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Abstract.

Atmospheric aqueous chemistry can have profound effects on our environment. The importance of chemistry within the

atmospheric aqueous phase was first realized in the 1970s as there was growing concern over the negative impacts on ecosystem

health from acid deposition. Research at mountaintop observatories including Whiteface Mountain (WFM) showed that gas

phase sulfur dioxide emissions react in cloud droplets to form sulfuric acid, which also impacted aerosol mass loadings. Cloud5

chemistry research has experienced a major resurgence in scientific interest due to the potential for aqueous chemical processes

to fill the gap between modeled and observed organic aerosol mass.

The current study updates the long-term trends in cloud water composition at WFM for the past 28 years (1994-2021).

Substantial decreases in sulfate (SO2−
4 ) and nitrate (NO−3 ) concentrations have not been matched by an equivalent decrease in

ammonium (NH+
4 ) concentrations, leading to significantly higher cloud droplet pH. Meanwhile, Total Organic Carbon (TOC)10

concentrations may be increasing (both in relative and absolute terms). In the past, samples were excluded from trend analysis

if they did not meet an approximate ion balance, which resulted in approximately half of samples being excluded in recent

years. We show that, when including the entire available dataset, decreasing trends in SO2−
4 , NO−3 , and NH+

4 become more

modest, TOC concentrations increase at a faster rate, and increasing trends in Ca2+ and Mg2+ emerge. A growing trend in

cation/anion ratios is also observed, implying that a significant fraction of anions are not being measured with the current15

suite of measurements, and these missing anions are growing in importance. Organic acids are identified as the most likely

candidates for the missing anions, since the measured ion imbalance correlates strongly with measured TOC concentrations.

The TOC trend becomes statistically insignificant when evaluating cloud water loadings (or air equivalent mass loadings),

possibly due to the complex role that LWC may play in TOC concentrations. We highlight the emergence of a new chemical

regime characterized by low acidity and relatively high conductivity, and increasing TOC and base cation concentrations. With20

the increasing impact from Ca2+ and Mg2+ on the bulk cloud water pH, which are largely thought to reside within coarse

mode aerosol that only represent a small fraction of cloud droplets, an "inferred cloud droplet pH" is introduced, to better

represent the pH of the vast majority of cloud droplets as they reside in the atmosphere. While measured pH has increased
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during the history of the monitoring site, the cloud droplet pH has remained relatively flat since 2009. We also show that there

is a missing source of acidity in the system that correlates with TOC. The chemical system at WFM has shifted away from a25

system dominated by SO2−
4 to a system controlled by base cation, nitrogen containing species and TOC. Further research is

required to understand the effects on air quality, climate, and ecosystem health.

1 Introduction

Whiteface Mountain (WFM) has been an important site for cloud water chemistry measurements dating back to the 1980s

(Falconer and Falconer, 1980; Mohnen and Vong, 1993), while routine summertime cloud water monitoring began in 1994.30

Much of the interest in cloud chemistry developed as a result of increasing emissions of sulfur dioxide (SO2) and nitrogen

oxides (NOx) in the second half of the 20th century. Through field experiments at WFM and other locations in the Eastern

U.S., researchers established that these gases, originating largely from fossil fuel combustion, can dissolve in cloud droplets

and undergo photochemical formation of sulfate (SO2−
4 ) and nitrate (NO−3 ). This chemistry has contributed substantially to

particulate mass, posing significant health risks and contributing to cooling effects on the climate (Kiehl and Briegleb, 1993;35

Pope and Dockery, 2006; Myhre et al., 2013). SO2−
4 and NO−3 are also the major causes behind acid deposition, a process that

can have detrimental ecosystem effects such as decreased aquatic biodiversity, calcium depletion from soils, release of toxic

aluminum (Gorham, 1998) and deterioration of building material (Xie et al., 2004). These growing societal and environmental

problems helped influence and shape amendments to the Clean Air Act in the 1990s focusing on the criteria air pollutants (SO2

and NOx). In addition to these emission reductions, the U.S. Environmental Protection Agency (EPA) formed a network of40

the mountaintop sites in the Eastern U.S. through the Mountain Acid Deposition Program (MADPro) to monitor the progress

of Clean Air Act Amendments. The regulation of these emissions proved to be successful, as SO2 and to a lesser extent NOx

have decreased for several decades in the U.S. (US EPA, 2019), leading to decreases in the acid deposition throughout the

Eastern U.S., including New York State (Rattigan et al., 2017). Substantial decreases in cloud water acidity were also observed

at WFM, corresponding to both decreases in cloud water acidity and particulate matter (PM 2.5) concentrations of SO2−
4 and,45

more modestly, NO−3 (Schwab et al., 2016b). Many ecosystems in the Adirondacks previously impacted by acid deposition

have shown signs of recovery (Driscoll et al., 2016).

The significant reductions in SO2−
4 and NO−3 , and therefore cloud water acidity, indicate a dramatically changed chemical

system, with a growing contribution from less well-understood and more labile analytes such as organic carbon and ammo-

nium (NH+
4 ). Organic carbon is found ubiquitously throughout the atmosphere, playing key roles in ozone formation and50

aerosol physicochemical properties such as hygroscopicity, optical properties and reactivity (Jimenez et al., 2009). During a

two-week pilot study at WFM in 2017, organic matter was shown to comprise as much as 93%, and an average of 78%, of

submicron aerosol mass (Zhang et al., 2019). Similarly, total organic carbon (TOC), the sum of particulate and dissolved OC,

is an important component within cloud and fog droplets (Herckes et al., 2013). Organic compounds are chemically complex,

containing 1000s of compounds, all with different chemical and physical properties spanning orders of magnitude in volatility55

and solubility, which dictates the chemical pathways they can take part in (Jimenez et al., 2009), making their identification and
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potential environmental effects challenging to determine (Herckes et al., 2013). The controlling factors for TOC concentrations

in cloud droplets are highly uncertain. Organic compounds can also interact with inorganic ions within cloud droplets to form

compounds like organic salts, organic nitrogen, and organic sulfur compounds (McNeill, 2015).

Reactive nitrogen deposition, from both reduced and oxidized forms, has also been gaining increased attention (Kanakidou60

et al., 2016; Stevens et al., 2018). While nitrogen can act as a nutrient in ecosystems that are nitrogen limited, excess deposition

can lead to harmful environmental effects such as soil acidification by leaching out buffering base cations like calcium (Ca2+),

magnesium (Mg2+) and potassium (K+), and through nitrification, potentially mobilizing toxic metals such as aluminum

(Lawrence and David, 1997; Tian and Niu, 2015). Nitrogen deposition, when combined with other factors, can also contribute

to harmful algal blooms which threaten aquatic ecosystems and human health (Paerl and Otten, 2013). A significant fraction65

of total nitrogen (TN) in cloud and rain water is organic nitrogen (ON), typically comprising ∼30% of water soluble nitrogen

(Cape et al., 2011). Much like organic carbon, the sources of organic nitrogen, as well as the chemical aging, deposition, and

ecosystem effects, are highly uncertain and require more research. Ammonia (NH3) is the primary atmospheric base in Earth’s

atmosphere, and an unregulated gas phase pollutant with increasingly recognized importance to atmospheric chemistry. Despite

emissions of NH3 in the U.S. largely decreasing prior to 2015 (US EPA, 2019), since then atmospheric concentrations of NH370

appear to be increasing (Warner et al., 2017; Liu et al., 2019). At the same time, aerosol NH+
4 concentrations have steadily

decreased and wet precipitation NH+
4 concentrations have remained relatively constant (Rattigan et al., 2017), suggesting that

complex long-term shifts in NH3 partitioning are taking place.

This paper provides an updated review of trends in summertime cloud water composition at WFM using data obtained

from MADPro (1994-2000), the long-term monitoring conducted by the Adirondack Lake Survey Corporation (ALSC) (2001-75

2017) and recent measurements conducted under the oversight of the Lance Lab at the Atmospheric Sciences Research Center

(ASRC) (2018-2021). A detailed review of the sample collection methods and laboratory analyses over this period are also

discussed, with a focus on major system changes that have not been fully described in previously published scientific papers.

Previous works have reported trends in bulk cloud water composition at WFM up to 2013, largely focusing on analytes most

relevant for acid deposition (Aleksic et al., 2009; Dukett et al., 2011; Schwab et al., 2016b). Here, a critical review of past data80

analysis methodologies is presented, alongside a thorough assessment and justification for modifications to these methodolo-

gies, which have resulted in significant changes to the long-term trends. In this paper, we also report the first long-term trends

in cloud water TOC at WFM, along with additional analysis of NH+
4 and non-volatile cation concentrations (Ca2+, Mg2+, K+)

in cloud water.

2 Collection History, Methods, Laboratory Procedure, and Data Analysis85

2.1 Site Description and Collection Methods

Whiteface Mountain (WFM) is located in the “High Peaks” Region of the Adirondacks Mountains in Upstate, NY, with summit

elevation of 1483m. The WFM site history is described in detail by (Schwab et al., 2016a, b). It should be noted that the first

cloud water TOC measurements at WFM were conducted for a handful of cloud events in 1987, along with the only published
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Figure 1. Timeline of major events in cloud water collection at WFM for the data set analyzed in this paper (1994-2021), with sampling

conducted by the Mountain Acid Deposition Program (MADPro) 1994-2000, the Adirondack Lake Survey Corporation (ALSC) 2001-

2017, and the Atmospheric Sciences Research Center (ASRC) 2018-2021, and two major system overhauls in 2005 and in 2015. The same

basic protocols, cloud water collector and liquid water content sensor were used throughout this entire measurement period, but sampling

frequency decreased from hourly to 3-hourly to 12-hourly, necessitating a larger accumulator vessel and an additional refrigerator to house

it. Automated filtering began in 2018. Photos documenting the manual rinsing process and the original accumulator were obtained from Eric

Hebert, Environmental Engineering Measurement Services, Inc.

organic acid measurements in cloud water at WFM to date. This powerful seminal study showed that potential sources of90

organic carbon including organic acids could share similar sources with SO2−
4 and NO−3 (Khwaja et al., 1995). Water Soluble

Organic Carbon (WSOC) measurements were also previously obtained for a selection of cloud water samples at WFM from

1990 to 1992 (Anastasio et al., 1994).

All of the bulk cloud water data reported in this paper used a Mohnen omni-directional passive cloud water collector

(Mohnen, 1980)(Fig. 1). The collector contains two disks with 0.035-0.04mm Teflon strings strung vertically between the95

disks. As cloud droplets pass through the collector and collide with the Teflon strings, water beads up and eventually drips

down the strings. The cloud water is then funneled by gravity through a tube and fed into a high density polyethylene vessel

called an accumulator. The accumulator then dumps into 1 liter sample bottles contained in a carousel within a refrigerator

below the accumulator.

Deployment of the collector was automated starting in 1994 during the MADPro campaign, and, since that time, the follow-100

ing meteorological parameters have been used to trigger deployment of the collector: 1) liquid water content (LWC) is > 0.05
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Figure 2. Schematic of the physical components of the current cloud water collection system inside the research observatory at the summit

of WFM. A series of valves control where the collected cloud water is directed at specific times, with multiple opportunities to be directed

to a waste stream marked ’Drain’. Up to 1 liter is collected in each bottle within the carousel. The two refrigerated parts of the system house

the Accumulator and the Carousel, where the sample is stored for up to 3 days before delivery to an analytical laboratory for analysis.

g m−3 measured by a Gerber Particle Volume (PVM) (Gerber, 1991), indicating the presence of a cloud. (Seinfeld and Pandis,

2016), 2) temperature is above 2◦C to prevent damage to the collector from riming, 3) rain is not detected, to limit measure-

ments to non-precipitating clouds. Rain was detected using an Aerochem gridded rain sensor from 1994 to 2014, which was

updated in 2015 to a CAPMoN heated grid rain sensor (Mekis et al., 2018), 4) and lastly, wind-speed is > 2 m s−1, allowing105

cloudy air to pass through the collector, measured using a RM Young anemometer. If all of these meteorological parameters are

met, the collector is raised from its protective housing, exposing the Teflon strings to the passing airflow. Figure 1 summarizes

the major events and changes to the cloud collection at WFM.

The automated collection system originally deployed the cloud water collector using an electric garage door opener motor,

which was upgraded in 2005 to a pneumatic system to increase deployment and retraction speed. A pressurized tank of deion-110

ized water also replaced the manual electric pump spray system in 2005. To monitor for potential contamination, blanks and
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rinses of the cloud collector were obtained regularly throughout each summer and assessed for the same analytes as the cloud

water samples. The collector was rinsed with deionized water for at least 15 seconds between samples, except when sample

changes occurred while deployed in cloud.

Cloud water samples were refrigerated at temperatures that never exceed 4◦C for up to 3 days within the carousel refrigerator115

and then transported to a laboratory for subsequent chemical analysis. From 1994-2006, the accumulator dumped into a sample

bottle every hour and the carousel advanced to the next bottle. Starting in 2007, samples were dumped every hour and later

pooled together into 3 hour composite samples prior to analysis. In 2014, the one hour samples were pooled together into 12

hour composite samples. Then, starting in 2015, the 1 liter accumulator was replaced with a 12 liter accumulator to accumulate

cloud water over 12 hour periods, providing up to one daytime and one nighttime sample per day. The new 12 liter accumulator120

was housed in a separate refrigerator above the carousel refrigerator to prevent microbial degradation of the sample prior to

freezing the sample, and a measurement of the accumulator weight was added to continuously monitor the volume of cloud

water collected.

Control of the cloud water collection system is accomplished through four pinch valves, three of which divert the sample

stream one of two ways under different conditions, and a pneumatic ‘Dump valve’ to effectively stop flow out of the accumula-125

tor. The ‘Collector valve’ diverts flow to waste whenever the collector is not actively deployed. The ‘Drain valve’ diverts flow

to waste after 1 liter has been collected in sample bottles within the carousel (since bottles in the carousel can only hold 1 liter).

The ‘Rain valve’ operates at a higher frequency than the 1 minute timescale of the ‘Collector valve’ and diverts flow to waste

when the rain sensor detects rain but the collector has not yet retracted back into its housing.

Starting in 2018, an automated filtering system with in-line peristaltic pump was added just prior to the accumulator (Fig.130

2), to prevent potential microbial degradation of the sample. This change in protocol was introduced to safeguard samples

for subsequent analysis of the organic constituents, since organics now comprise a major fraction of aerosol and cloud water

solute mass, and their chemical and physical properties remain poorly understood. Automated filtering could be important for

preserving some organic compounds for up to 3 days within the carousel refrigerator, since some microbes are known to both

consume and produce organic compounds even at temperatures as low as 0 ◦C (Van Stempvoort and Biggar, 2008). For the first135

year of automated filtering, only a few samples were filtered during collection, and field tests were conducted to verify that the

filter used did not introduce measurement artifacts. It should be noted that after automated filtering commenced, TOC could

no longer be measured as the filtration removes particulate organic carbon, and instead measurements of water soluble organic

carbon (WSOC) were obtained. To estimate the fraction of TOC no longer being measured due to this change in protocol,

both TOC and WSOC were measured for a subset of samples in 2018 and 2019 (Fig. S1). The comparison between WSOC140

and TOC for these samples yielded on average 15% insoluble organic carbon, within the range reported in previous studies

(typically between 6 and 23%) (Herckes et al., 2013).

As used by Khwaja et al. (1995), a pre-washed 0.4µm track-etched polycarbonate filter was selected, balancing the need for

microbial removal and the need for low enough pressure drop to attain reliable operation of the automated filtering apparatus.

The in-line filter was housed within the accumulator refrigerator to prevent microbial growth on the filter substrate. Since145

pressures in excess of 40 psig could occur under high particulate load on the filter, PTFE reinforced silicone peristaltic pump
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tubing (GORE STA-PURE PCS) was used to prevent tubing rupture, and filters were replaced during every site visit, nominally

every 3 days. The peristaltic pump was also triggered to only turn on during cloud events when the collector was deployed, to

prevent unnecessary wear and tear on the peristaltic pump tubing.

2.2 Chemical Analysis and Data Handling150

The list of routinely measured analytes for this long-term dataset is: conductivity, pH, SO2−
4 , NO−3 , NH+

4 , Cl−, Na+, Ca2+,

Mg2+, and K+, with TOC measurements beginning in 2009. MADPro and ALSC measured each ion using similar methods

recommended by the U.S. EPA. For anions, ion chromatography was conducted according to the EPA 300.1 method. MADPro

used Dionex instruments throughout the campaign. From 2005 until 2014, ALSC used a Thermo Scientific Dionex ICS-

600 Ion Chromatography system. In July 2014, the system was replaced with a Thermo Scientific Dionex ICS-1100 Ion155

Chromatography system. For 2018 and 2019, cloud water composition was measured at AWI. SO2−
4 and Cl− were measured

via ion chromatograhy using a Lachat QC 8500 Ion Chromatograph. There is likely a high bias for the Cl− data for 2018 and

2019, as there were issues with detection limits. A cadmium reduction technique couple with Lachat QC 8500 Flow Injection

Analyzer was used to measured NO−3 , as described by the EPA 352.2 method. This technique was used as NO−3 was co-eluting

with other peaks within the chromatograms, making identification by ion chromatography not possible. It should be noted160

that cadmium reduction measures both NO−2 and NO−3 , potentially biasing NO−3 high. However, NO−2 is expected to exist in

negligible concentrations in comparison to NO−3 and therefore likely not impacting the measurement significantly. Metals were

measured using a Inductively Coupled Plasma-Atomic Emissions Spectrometry analyzer, following the EPA 200.7 method. For

cations, MADPro used Perkin-Elmer P-2 inductively coupled argon plasma (ICAP) atomic emission spectrometer to measure

Ca2+, Mg2+, and Na+. In 1994, K+ was measured using an flame atomic emission spectrometry, and switched to ICAP atomic165

emissions for the remainder of the project. MADPro used a Perkin-Elmer P-2 ICAP atomic emissions spectrometer. Between

the years 2000 to 2014, ALSC used a Perkin Elmer analyst 300 Flame/Graphite furnace Atomic Absorption Spectrometer

(AAS) to measure Ca2+, Mg2+, K+, and Na+, which was replaced in September 2014 with a Perkin Elmer Pinnacle 900H

Flame Graphite Furnace AAS. Both MADPro and ALSC used an automated phenolate method combined with colorimetry

for NH+
4 analysis according to the EPA 350.1 method (EPA, 1983). Both MADPro and ALSC categorized data based on ion170

balance criteria according to the relative percent difference (RPD) between the measured cation and anion concentrations,

calculated as follows:

RPD = 100% ∗
∑

Cations−∑
Anions

(
∑

Cations +
∑

Anions)/2
(1)

Samples were categorized as Valid based on RPD using the following thresholds: RPD < 100% when both
∑

Cations and
∑

Anions < 100 µeq L−1, or RPD < 25% when either
∑

Cations or
∑

Anions > 100 µeq L−1. Samples that did not match175

these criteria were considered Invalid. Samples with flagged data due to suspected measurement problems were also considered

Invalid, which were extremely rare, only representing < 1% of samples. Samples for which all analytes could not be measured

(for instance, due to insufficient sample volume) were omitted from our separate analysis of Invalid and Valid datasets, and
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we refer to these samples as Unclassified since ion balance could not be fully assessed for these samples. Fewer than 10%

of samples were Unclassified. Previous analyses involving the MADPro and ALSC data sets typically only used Valid data180

(i.e. those samples that passed the ion balance criteria and were also not subject to any known or suspected measurement

problems), which has important implications for the data interpretation and the resulting long-term trends, as will be discussed

in the results section of this work.

TOC was measured according to the EPA 450.1 method using a Tekmar Dorhmann Phoenix 800 Carbon Analyzer from 2009

to 2015. In April 2015, the system was replaced with a Teledyne Tekmar TOC Fusion Carbon Analyzer. Lastly, WSOC was185

measured using a Shimadzu TOC-VCPN Total Organic Carbon Analyzer. In 2020 and 2021, chemical analysis were done by

ALSC, using the same methods described above. Accuracy measurements was determined using prepared reference standards

and were run every 10 cloud samples. Each year, 5-10 split samples were sent to another analytical lab to measure the same

suite of analytes as an additional quality control measure.

Previous studies also often focused on reporting sample volume-weighted analyte concentrations due to a focus on wet190

deposition, whereas we report measured cloud water concentrations and cloud water loadings, the latter of which complements

measurements of aerosol loadings. Since a typical cloud droplet is more likely to evaporate than deposit to the surface at any

given time (Seinfeld and Pandis, 2016), this latter focus on atmospheric loadings is useful for investigating chemical processes

occurring in the atmosphere separately from the influence of sample dilution at higher LWC.

To account for variability in LWC that potentially affected cloud water concentrations, cloud water loadings (CWL) are195

calculated as follows (Elbert et al., 2000; Marinoni et al., 2004; Kim et al., 2019):

CWL =
LWCsamp ∗ [Xi] ∗mwi

ρw ∗Zi
(2)

where CWL is expressed in µg solute per m3 of air, LWCsamp is the representative LWC during which the sample was

collected expressed in g water per m3 of air, [Xi] is the liquid concentration of a given solute ion i expressed in µeq solute per

L of water, mwi is the molecular weight of the solute in g mol−1, Zi is the solute charge and ρw is the density of cloud water200

(assumed to be 1 g cm−3). To calculate TOC CWL, [Xi]/Zi is replaced with molar concentration in µmol C per L and mwi

= 12g mol−1. While the long-term WFM data set included average LWC values for each sample, there is no record of how

these values were determined, and careful analysis indicates that these values included LWC values during periods with drizzle

when collected cloud water was being sent to a waste stream and the collector is not deployed, a common occurrence during

the night. To avoid introducing bias into the CWL calculation, we recalculated LWCsamp by removing LWC values from the205

average when the rain sensor detected rain for > 15% of a given measurement period or the collector is deployed for the less <

25% of a measurement period as described in the supplemental material (Fig. S2). Since this additional information about the

collector status and meteorological conditions during each hour is only available starting in 2009, only data from 2009 to 2021

is included in our LWCsamp and CWL calculations.

In the present study, data analysis is performed within the statistical software R (Team, 2021). Measured analyte concen-210

trations and conductivity exhibit a log-normal distributions, therefore median values were used rather than means for trend
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Figure 3. Annual median trends in cloud water collected from the summit of WFM. Plots a and b include Valid data, samples achieving

an approximate ion balance, while plots c and d include the entire available dataset. Annual median trends in major analyte concentrations

reported in µeq L−1 for ions on the left axis, and µmolC L−1 for TOC on the right axis. Conductivity is measured in µS cm−1 on the right

axis in plots b and d. Measured annual median WSOC for samples collected in 2018-2021 are shown in light green for comparison to the

estimated TOC concentrations in these years. Error bars represent mean standard error.

analysis, as the median is more robust to outliers and a better representation of the population. Additionally, due to signif-

icant variance within the trend data, Mann-Kendall (MK) trend tests combined with Theil-Sen slope estimators (Sen, 1968)

were employed to obtain a robust estimate of the slope of the long-term trends in measured analyte concentrations, with its

significance determined by the calculated p-value from MK test.215

9

https://doi.org/10.5194/acp-2022-313
Preprint. Discussion started: 18 May 2022
c© Author(s) 2022. CC BY 4.0 License.



3 Long-Term Trends

3.1 Trends in Valid Data

This section updates the long-term trends in cloud water composition at WFM that were previously reported by Aleksic et al.

(2009), Dukett et al. (2011) and Schwab et al. (2016b), now including data through 2021. Figure 3a) shows annual median

analyte concentrations, and the slopes of the linear trend analysis for the Valid dataset, while table S1 a) shows the slopes,220

and associated p-values for all measured analytes. Annual median cloud water pH increased from 3.78 in 1994 to 5.34 in

2021, corresponding with a substantial decrease in conductivity and SO−2
4 . Meanwhile, NO−3 , NH+

4 , and Cl− concentrations

exhibited relatively modest decreases, which leveled off starting in 2006. The remaining ions exhibited no discernible trends.

TOC is the only analyte that shows evidence of an increasing trend (plotted on the right axis in the upper plot, Fig. 3a). This

is the first reported long-term trend for cloud water TOC at WFM. It should be noted that for 2009, the first year of routine225

TOC measurements, TOC analysis was only conducted on 20 samples in total, compared to 80-285 samples per year with

TOC measurements from 2010-2021. In spite of the small samples size for 2009, these data are included in the trend analysis,

as there is no evidence of measurement error or bias, and their inclusion doesn’t strongly impact the resulting trend. Since

TOC concentrations could not be measured for samples when automated filtering was performed during collection (as applied

for samples 2018-2021), annual median TOC concentrations for these 4 years were estimated based on the average 85%230

WSOC/TOC ratio observed for the subset of samples from 2018 and 2019 where both WSOC and TOC were measured (Fig.

S1). Both WSOC and TOC concentrations are shown in Fig. 3a for these four years, but only the estimated TOC concentrations

are used in the trend analysis.

Figure 4. Annual percentage of cloud water samples considered Invalid according to ion balance criteria [Invalid/(Invalid + Valid)] (black,

left axis) and total number of samples (Valid + Invalid + Unclassified) in each year (grey, right axis).

3.2 The Growing Influence of Invalid Data

Review of the cloud water measurements obtained at WFM shows that the proportion of so-called Invalid samples has increased235

substantially over the past several years, increasing from 9.3% in 1994 to 47% in 2021, and peaking at 57% in 2020 (Fig. 4).
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This classification, based on ion balance criteria, was intended to reduce the impact from measurement error, as it is assumed

that positively charged cations should be balanced by negatively charged anions in any natural bulk water systems. Implicit in

this characterization is the assumption that the majority of ions are being measured. This growing ion imbalance in cloud water

coincides with increasing cation/anion ratio observed in rain water collected by the National Atmospheric Deposition Program240

(NADP) over the same time period throughout NY State using the same standard suite of analytes (Rattigan et al., 2017). Since

the rain water observations are entirely independent of the cloud water measurements, it is unlikely that the growing number

of Invalid samples is due to a measurement artifact. Crucially, aside from ion imbalance, there is no evidence that the so-called

Invalid cloud water samples were subject to measurement bias and should be discarded. We hypothesize, instead, that the

growing ion imbalance is due to unmeasured ions, such as organic acids (Dukett et al., 2011), that are growing in abundance.245

Since organic acids are known to comprise a significant fraction of TOC (Herckes et al., 2013), the measured trend in TOC

concentrations at WFM supports this hypothesis.

Since the Invalid data set now comprises nearly half of the samples it is worth analyzing this dataset separately. These

samples are potentially representing a chemically distinct subset of samples that are encountered more frequently in recent

years. To summarize, Invalid samples are considerably less acidic (0.5-1 pH units) and exhibit higher concentrations of NH+
4 ,250

TOC, Ca2+ and K+ (Fig. S3), and the trends are significantly different as well. After around 2006, trends in the Invalid dataset

appear to begin diverging from the Valid data set. On average, LWC is higher within the Valid data set, which tends to dilute

samples and thus reduce all analyte concentrations. However, there is not a growing divergence between the trends of Valid

and Invalid LWC, therefore LWC trends alone do not explain the divergence between Valid and Invalid concentrations. These

observations show that while the Invalid samples have been growing more common, the composition of the Invalid samples255

has also grown more concentrated in TOC, NH+
4 , NO−3 and Ca2+ over the past decade.

3.3 Trends of the Complete Data Set

Including Valid, Invalid and unclassified data, the trends still exhibit significant reductions in conductivity, SO2−
4 , NO−3 and

NH+
4 concentrations (Figure 3b and Table 1b). However the reductions are lower in magnitude compared to only the Valid

data. For instance, the slope of the regression line of [SO2−
4 ] decreases from 5.14 to 4.13 µeq L−1 yr−1. Notably, the reactive260

nitrogen species (NH+
4 and NO−3 ) exhibit a more noticeable uptick in recent years from the overall downward linear trend. This

apparent inflection point in the trends starting around 2006 appears to signify the emergence of a new chemical regime that

has been growing in importance with the growing fraction of Invalid samples. The biggest impact of including the Invalid data

in our analysis is a stronger increasing trend in TOC concentrations, which more than doubles from 2009 to 2021. [Ca2+] and

[Mg2+] also show strong increasing trends. Annual median concentrations for the complete dataset show that NH+
4 has been265

increasingly capable of neutralizing SO2−
4 and NO−3 , which is well matched by a decreasing trend in measured H+ (Fig. 5).

Note that for individual cloud water samples, [NH+
4 ] can be greater than both [SO2−

4 ] and [NO−3 ] combined, which occurred

for 1203 out of 9429 cloud water samples from 1994 to 2021.

The increasing trend in annual median Cation/Anion ratios within cloud water over the entire record is 1.97% yr−1 (p = <

0.001), including only samples where cations and anions for all measured analytes are reported. Emergence of a new chemical270
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Figure 5. a) Annual median measured H+ concentrations and neutralization of SO2−
4 and NO−3 by NH+

4 , and b) annual median Cation/Anion

ratios, in cloud water collected from the summit of WFM (complete dataset).

regime within the past decade is further supported by these observations, with annual median ion imbalance < 20% prior to

2009, after which median ion imbalance has exceeded 20% in every subsequent year except 2018.

4 Relationship Between Cloud Chemistry and Liquid Water Content

The analysis so far has focused on cloud water concentrations, which can be impacted by changes in meteorological parameters

like LWC that are unrelated to changes in chemistry or emissions. Previous works have investigated the role of LWC on275

analyte concentrations (Elbert et al., 2000; Aleksic and Dukett, 2010; van Pinxteren et al., 2016), finding a weak non-linear

negative relationship between total ion concentrations (TIC) and LWC, with considerable variance within the data. Aleksic and

Dukett (2010) used a probabilistic technique to describe the relationship between binned LWC and TIC, with TIC showing a

negative exponential relationship with LWC. When using this type of LWC binning technique for TOC, a similar probabilistic

relationship can be found (Fig. S4), where a decreasing trend is observed in TOC as LWC increases, but exhibiting large280

variability within each bin, similar to what has been found previously at other locations (Herckes et al., 2013).

An alternate way to report cloud and precipitation composition is to weight by sample volume (Schwab et al., 2016a;

Rattigan et al., 2017), which provides a means for determining the net accumulation of a particular analyte in the environment.

Sample volume for cloud water is dependent on the collection efficiency of the cloud water collector, which is influenced by

wind speed, LWC and updraft, complicating the relationship between sample volume and cloud composition. In our analysis,285
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Figure 6. Linear trends in annual median Cloud Water Loadings (CWL) between 2009-2021 for the complete data set, using the meteorology

criteria outlined in the SI, Section 1 to calculate average in-cloud LWC values associated with each sample.

instead of sample volume, samples are weighted by liquid water content (LWC) to determine Cloud Water Loadings (CWL),

also referred to as air-equivalent concentrations (Marinoni et al., 2004; Wang et al., 2016; Kim et al., 2019), which has the

added advantage of being directly comparable to aerosol loadings.

Figure 6 and Table S2 show the trends and the associated p-values in median CWL for 2009-2021, a time period for which

meteorological data was available for calculating the average in-cloud LWC for each cloud water sample within the complete290

dataset. Focusing on this date range has the added advantage of focusing on a time period that is chemically distinct from the

earlier half of the long-term record (e.g. with NH+
4 concentrations growing in abundance relative to both SO2−

4 and NO−3 ,

and changing trends in all the major analytes, as shown in Fig. 3c). Using the same analysis method as in previous sections,

increasing trends in Ca2+, Mg2+, Na+, Cl−, and K+ CWL since 2009 are observed. The trends in Ca2+ and Mg2+ CWL imply

increased influence from mineral or soil dust, while the increasing trends in Na+ and Cl− suggest increasing influence from sea295

spray or playa dust. The increasing K+ trend could indicate increased influence from wildfires (Simoneit, 2002; Pachon et al.,

2013), though K+ can also be found in coarse mode aerosol (VandenBoer et al., 2011). Meanwhile, there is no statistically

significant trend in LWC, SO2−
4 , NH+

4 , NO−3 or TOC CWL over this time period. This surprising result indicates that the

large increasing trend in TOC concentrations since 2009 reported in Fig. 3c is not statistically significant when accounting

for LWC, despite the positive slope of the TOC CWL regression line. Additional measurement uncertainty introduced by the300

LWC measurements may partly account for the higher p-value and reduced significance of the TOC CWL trend, but complex

relationships between LWC and TOC concentrations (e.g. dilution and partitioning of soluble organic gases and/or drier air

masses associated with greater biomass burning emissions) could all be playing a role.
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5 Potential Missing Ions

Two independent measures (Cation/Anion ratio and Predicted/Measured Conductivity) imply that as pH increases, there is a305

growing abundance of analytes that are not being measured, particularly above 4.5 pH (Fig. S5). The measured ion imbalance

suggests that more of the missing analytes are anions than cations. Here, we discuss potential missing anions responsible for

the increasing trend in cation/anion ratios in WFM cloud water.

5.1 Bicarbonate

Due to increasing cloud water pH, bicarbonate (HCO−3 ) is hypothesized to have a growing contribution to ion balance. The310

dissolution of CO2 is a major source of HCO−3 by partitioning into cloud droplets and hydrolyzing to form carbonic acid

(H2CO3). This contribution of HCO−3 from CO2 increases as pH increases. Highly alkaline dust particles containing calcium

and magnesium carbonate (CaCO3 and MgCO3) can also be a major source of HCO−3 . Cloud water collection sites that are

heavily influenced by mineral dust often report pH values above 7 (Khemani et al., 1987; Budhavant et al., 2014), leading

to relatively acid-buffered cloud water. While the suite of measurements at WFM did not include HCO−3 , it can be estimated315

using pH dependent equilibrium equations for an aqueous system open to the atmosphere, calculated as follows:

[HCO−3 ] =
PCO2 ∗HCO2 ∗Ka1

[H+]
(3)

where PCO2 represent the partial pressure of CO2, assumed to be 410 ppm, HCO2 = 3.2x10−2 M atm−1 is the Henry’s

law constant of CO2 and Ka1 = 4.37x10−7 (Sander, 2015). Temperature was also assumed to be 298 K. There is virtually

no change to the overall ion balance when including estimated HCO−3 (Fig. S6). Even for pH values above 6 (approximately320

the pKa of H2CO3), there are only modest improvements in overall ion balance. Based on these estimates, it is unlikely that

HCO−3 is a major driver of ion imbalance in the WFM cloud water observations. Importantly, these are only estimates of

[HCO−3 ] based on equilibrium with the atmosphere. There has been significant discussion on the validity of Henry’s Law

constants for cloud drop distributions, as several field studies note significant departures of measurements from gas-aqueous

phase partitioning (Pandis and Seinfeld, 1991; Winiwarter et al., 1994; Straub, 2017). It is plausible that some deviations could325

also exist for the carbonate system, thus leading to inaccurate HCO−3 concentration estimates. One fog water monitoring site

in Pennsylvania found similar anion deficiency in their system and hypothesized HCO−3 as one potentially missing anion. For

better estimates, they used inorganic carbon measurements from a TOC analyzer and assumed all inorganic carbon was part

of the carbonate system. They then used the pH of the fog water to calculate the fraction of HCO−3 . This led to around a 2.4x

greater concentrations of HCO−3 on average than predictions based on Henry’s Law, improving overall ion balance (Straub,330

2017). It should be noted that the fog water exhibited considerably greater pH values than WFM cloud water, however, and

only fog water samples with pH > 6.0 showed appreciable ion imbalance, reinforcing our assessment that [HCO−3 ] are likely

negligible for the majority of cloud water samples from WFM.
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5.2 Organic Anions

Organic anions such as formate, acetate, and oxalate are known to be present in cloud and rain water, including at WFM335

(Khwaja et al., 1995; Chapman et al., 2008; Herckes et al., 2013; Akpo et al., 2015). A strong correlation between TOC and

ion imbalance (R2 = 0.55, p < 0.001), implies that an important fraction of missing anions are likely organic (Fig. S7). Further

evidence for missing organic acids is revealed when investigating ion balance as a function of pH. At low pH, the ratio of

measured Cations to Anions is approximately 1, approaching ion balance. As pH increases, the ratio decreases, reaching a

minimum of 0.69 for pH 5.5-6.3, with large decreases in the ratio at pH bins of 4.0-4.8 and 4.8-5.5 (Fig. S8). These pH bins340

are close to the pKa values of formic and acetic acid (3.74 and 4.75 respectively), often the most abundant organic acids

found in cloud water (Herckes et al., 2013). As pH increases, a greater fraction of these acids, and others, are expected to

exist in their anionic form, and contribute more significantly to charge balance. Similarly, Figure 5s shows that the ratio of

predicted/measured conductivity decreases as pH increase, indicating a missing source of ions within the system that could be

organic in nature. In order to better constrain the growing ion imbalance in cloud water at WFM, the concentration of organic345

anions such as organic acids must be routinely measured and their protonation state determined.

6 A New Chemical Regime

6.1 Changing Relationship Between H+ and Conductivity

While our analysis of the long-term cloud water data set at WFM illuminates important differences from previous analyses,

there is no doubt that significant progress has been made in reducing ambient concentrations of criteria pollutants across the350

U.S. and at WFM since the 1990s, resulting in significant decreases in SO2−
4 and NO−3 concentrations, with associated increases

in cloud water pH and decreases in conductivity. These overall trends highlight that, generally, conductivity is controlled by H+

concentrations, due to the high limiting molar conductivity of H+ (Λ+ = 349.5 S cm2 mol−1) compared to other analytes (e.g.

160.0 S cm2 mol−1 for SO2−
4 and 73.5 S cm2 mol−1 for NH+

4 ) (Coury, 1999). In recent years, this relationship is diminishing.

Figure 8a shows the relationship between conductivity and pH for individual cloud water samples throughout the entire 28 year355

record (1994-2021). pH values range from <3 to nearly as high as 7, and conductivity values likewise span nearly 3 orders

of magnitude. Many samples exhibit a strong linear relationship between H+ and conductivity, especially in more acidified

cloud samples. However, beginning at pH values above 4, many samples deviate from this linear relationship, with higher

conductivity values than expected for samples with high pH. To reach these same conductivity values, the cloud water samples

requires much higher concentrations of other ions such as NH+
4 and Ca2+. The emergence of this new ‘Non-Linear Regime’360

with both high pH and high conductivity implies that one cannot assume that samples with higher pH are ‘cleaner’, as was
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Figure 7. a) Conductivity and pH for individual cloud water samples from 1994 to 2021. The Linear and Non-Linear regimes are distin-

guished with dashed line that indicates H+ contribution to the measured conductivity is exactly 35%. To the right of this line, H+ contributes

less to the measured conductivity, and we refer to this as the Non-Linear Regime, since conductivity and pH no longer exhibit a clear linear

relationship. The dotted line represents the conductivity if H+ is the only ion present. b) Percent of samples in the Non-Linear Regime for

each year of sampling at WFM.

typically the case in decades past at WFM. To better investigate this non-linear relationship between conductivity and H+, we

propose a new method of classifying cloud water data as follows:

RCond =
HCond

MCond
(4)

where MCond is the measured specific conductivity and HCond is the conductivity from the H+ ion, calculated from:365

HCond = Λ+[H+] (5)

where Λ+ is the limiting molar conductivity of the H+ ion at infinite dilution arising from the autoionistation of pure water.

If RCond < 0.35, less than 35% of the total conductivity of the sample can be explained by H+. For samples with RCond > 0.35,

to the left of the dashed line on Fig. 7a, a linear relationship between conductivity and pH is observed, and for samples with

RCond < 0.35 this linear relationship breaks down. The following section will compare differences in chemistry between the370

two regimes.

6.2 Linear Regime vs Non-Linear Regime

There are many similarities between the Valid/Invalid and Linear/Non-Linear classifications. Figure 7b shows that a growing

fraction of samples are in the Non-Linear Regime, peaking at over 90% of samples in 2020. Table 1 uses a Dunn test to compare

median concentrations between the Linear and Non-Linear regimes (averaged over all years for which data is available, i.e.375

1994-2021 for all analytes except for TOC, which was averaged over 2009-2021). Conductivity and SO2−
4 are nearly double
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Table 1. Linear versus Non-Linear Regime median concentrations for all measured analytes and associated p-values for the Dunn test.

and cloud water pH is 1 unit lower in the Linear data set compared to the Non-Linear data set, highlighting the dominance of

SO2−
4 and H+ in the Linear Regime. There is no obvious difference in NO−3 concentrations between the two data sets, implying

that the controlling factors for NO−3 are unrelated to the relationship between H+ and conductivity. Every other measured ion

shows higher concentrations in the Non-Linear data set than the Linear data set, with considerably higher concentrations of380

TOC, Ca2+, and Mg2+, and in addition, an overall greater ion imbalance. Therefore, the Linear Regime can be characterized

as a highly acidified system controlled by SO2−
4 , and the Non-Linear Regime is a system with greater TOC, NH+

4 and base

cations. The Non-Linear Regime is becoming the predominate system in WFM cloud water.

6.3 Is Cloud Water Representative of Cloud Droplets?

With the reductions in SO2−
4 and NO−3 , species such as Ca2+ have grown in relative importance to ion balance, conductivity,385

and pH. Sources of atmospheric Ca2+ can include fossil fuel combustion in the form of fly ash (Lee and Pacyna, 1999), but the

major source is generally thought to be mineral dust particles containing bases like calcium carbonate (CaCO3) and calcium

oxide (CaO). These particles typically raise the pH of cloud and rain water, particularly evident in observations reported from

measurements in India (Khemani et al., 1987; Budhavant et al., 2014). Within WFM cloud water, there is a considerably higher

concentration of Ca2+ for samples within the Non-Linear Regime, likely contributing, in part, to the higher measured pH390

values.

Due to the mechanism by which they are lofted into the atmosphere, mineral dust aerosols are known to exist primarily in

the coarse mode (i.e., with dry particle diameter > 1µm) (Seinfeld and Pandis, 2016). While these aerosol can make up a sub-

stantial fraction of the overall aerosol mass concentration, they generally represent a very small fraction of the aerosol number

concentration (Mahowald et al., 2014). Therefore, even if these particles are hygroscopic, only a small fraction of activated395

17

https://doi.org/10.5194/acp-2022-313
Preprint. Discussion started: 18 May 2022
c© Author(s) 2022. CC BY 4.0 License.



cloud droplets are likely affected by coarse mode aerosol, even at a remote location like WFM where aerosol concentrations

are relatively low. During a pilot study at WFM in 2017, cloud droplets intercepted at the summit of WFM were shown to

be primarily comprised of cloud condensation nuclei with 100-300nm dry diameter (Lance et al., 2020), consistent with this

general understanding.

When the rare alkaline cloud droplets, formed on coarse mineral dust aerosol, are collected by the cloud water collection400

system, they can have an out-sized impact on the bulk cloud water sample, which may no longer well represent the majority

of cloud droplets as they existed in the cloud. This is supported by work from Moore et al. (2004) using a multistage cloud

collector at WFM, which found that Ca2+ and Mg2+ concentrations were 1.9-30 and 2.3-58 times greater, respectively, in

large droplets than small droplets. Size resolved aerosol composition data in nearby Ontario, Canada indicates that 65-95%

of the total aerosol Ca2+ mass and 78-99% of Mg2+ were within super micron (> 1 µm) aerosol in 2009-2010 when those405

measurements were conducted (VandenBoer et al., 2011). However, > 99% of the total number of aerosol were found in sub

micron particles. A wide range (11-71%) of K+ was found to reside in super micron aerosol, suggesting that while a significant

fraction of K+ can be associated with mineral dust, an important fraction can also come from non-dust sources like biomass

burning. The fraction of NO−3 within coarse mode aerosol was also found to be highly variable, ranging from 21-93%. While

NO−3 often resides with fine mode aerosol, gaseous HNO3 can react with coarse mode aerosol containing alkaline species like410

CaCO3 and MgCO3 (Hansen et al., 2010; Hrdina et al., 2021) resulting in coarse mode aerosol NO−3 (Fig. S9).

Based on this general understanding of coarse mode aerosol, as discussed above, we expect that bulk collection of cloud

water is often no longer representative of the vast majority of cloud droplets as they existed in the atmosphere and could bias

our understanding of cloud droplet pH. In an attempt to better account for this potential bias, a new calculation for inferred pH

of a typical cloud droplet (pHTD) is introduced:415

pHTD =−log10([H+] + [Ca2+] + [Mg2+]) (6)

where [H+], [Ca2+] and [Mg2+] are the measured concentrations in units of eq L−1 within bulk cloud water. We refer to this

as the "top down" (TD) approach for estimating acidity of the majority of cloud droplets because the measured bulk cloud water

pH provides the cumulative impact from all dissolved molecules. By accounting for measured Ca2+ and Mg2+ concentrations,

this calculation is an attempt to remove the influence of mineral dust particles on the bulk cloud water pH. This calculation420

assumes that measured Ca2+ and Mg2+ ions are associated with dissolved alkaline compounds such as CaCO3 or MgCO3

in equilibrium with atmospheric CO2 and that a very small number of droplets contain these minerals at all, as supported by

the size-resolved aerosol composition measurements described above. While the measured pH of bulk cloud water is relevant

for wet deposition, we posit that pHTD is more relevant for processes occurring within the majority of cloud droplets as they

existed in the atmosphere.425

We also calculate one of the simplest proxies for pH that has long been used to estimate fine mode aerosol pH (Pye et al.,

2020):

pHBU =−log10([SO2−
4 ] + [NO−3 ]− [NH+

4 ]) (7)
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Figure 8. Annual median bulk cloud water pH (red) compared to estimated cloud droplet pH calculated from the bulk cloud water pH and

measured Ca2+ and Mg2+ concentrations (pHTD, blue) and estimated cloud droplet pH calculated from measured SO2−
4 , NO−3 and NH+

4

concentrations (pHBU, green).

This "bottom up" (BU) proxy includes the major inorganic species typically found within fine mode aerosol, which are

thus expected to be found in the majority of cloud droplets. Measured bulk NO−3 concentrations are assumed to reside ex-430

clusively within the fine mode aerosol. Additional NH3 or HNO3 partitioning to cloud droplets subsequent to activation are

also accounted for with this method, assuming partitioning to droplets formed on coarse mode aerosol is negligible. However,

contributions from organic acids present in aerosols or partitioning to the aqueous phase during cloud droplet activation are

entirely neglected.

Figure 8 shows the annual median trends of inferred cloud droplet pH (pHTD) and measured bulk cloud water pH. During435

the first ∼15 years of the cloud water monitoring program, pHTD tracks closely with pHmeas, but the influence of base cations

on measured pH has grown over time. Despite measured pH continuing to increase after 2010, there has been little change in

pHTD. In 2020, mineral dust is estimated to have increased the median cloud droplet pH from 4.5 to 6.3, resulting in more than

an order of magnitude decrease in median H+ concentrations.

Throughout the cloud water monitoring program, annual median pHBU tracked measured bulk cloud water pH surprisingly440

well. This makes sense during the early years of the program when SO2−
4 , NO−3 and NH+

4 dominated the cloud water ionic

composition and Ca2+ and Mg2+ had minimal impact on bulk cloud water acidity. However, the apparent agreement between

pHBU and pHmeas in recent years may be misleading. It should be noted that a substantial fraction of cloud water samples
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exhibit greater NH+
4 than SO2−

4 + NO−3 in recent years, corresponding to negative values for [H+]BU. This is a significant

limitation for this proxy method in recent years, when nearly 50% of cloud water samples exhibit this condition (Fig. 9a).445

The large and growing discrepancy between bulk cloud water pH and pHTD over the past decade coincides with the growing

fraction of samples being characterized in the Non-Linear Regime. We posit that, with SO2−
4 concentrations decreasing at

the same time base cations and TOC concentrations increase, the major influences on cloud droplet pH are also changing.

When we segregate individual cloud water samples by the Linear and Non-Linear regimes (Fig. 9b and c, respectively), we

can more clearly see how the different pH proxies compare. Within the Linear Regime, [H+]BU (plotted on the x-axis in450

Fig. 9b and c) shows a strong correlation with measured bulk cloud water [H+] but overpredicts measured [H+] by 11%.

Removing the influence of coarse mode aerosols by including [Ca2+] and [Mg2+] in the [H+]TD calculation improves the

agreement, with a nearly 1:1 relationship between [H+]TD and [H+]BU. Within the Non-Linear Regime, [H+]BU greatly

overpredicts measured bulk cloud water acidity. When removing the influence of course mode aerosol, the correlation improves

but [H+]BU underpredicts [H+]TD by 14%. It’s important to note that Fig. 9b and c only include samples where [SO2−
4 ]+[NO−3 ]455

> [NH+
4 ], which removes a growing fraction of samples from the analysis, potentially underestimating the fraction of acidity

from unmeasured ions in the system. Additionally, a Theil-Sen Regression was used to provide a robust estimate of the slope

between [H+]BU and measured bulk cloud water [H+] and [H+]TD. This method was used as there were a few outlier samples

that were having an outsized impact on the regression line when using ordinary least squares regression, particularly within the

Non-Linear regime.460

It is also important to note that even though pH shifts when accounting for the influence from rare alkaline droplets, the

cation/anion ratio for cloud droplets remains exactly the same as it was for bulk cloud water since the increased H+ is exactly

balanced by the removal of the two base cation species (Ca2+ and Mg2+), so the reassessment of bulk cloud water data in

terms of inferred cloud droplet acidity does not resolve the ion imbalance problem. This may point to a more important role

for organic acids in ion balance and acidity, which is a significant departure from the original intent of the collection site to465

monitor and investigate largely inorganic acid deposition.

The top down and bottom up approaches described above provide two independent estimates for cloud droplet pH. By

comparing these two proxies, we then infer the percent of cloud droplet acidity that is unexplained by the major inorganic ions.

We define the Missing Acid Fraction (MAF) as:

MAF =
[H+]TD− [H+]BU

[H+]TD
(8)470

When MAF is zero, the measured SO2−
4 , NO−3 and NH+

4 concentrations are sufficient to explain 100% of the inferred cloud

droplet acidity, and when MAF is 1.0, the measured SO2−
4 , NO−3 and NH+

4 concentrations explain 0% of the inferred cloud

droplet acidity. In order to include cloud water samples where [NH+
4 ] > [SO2−

4 ]+[NO−3 ] in this calculation, [H+]BU was set

to zero for these samples, as SO2−
4 and NO−3 are completely neutralized by NH+

4 under these conditions and therefore do not

contribute to cloud water acidity. Fig. 10 shows the annual median MAF. Prior to∼2010, [SO2−
4 ]+[NO−3 ]-[NH+

4 ] explained the475

majority of inferred cloud droplet acidity. Unmeasured ions may have contributed up to a quarter of cloud droplet acidity for
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Figure 9. a) Percent of cloud water samples where NH+
4 exhibits greater concentrations than SO2−

4 +NO−3 concentrations. Measured [H+]

and inferred cloud droplet [H+] versus [SO2−
4 ]+[NO−3 ]-[NH+

4 ] for the Linear and Non-Linear regimes, respectively, in b) and c). Slopes of

the regression lines are calculated using a Theil-Sen regression. The dashed line represents a 1:1 line, when [SO2−
4 ]+[NO−3 ]-[NH+

4 ] perfectly

predicts H+.

Figure 10. Annual median MAF throughout the long-term cloud water monitoring program, representing the fraction of inferred cloud

droplet acidity that is not accounted for by the measured SO2−
4 , NO−3 and NH+

4 concentrations.

individual years during this time period, but the situation changed drastically in the following decade. A steady increase in the

contribution of unmeasured ions to cloud droplet acidity over time is inferred since 2008, with the median MAF reaching nearly

100% in 2020. These trends signal a major shift of acidity being controlled predominantly by inorganic ions to potentially

organic ions, a dramatic change from the concerns of acid deposition of the 1980s and 1990s.480
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There are a number of assumptions that must be recognized when interpreting results from this simple analysis. For a

more precise estimate of typical cloud droplet acidity, other ions associated with coarse mode aerosol, like NO−3 , would also

be included in the pHTD calculation. However, given that NO−3 may be found predominantly in the coarse or fine mode at

different times, the contribution from coarse mode NO−3 is not sufficiently constrained by the measurements available. To

the degree that NO−3 is present in coarse mode aerosol, Ca2+ and Mg2+ are expected to have less impact on cloud water485

alkalinity. By not factoring in the influence from coarse mode NO−3 , pHTD is likely a lower bound estimate for cloud droplet

pH. Similarly, pHBU would be underestimated to the same degree and for the same reason. A combination of NOx reductions

and potentially increasing dust aerosol within the region may be changing the fraction of NO3 within fine mode aerosol,

which would need to be better constrained to improve our pHBU and MAF estimates. Also implicitly assumed is that LWC

associated with coarse mode aerosol is negligible for both the pHTD and pHBU proxies of cloud droplet pH. While the coarse490

mode aerosol can contribute significant aerosol mass in spite of low number concentrations due to their much larger size (1-2

orders of magnitude larger diameter for the coarse mode than the accumulation mode), the relative contribution of liquid water

from cloud droplets formed on coarse mode aerosol is expected to be much lower due to the inverse relationship between

condensational growth rate and droplet diameter, yielding droplets originating from the coarse and accumulation modes with

diameters within a factor of two of each other, for non-precipitating clouds (Seinfeld and Pandis, 2016).495

Conversely, not accounting for the impact of size resolved aerosol composition on bulk cloud water pH may have a substan-

tial impact on studies of gas/droplet/aerosol partitioning and aqueous chemistry (Pye et al., 2020). Size-resolved measurements

of cloud droplet pH or Ca2+ and Mg2+ in aerosol and/or cloud droplets are required to confirm the validity of the pHTD

estimates reported here in order to confidently and accurately evaluate these types of atmospheric processes.

While the validity of the simple calculation for pHTD cannot be directly evaluated with the current suite of measurements,500

it is encouraging that several important relationships are substantially simplified when evaluated against inferred cloud droplet

pH instead of the measured pH. In particular, the relationship between pHTD, LWC and SO2−
4 concentrations is much simpler

and easier to explain, shown in Figure S11. For a given LWC, there is clearly an inverse relationship between SO2−
4 and pHTD,

which maxes out at pHTD ∼5.6 at the lowest SO2−
4 concentrations, coinciding with the pH expected for a pure water droplet in

equilibrium with atmospheric CO2. However, SO2−
4 concentrations exhibit a nonlinear relationship with measured pH values.505

Another relationship that is simplified is the relationship between TOC concentrations and pHTD. Figure 11 shows that

TOC concentrations are much better correlated with pHTD values throughout the entire data set (2009-2021), as compared to

measured bulk cloud water pH. This might imply that, like SO2−
4 , organic compounds within cloud water are tightly linked

with the cloud droplet pH. This finding may be consistent with the majority of organic aerosol mass being of secondary

origin (Jimenez et al., 2009), since several known mechanisms for secondary organic aerosol (SOA) formation include an acid510

catalyzed reaction step (Hallquist et al., 2009), and cloud droplet acidity is expected to correlate well with aerosol acidity for

non-precipitating clouds. However, the other major secondary aerosol species (SO2−
4 , NH+

4 and NO−3 ) also show simplified

relationships with pHTD as compared to measured bulk cloud water pH (Fig. S12). The simplified relationship between all of

these analytes and pHTD, may suggest that the formation mechanisms and/or emissions sources for these chemical species are

linked.515
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Figure 11. Measured TOC concentrations for individual samples 2009-2017 (circles) and measured WSOC concentrations for individual

samples 2018-2021 (stars), versus a) inferred cloud droplet pH (pHTD), and b) measured bulk cloud water pH, colored by the year that the

cloud water sample was collected at WFM. The exponential curve in both a) and b) is the fit to all data in a): TOCfit = Aexp(−pH/τ),

A = 1.7193x105 ± 2.6x104, 1/τ = 1.3934± 0.038

Figure 11a highlights several cloud water samples with exceptionally high measured WSOC concentrations. While the

majority of samples from 2018-2021 follow the long-term relationship between TOC and pHTD, samples that don’t follow

this relationship have higher WSOC than any previously measured TOC concentrations throughout the long-term record. Two

of the highest measured WSOC concentrations (2711 and 3878 µmol C L−1) occurred on July 19th and 20th, 2021, which

corresponded to a haze event across the northeastern U.S. associated with wildfire smoke originating mainly in central Canada520

(Popovich and Katz, 2021). Wildfire smoke can be an important source of both primary and secondary organic matter in both

aerosol and cloud water, even significantly downwind (Cook et al., 2017; Di Lorenzo et al., 2018; Zhou et al., 2017). 5-day

ensemble HYSPLIT back-trajectories launched on July 20, 2021 indicate the source location of the air mass originated from

Eastern Manitoba, Canada, and Northeast North Dakota (Figure S12a). Black carbon and carbon monoxide measurements from

the summit of WFM on that day were also unusually high (e.g. as high as 1780 ng m−3, compared to a more typical value of525

100 ng m−3 black carbon). A WRF-Chem forecast shows elevated levels of CO attributed to wildfire smoke on July 15, 2021,

with associated high levels of PM 2.5. Five days later, the WRF-Chem forecast shows similar elevated levels of wildfire CO

and PM 2.5 over the Northeastern United States, further indicating an influence of Canadian wildfires impacting WFM (Figure

S12b). More information about this WRF-Chem forecast can be found in Kumar et al. (2021). Several other samples with the
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highest measured WSOC concentrations occurred that same week, as indicated in Fig. 11a. The relatively close proximity of530

these fires to WFM may be the reason for the exceptionally high WSOC concentrations and the strong deviation from the well

established correlation with pHTD. Episodic events with exceptionally high concentrations such as these are the reason we

report annual median rather than annual mean concentrations for the long-term trends.

7 Summary and Conclusions

This work updates the long-term trend analysis of cloud water chemistry monitoring at Whiteface Mountain (WFM) over the535

past 28 years, with critical review of past methodologies resulting in significant changes to the data interpretation and additional

analysis of TOC trends since 2009 when TOC was first routinely measured at WFM. In the past, many samples were excluded

from analysis if they did not achieve an approximate ion balance from measured species. Using this criteria, a growing number

of samples were being excluded from the data set, peaking at 57% of the samples, with no evidence of measurement error.

When evaluating the complete data set, decreases in SO2−
4 , NH+

4 a̧nd NO−3 become more modest, TOC increases at a much540

faster rate, and increasing trends in Ca2+ and Mg2+ emerge. The increasing fraction of samples that do not achieve ion balance

is associated with an increasing cation/anion ratio, implying there are anions that are not being measured and that are growing

in abundance.

When evaluating changes in cloud water loading (CWL), the trend in TOC is no longer significant, indicating that much of

the trend in TOC was due to variability in LWC. There is also an increasing trend in trace ions like Ca2+ and K+.545

When investigating potential missing anions, HCO−3 and organic acids were identified as two important candidates. Esti-

mates of HCO−3 using cloud water pH, and atmospheric CO2 indicate that for most cloud water samples, HCO−3 is negligible.

For samples with pH > 6, which are growing more common, HCO−3 could be important. However, samples with bulk cloud

water pH this high are often likely impacted by externally mixed alkaline droplets formed on coarse mineral dust aerosol that

don’t represent the majority of cloud droplets as they existed in the atmosphere. Organic acids are therefore likely more impor-550

tant than HCO−3 for explaining ion imbalance for the majority of cloud droplets originating from fine mode cloud condensation

nuclei. VandenBoer et al. (2011) found that organic acids were found predominantly within submicron aerosol, which supports

this hypothesis. The strong correlation between TOC and ion imbalance also supports this hypothesis, since organic acids are

known to comprise a significant fraction of TOC.

In the early years of the cloud water monitoring program, conductivity was largely controlled by H+ due to its high con-555

centrations and large molar conductivity relative to other ions in the system. In recent years, conductivity is no longer linearly

proportional to H+ concentrations. We use the break down of the linear relationship between conductivity and H+ to charac-

terize a new chemical regime that is less acidic but exhibits high conductivity. A growing fraction of samples are now being

classified in this Non-Linear Regime, peaking at over 90% of samples in 2020. The Non-Linear Regime is characterized by

higher concentrations of TOC, NH+
4 , and base cations, particularly Ca2+.560

Altogether, the reduction of SO2−
4 and NO−3 , and increases in Ca2+ and Mg2+ potentially bias the pH of bulk cloud water

high, as these ions are expected to reside in coarse aerosol that only represent a small fraction of cloud droplets. To account
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for this bias, we proposed a new calculation for “Inferred cloud droplet pH” that accounts for the measured Ca2+ and Mg2+

concentrations. While measured bulk cloud water pH has steadily increased for the entire duration of routine cloud water

monitoring program, inferred cloud droplet pH has remained flat since 2009, implying that much of the increasing cloud565

water pH is driven by Ca2+ and Mg2+ rather than the reductions in SO2−
4 . In the Linear Regime, SO2−

4 + NO−3 - NH+
4

is a useful predictor for both measured bulk cloud water pH and inferred cloud droplet pH. In the Non-Linear Regime, the

relationship with measured pH is very weak. The relationship improves when using inferred cloud droplet pH but significantly

underpredicts measured cloud droplet pH. This analysis reveals a missing source of acidity that correlates with TOC, which

needs to be accounted for as a majority of cloud water samples are now within the Non-Linear Regime. A growing number570

of samples exhibit NH+
4 that is greater than the sum of SO2−

4 and NO−3 , preventing the calculation of cloud droplet pH and

providing further evidence of major missing source of acidity.

Considerable changes have occurred in cloud water at WFM over the past 28 years of monitoring, from a system dominated

by SO2−
4 to a system more controlled by base cations and TOC. Many other regions in the world are seeing changes as SO2

emissions continue to decrease. This type of system is considerably less studied, with important implications for air quality,575

ecosystem health, and climate. More research, in combination with additional measurements of aerosol and trace gases, are

required to better understand the system. As WFM and potentially other regions of the world enter this new chemical regime,

additional measurements will be needed to study the effect on important processes like secondary organic aerosol production,

cloud processing and nitrogen deposition.
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