Section 1: Sulfur modeling

In the absence of photochemical reactions due to reduced infiltration of sunlight, sulfate aerosols are expected to be produced through aqueous reactions with existing particles or cloud droplets. This requires the dissolution of SO$_2$ onto existing particles to produce S(IV) ($= SO_2 \cdot H_2O_{(aq)} + HSO_3^- + SO_3^{2-}$) compounds in equilibria. However, the pathway of S(IV) oxidation is highly dependent on the pH and ionic strength of the existing particles as well as the available liquid water content (LWC) (Zhang et al., 2015; Shao et al., 2019). Under more acidic conditions (pH<5), S(IV) oxidation occurs primarily through reaction with H$_2$O$_2$. At higher pH values, oxidation by dissolved O$_3$ and NO$_2$ begin to dominate (Guo et al., 2017). As a result, modeling of such events is highly dependent on the aerosol pH.

Direct measurements of aerosol pH are not available for this study. As a result, several methods have been suggested for calculating aerosol acidity, including ion balance, molar ratio, and thermodynamic models. Ion balance and molar ratio estimates can be used to assess the proton loading of the air mass by comparing the number of cations present to anions (Hennigan et al. (2015). However, Hennigan et al. (2015) and Guo et al. (2015) discourage the use of these methods because they disregard acidic and ionic partial dissolution and the effects of the aerosol LWC on pH calculations, which is of concern in moderately acidic to alkaline environments such as fires (Pye et al., 2020). Thermodynamic models more accurately predict the partitioning of NH$_4$(p)-NH$_3$(g) and NO$_3$(p)-HNO$_3$(g) for inferring the hydronium ion concentration and pH compared to the other methods while also predicting LWC (Hennigan et al., 2015). These models require the known chemical component inputs of both the gas and aerosol concentrations measured within the air mass as inputs, along with temperature and relative humidity to calculate the hydronium ion concentration (Hennigan et al., 2015; Guo et al., 2015; Ding et al., 2019). Yet, even with the inclusion of thermodynamic calculations of pH and LWC, model predictions of sulfate aerosol production in Beijing during heavy pollution events were underestimated by 65% (Shao et al., 2019). As a result, additional pathways of S(IV) oxidation have been proposed, including oxidation by NO$_2$ and O$_2$ through catalytic reactions involving transition metal ions (Moch et al., 2018; Cheng et al., 2016; Shao et al., 2019).

Dovrou et al. (2019) observed that hydroxymethanesulfonate (HMS) can be misidentified as inorganic sulfate in ion chromatography and aerosol mass spectrometry measurements. Using an analytical column composed of an alkyl quaternary ammonium functional group, Dovrou et al. (2019) were able to separate the two species. This suggests that organosulfates or organosulfonates could be the source of the discrepancy between measurements and models in urban areas.
The chemistry of HMS production and reversal has been extensively studied through laboratory measurements (Boyce and Hoffmann, 1984; Deister et al., 1986; Kok et al., 1986) and model simulations (Moch et al., 2018; Song et al., 2019, 2021). A review of these laboratory studies and the parameters for the determination of the rate constants is provided by Song et al. (2021). While the Song et al. (2021) study explored the use of lower HMS formation kinetic rates under cloud conditions, this study finds better agreement with the measurements using the higher rates along with the reverse reaction rate established by Song et al. (2021) (based on Boyce and Hoffmann (1984) and Deister et al. (1986) measurements) under aerosol conditions.

Figure S1. Sulfur conversion based on pH dependence for a) S(IV) production as SO₂ enters the aqueous phase with ideal solution assumption and b) the rate of S(IV) oxidation based on oxidizing species mixing ratios of 3.3 ppb for SO₂, 82 ppb for O₃, 1.6 ppb for H₂O₂, 9 ppb for NO₂, and 29 ppb for HCHO with 200 µg m⁻³ LWC. While H₂O₂, O₃, and NO₂ produce inorganic sulfate, HCHO produces HMS.
Figure S2. Calculation of the OH contribution to the SO$_2$ decay observed during the 3 August 2019 FIREX-AQ flight.
Table S1. List of aqueous phase reactions included as the heterogeneous mechanism in the F0AM 0-D model in which the rates of condensation (k_{cond}) and evaporation (k_{evap}) require the particle surface area (S_a), Henry’s Law constant (H), liquid water content (LWC), and hydronium ion concentration (H^+, calculated from pH).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate constant ($M^{-1} s^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$ → S(IV)</td>
<td>$k_{\text{cond}} = 0.25 \cdot \gamma \cdot c \cdot S_a$</td>
<td>Seinfeld and Pandis (2006)</td>
</tr>
<tr>
<td>SO$_2$\textsubscript{(aq)} → SO$_2$\textsubscript{(g)}</td>
<td>$k_{\text{evap}} = \frac{k_{\text{cond}}}{(H \cdot LWC)}$</td>
<td>D’ambro et al. (2016)</td>
</tr>
<tr>
<td>HSO$_3^-$ → SO$_2$\textsubscript{(g)}</td>
<td>$k_{\text{evap}} = \frac{(k_{\text{cond}} \cdot H^+)}{(H \cdot LWC \cdot K_1)}$</td>
<td>D’ambro et al. (2016); Seinfeld and Pandis (2006)</td>
</tr>
<tr>
<td>SO$_3^{2-}$ → SO$_2$\textsubscript{(g)}</td>
<td>$k_{\text{evap}} = \frac{(k_{\text{cond}} \cdot (H^+)^2)}{(H \cdot LWC \cdot K_1 \cdot K_2)}$</td>
<td>D’ambro et al. (2016); Seinfeld and Pandis (2006)</td>
</tr>
<tr>
<td>O$_3$\textsubscript{(aq)} + SO$_2$\textsubscript{(aq)} → SO$_4^{2-}$ + HSO$_4^-$</td>
<td>$k = 2.4 \times 10^4$</td>
<td>Kreidenweis et al. (2003)</td>
</tr>
<tr>
<td>O$_3$\textsubscript{(aq)} + HSO$_3^-$ → SO$_4^{2-}$ + H$^+$ + O$_2$\textsubscript{(aq)}</td>
<td>$k = 3.7 \times 10^5 \cdot \exp \left(-5530 \left(\frac{1}{T} - \frac{1}{298} \right) \right)$</td>
<td>Hoffmann and Calvert (1985)</td>
</tr>
<tr>
<td>O$_3$\textsubscript{(aq)} + SO$_3^{2-}$ → SO$_4^{2-}$ + O$_2$\textsubscript{(aq)}</td>
<td>$k = 1.5 \times 10^9 \cdot \exp \left(-5820 \left(\frac{1}{T} - \frac{1}{298} \right) \right)$</td>
<td>Hoffmann and Calvert (1985)</td>
</tr>
<tr>
<td>H$_2$O$_2$\textsubscript{(aq)} + HSO$_3^-$ → SO$_4^{2-}$ + 2H$^+$ + H$_2$O</td>
<td>$k = \frac{7.45 \times 10^7 \cdot H^+ \cdot \exp \left(-4430 \left(\frac{1}{T} - \frac{1}{298} \right) \right)}{1 + 1.3 \cdot H^+}$</td>
<td>Hoffmann and Calvert (1985)</td>
</tr>
<tr>
<td>2NO$_2$\textsubscript{(aq)} + HSO$_3^-$ → 3H$^+$ + 2NO$_2^-$ + SO$_4^{2-}$</td>
<td>$k = 1 \times 10^6$</td>
<td>Liu and Abbatt (2021)</td>
</tr>
<tr>
<td>2NO$_2$\textsubscript{(aq)} + SO$_3^{2-}$ → 3H$^+$ + 2NO$_2^-$ + SO$_4^{2-}$</td>
<td>$k = 1.4 \times 10^{10}$</td>
<td>Liu and Abbatt (2021)</td>
</tr>
<tr>
<td>HCHO → HCHO\textsubscript{(aq)}</td>
<td>$k_{\text{cond}} = 0.25 \cdot \gamma \cdot c \cdot S_a$</td>
<td>Seinfeld and Pandis (2006)</td>
</tr>
<tr>
<td>HCHO\textsubscript{(aq)} + HSO$_3^-$ → CH$_2$OHSO$_3^-$</td>
<td>$k = 7.9 \times 10^2 \cdot \exp \left(-4900 \left(\frac{1}{T} - \frac{1}{298} \right) \right)$</td>
<td>Boyce and Hoffmann (1984)</td>
</tr>
<tr>
<td>HCHO\textsubscript{(aq)} + SO$_3^{2-}$ → CH$_2$OHSO$_3^-$</td>
<td>$k = 2.5 \times 10^7 \cdot \exp \left(-1800 \left(\frac{1}{T} - \frac{1}{298} \right) \right)$</td>
<td>Boyce and Hoffmann (1984)</td>
</tr>
<tr>
<td>CH$_2$OHSO$_3^-$ → HCHO\textsubscript{(aq)} + HSO$_3^-$</td>
<td>$k = 6.2 \times 10^8 \cdot \exp \left(-11400 \left(\frac{1}{T} - \frac{1}{298} \right) \right)$</td>
<td>Song et al. (2021)</td>
</tr>
<tr>
<td>→ HCHO\textsubscript{(aq)} + SO$_3^{2-}$</td>
<td>$+ 4.8 \times 10^3 \cdot \left(\frac{K_w}{H^+} \right) \cdot \exp \left(-4700 \left(\frac{1}{T} - \frac{1}{298} \right) \right)$</td>
<td></td>
</tr>
</tbody>
</table>
Table S2. Measurements used for model initial concentrations and constraints.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO$_2$), nitric oxide</td>
<td>NOAA Laser-Induced Fluorescence (LIF)</td>
</tr>
<tr>
<td>Sulfate (SO$_4$), organosulfur</td>
<td>Aerodyne Aerosol Mass Spectrometry (AMS)</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Differential Absorption Carbon monOxide Measurement (DACOM)</td>
</tr>
<tr>
<td>Sulfate, sulfite</td>
<td>Soluble Acidic Gases and Aerosols (SAGA)</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>NASA In Situ Formaldehyde (ISAF)</td>
</tr>
<tr>
<td>Ozone, nitrogen dioxide</td>
<td>NOAA NOyO3 Chemiluminescence</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>Caltech Chemical Ionization Mass Spectrometry (CIT CIMS)</td>
</tr>
<tr>
<td>Aerosol surface area</td>
<td>TSI Laser Aerosol Spectrometer (LAS) 3340</td>
</tr>
<tr>
<td>Cloud indicator</td>
<td>Cloud, Aerosol, and Precipitation Spectrometer (CAPS)</td>
</tr>
<tr>
<td>Actinic flux</td>
<td>Charged-coupled device Actinic Flux Spectroradiometer (CAFS)</td>
</tr>
<tr>
<td>Pressure, altitude, temperature, relative humidity, solar zenith angle</td>
<td>Meteorological and Navigation Facility Instrumentation</td>
</tr>
</tbody>
</table>

Table S3. Mass accommodation (α) and gas diffusion coefficients (Dg) used for deriving the gas-phase diffusion limitations of SO$_2$, O$_3$, H$_2$O$_2$, NO$_2$, and HCHO.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Variable</th>
<th>Formula/Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$</td>
<td>α</td>
<td>$1 + \exp\left(14.7 - \frac{3825}{T}\right)^{-1}$</td>
<td>Boniface et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>Dg</td>
<td>$\left(\frac{1013 \times 94}{760 \times P} \times \frac{T}{296}\right)^{1.75}$</td>
<td>Tang et al. (2014)</td>
</tr>
<tr>
<td>O$_3$</td>
<td>α</td>
<td>0.47</td>
<td>Vieceli et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Dg</td>
<td>$\left(\frac{410}{660} \times \frac{1013 \times 178}{760 \times P} \times \frac{T}{296}\right)^{1.75}$</td>
<td>Tang et al. (2014)</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>α</td>
<td>0.23</td>
<td>Seinfeld and Pandis (2016)</td>
</tr>
<tr>
<td></td>
<td>Dg</td>
<td>$\left(\frac{1013 \times 116}{760 \times P} \times \frac{T}{296}\right)^{1.75}$</td>
<td>Tang et al. (2014)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>α</td>
<td>0.0015</td>
<td>George et al. (1992)</td>
</tr>
<tr>
<td></td>
<td>Dg</td>
<td>$\left(\frac{1013 \times 106}{760 \times P} \times \frac{T}{296}\right)^{1.75}$</td>
<td>Tang et al. (2014)</td>
</tr>
</tbody>
</table>
Figure S3. Measurements of SO$_2$, sulfate, temperature, and altitude with calculations of pH and LWC during the 3 August 2019 flight.
Figure S4. Model results for NO, NO₂, NO/NO₂, O₃, H₂O₂, and HCHO compared to the dilution normalized measurements for each modeled flight. While H₂O₂ shows moderate agreement, it should be noted that organic aerosol may be a source of H₂O₂ (Ye et al., 2021).
Figure S5. Measurements of SO$_2$, sulfate, temperature, and altitude with calculations of pH and LWC during the 7 August 2019 flight.

Figure S6. Measurements of relative humidity, HCHO, O$_x$ (O$_3$ + NO$_2$), SO$_2$, and CO during the 7 August 2019 flight with clouds indicated by the grey bars.
Figure S7. Actinic flux measurements of jNO$_2$ (blue) during the 7 August flight for both passes compared to clear-sky reference calculations from the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model (Madronich and Flocke, 1999) (red).

Figure S8. Contribution of organic sulfur to inorganic sulfate as measured during the FIREX-AQ 7 August flight (left) and correlation of AMS apportioned inorganic sulfate to SAGA mist chamber measurements.
Figure S9. Model HMS and sulfate production with varied temperature (a) and HCHO (b) under the conditions of the 3 August 2019 flight.
Section 2: Sulfur conversion mechanism

The sulfur conversion mechanism code describes the process of converting SO$_2$ to sulfate and HMS based on the rate constants included in Table S1. This code is meant to be used in Matlab with F0AM (https://github.com/AirChem/F0AM (doi.org/10.5281/zenodo.5752566)).

```
SpeciesToAdd = {'SO2', 'SO2aq', 'HSO3_', 'SO3_2', 'O3', 'O3aq', 'H2O2', 'H2O2aq', 'Haq', 'SO4_2', 'H2Oaq', ... 
    'OH_','O2aq','SO4','NO2','NO2_','NO2aq', 'HCHO', 'HCHOaq', 'CH2OHSO3_','O2aq','H2SO4'};
```

```
AddSpecies

%%%%% Sulfur equilibrium reactions

i=i+1;
Rnames{i} = 'SO2 = SO2aq';
k(:,i) = khet_SO2;
Gstr{i,1} = 'SO2';
fSO2(i)=fSO2(i)-1; fSO2aq(i)=fSO2aq(i)+1;

i=i+1;
Rnames{i} = 'SO2 = HSO3_ + Haq';
k(:,i) = khet_SO2;
Gstr{i,1} = 'SO2';
fSO2(i)=fSO2(i)-1; fHSO3_(i)=fHSO3_(i)+1; fHaq(i)=fHaq(i)+1;

i=i+1;
Rnames{i} = 'SO2 = SO3_2 + Haq + Haq';
k(:,i) = khet_SO2;
Gstr{i,1} = 'SO2';
fSO2(i)=fSO2(i)-1; fSO3_2(i)=fSO3_2(i)+1; fHaq(i)=fHaq(i)+1; fHaq(i)=fHaq(i)+1;

i=i+1;
Rnames{i} = 'SO2aq = SO2';
k(:,i) = khet_SO2./H_SO2.*M./P./6.022E20./lwc;
Gstr{i,1} = 'SO2aq';
fSO2aq(i)=fSO2aq(i)-1; fSO2(i)=fSO2(i)+1;

i=i+1;
Rnames{i} = 'HSO3_ = SO2';
```

k(:,i) = khet_SO2./H_SO2.*M./P./6.022E20./HSO3./lwc;
Gstr{i,1} = 'HSO3_';
fHSO3_(i)=fHSO3_(i)-1; fSO2(i)=fSO2(i)+1;

i=i+1;
Rnames{i} = 'SO3_2 = SO2';
k(:,i) = khet_SO2./H_SO2.*M./P./6.022E20./SO3_2./lwc;
Gstr{i,1} = 'SO3_2';
fSO3_2(i)=fSO3_2(i)-1; fSO2(i)=fSO2(i)+1;

%%%%% Oxidation reactions

i=i+1;
Rnames{i} = 'O3 = O3aq';
k(:,i) = khet_O3;
Gstr{i,1} = 'O3';
fO3(i)=fO3(i)-1; fO3aq(i)=fO3aq(i)+1;

i=i+1;
Rnames{i} = 'O3aq = O3';
k(:,i) = khet_O3./H_O3.*M./P./6.022E20./lwc;
Gstr{i,1} = 'O3aq';
fO3aq(i)=fO3aq(i)-1; fO3(i)=fO3(i)+1;

i=i+1;
Rnames{i} = 'O3aq + SO2aq = H2SO4 + O2aq';
k(:,i) = 2.4E4./6.022E20./lwc ;
Gstr{i,1} = 'O3aq'; Gstr{i,2} = 'SO2aq';
fO3aq(i)=fO3aq(i)-1; fSO2aq(i)=fSO2aq(i)-1; fO2aq(i)=fO2aq(i)+1; fH2SO4(i)=fH2SO4(i)+1;

i=i+1;
Rnames{i} = 'O3aq + HSO3_ = SO4_2 + Haq + O2aq';
k(:,i) = 03_ox1./6.022E20./lwc ;
Gstr{i,1} = 'O3aq'; Gstr{i,2} = 'HSO3_';
fO3aq(i)=fO3aq(i)-1; fHSO3_(i)=fHSO3_(i)-1; fSO4_2(i)=fSO4_2(i)+1; fHaq(i)=fHaq(i)+1;
fO2aq(i)=fO2aq(i)+1;

i=i+1;
Rnames{i} = 'O3aq + SO3_2 = SO4_2 + 02aq';
k(:,i) = 03_ox2./6.022E20./lwc ;
Gstr{i,1} = 'O3aq'; Gstr{i,2} = 'SO3_2'; fO3aq(i)=fO3aq(i)-1; fSO3_2(i)=fSO3_2(i)-1; fSO4_2(i)=fSO4_2(i)+1; fO2aq(i)=fO2aq(i)+1;

i=i+1;
Rnames{i} = 'H2O2 = H2O2aq';
k(:,i) = khet_H2O2 ;
Gstr{i,1} = 'H2O2'; fH2O2(i)=fH2O2(i)-1; fH2O2aq(i)=fH2O2aq(i)+1;

i=i+1;
Rnames{i} = 'H2O2aq = H2O2';
k(:,i) = khet_H2O2./H_H2O2.*M./P./6.022E20./lwc;
Gstr{i,1} = 'H2O2aq'; fH2O2aq(i)=fH2O2aq(i)-1; fH2O2(i)=fH2O2(i)+1;

i=i+1;
Rnames{i} = 'H2O2aq + HS03_ = SO4_2 + Haq + Haq + H2Oaq';
k(:,i) = H2O2aq_ox./6.022E20./lwc ;
Gstr{i,1} = 'H2O2aq'; Gstr{i,2} = 'HS03_';
fH2O2aq(i)=fH2O2aq(i)-1; fHS03_(i)=fHS03_(i)-1; fSO4_2(i)=fSO4_2(i)+1; fHaq(i)=fHaq(i)+1;
fH2O2(i)=fH2O2(i)+1; fH2Oaq(i)=fH2Oaq(i)+1;

i=i+1;
Rnames{i} = 'NO2 = NO2aq';
k(:,i) = khet_NO2 ;
Gstr{i,1} = 'NO2';
fNO2(i)=fNO2(i)-1; fNO2aq(i)=fNO2aq(i)+1;

i=i+1;
Rnames{i} = 'NO2aq = NO2';
k(:,i) = khet_NO2./H_NO2.*M./P./6.022E20./lwc;
Gstr{i,1} = 'NO2aq';
fNO2aq(i)=fNO2aq(i)-1; fNO2(i)=fNO2(i)+1;

i=i+1;
Rnames{i} = 'NO2aq + NO2aq + HS03_ = Haq + Haq + Haq + NO2_ + NO2_ + SO4_2';
k(:,i) = 1E6./6.022E20./lwc;
Gstr{i,1} = 'NO2aq'; Gstr{i,2} = 'HS03_'; Gstr{i,3} = 'NO2aq';
\[f_{NO2aq}(i) = f_{NO2aq}(i) - 1; f_{NO2aq}(i) = f_{NO2aq}(i) - 1; f_{HSO3_2}(i) = f_{HSO3_2}(i) - 1; f_{NO2_2}(i) = f_{NO2_2}(i) + 1; f_{NO2_2}(i) = f_{NO2_2}(i) + 1; f_{SO4_2}(i) = f_{SO4_2}(i) + 1; i = i + 1; \]

\[\text{Rnames}\{i\} = \text{'}NO2aq + NO2aq + SO3_2 = H2O + NO2_2 + NO2_ + SO4_2\text{'}; \]
\[k(:,i) = 1.4 \times 10^9 / 6.022 \times 20 / \text{lwc}; \]
\[\text{Gstr}\{i,1\} = \text{'}NO2aq\text{'}; \text{Gstr}\{i,2\} = \text{'}SO3_2\text{'}; \text{Gstr}\{i,3\} = \text{'}NO2aq\text{'}; \]
\[f_{NO2aq}(i) = f_{NO2aq}(i) - 1; f_{NO2aq}(i) = f_{NO2aq}(i) - 1; f_{SO3_2}(i) = f_{SO3_2}(i) - 1; f_{NO2_2}(i) = f_{NO2_2}(i) + 1; f_{NO2_2}(i) = f_{NO2_2}(i) + 1; f_{SO4_2}(i) = f_{SO4_2}(i) + 1; \]

\[i = i + 1; \]
\[\text{Rnames}\{i\} = \text{'}HCHO = HCHOaq\text{'}; \]
\[k(:,i) = \text{khet}_HCHO; \]
\[\text{Gstr}\{i,1\} = \text{'}HCHO\text{'}; \]
\[f_{HCHO}(i) = f_{HCHO}(i) - 1; f_{HCHO}(i) = f_{HCHO}(i) + 1; \]

\[i = i + 1; \]
\[\text{Rnames}\{i\} = \text{'}HCHOaq = HCHO\text{'}; \]
\[k(:,i) = \text{khet}_HCHO / H_HCHO * M / P / 6.022 \times 20 / \text{lwc}; \]
\[\text{Gstr}\{i,1\} = \text{'}HCHOaq\text{'}; \]
\[f_{HCHOaq}(i) = f_{HCHOaq}(i) - 1; f_{HCHO}(i) = f_{HCHO}(i) + 1; \]

\[i = i + 1; \]
\[\text{Rnames}\{i\} = \text{'}HCHOaq + HS03_2 = CH20HS03_\text{'}; \]
\[k(:,i) = 7.9 \times 10^2 * \exp(-4900.*((1./T-1./298))./6.022 \times 20 / \text{lwc}; \]
\[\text{Gstr}\{i,1\} = \text{'}HCHOaq\text{'}; \text{Gstr}\{i,2\} = \text{'}HS03_2\text{'}; \]
\[f_{HCHOaq}(i) = f_{HCHOaq}(i) - 1; f_{HS03_2}(i) = f_{HS03_2}(i) - 1; f_{CH20HS03_2}(i) = f_{CH20HS03_2}(i) + 1; \]

\[i = i + 1; \]
\[\text{Rnames}\{i\} = \text{'}HCHOaq + S03_2 = CH20HS03_ + OH_\text{'}; \]
\[k(:,i) = 2.5 \times 10^7 * \exp(-1800.*((1./T-1./298))./6.022 \times 20 / \text{lwc}; \]
\[\text{Gstr}\{i,1\} = \text{'}HCHOaq\text{'}; \text{Gstr}\{i,2\} = \text{'}S03_2\text{'}; \]
\[f_{HCHOaq}(i) = f_{HCHOaq}(i) - 1; f_{S03_2}(i) = f_{S03_2}(i) - 1; f_{CH20HS03_2}(i) = f_{CH20HS03_2}(i) + 1; f_{OH_2}(i) = f_{OH_2}(i) + 1; \]

\[i = i + 1; \]
\[\text{Rnames}\{i\} = \text{'}CH20HS03_ = HCHOaq + S03_2\text{'}; \]
\[k(:,i) = (6.2 \times 10^{-8} * \exp(-11400.*((1./T-1./298)))+4.8 \times 10^3 * (Kw / Haq) * \exp(-4700.*((1./T-1./298)))./2; \]
\[\text{Gstr}\{i,1\} = \text{'}CH20HS03_\text{'}; \]
\[f_{CH20HS03_2}(i) = f_{CH20HS03_2}(i) - 1; f_{HCHOaq}(i) = f_{HCHOaq}(i) + 1; f_{S03_2}(i) = f_{S03_2}(i) + 1; \]
i=i+1;
Rnames{i} = 'CH2OHSO3_ = HCHOaq + HS03_';
k(:,i) = (6.2E-8.*exp(-11400.*(1./T-1./298))+4.8E3.*(Kw./Haq).*exp(-4700.*(1./T-1./298)))./2 ;
Gstr{i,1} = 'CH2OH503_';
fCH2OH503_(i)=fCH2OH503_(i)-1; fHCHOaq(i)=fHCHOaq(i)+1; fHS03_(i)=fHS03_(i)+1;
References

