Lei et al., 2021) and global (Wang et al., 2018;

Lespinas et al., 2020) scales to optimize prior surface flux estimates (inventories) based on instrument observations.

Some of the space-based platforms listed above provide narrow transects of observations in a north-south orientation while

others observe wider tracks at lower resolutions. Typical target revisit times range from three to 16 days (Kataoka et al.,

2017); however, this is not the case for the latest installment of the OCO mission: OCO-3. This instrument was launched in65

2019 and implements new machinery to increase transect widths. OCO-3 is housed on the International Space Station and is

capable of accumulating spatially dense XCO2 observations over target locations in a matter of minutes, creating “Snapshot

Area Maps” (SAMs) (Eldering et al., 2019; Taylor et al., 2020). While OCO-2 can provide a single 10 km wide track of

∼ 2 km-spaced soundings over an area of interest every 16 days at ∼13:30 local time, OCO-3’s shorter revisit time provides

multiple 80 km × 80 km SAMs over the same area at varying times of day and similar resolution, observing three times the70

surface flux signal as OCO-2 (Kiel et al., 2021). The increased spatiotemporal coverage from SAMs has the potential to provide

unprecedented insights into the emission dynamics of many megacities around the world, likewise increasing the information

available for inversion schemes.

To investigate the utility of the information content provided by OCO-3 SAMs, an observing system simulation experiment

(OSSE) was designed and implemented over the Los Angeles Basin (referred to hereafter as LA). The use of synthetic data from75

OCO-3 eliminated the potential for systematic biases from local CO2 emissions reductions during the COVID-19 pandemic

lockdowns (Weir et al., 2021) and biases in preliminary data from OCO-3 (Buchwitz et al., 2021; Taylor et al., 2020). The use of

LA as a test bed ensured the availability of multiple high-resolution emission inventories and meteorological data. Furthermore,

LA’s large urban population, represented with emission inventories, provided sizable anthropogenic enhancements in XCO2-

space. Here, a previously-established Bayesian inversion OSSE scheme (Kunik et al., 2019) was applied to synthetic SAMs80

to investigate the effects of large localized uncertainty, spatial resolution of input information, atmospheric transport error,

and systematic bias on their information content. Results demonstrated the potential for SAMs to inform prior flux estimates

at the sub-city-level with implications for the urban carbon cycle, construction of emissions inventories, and locally targeted

emissions reduction policies. As the constellation of CO2-observing satellites continues to grow, this work emphasizes the

importance of spatially dense XCO2 retrievals over megacities around the world. Although a few cities have operational85

ground-based observing systems, these space-based instruments provide a means to optimize bottom-up estimates and verify

current/future emissions agreements at a variety of political scales (Pan et al., 2021).
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2 Methods

2.1 Defining the Flux Domain

This work applied an OSSE over LA, an area of varied topography with the Pacific Ocean to the southwest. The U.S. Census90

Bureau’s Annual Estimates of the Residential Population estimates the 2021 population of this area to be 18.8 million. To

incorporate the size of larger SAMs, the flux domain encompassed the entirety of the LA Basin, San Fernando, and San

Bernardino valleys. Depictions of this area and the domain are presented in Fig. 1 (top).

2.2 Emission Inventories

The Bayesian inversion scheme used in this OSSE optimized a user-supplied prior flux estimate to better approximate “true”95

fluxes within LA. Under this scheme, the “true” fluxes are explicitly used to derive synthetic observations of fossil fuel based

CO2 (FFCO2) signals, making them “known” by the user. Here, two spatially explicit CO2 emissons inventories were used:

Vulcan 3.0 and ODIAC-VIIRS. Vulcan 3.0 synthesizes data from multiple sources to represent sector-specific information at

an hourly scale and (roughly) 1 km × 1 km resolution (Gurney et al., 2020b, a) whereas ODIAC-VIIRS uses global nighttime

light observations from space as a proxy for the distribution of non-point source emissions at the same resolution (Oda et al.,100

2021). FFCO2 (“true”) fluxes from LA were represented using nine sectors from the latest available year (2015) of Vulcan 3.0

but, for the purposes of this study, commercial maritime and coastal emissions have been omitted since off-shore emissions are

not included in ODIAC-VIIRS. For simplicity, the remaining sectors were aggregated into four categories: “Power Industry”,

“Manufacturing”, “Transportation”, and “Buildings”. Specifics of this aggregation are included in Tab. 1.

Table 1. Similar Vulcan 3.0 emissions sectors are aggregated into four categories. Category names are in the left column and the correspond-

ing Vulcan sectors are in the right column.

Category Vulcan 3.0 Sectors

Power Industry Electricity Production

Manufacturing Industrial, Cement Production

Transportation Onroad, Non-road (ATV), Rail, Airport (Taxi, Takeoff)

Buildings Residential, Commerical

The version of ODIAC used as the prior estimate was supplemented by the Visible Infrared Imaging Radiometer Suite105

(VIIRS) onboard the Suomi National Polar-Orbiting Partnership (NPP) operated by the United States’ National Oceanic and

Atmospheric Administraion (NOAA) (Oda et al., 2021). This particular iteration of ODIAC provided annual surface flux

estimates of FFCO2 at roughly 1 km × 1km resolution. Since this inventory uses global nighttime light observations to

distribute emission estimates, sector-specific information was not available. To obtain the same temporal resolution as Vulcan

3.0, the annual ODIAC-VIIRS data was first downscaled to monthly timesteps. This initial downscaling was accomplished by110

creating spatial weighting factors via ratios of monthly and annual data from an alternative version of ODIAC for year 2019
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Figure 1. [Top] The urban domain of interest (yellow, dashed box) located in the Los Angeles Basin in southern California, USA. The domain

also encompasses the San Fernando and San Bernardino Valleys. [Middle] Mean flux distributions of two CO2 emission inventories for the

Los Angeles Basin are presented here. On the left, the mean flux of the ODIAC-VIIRS inventory is displayed. These emissions are from year

2019. On the right, surface flux as reported by the Vulcan 3.0 emission inventory is displayed. This is from year 2015. [Bottom] Displayed

here are the differences between the ODIAC-VIIRS and Vulcan 3.0 emission inventories (ODIAC-VIIRS minus Vulcan 3.0). (Map Data ©

2022 INEGI Imagery ©2022 TerraMetrics)
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[ODIAC2020b; (Oda, 2015)]. Weekly and hourly temporal downscaling was achieved by applying the Temporal Improvements

for Modeling Emissions by Scaling (TIMES) scheme developed by Nassar et al. (2013). Averaged distributions for both

inventories are presented along with their spatial differences in Fig. 1 (middle, bottom). The difference plot highlights the

higher area emissions present in ODIAC, the well-defined interstate highways in Vulcan 3.0, and Vulcan’s large point source115

(LPS) emissions along the southern coast associated with industrial sources.

2.3 Generating Pseudo-Enhancements with X-STILT

Representing the “true” emissions with Vulcan 3.0 allowed for the investigation of sector-specific influences in XCO2-space

since the relative contribution of each sector to the “observed” CO2 signal is explicitly known in this scheme. First, preliminary

SAMs were obtained from the OCO-3 instrument (Taylor et al., 2020; Gunson and Eldering, 2020). The geolocations of their120

soundings were then used as the locations of the pseudo-observations while their associated XCO2 values were generated with

the column-averaged version of the Stochastic Time Inverted Lagrangian Transport (X-STILT) model (Wu et al., 2018). This

time-inverted model distributes particles vertically within an atmospheric column to represent air parcels. Using supplied me-

teorological fields, these particles are propagated backwards in time where their locations and duration below the atmospheric

boundary layer contribute to an influence footprint for the initial column location. The influence footprints generated for each125

OCO-3 sounding were then convolved with the Vulcan 3.0 emission inventory to determine the “true” emissions contributions

to each column observation over LA. Details of the footprint construction and convolution process are provided by Wu et al.

(2018) and are briefly described as:

fw(xn,r, tn,r|xi,yj , tk) =
mair

hρ(xi,yj , tk)
1

Ntot

Ntot∑

p=1

∆tp,i,j,z≤h×PW (n,r)×AKnorm(n,r). (1)

Here, a column-weighted footprint (denoted as fw), combined across n vertical levels, for a column location (xn,r), and time130

(tn,r) is sensitive to surface flux at location xi,yj and time tk. Determining the spatial magnitudes of this sensitivity depends

on the molar mass of dry air (mair), the height of the mixing layer (h), and the average density of the air below h at a particular

location and time, ρ(xi,yj , tk). The time spent by each particle (∆tp), whose altitude is below the mixing layer (z ≤ h), over

a grid position (i, j) contributes to the sensitivity footprint during backwards propagation. This influence is averaged across

the total number of particles released (Ntot). These calculations are further scaled by a pressure weighting function PW (n,r)135

and averaging kernel AKnorm(n,r) which are specific to the OCO-3 instrument and reported in the vEarly data (Gunson and

Eldering, 2020; Taylor et al., 2020).

The influence footprints generated from this process were convolved with emission inventories such that:

∆XCO2 =
∑

i,j,k

∆XCO2(xn,r, tn,r|xi,yj , tk) =
∑

i,j,k

fw(xn,r, tn,r|xi,yj , tk) ·F (xi,yj , tk). (2)

The enhancement (∆XCO2) at a particular column location and time (xn,r, tn,r) is determined by the multiplication of cell-140

wise surface fluxes (F (xi,yj , tk)) and footprint values. The summation of these elements provides the column-averaged influ-
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ence (ppm). Since SAMs are typically collected over a span < 10 min, the timestamps of their soundings were averaged to give

each SAM a unique observation time. This simplified the inversion process by using the same tn,r values across all soundings

and synchronized tk values across all fluxes.

The X-STILT model was driven by 3 km resolution High-Resolution Rapid Refresh (HRRR) data (Benjamin et al., 2016;145

Rolph et al., 2017) and a 6 km column height was used, as characterized in Wu et al. (2018). An influence footprint was

generated for each sounding by distributing co-located columns of particles backwards in time for 18 h while averaging at 1

h intervals. In most cases, particles propagated out of the LA Basin at later timesteps. This is demonstrated in Fig. 2 where

selected backwards timesteps were averaged across all X-STILT footprints used in this work. The plots from later timesteps

show particles following northerly winds backwards in time. To create urban pseudo-enhancements, these footprints were150

convolved with the Vulcan 3.0 time series and the addition of random instrument error, ε∼N(0,0.23 ppm) was added to

each signal. This error was determined by Kiel et al. (2021), who compared OCO-3 observations with atmospheric column

measurements of XCO2 from a Total Carbon Column Observing Network [TCCON, Wunch et al. (2011)] site in LA. Between

the available OCO-3 and HRRR data, 11 SAMs were generated ranging from February to October of 2020 (see Fig. 3). Large

enhancement values of ≥ 4 ppm are localized along the southern coast and are indicative of LPSs in the area. Further inland,155

mid-range values of roughly 2-3 ppm are widely distributed across the basin. Moving to the northwest, enhancements approach

0 ppm, as the associated X-STILT footprints have little to no interaction with the emissions domain.

2.4 The Bayesian Inversion Scheme

The application of Bayesian statistics in atmospheric inversions is a well-established method of extracting information from

surface- and space-based CO2 observations (Rodgers, 2000). By representing a priori emission values, observed atmospheric160

concentrations, influence footprints, and associated uncertainties in a cost function, Ls, an optimized posterior estimate is

produced. Tarantola (2005) defines this cost function such that:

Ls =
1
2
(z−Hŝ)TR−1(z−Hŝ) +

1
2
(ŝ− sp)TQ−1(ŝ− sp). (3)

The first term addresses estimates and error in XCO2-space. Here, z represents a vector of ∆XCO2 from a given SAM (or

SAMs) with its length equal to the number of available soundings. Footprints from X-STILT are represented by the matrix H165

such that each row contains the vectorized footprint information from fw(xn,r, tn,r|xi,yj , tk). Thus, the dimensions of H are

dictated by the number of available footprints (rows, equivalent to the length of z) and number of cells in the domain of interest

across all timesteps (columns). The posterior estimation of the surface flux is represented by the vector ŝ where its length is

also equal to the number of cells multiplied by the number of backwards timesteps in the domain of interest. Finally, R reflects

uncertainties in ∆XCO2 observations from various components. These errors are included along the diagonal of R with each170

element corresponding to an observation. Specific errors included in the R matrix and the construction of off-diagonal elements

are discussed in Sect. 2.7.
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Figure 2. Here, all footprints are averaged at the timestep level with each panel representing the number of hours prior to the SAM observa-

tion. The emissions domain is indicated by the black dashed rectangle.

The second term on the right hand side of Eqn. 3 addresses uncertainties in surface flux as part of the cost function, Ls.

Here, the prior estimate of the surface emissions from the domain is represented by sp which contains F (xi,yj , tk) in vector

form. Flux uncertainty is represented by the matrix Q which has rows/columns equal to the length of sp. The construction of175

Q is further discussed in Sect. 2.7. The optimized posterior, ŝ, will minimize the cost function (Eqn. 3) and can be determined

analytically:

ŝ = sp + (HQ)T(HQHT + R)−1(z−Hsp). (4)

Using the formulation of the pseudo-observations such that z = Hst + ε, Eqn. 4 can be written so the “true” emissions (st)

and instrument error are included:180

ŝ = sp + (HQ)T(HQHT + R)−1[H(st− sp) + ε]. (5)

Systematic bias correction provided by cumulative observations can be quantified by making a substitution such that K = Hs′p.

The vector sp is replaced with a matrix of equal row length but surface fluxes are disaggregated by sector, each making up a
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Figure 3. Enhancements of synthetic XCO2 above regional background values are presented here. These 11 SAMs over the Los Angeles

Basin were constructed using geolocated soundings from OCO-3 while XCO2 enhancements were generated from the Vulcan 3.0 emissions

dataset. Instrument error calculated from a previous study was included. The timestamps of the soundings making up each SAM were

averaged to provide a single SAM observation time reported here in local time.

column of s′p. Working under the assumption that a systematic multiplicative bias is present, Eqn. 4 can be rewritten to include

a corrective scaling factor, λ, with length equivalent to the number of sectors under consideration (Lin and Gerbig, 2004):185
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λ̂ = λp + SpKT(KSpKT + R)−1(z−Kλp). (6)

A bias term, λp, is a vector that represents a prior estimate of corrective factors, λ̂. The uncertainty of these estimates are

included along the diagonal of Sp.

2.5 Test Cases

Applying the inversion to individual SAMs produced hourly posterior flux estimates for the 18 h prior to their observation190

times. These results were compared with corresponding prior and “true” flux fields to quantify the inversion’s information

content at both the per-SAM and hourly levels. Using four test cases, the sensitivity of these results to various input parameters

was investigated. In three of the cases, outcomes varied with input grid resolution, atmospheric transport error, and flux error.

The fourth test case investigated the SAMs’ ability to correct systematic biases in prior flux estimates. These test cases are

described in the following sections and their titles and motivating questions are presented in Tab. 2.195

Table 2. The titles and motivating questions associated with four OSSE test cases are presented here.

Motivating Questions

Test Case 1 Grid Size of Emission Inventories

How does the coarsening of input grids affect uncertainty?

At what spatial resolutions can posterior emissions best be resolved?

Test Case 2 Reduced Atmospheric Transport Error

How does the use of more accurate atmospheric transport data affect the inversion scheme?

Will more accurate meteorology data decrease posterior uncertainty?

Test Case 3 Well-Constrained Flux and Transport Error

What if the uncertainty in prior flux estimates is well-constrained?

How will corrections in the locations of large point sources affect the inversion scheme?

Test Case 4 Aggregated SAMs for Bias Correction

Can multiple SAMs be aggregated in time and space to address systematic biases?

How many SAMs are necessary to fully correct biases in prior emissions estimates?

2.5.1 Test Case 1: Grid Size of Emission Inventories

Similar to previous studies (Kunik et al., 2019; Mallia et al., 2020), this approach quantified prior uncertainty by incorporating

the cell-level differences between the ODIAC-VIIRS and Vulcan 3.0 inventories during the construction of Q (details in Sect.

2.7). Although this prior error covariance matrix assigned an independent uncertainty to each flux value, inconsistently located

LPSs between inventories led to single cells with large values (see the difference plot in Fig. 1 and Hogue et al., 2017). To200

mitigate these large single-cell errors, the input grids were coarsened to distribute these large magnitudes over a wider area;

10

https://doi.org/10.5194/acp-2022-315
Preprint. Discussion started: 6 May 2022
c© Author(s) 2022. CC BY 4.0 License.



thus, the first test case examined the ability of SAMs to optimize prior emissions estimated at a variety of input grid resolutions.

Beginning with the highest possible resolution, 1 km × 1 km, the relationship between a SAM’s ability to optimize a prior

estimate and: (1) how many soundings were included within the SAM, (2) the time the soundings were collected, and (3)

the strength of the observed enhancement were explored. In this case, prior fluxes were represented by ODIAC-VIIRS while205

Vulcan 3.0 represented the “true” flux. These inventories, along with influence footprints from X-STILT, were re-gridded to 3

km, 5 km, and 7 km resolutions but pseudo-observations of ∆XCO2 were consistently generated with the “true” 1 km gridding

of Vulcan 3.0. Fig. 4 presents the averaged spatial differences between all prior and “true” fluxes used in this work along with

Moran’s I values to quantify their spatial correlation. Accompanying p-values reveal decreasing statistical significance in spatial

autocorrelation as the input grids are coarsened, revealing the loss of spatial structure.210

2.5.2 Test Case 2: Reduced Atmospheric Transport Error

Earlier work presenting the X-STILT model (Wu et al., 2018) quantified uncertainty from atmospheric transport errors based on

results driven by coarse meteorological inputs from the Global Data Assimilation System (GDAS). This 0.5◦ × 0.5◦ input was

responsible for an error > 1 ppm in XCO2-space over the test case city of Riyadh, Saudi Arabia (Wu et al., 2018); however,

this current study was conducted over LA, providing an opportunity to use the higher resolution HRRR meteorology (Benjamin215

et al., 2016; Rolph et al., 2017) or regionally tailored meteorological fields from the Weather Research and Forecasting (WRF)

model (Powers et al., 2017). Although Test Case 1 (Sect. 2.5.1) used the prescribed error from Wu et al. (2018), the second test

case used only high resolution input data and applied an error reduction of 50% to atmospheric transport (reduced magnitudes

in the R covariance matrix; see Sect. 2.7). Comparisons between the original and reduced error scenarios were explored,

revealing changes to posterior estimates from improvements in meteorological inputs.220

2.5.3 Test Case 3: Well-Constrained Flux and Transport Error

Typically, the error in power plant geolocation databases within the United States is < 1 km (Woodard et al., 2014). Although

there are several inconsistencies in the locations of LPSs displayed in Fig. 1, these can be explained by: (1) noting that the

ODIAC-VIIRS and Vulcan 3.0 inventories are constructed for different years and (2) Vulcan 3.0 includes LPSs beyond those

included in ODIAC-VIIRS. While Test Case 1 (Sect. 2.5.1) investigated the effects of these LPS-related errors, the third test225

case used a customized prior inventory to co-locate LPSs with the “true” inventory while maintaining the transport error

reduction from Test Case 2. This scenario was representative of using a well-constructed emission inventory with accurate LPS

information and high-quality meteorological information.

The customized prior was achieved by first identifying a threshold in which ODIAC-VIIRS cells of greater flux were mostly

non-adjacent (>75 µmol m−2 s−1). These cells were replaced by values derived from averaging adjacent cells with the resulting230

array representing prior area emissions, FPrior,area. Sectors containing LPSs in the “true” emissions inventory were aggregated

such that
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Figure 4. Presented here are the averaged differences between the ODIAC-VIIRS (prior) and Vulcan 3.0 (“true”) emission inventories at

four resolutions for the Los Angeles Basin. Also included are results from Moran’s I tests to quantify the statistical significance (p) of the

spatial correlation (I).

FLPS = FTrue,pwr +FTrue,cem +FTrue,avi (7)

where the electricity production (FTrue,pwr), cement manufacturing (FTrue,cem), and commercial aviation (FTrue,avi) sectors

were included. It was assumed that the area values in FPrior,area co-located with FLPS were from remaining area sources;235

therefore, these cells were scaled down before the inclusion.

The process of scaling of FPrior,area and adding LPSs was defined such that:

F̂Prior,ij =
(

1− FLPS,ij

FTrue,ij

)
·FPrior,area,ij + FLPS,ij . (8)

Here, individual matrix elements were identified using i,j notation. The ratio of each LPS flux to the “true” flux value (FTrue,ij)

was used to determine the ratio of remaining area fluxes in Vulcan 3.0. This weighting ensured that LPSs added to the custom240
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inventory shared the same percentage of the cell’s total. Results from using FTrue and F̂Prior in the inversion scheme were

used to explore its effectiveness under well-constrained error conditions.

The averaged differences between the customized prior and “true” inventories are presented in Fig. 5 with original differ-

ences from the 1 km × 1 km case (Sect. 2.5.1). Grid cells containing large differences along the coast now demonstrate good

agreement. Results from a Moran’s I test also suggests a stronger spatial correlation as the error is now driven by differences245

in area emissions. Notably, the large errors associated with the LPSs following the coastline are reduced.

Figure 5. Presented here are the averaged differences between the modified prior and Vulcan 3.0 (“true”) emission inventories for the Los

Angeles Basin. For comparison, the unmodified case using ODIAC-VIIRS as the prior is included in the right panel. Results from Moran’s

I tests quantify the statistical significance (p) of the spatial correlation (I). Values in the range of ±1 µmolm−2 s−1 are removed.

2.5.4 Test Case 4: Aggregated SAMs for Bias Correction

OCO-3 provides collections of SAMs for many locations and the constraint provided by multiple SAMs over a particular target

is of interest. Therefore, the final case used Eqn. 6 to explore the OCO-3 instrument’s ability to correct systematic biases in

surface flux estimates. The effectiveness of the scaling factors provided by this process were simultaneously quantified for each250

emission category (Tab. 1). Beginning an iterative process, a vector of scaling factors (λ̂) was calculated for a single SAM such

that λ̂ = ⟨λ̂pwr, λ̂man, λ̂trans, λ̂build⟩. Subsequent calculations incorporated an additional SAM in succession. The results from

13

https://doi.org/10.5194/acp-2022-315
Preprint. Discussion started: 6 May 2022
c© Author(s) 2022. CC BY 4.0 License.



these iterative tests provided insights into sector-level sensitivity to ∆XCO2 as detected by the instrument. Two scenarios were

considered: (1) the systematic bias was applied to all sectors, and (2) only area emissions were biased, assuming LPS values

were well known.255

2.6 Change in Relative Error: ∆%rel

A metric used throughout this work quantified the reduction in relative error after the inversion was applied. The absolute

values of the differences between the prior and “true” emissions were compared to the posterior and “true” emissions such

that:

∆%rel = 100%×
(
|Posterior−True| − |Prior−True|

True

)
. (9)260

This calculation is used in both flux and XCO2-space, where “Posterior” indicates optimized estimates in flux or XCO2-space,

“Prior” indicates the initial estimates of flux or ∆XCO2, and “True” indicates the exact values of surface flux or ∆XCO2.

Results from this metric provided a spatially explicit quantification of improvements resulting from the inversion scheme.

Negative values indicated the amount by which improvements were made while positive values indicated the amount by which

the inversion moved the optimized estimate further from true values.265

2.7 Sources of Error

There are two domains in the Bayesian inversion scheme where errors exist: XCO2-space and flux-space. Errors in XCO2-

space were predominantly associated with atmospheric transport. The stochastic nature of the X-STILT model (Rpart), char-

acterization of the planetary boundary layer (RPBL), and horizontal wind speeds (Rwind) are sources of error that were con-

sidered. Wu et al. (2018) provided estimates of these values, and Kiel et al. (2021) reported the instrument error (inst.) in270

XCO2 observations over the Los Angeles Basin. Since soundings away from the target domain are often used to calculate

regional background XCO2 values (bkg.), the same error was used for both Rinst and Rbkg. The final source of influence

considered in XCO2-space was from the urban biosphere. To estimate potential errors arising from biospheric fluxes, X-STILT

footprints generated for this study were convolved with the Solar-Induced Fluorescence for Modeling Urban Biogenic Fluxes

(SMUrF) model which ingests biospheric observations to create spatially explicit net ecosystem exchange estimates (Wu et al.,275

2021). The hourly estimates provided by this model for the year 2019 were regridded to match the high resolution footprints

(1 km × 1 km) and convolved to calculate the net contribution to each sounding (Eqn. 2). The standard deviation of the values

was used as Rbio. All XCO2-space errors are included in Tab. 3.

Unlike the sparse spatial coverage of ground-based observation network sites, the OCO-3 instrument provides densely

packed soundings at ∼ 2 km spacing. This close proximity must incorporate the spatial correlation of observational errors280

in ∆XCO2. All XCO2-space errors and their spatial correlation were represented in the inversion scheme (Eqn. 4) as error

covariance matrix R where each element was defined as:
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Table 3. Presented here are the error sources considered in XCO2-space.

Error Source Variable Error (ppm) Citation

Stochastic Error Rpart 0.06 Wu et al. (2018)

Planetary Boundary Layer Height RPBL 0.20 "

Horizontal Wind Rwind 1.02 "

Instrument Rinst 0.23 Kiel et al. (2021)

Background Rbkg 0.23 "

Biosphere Rbio 0.16 Wu et al. (2021)

ΣR2
n = 1.22 ppm2

Rij = ΣR2
n · e

−XR,ij
lR . (10)

Individual errors were included as variances (ΣR2
n) with the resulting value being scaled according to the distance matrix XR.

The correlation length scale, lR, was calculated for each SAM by fitting an exponential semi-variogram to the differences285

between the soundings’ prior ∆XCO2 estimates and pseudo-observations. Two correlation length scales were not calculated

due a failure of convergence. As an alternative in these two instances, three times the minimum distance between soundings

was used. The length scales are included in the far-right column of Tab. 4 and demonstrate the variability across SAMs.

Errors associated with surface flux are represented by the Q error covariance matrix from Eqn. 4. In this OSSE, Q rep-

resented the differences between prior and “true” emissions while incorporating their spatial and temporal correlations such290

that:

Q = Iσ(D⊗E)Iσ. (11)

Following the scheme presented by Kunik et al. (2019), differences between the emission inventories were represented by the

diagonal matrix Iσ such that Iσ,ii = |sp,i− st,i| where s indicated an averaged emission vector across all fluxes used in this

work. The temporal and spatial covariances were represented by D and E respectively and were combined using a Kronecker295

product. Both covariance matrices are created using an exponential decay of the form:

Mij = e
−Xij

l . (12)

Here, X is a matrix relating values across time or space while the correlation length scale is represented by l. For temporal

covariance, Xt was a square matrix containing the temporal differences between each backwards timestep associated with each

SAM’s analysis. An autocorrelation function (ACF) was generated for each SAM by comparing the differences in total CO2300

between the prior and “true” inventories across the relevant timesteps. The number of significant timesteps (p < 0.05) from
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the ACF dictated the value of lt for each SAM. To construct the spatial covariance matrix, the distances between the cells of

the input grid were represented by the matrix Xr and the spatial correlation length scales, ls, were determined by applying an

exponential semi-variogram fitting routine to the averaged spatial differences between the inventory timesteps. Each SAM’s lt

and ls values are reported in Tab. 4 for the four test cases considered. The grid coarsening scenarios (Test Case 1, Sec. 2.5.1)305

are represented by their respective grid sizes (1-7 km), the case using co-located LPSs (Test Case 3, Sec. 2.5.3) is indicated

by “Co-located Error”, and the two different scenarios exploring the correction of systematic bias (Test Case 4, Sec. 2.5.4) are

indicated by “LPS Error” and “No LPS Error”. (Length scales for Test Case 2 are the same as Test Case 1.) The collection

of ls and values associated with flux-space errors demonstrates less variability when compared to lR. For this reason, mean ls

values were used in each test case while SAM-specific lR values were used in the construction of each R. Similarly, the mode310

of the calculated lt values was applied to each test case.

A final calculation was needed to constrain the uncertainty associated with each posterior estimate. Since Q represented the

cell-wise variance of the prior estimate, a calculation was performed to map cell-level Q values to posterior values such that

Vŝ = Q− (HQ)T(HQHT +R)−1(HQ) (13)

where Vŝ is the cell-level covariance associated with ŝ.315

3 Results

3.1 Test Case 1: Grid Size of Emission Inventories

3.1.1 Results in XCO2-Space

As demonstrated in Fig. 3, variability in the coverage and observation times of SAMs is dictated by the orbit of the International

Space Station, changes in the viewing geometry, and cloud cover. Initial considerations given to SAM data quantified the320

effectiveness of the inversion based on observation times, the top 25% of “observed” XCO2 enhancements per SAM, and

the number of soundings making up each SAM. Relationships between these factors are presented in Fig. 6. Here, panel (a)

contains a weak (R2 = 0.164), yet statistically significant (p < 0.05) trend between the mean of upper quartile enhancements

within each SAM and their observation times. The magnitudes of enhancements appear strong during the morning hours

but decrease throughout the day. This diurnal effect is attenuated due to the use of column-based observations rather than325

surface-based measurements. The deviations between co-located values in the plot are driven by the random error included

in the pseudo-observations. Furthermore, (c) presents a significant trend (p < 0.05) between the amount of correction and

the associated enhancement strength from each SAM. It demonstrates that the effectiveness of the optimization is directly

proportional to the observed enhancement; however, as the input grid size increases (1km× 1km to 7km× 7km) there is more

variation in the relationship.330

16

https://doi.org/10.5194/acp-2022-315
Preprint. Discussion started: 6 May 2022
c© Author(s) 2022. CC BY 4.0 License.



Table 4. The spatial and temporal length scales, ls and lt respectively, of the surface flux associated with each SAM is presented here. These

values vary across test cases. The grid coarsening scenarios are represented by their respective grid sizes (1 km - 7 km), Large Point Source

(LPS) Error indicates the uniform bias correction case, No LPS Error indicates the systematic bias scenario with well-constrained large point

sources, and Co-located Error indicates the scenario in which a custom prior flux is used. The spatial correlation length scale of XCO2 is

included in the final column. (*) indicates SAMs where the fitting routine failed to converge, resulting in an assigned values of three times

the minimum distance between soundings. The mean of the spatial correlation length scales and mode of the temporal autocorrelation length

scales are included in the last row.

1km 3km 5km 7km
LPS

Error

No LPS

Error

Co-located

Error

XCO2

Error

SAM

Date
ls [km]; lt [h] lR [km]

1 02/24 2.56; 2 1.79; 2 3.00; 2 9.21; 2 2.14; 3 4.31; 3 1.68; 2 7.16

2 03/03 2.48; 2 2.00; 2 2.95; 7 9.17; 2 2.00; 3 3.96; 3 1.52; 2 4.13

3 04/01 2.39; 2 1.89; 2 3.48; 2 8.77; 2 2.32; 3 3.75; 3 1.31; 3 5.00*

4 04/23 2.63; 2 2.10; 3 3.00; 2 8.50; 2 2.27; 3 3.55; 3 1.46; 3 1.87

5 05/05 2.45; 2 1.92; 2 3.39; 2 9.10; 3 2.11; 3 3.64; 3 1.47; 2 3.58

6 05/27 2.29; 2 1.48; 2 2.92; 2 8.63; 7 2.42; 3 3.39; 3 1.23; 2 7.61

7 05/30 3.44; 2 1.59; 3 3.59; 3 8.80; 2 2.65; 4 3.20; 4 1.31; 3 6.00*

8 08/04 3.07; 2 1.68; 2 1.80; 7 8.86; 2 1.79; 3 3.33; 3 1.70; 2 0.66

9 08/12 2.17; 2 1.59; 2 0.29; 3 8.86; 2 1.31; 3 3.44; 3 1.66; 2 8.28

10 10/20 3.09; 2 1.85; 3 3.02; 3 9.37; 2 1.99; 3 3.61; 3 1.53; 3 5.12

11 10/28 3.21; 3 1.94; 3 6.44; 3 8.38; 2 1.82; 3 3.77; 3 1.49; 3 3.28

Mean of ls; Mode of lt 2.71; 2 1.80; 2 3.08; 2 8.88; 2 2.07; 3 3.63; 3 1.50; 2

Conversely, panel (b) of Fig. 6 demonstrates no clear trends between the amount of correction and the number of soundings

making up each SAM (p > 0.05) nor do patterns exist across grid resolutions. Additionally, no clear trends exist between

corrections from SAMs and the time that they were observed ([d]), indicating that the weak trend of decreasing enhancement

throughout the day does not significantly affect the inversion’s ability to optimize estimates.

A key driver of the inversion scheme (Eqn. 4) is the initial difference between prior ∆XCO2 estimates (Hsp) and the335

co-located pseudo-enhancements (z); therefore, the individual soundings that comprise each SAM were aggregated and inves-

tigated collectively. These soundings are presented in the top panels of Fig. 7. Here, the per-sounding optimization, driven by

|z−Hsp|, is plotted with a running average and linear regression. Included in the bottom set of panels is a collection of spatial

plots where all Hsp and z differences were superimposed and averaged at a 0.01◦× 0.01◦ resolution.

The regressions included in the top panels of Fig. 7 (blue lines) demonstrate the inversion’s progressively decreasing ability340

to optimizatize prior estimates as input grid size increases. The slope of the linear fit in the high resolution case (1km× 1km)

suggests that only 54% of the per-sounding initial difference is mapped to the error reduction in posterior estimates of ∆XCO2.

17

https://doi.org/10.5194/acp-2022-315
Preprint. Discussion started: 6 May 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 6. (a) The mean of the highest 25% enhancement values from each SAM is plotted against their local observation time. Slight

deviations in co-located values are present due to random observational error being introduced for each re-gridding scenario. (b) The amount

of correction provided in kilotons of CO2 is plotted against the number of soundings making up the associated SAM. Results from each

re-gridding scenario are included. (c) The amount of correction provided by the inversion is plotted against the mean of the highest 25%

enhancement values associated with each SAM. These values are included for all input grid resolutions. (d) The amount of correction

provided by the inversion is plotted against the time of day (local time) under consideration. Data from all re-gridding scenarios are included.

In all four panels, a single linear regression is included (black, dashed line) along with its R2 and p-value.

This value is inversely proportional to the input grid size, with only 15% mapped to error reductions at the most coarse scale.

Furthermore, the non-linearity of the running averages does not show an increase in correction until roughly 0.5 ppm, favoring

larger initial differences. As the resolution of input data decreases, it is clear that the posterior estimates’ sensitivity to initial345

differences follows.
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Figure 7. [Top] The per-sounding differences between prior and posterior estimates of ∆XCO2 are plotted against the differences between

prior and pseudo-enhancements of ∆XCO2 for multiple input grid resolutions. The 1:1 line is represented in black. An ordinary linear

regression (blue) and running average (yellow) are also included. The equation of linear fit and R2 values for each regression are included.

[Bottom] The per-sounding differences between prior and pseudo-∆XCO2 across all SAMs are superimposed and averaged at a 0.01◦×
0.01◦ resolution over the Los Angeles Basin. Four different resolutions of underlying fluxes are represented by the panels.

The results in Fig. 7 (top) demonstrate that the inversion’s effectiveness is dependent on larger initial differences; therefore,

it is crucial to understand where these large differences occur and what drives them. Spatially averaged initial differences are

presented in Fig. 7 (bottom) and demonstrate a locational dependence along the southwest coast and in the eastern part of the
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basin. Along the coast, prior ∆XCO2 estimates are smaller than pseudo-enhancements. Conversely, prior ∆XCO2 estimates350

are larger than pseudo-enhancements to the east. When comparing the differences across progressively coarsened input grids,

the coastal underestimation becomes more profound while the eastern overestimation is reduced. These large initial differences

along the coast are driven by the presence of LPSs in the Vulcan 3.0 inventory that are missing in ODIAC-VIIRS and are

reduced during the grid coarsening process (see Fig. 4). The difference plots in Fig. 7 (bottom) and non-linear dependence

(top) suggest that the inversion scheme is effective along the coast where the initial differences in XCO2-space are the highest355

across all input grid resolutions.

To quantify the spatial dependence of the inversion scheme’s effectiveness, differences between aggregated posterior and

prior ∆XCO2 are plotted in Fig. 8 (left), showing strong corrections >0.5 ppm along the coast and further validating the

sensitivity of the inversion to this region. The spatial distribution of posterior ∆XCO2 correction is strongly correlated with the

prior underestimation shown in Fig. 7; however, overestimates to the east are not corrected due to their small initial differences360

(<0.5 ppm). Although the initial differences along the coast increase as the input grid resolution coarsens, the amount of

change from the posterior is inversely proportional to the input grid size due to cell-wise decreases in flux uncertainty at

coarse resolutions. To ensure that the increases in ∆XCO2 provided by the posterior are reasonable, ∆%rel is calculated for

these results (see Sect. 2.6). These aggregated per-sounding changes in relative error (prior to posterior) are presented in Fig. 8

(right) and show strong reductions in ∆XCO2 error (∼25%) along the coast. Here, optimizations that are smaller in magnitude365

are more visible than in posterior vs. prior comparisons. As expected, there are smaller reductions in relative error as the input

grids become more coarse.

3.1.2 Cumulative Results in Flux-Space

Although relative errors in XCO2-space were reduced, the posterior estimate produced by the inversion may not provide

equivalent error reductions in flux-space. To investigate flux-space errors, the 18 h spans of prior, true, and posterior fluxes370

(µmol m−2 s−1) associated with each SAM were used to calculate the total CO2 emitted from the urban domain of the LA

Basin during each timeframe (see Fig. 1). Ideally, the differences between total posterior and “true” values will be smaller

than the differences between prior and “true” values. These differences are plotted, relative to the “true” total, in Fig. 9 and

reveal that posterior emissions are systematically overestimated. All occurrences of the posterior difference being larger than

the prior difference are indicated by red outlines in the plot. The only SAMs demonstrating improvements are those where the375

prior total is lower than the “true” total (SAMs 3, 6, 7, and 11), allowing for the systematic overestimation to approach the

“true” value. This resulting overestimation holds across the input grid sizes considered.

The error bars included in Fig. 9 were calculated from Q and Vŝ. For the 18 hourly timesteps associated with each SAM,

the total emitted CO2 from the prior and posterior uncertainties were added in quadrature, serving as the reported error for the

emission totals. These errors appear to be independent from the resolution of the input grid as the 3 km × 3 km results have380

the smallest error; however, the magnitudes follow the values of ls as reported in Tab. 4 where the 3 km case has the smallest

length scale and the 7 km case has the largest.
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Figure 8. [Left] Per-sounding post-inversion changes in ∆XCO2 for all SAMs were superimposed and averaged at a 0.01◦ × 0.01◦

resolution over the Los Angeles Basin. The results are included for each grid resolution of interest. [Right] Per-sounding changes in the

relative error of ∆XCO2, also aggregated as described (left), are plotted for all input grid resolutions of interest.

3.1.3 Hourly Results in Flux-Space

Results presented in Figs. 8 and 9 show that the inversion reduces errors in XCO2-space while sacrificing accuracy in flux-

space. The systematic overestimation in total CO2 was driven by increasing prior flux magnitudes more than required. To gain385

more insight, the summed contributions in Fig. 9 were disaggregated in time to determine when overestimations occur.

At the hourly level, the Bayesian inversion’s ability to optimize each timestep depends on the magnitude of footprint values

coincident with the domain during the timestep in question. Although nearly all footprints start within the domain for the first

backwards timestep, many are fully removed due to atmospheric transport after several hours. The information density of each

SAM is presented in Fig. 10 where the footprint-weighted average amount of hourly correction (in metric tons (mt) of CO2)390

is provided for each SAM. The initial backwards timestep contains the most information density while the magnitudes of

consecutive steps decay sharply. Linear regressions applied to log-log transformations of the data are included (black, dashed

lines) along with their slopes and y-intercepts. The y-intercepts indicate that the average maximum information density of the

SAMs is inversely proportional to the input grid size. The 1 km resolution case has an average maximum information density

of 17.83 mtCO2 while the intermediate cases have values 7.48 mtCO2 and 6.98 mtCO2. The lowest value, 6.43 mtCO2,395

occurred at the most coarse resolution. At a high resolution, the inversion’s ability to optimize a prior estimate follows a
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Figure 9. Differences in the total CO2 emitted (in metric tons) over the 18 h timeframes associated with each SAM are presented here. Prior

and posterior estimates were compared against the “true” total. Cases where |posterior - true| is larger than |prior - true| are indicated with

red borders. Error bars represent error derived from the prior and posterior covariance matrices.

(∆t)−2.3 distribution while the value is decreased to (∆t)−1.62 in the coarse resolution suggesting coarser resolution input

data can be optimized further backward in time. The hourly corrections presented in Fig. 10 suggest that the excessive addition

of CO2 to the prior estimates occurs during the first few hours of the inversion.

Spatial distributions of the hourly changes in error are presented in Fig. 11, where ∆%rel was calculated for the fluxes400

associated with each SAM to determine where overestimations occur. The results were superimposed and aggregated across all

SAMs, only stratified by hourly backwards timestep. This averaging revealed that the inversion scheme increased relative flux

error along the coast when compared to the initial error in the prior estimate. Clusters of error reductions, although smaller
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Figure 10. The footprint-weighted mean correction (in mtCO2) applied to each backward timestep has been plotted for each SAM. Timestep

values associated with each SAM are connected by gray dashed lines. These values are displayed in a log/log plot with a linear fit. The

resulting y-intercepts (k0) and slopes (m) of these regressions are reported in each panel. Plots for multiple input grid resolutions are

displayed.

in magnitude, are present to the north and east. At the highest resolution, clusters of increased error (positive values) appear

to have nuclei of cells where error reduction occurred. These isolated cells of reduced error correspond to LPSs in the Vulcan405

3.0 emission inventory (see Fig. 1). During the construction of Q, these cells were assigned large uncertainties due to LPS

mismatch between inventories. They dominate the corrective power of the inversion, requiring a large change in the prior flux

value to match the value of “true” flux. The spatial correlation among neighboring cells forces a similar, yet unwarranted,

change in flux values. Conversely, areas without nearby LPSs experience post-inversion reductions in relative error.

Proceeding through the averaged changes in relative error, the high-resolution case reveals that initial increases in flux error410

near the coast decay yet are present through almost all of the 18 timesteps. Conversely, the areas of error reduction to the east
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Figure 11. Presented here are the averaged changes in relative flux error provided by the inversion scheme. Backward timesteps associated

with 11 SAMs were superimposed and averaged for the Los Angeles Basin. Columns indicate particular hourly timesteps from the time of

observation and rows indicate the spatial resolution of the input data. Small values in the range ±0.01% are excluded.

decay quickly. As the input grids become coarser, the magnitudes of the changes in error are reduced, the area of increasing

error is sustained for more timesteps, and the area of error reduction to the east is still present. The results of Fig. 11 suggest

that the systematic overestimation of CO2 (see Fig. 9) occurs during the first few backwards timesteps of the inversion near

LPS locations. As the input resolution coarsens, the effect increases in duration.415
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3.2 Test Case 2: Reduced Atmospheric Transport Error

The transport error used in Test Case 1 was Rwind = 1.02 ppm. Under the assumption that alternative meteorological datasets

would provide better representations of transport, the benefits of a 50% reduction in transport error were explored. Fig. 12

compares aggregated ∆XCO2 information by first examining the per-sounding amount of correction made available by initial

differences. In the previous test case, 100% transport error allowed for∼54% of the initial difference in ∆XCO2 to be mapped420

to corrections; however, the running average revealed that soundings with the largest differences received the most benefit.

This was also the case when Rwind was reduced by 50%. This error reduction allowed for subtle increases in corrections from

smaller initial differences, also shown by the sharp increase in the running average in the top right-hand panel. Overall, the

linear regression suggests that ∼67% of these differences are applied to corrections in per-sounding ∆XCO2, but only the

largest initial differences see the most benefit.425

Spatially, the per-sounding corrections in XCO2-space were again aggregated at a 0.1◦ × 0.1◦ resolution, revealing similar

results to the previous case. The numerator of Eqn. 9 was calculated using ∆XCO2 pseudo-observations and compared to

results from the previous section (bottom panels of Fig. 12). This comparison shows that reductions in ∆XCO2 error were

more intense when the atmospheric transport error was reduced and the spatial distribution of corrections was increased to

include areas north of the coast.430

Again, results in XCO2-space show better agreement with “true” and pseudo-observation values; however, post-inversion

optimizations in flux-space reveal larger discrepancies between posterior and “true” estimates. Presented in Fig. 13 are totals of

emitted CO2 from the domain during the timeframe associated with each SAM. Compared to the previous case, the differences

between estimated totals and the “true” value reveals greater deviations when the transport error was reduced. Increased

differences are indicated with red borders. As in the previous test case, the “true” total lies within the error bars of several prior435

and posterior estimates. Error bars were calculated using the method described in Sec. 3.1.2.

As in the previous test case, the larger overestimates of total XCO2 generated by the reduction in atmospheric transport

can be explained by temporally disaggregated results. Fig. 14 presents averages of the backward timesteps associated with

the SAMs used in this study. Results from the reduced error case are included along with results from the previous case. The

bottom row of panels show that a 50% reduction in atmospheric transport error drives further increases in relative flux error440

along the coast. In the first backward timestep of the inversion, the area where relative errors increase is larger; however,

reduced transport error shows better inversion performance in the east part of LA. The areas of increasing error dominate any

reductions, systematically increasing the CO2 emitted. Both areas of increasing and decreasing error are better sustained across

the 18 h timesteps in the reduced transport error case.

3.3 Test Case 3: Well-Constrained Flux and Transport Error445

Results from the second test case (Sect. 3.2) demonstrated that reductions in atmospheric transport error alone increased

the magnitude and area of XCO2-space optimization; however, these corrections were accompanied by increased flux error.

Presented here are results from the inversion scheme under the assumption that both atmospheric transport and LPS-related
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Figure 12. [Top] The per-sounding differences between prior and posterior estimates of ∆XCO2 are plotted against the differences between

prior and pseudo-enhancements of ∆XCO2 for two different values of atmospheric transport error. The 1:1 line is represented in black. An

ordinary linear regression (blue) and running average (yellow) are also included. The equation of linear fit and R2 values for each regression

are included. [Bottom] The per-sounding differences between prior and pseudo-∆XCO2 across all SAMs are superimposed and averaged at

a 0.01◦× 0.01◦ resolution over the Los Angeles Basin. Both cases of originally reported and reduced transport error are included.

flux uncertainties are well known. The transport error used here remained at 50% and the customized prior flux, generated by

co-locating LPSs (Sect. 2.5.3), served as the prior flux estimate, allowing for smaller uncertainties.450

The co-location of LPSs reduced differences in prior and “observed” ∆XCO2. This is shown in the top of Fig. 15 where the

per-sounding corrections are plotted against their associated initial differences, with results from the first test case also included

for comparison. Previously, results demonstrated that only larger initial differences are capable of driving optimization due to

the large errors (R) and small signals associated with ∆XCO2 enhancements. In the case of colocated LPSs, a majority
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Figure 13. The hourly fluxes influencing each SAM were used to determine the total CO2 emitted from the domain. Prior and posterior

estimates were compared against the “true” amount emitted. Cases where |posterior - true| is larger than |prior - true| are indicated with red

borders. Error bars represent error derived from the prior and posterior covariance matrices. Here, posterior estimates gathered from two

different transport error values are plotted.

of the initial differences lie below 1 ppm. In the first test case where LPS locations were inconsistent, roughly 54% of the455

initial differences are mapped to corrections in posterior ∆XCO2 values; however, the removal of the main driver of initial

differences provides only 4% as corrections. The bottom panels of Fig. 15, which show reductions in absolute error over

LA, demonstrate localized improvements near the locations of LPS mismatch. When these mismatched cases are resolved

corrections are removed.

Although the inversion’s ability to optimize prior estimates is no longer visible in XCO2-space, posterior flux estimates460

show improvement. Both the modified prior and posterior flux estimates were used to calculate the total CO2 emitted during

each SAM’s associated inversion timeframe (18 h leading up to the SAM observation). These totals were compared with the

“true” total emissions and the differences are presented in Fig. 17. In the top panel of the figure, results from the first test case

are included which show a systematic addition of excess CO2. After reducing Rwind by 50% and constraining LPS locations,

the overestimation is no longer present and posterior totals are slightly closer to “true” totals.465

There are a few notable features in the bottom of Fig. 16. When comparing results to the previous test case, larger differences

between the prior and “true” total emissions are evident. During the creation of the custom flux, LPS values are added to

background emissions from the ODIAC-VIIRS inventory. As shown in Fig. 1, this inventory has higher area emissions than

Vulcan 3.0. The addition of more LPS values beyond the power plants included in ODIAC-VIIRS further raises the total
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Figure 14. Presented here are the averaged changes in relative flux error provided by the inversion scheme. Backward timesteps associated

with 11 SAMs were superimposed and averaged for the Los Angeles Basin. Columns indicate particular hourly timesteps from the time of

observation and rows indicate the value of atmospheric transport error used. Small values in the range ±0.01% are excluded.

emissions of the custom prior. Additionally, the error bars included in the custom prior comparisons are smaller than those in470

the first test case (top). This is driven by a smaller spatial length scale (ls = 1.5 km; see Tab. 4).

The improvements to total emission estimates found in Fig. 16 were accompanied by similar improvements in flux estimates.

Results from calculating ∆%rel at hourly timesteps and averaging across all SAMs are presented in Fig. 17. Here, the first four

backwards timesteps are presented from the original prior flux (top row) (Sect. 3.1.2) and the customized flux (bottom row).

Under well-constrained conditions where atmospheric transport error was reduced and LPS locations were consistent, relative475

error reductions were clustered throughout LA. Although some areas experienced increased error, the large area of biased

optimization found in the unmodified flux case was no longer present along the coast. Also apparent was the sharp decay in

both increases and decreases in error. After the initial backwards timestep, no clusters of significant change existed within

the customized flux. This is counter to the unmodified case where large flux error biases were maintained along the coast for

several backwards timesteps.480
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Figure 15. [Top] The per-sounding differences between prior and posterior estimates of ∆XCO2 are plotted against the differences between

prior and pseudo-enhancements of ∆XCO2 for two different configurations of prior flux. “Unmodified” flux values include ODIAC-VIIRS

estimates while “Modified” flux values include area flux values from ODIAC-VIIRS and “true” LPS values from Vulcan 3.0. The 1:1 line

is represented in black. An ordinary linear regression (blue) and running average (yellow) are also included. The equation of linear fit and

R2 values for each regression are included. [Bottom] The per-sounding differences between prior and pseudo-∆XCO2 across all SAMs

are superimposed and averaged at a 0.01◦× 0.01◦ resolution over the Los Angeles Basin. Both cases of modified and unmodified prior are

included.

3.4 Test Case 4: Aggregated SAMs for Bias Correction

The previous sections considered the constraints on fluxes provided by individual SAMs while the final test case utilized the

information content from multiple SAMs to correct systematic biases in sector-specific information. The emissions categories
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Figure 16. [Top] The hourly fluxes influencing each SAM were used to determine the total CO2 emitted from the domain. Unmodified

(poorly constrained) prior fluxes and their associated posterior estimates were compared against the “true” amount emitted. Cases where

|posterior - true| is larger than |prior - true| are indicated with red borders. Error bars represent error derived from the prior and posterior

covariance matrices. [Bottom] Same as above with customized (well constrained) flux errors.

from Tab. 1 are first considered in Fig. 18 where their percentage contributions to ∆XCO2 enhancements are shown. In the

top set of panels, the average percentage contributions to ∆XCO2 from each emission category is spatially distributed for each485

SAM and averaged at a 0.1◦ × 0.1◦ resolution. Furthermore, the per-sounding contributions from all SAMs are included in

the accompanying box plots (bottom). A notable emission category is “Transportation” which had the most variation across

soundings. This category contributed to 0% - 100% of the observed enhancements with the strongest contributions to the

northwest of LA. More than half of the soundings over LA had a contribution from this category that was ≥ 50%.
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Figure 17. Presented here are the averaged changes in relative flux error provided by the inversion scheme. Backward timesteps associated

with 11 SAMs were superimposed and averaged for the Los Angeles Basin. Columns indicate the first four hourly timesteps from the time

of observation and rows indicate the type of prior emissions used. “Unmodified” refers to flux values that include ODIAC-VIIRS estimates

while “Modified” refers to flux values that include area flux values from ODIAC-VIIRS and “true” LPS values from Vulcan 3.0. Small values

in the range ±0.01% are excluded.

Following the Transportation category, contributions to enhancements from Manufacturing emissions also exhibited con-490

siderable variation; however, most of the large contributions were outliers. Enhancements were most influenced by this sector

within LA and along the coast, as shown in the top panel of Fig. 18. Contributions weakened toward the northwest of the basin.

Of the remaining two categories, the Power Industry exhibited small contributions across most soundings. The spatial distri-

bution of these contributions revealed localized “hotspots” along the coast of LA. This emission category consisted of LPSs,

which limited its influence on more distant enhancements. The “Buildings” category consisted of emissions from the com-495

mercial and residential sectors throughout LA. Almost all contributions from this sector were < 50% but spatially distributed,

almost uniformly, across LA in XCO2-space.

Results from the inversion scheme’s ability to correct systematic biases in these emissions categories (described in Sec.

2.5.4) is presented in Fig. 19. Beginning with the first available SAM, Eqn. 6 was applied to a prior emission inventory

with flux values equal to 25% of Vulcan 3.0 fluxes (“true” emissions). Subsequent iterations increased the number of SAMs500

used by one, producing a new λ̂ containing corrective values for each emission category. Since the initial bias in the prior
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Figure 18. [Top] The percent contributions of emissions categories to the soundings in all available SAMs were superimposed and averaged

at a 0.1◦ × 0.1◦ resolution. [Bottom] The per-sounding contributions from each emissions category are represented as box plots.

emissions was known, a final scaling factor of 4 was desired for each emission category. The left panel of the figure shows

two categories, Transportation and Manufacturing, quickly asymptoting to this value. Using only the first SAM, values in λ̂

provide strong corrections for these two categories. The Power Industry is corrected slowly, likely due to its localized signal in
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XCO2-space, and never achieves full bias correction. The Building sector experiences only minor corrections, likely due to its505

small contribution to ∆XCO2 enhancements across LA (see Fig. 18).

Figure 19. [Left] Results from a Bayesian inversion scheme set up to correct for systematic biases in prior emission inventories is presented

here. The number of SAMs included in each iteration of the inversion is indicated by the x-axis and resulting corrective factors are shown

on the y-axis. Errors associated with large point sources were included. [Right] Same as right with no large point source error included. The

dashed black line shows the results from correcting the total flux rather than sectorally specific flux fields. In both scenarios, the prior is

scaled to 25% of the “true” flux. Therefore, λ̂ = 4 would optimize the prior (excluding the Manufacturing and Power Industry categories

when “no large point source error” is included).

This scheme was applied to a second scenario where categories containing LPSs were not biased in the prior flux values. This

setup was representative of areas where LPS locations and their associated emissions are well known but smaller area emissions

are poorly constrained. As shown in the panel on the right, category emissions from the Transportation sector asymptote to

a corrective factor of 4; however, these iterations converge more slowly than the previous scenario. As expected, the Power510

Industry and Manufacturing categories maintain a corrective factor of 1 since no biases were included in these emissions. As

in the previous scenario, the Buildings category is not well corrected.

4 Discussion

As shown in Fig. 6, the daytime variation in the strength of ∆XCO2 pseudo-enhancements was statistically insignificant;

furthermore, the amount of soundings included in a SAM was not necessarily indicative of its information content. Since the515

primary driver of a SAM’s information content is the magnitude of observed ∆XCO2, ensuring that the instrument’s spatial

coverage records the entire distribution of a city’s enhancement should be prioritized. Figure 1 presented several large SAMs

made up of soundings to the northwest that are minimally influenced by surface fluxes. Future observations may be obtained

over a smaller domain to increase the spatial density of strong XCO2 signal relative to the number of observations. Additionally,

“tails” on the leading and trailing tracks of each SAM, outside the boundaries of the flux domain, are useful for calculating520
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background values (Wu et al., 2018). Initial differences between “observed” ∆XCO2 and corresponding prior estimates were

key drivers of the Bayesian inversion scheme, as demonstrated in the first test case (Sect. 3.1). LPSs in the prior were not

co-located with their “true” locations along the coast, producing significant corrections in the posterior ∆XCO2 estimates in

this region. However, areas of smaller differences between prior and pseudo-enhancements to the east of the basin received

no correction. As originally demonstrated by Hogue et al. (2017), Gately, and Hutyra (2017), coarsening the resolution of the525

input grids reduced the magnitude of the mismatched cells’ error associated with LPSs. In turn, this led to reduced corrections

in posterior estimates of ∆XCO2 and increased biases of additional backwards timesteps

Although post-inversion differences between posterior estimates and “observed” ∆XCO2 were smaller than those of prior

estimates, these corrections were provided at the cost of flux accuracy (Kaminski et al., 2001). Flux grid cells with large

uncertainty were corrected by the inversion, often by drastically increasing the prior flux value to account for the lack of a530

LPS; however, the magnitude of this increase was also applied to neighboring cells as prescribed by the spatial correlation

among errors (see Fig. 11). This correlation “over-optimized” surrounding cells, raising their values far higher than necessary.

This effect is most dominant during the optimization of the first backwards timestep and is localized to the southern portion of

LA, where the largest LPS mismatches reside. Subsequent timesteps demonstrated the same feature but its magnitude decayed

quickly. The magnitude of increases and decreases in post-inversion errors were attenuated as input grids were coarsened, yet535

their effects lingered across more timesteps. Reinforcing similar findings by Kunik et al. (2019), these results demonstrated that

the optimization of prior surface flux via space-based SAM observations is susceptible to poorly constrained LPS estimates

and cannot be addressed by grid coarsening alone. The effects of spatial correlation among flux errors was also highlighted,

suggesting that alternative correlation schemes may be useful. For example, spatial correlation at/near LPS locations could be

removed entirely, allowing LPS-specific cells to be corrected independent of their adjacent values.540

Using surface observations, Oda et al. (2017) demonstrated that increasing the resolution of prior flux estimates led to

better posterior constraints at the city-level; however, Yang et al. (2020) suggested that inversions are insensitive to input

grid resolution when constraining city-level emissions with OCO-2 (column-averaged observations). Limited sensitivity to

input grid resolution can be explained by the proximity of the measured ∆XCO2 to the urban area of interest. While most

surface-based measurements are obtained within urban areas, OCO-2 transects are often not direct overpasses but downwind545

of cities. Observing a signal “nearby” allows for more atmospheric mixing to occur before the signal is obtained, reducing the

inversion’s ability to resolve sub-city-level features; however, SAMs are collected directly over urban areas, minimizing the

amount of mixing that occurs between the source and observed enhancement much like in-situ measurements.

Test Case 2 (Sect. 3.2) investigated post-inversion improvements from reduced atmospheric transport error. This exacerbated

the differences between post- and pre-inversion ∆XCO2 error. The inclusion of both a linear regression and a running average550

of the data (Fig 12) demonstrated that corrections driven by differences in prior and “observed” values were not linearly

dependent. In the case of full transport error, soundings that initially differed by ≤ 0.5 ppm did not demonstrate significant

correction after the inversion was applied whereas soundings with larger initial differences exhibited the most correction. After

the transport error was reduced, smaller prior enhancements demonstrated modest corrections while corrections provided by

larger enhancements were disproportionately larger. Although posterior ∆XCO2 estimates became closer to observed values555
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and the area of correction was larger after the transport error was reduced, biases introduced in the associated flux estimates

were increased. This was evident in the hourly spatial distributions of error reduction presented in Fig. 14. As in the previous

case, cells in the south of the basin with large prior flux error show improvement yet adversely influence neighboring cells.

The magnitude and area of this feature are increased after the transport error is reduced. Similarly, a larger area in the east of

the basin demonstrates greater improvement in posterior flux estimates.560

Observed ∆XCO2 enhancements are relatively small compared to errors associated with space-based observations. The

instrument error used in this work is specific to the LA Basin and a more general error value could be > 1 ppm (Connor

et al., 2016). Improvements in ∆XCO2 errors should be accompanied by reduced prior flux error to maintain balance between

the error components of flux- and XCO2-space in the cost function (Eqn. 3). The combination of transport error reduction

and corrections to the locations of LPSs (Sec. 3.3) reduced the errors in the south of the basin responsible for driving the565

optimizations in previous cases. As shown in Fig. 17, constraining the error from LPS locations within the prior dispersed the

areas of increased bias in posterior outputs. Although small localized clusters of increased relative error exist, reductions are

more prominent and total CO2 values no longer over estimate the “true” totals; however, decreasing the error in flux-space

also decreased the number of timesteps in which corrections were sustained. Although accurate spatial representation of LPSs

improved posterior estimates, Kunik et al. (2019) suggest temporal variation in LPS emissions is also a significant source of570

uncertainty.

In scenarios with reduced atmospheric transport error and “well behaved” flux errors, optimized results were restricted to the

first few backwards timesteps; however, using SAMs collectively resulted in strong corrections to biased prior data. Roughly

five SAMs were required to eliminate biases in the strongly contributing Transportation and Manufacturing sectors. Sectors

exhibiting weaker contributions to observed ∆XCO2 experienced less correction over time but additional SAM observations575

will further reduce this bias. The number of SAMs required to constrain sector-specific information from LA is similar to

the number of OCO-2 transects required to constrain whole-city emissions (Ye et al., 2020). This inversion technique can be

useful in regions that do not have ground-based CO2 measurement networks or sparse/inaccurate data for emission inventories.

Furthermore, the construction of emission inventories does not occur in real-time; therefore, the data products released often

cover previous years (Roten et al., 2022). Collections of dense ∆XCO2 observations from OCO-3 and other instruments taken580

throughout each year may be used to update data products from previous years.

This work used a Bayesian inverse method that was established in other studies (Kunik et al., 2019; Mallia et al., 2020;

Turner et al., 2020). The approach used to characterize prior flux errors was used previously for the analysis of ground-based

stationary and mobile CO2 measurements. Novel methods of error characterization may be developed that are better suited

to the strengths of space-based observations; however, a detailed analysis of multiple error quantification methods is beyond585

the scope of this work. Given the interplay between spatial correlation and LPS uncertainty, the construction of a “dynamic”

spatial length scale may provide a more robust spatial correlation matrix that can accommodate both LPS and area emissions.

Additionally, assimilating surface-based measurements into the inversion scheme may offer further improvements in posterior

estimates but the implementation of this hybrid approach would be limited due to lack of widespread ground-based observation

35

https://doi.org/10.5194/acp-2022-315
Preprint. Discussion started: 6 May 2022
c© Author(s) 2022. CC BY 4.0 License.



networks. Efforts to increase the utility of the bias correction scheme may recast this method to provide per grid cell corrections590

at a variety of temporal scales using collections of dense XCO2 observations.

5 Conclusions

Observations are essential to understanding anthropogenic aspects of the carbon cycle. Space-based XCO2 platforms are poised

to provide dense observations of urban emissions at a near-global scale, enabling monitoring, reporting, and verification of

emissions-related policy at a variety of scales. To characterize the information made available by these instruments, an OSSE595

was developed which utilized a Bayesian inversion scheme to investigate the flux information contained in SAMs provided

by the OCO-3 instrument. Results indicated that the optimization of prior emission estimates was susceptible to large flux

errors driven by LPSs. Large initial error in XCO2-space, dominated by transport errors, was also a contributing factor to

the inversion’s ability to provide corrections. Differences of < 0.5 ppm between prior and “true” ∆XCO2 demonstrated no

appreciable corrections in posterior estimates. Efforts to address the effects of large uncertainty included coarsening of the600

prior emissions inventory, reduction in transport error, and constraining the positions and uncertainties associated with LPSs.

Results demonstrate that, under well constrained conditions, SAMs provide modest corrections for ∼ 1 h prior to the time

of ∆XCO2 observation; however, the use of multiple SAMs to correct systematic biases found in prior emissions estimates

yielded promising results: large systematic biases were removed in the Transportation and Manufacturing sectors using only

five of the available SAMs while sectors with weaker fluxes were partially corrected. The methods and conclusions in this605

work provide a framework to investigate more robust methods of high-resolution Bayesian inversions of XCO2. In the future,

a dynamic approach to error/uncertainty quantification may adjust spatial sensitivities more appropriately, and corrective factors

may be calculated at the cell-wise level rather than the sectoral level. As more observing platforms come online, these methods

will become crucial in understanding CO2 contributions from megacities around the world.
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Code and data availability. The ODIAC emission data product is available from the Global Environmental Database hosted by the National610

Institute for Environmental Studies and can be downloaded at https://db.cger.nies.go.jp/dataset/ODIAC/. Vulcan 3.0 can be found at https:
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