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Abstract. Multiple linear regression (MLR) models are used to assess the contributions of meteorology/climate and 10 

anthropogenic emission control to linear trends of PM2.5 concentration during the period 2013–2018 in three regions in 

eastern China, namely Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD). We find 

that quantitative contributions to the linear trend of PM2.5 derived based on MLR results alone are not credible because a 

good correlation in the MLR analysis does not imply any causal relationship, let alone a quantitative relationship. As an 

alternative, we propose that the correlation coefficient should be interpreted as the maximum possible contribution of the 15 

independent variable to the dependent variable, and the residual should be interpreted as the minimum contribution of all 

other independent variables. Under the new interpretation, the MLR results become self-consistent. We also find that the 

results of a short-term (2013–2018) analysis are significantly different from those of a long-term (1985–2018) analysis for 

the period 2013–2018 they overlap, indicating that MLR results depend critically on the length of time analyzed. The long-

term analysis renders a more precise assessment, because of additional constraints provided by the long-term data. We 20 

therefore suggest that the best estimates of the contributions of emissions and non-emission (including meteorology/climate) 

to the linear trend in PM2.5 during 2013–2018 are those from the long-term analyses: i.e., emission <51% and non-

emission >49% for BTH, emission <44% and non-emission >56% for YRD, emission <88% and non-emission >12% for 

PRD. 

1 Introduction 25 

PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) pollution is a severe problem in China that affects 

human health (Kan et al., 2007; Wang and Mauzerall, 2006; Xu et al., 2013; Cohen et al., 2017), visibility (Han et al., 2014; 

Zhang et al., 2012; Zhang et al., 2014), the acid deposition problem (Yim et al., 2019; Zhang et al., 2016) and the climate 

systems (Albrecht, 1989; Carslaw et al., 2010; Kok et al., 2018). Recent observations from the China National 
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Environmental Monitoring Center have shown a 30%–50% decrease in annual mean PM2.5 concentration in China during 30 

2013–2018 (Zhai et al., 2019).  

These remarkable decreases in the PM2.5 concentrations have been mostly attributed to emission control of PM2.5 and its 

precursors in several recent studies (e.g., Chen et al., 2019; Gong et al., 2021; Zhai et al., 2019). Using various statistical 

models, these studies concluded that the control of anthropogenic emissions accounted for 81% to 103% of the reductions of 

PM2.5 in eastern China, suggesting that emissions reductions are crucial to the improvement of air quality in 2013–2018 35 

(Chen et al., 2019; Gong et al., 2021; Zhai et al., 2019). However, Dang and Liao (2019) conducted an investigation with a 

global 3-D chemical transport model and revealed that transport is the most important process for the occurrence of severe 

winter haze days in Beijing–Tianjin–Hebei (BTH) in 2013–2017. Although Dang and Liao (2019) dealt with the severe 

winter haze rather than the mean haze in BTH, their results suggest that meteorological conditions may exert a critical 

impact on the reduction in PM2.5 in eastern China.  40 

In this study, we use multiple linear regression (MLR) models to investigate the relative contributions of emissions control 

and climate/meteorology to linear trends in winter PM2.5 concentration in three major polluted regions in eastern China, 

namely BTH, Yangtze River Delta (YRD), and Pearl River Delta (PRD). The results can provide important insight for better 

designing successive clean-air plans to further mitigate PM2.5 pollution in China. The rest of the paper is structured as 

follows: The data and methods employed are introduced in Section 2, Section 3 presents the major results and discussions, 45 

and Section 4 presents a summary the conclusions. 

2 Data and methodology 

2.1 Data 

Winter visibility data in 1973–2019 are obtained from Global Summary of Day (GSOD) provided by the National Climatic 

Data Center (NCDC) (https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily, last access: 10 March 2022). Surface PM2.5 50 

measurements in 2013–2019 are taken from China National Environment Monitoring Center (CNEMC, 

http://www.cnemc.cn/, last access: 10 March 2022). The PM2.5 concentrations are measured by the micro-oscillating balance 

method and/or the β-absorption method (MEE, 2012; Zhang and Cao, 2015). Arctic sea ice (ASI) data are taken from the 

Hadley Centre Sea Ice data set (https:// https://www.metoffice.gov.uk/hadobs/hadisst/, last access: 10 March 2022).  

PM emission inventory of PM10, PM2.5, SO2, NH3, NOx, black carbon, and organic carbon in this study is obtained from 55 

Peking University (PKU, 1960–2014, 0.1o×0.1o, monthly), which includes the fuel consumption and emissions of 

greenhouse gases and air pollutants from all combustion sources (http://inventory.pku.edu.cn/, last access: 10 November 

2021). Multi-resolution Emission Inventory for China (MEIC, version 1.3, 2010–2017, 0.25o×0.25o, monthly, 

http://www.meicmodel.org, last access: 10 November 2021) provided by Tsinghua University and PRD Emission Inventory 

(PRD-EI, 2006–2019, 3 o×3o, monthly) from Huang et al. (2021) and Zhong et al. (2018) are also used. Due to the 60 
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discontinuity of these three inventories, we calculate the scaling factor of each pollutant based on the overlapping period to 

get a winter inventory from 1985–2018 (Figure 1) in PRD as follows:  

scaling factor
Ei

=
∑ Eij,PKU

2006
2013

∑ Eij,PRD-EI
2006
2013

 

Ei={
Eij,PKU (j=1985, 1986, …2013)

scale factori×Eij,PRD-EI (j=2014, 2015, 2016, 2017, 2018)
 

where Ei is emission of species i, the subscripts PKU and PRD-EI denote the PKU inventory and the PRD inventory of 65 

Huang et al. (2021) and Zhong et al. (2018), respectively, and j denotes year.  

The corresponding formulas for BTH and YRD are:  

scaling factor
Ei

=
∑ Eij,PKU

2010
2013

∑ Eij,MEIC
2010
2013

 

Ei={
Eij,PKU (j=1985, 1986, …2013)

scale factori×Eij,MEIC (j=2014, 2015, 2016)
 

where the subscript MEIC denotes the MEIC inventory.  70 

Given that emission is not expected to change significantly in one or two years, the 2016 winter emission ratio of BTH to 

PRD is multiplied by the 2017 and 2018 winter emission of PRD to obtain the winter emission of BTH in 2017 and 2018. 

The same is true for 2017 and 2018 winter emission of YRD. The annual emission inventories for BTH, YRD and PRD from 

1985 to 2018 are shown in Figure 1. 

2.2 Nonlinear exponential fitting 75 

Since direct observed data of PM2.5 are not available before 2013, we employ nonlinear exponential fitting to retrieve PM2.5 

concentrations in BTH, YRD and PRD from visibility that has long-term and complete record. Because relative humidity 

(RH) affects strongly the relationship between PM2.5 concentration and visibility (Fu et al., 2016; Liu et al., 2017; L. Zhang 

et al., 2015; Q. Zhang et al., 2015), we evaluate the relationship for different RH intervals in each region as shown in the 

Supplementary Materials. The r2 of average fitting is greater than 0.5, some as high as 0.77, significant at 99% confidence 80 

level, indicating that the fitting performance is acceptable (Figures S1–S3). The retrieved PM2.5 has a significant negative 

correlation with visibility as expected, and is consistent with the trend of observed PM2.5 in recent years (Figure S4). The 

exponential fitting model captures the long-term trend and the interannual variation of PM2.5 well (Figure 1).  

A quick inspection of the PM2.5 and emission lines in Figure 1 reveals that an expected good regression is only possible for 

PRD where the emission line matches well with the PM2.5 line in general as both have a broad maximum near 2005–2010 85 

(Figure 1c). In BTH a good regression is made difficult due to a key mismatch characterized by two broad maxima (1985–

2000, 2000–2013) in the emission line and a sharp drop after 2013, while the PM2.5 line had a shallow depression during the 

period 1993–2012 followed by a large bulge peaked in 2013 (named hereafter as bulge-2013) and lasted until 2016 (Figure 
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1a). This mismatch also existed in YRD as the emission line crossed over the PM2.5 line in opposite directions near 2012, 

albeit the bulge was not as large and a depression could be barely seen in 2003–2012 (Figure 1b).  90 

Mao et al. (2019) have analyzed extensively the depression 1999–2012 (the deeper part of the 1993–2012 depression) and 

bulge-2013. They found that the depression and bulge-2013 were primarily caused by a combination of climatic oscillations 

which include negative phases of the Pacific Decadal Oscillation, Arctic Oscillation, El Niño-Southern Oscillation and 

global temperature, in addition to positive phases of East Asian Winter Monsoon and ASI. It is clear that the presence of 

bulge-2013 can have a big impact on any study on the contributions of meteorology/climate and anthropogenic emission 95 

control to the linear trends in PM2.5, especially for a short-term study such as the period 2013–2018 that overlooks the cause 

of the bulge. This point will be elaborated in Sections 3.3 and 3.4. 

3 Results and discussions 

3.1 Multiple linear regression studies 

Zhai et al. (2019) constructed a stepwise multiple linear regression (MLR) model to quantify the meteorological contribution 100 

to the PM2.5 trends. The MLR model correlates the 10-day PM2.5 anomalies to wind speed, precipitation, RH, temperature, 

and 850 hPa meridional wind velocity. The meteorology-corrected PM2.5 trends obtained by removing meteorological 

contribution viewed as being driven by trends in anthropogenic emissions. They quantified that the mean PM2.5 decrease in 

BTH, YRD and PRD from 2013 to 2018 is 86%, 103% and 81% in the meteorology-corrected data respectively, meaning 

that 14%, -3% and 19% of the PM2.5 decrease in the original data is attributable to meteorology (Table 1).  105 

Chen et al. (2019) employed Kolmogorov–Zurbenko (KZ) filter to produce an adjusted long-term time series of PM2.5 

concentrations in Beijing from 2013 to 2017 by removing interannual and seasonal variations in meteorological conditions. 

They applied MLR models between PM2.5 and wind speed, RH, temperature and solar radiation to remove the influence of 

meteorological conditions and then quantified that the contribution of emissions to adjusted PM2.5 was 81%, while the 

contribution of meteorology was 19% (Table 1).  110 

To compare with these two studies, we carry out an MLR analysis on the emission and observed concentrations of PM2.5, of 

which the results will be denoted hereafter as MLR-EMIS. As shown in Figure 2, the observed PM2.5 decreased remarkably 

from 2013 to 2018 in the three regions, with a downward trend of -12.2 µg m-3 yr-1 in BTH, -7.7 µg m-3 yr-1 in YRD and -5.0 

µg m-3 yr-1 in PRD. Moreover, MLR-EMIS model can mostly capture these decreasing features. The emission-corrected 

residual in BTH, YRD and PRD has a decreasing trend of -0.03 µg m-3 yr-1, -0.1 µg m-3 yr-1 and 0.2 µg m-3 yr-1 respectively, 115 

or 0.2%, 1.0% and -4.0% of the observed trends, respectively. Hence, the contribution of variations in climate/meteorology 

to the observed linear trend in winter PM2.5 in BTH, YRD and PRD from 2013 to 2018 is 0.2%, 1.0% and -4.0% respectively, 

meaning that 99.8%, 99.0% and 104.0% of the linear trend in the observed winter PM2.5 is attributable to emission (Table 1). 

These results of MLR-EMIS are in good agreement with Zhai et al. (2019) and Chen et al. (2019). This agreement is 

reinforced by a mechanistic model assessment conducted by Chen et al. (2019), who suggested that the contribution of 120 
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emissions to the linear trend in PM2.5 in 2013–2017 was 79%, while the contribution by meteorology was 21%. Furthermore, 

Gong et al. (2021) developed a framework based on an Environmental Meteorology Index, to quantitatively assess the 

contribution of meteorology variations to the trend of PM2.5 concentrations and separate the impacts of meteorology from the 

emission-control measures. They found that emission control contributed more than 90% of the PM2.5 decline in BTH from 

2013 to 2017, again in good agreement with those values in BTH and Beijing shown in Table 1 (upper two rows). 125 

Wang et al. (2015) hypothesized that decreasing ASI could be an important contributor to the recent increased haze days in 

eastern China, and about 45–67% of the interannual to interdecadal variability of winter haze days could be explained by the 

ASI variability. Following the MLR-EMIS model study above, we carry out a parallel MLR-ASI model study in which the 

emission is replaced by ASI (Figure 3). The ASI-corrected trends differ (i.e., residuals) by -9.3 µg m-3 yr-1, -3.3 µg m-3 yr-1 

and -3.0 µg m-3 yr-1, respectively, from the observed linear trends in winter PM2.5 in BTH, YRD and PRD, which imply that 130 

the emissions are responsible for 76%, 43% and 60% of the observed linear trend in winter PM2.5 in BTH, YRD and PRD, 

respectively, in 2013–2018 (Table 2). It follows that ASI can explain 24%, 57% and 40% of the decreasing trends (Table 2), 

agreeing with Wang et al. (2015). Here we note that the contribution of ASI represents a partial contribution of 

climate/meteorological conditions, adding other meteorological parameters would increase the contribution.  

The comparison of Tables 1 and 2 poses an interesting problem. For BTH, the MLR-ASI value of 76% (Table 2) for the 135 

contribution of emissions is slightly lower than, but nevertheless agrees approximately with the results of MLR-EMIS in the 

upper two rows of Table 1. However, for YRD and PRD, the contributions of 43% and 60% (Table 2), respectively, by non-

ASI (including emissions) to the observed linear trends in winter PM2.5 are significantly less than those values of 96%–99% 

derived by the MLR-EMIS analysis (bottom two rows of Table 1). What causes the discrepancy? Which table has the correct 

results? The answer to the first question is that there are significant linear trends in PM2.5, anthropogenic emissions and ASI 140 

(Figures 1 and 3), but there is no significant linear trend in the meteorological parameters used in the studies by Zhai et al. 

(2019) and Chen et al. (2019). The MLR analysis gives high values to correlation coefficients of parameters with significant 

linear trends. In fact, any parameter with a significant linear trend in 2013–2018, e.g., sea surface temperature (SST) of the 

western Pacific, would get a high correlation coefficient in the MLR analysis. 

3.2 Compare MLR results to mechanistic models 145 

The answer to the second question is that neither of the two tables is correct for the following reasons: All evaluations in 

Tables 1 and 2 quantified the relative contributions of anthropogenic emission and meteorology to the linear trend of PM2.5 

in 2013−2018 using certain statistical MLR models. No mechanistic process was considered in these models. This raises a 

fundamental concern about the attribution of causes based on statistical regression results alone. It is well known that a good 

correlation in the MLR analysis does not imply any causal relationship, let alone a quantitative causal relationship. The 150 

causal relationship can only be established if a mechanistic model, that simulates the atmospheric environment with realistic 

emissions of air pollutants and ambient meteorological conditions as model inputs, can credibly reproduce the observed 
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concentrations and trends of PM2.5. Therefore, we conclude that the quantitative results in Tables 1 and 2 are not 

scientifically credible unless corroborated by a mechanistic model.  

The KZ-MLR results of Chen et al. (2019) in Table 1 are corroborated by the Weather Research and Forecasting and the 155 

Community Multi-scale Air Quality model (WRF-CMAQ), a mechanistic model (Chen et al., 2019). However, the 

mechanistic model study of Chen et al., (2019) is consisted of short term (2013–2017) simulations. As noted in Section 2.2, a 

short-term study of 2013–2017 overlooks the effect as well as the cause of bulge-2013, which might lead to significant 

uncertainties and/or biased results. In this context, we believe that an effective mechanistic (or MLR) model study should 

cover long enough time before the period of interest (2013–2017), so that the model could be constrained by the major 160 

features of interannual variations such as the bulge-2013 and the depression before it (Figure 1a). 

We summarize the discussions involving Tables 1 and 2 as follows. (1) Quantitative MLR results in Tables 1 and 2 without 

corroboration by a mechanistic model are not credible. (2) Results from mechanistic models are more credible than MLR in 

theory, but significant uncertainties and/or biased results exist in the short term model simulations. 

3.3 An alternative interpretation of MLR results 165 

In view of the difficulty in interpreting the results from MLR analysis, we propose an alternative interpretation of the 

correlation coefficient by interpreting it as “the maximum contribution of an independent variable (e.g., emissions in Table 1) 

to the dependent variable (e.g., linear trends of PM2.5 in Table 1)”, while the residual should be interpreted as the minimum 

contribution of all other independent variables (e.g., non-emission variables in Table 1). Tables 3 and 4 are the 

corresponding outcomes from the new interpretation for Tables 1 and 2, respectively. It is clear that now under the new 170 

interpretation, Tables 3 and 4, unlike Tables 1 and 2, are consistent with each other. In addition, the results of Chen et al. 

(2019) and Gong et al. (2021) are also consistent with the range of values in Tables 3 and 4. These consistent results provide 

a firm cornerstone to explore additional applications of the alternative interpretation as discussed in Section 3.4. 

Another critical factor affecting the MLR results is the length of time period studied. Table 5 compares the results of two 

short-term studies (2013–2017; 2013–2018) in BTH to a long-term study (1985–2018) for MLR-EMIS and MLR-ASI. The 175 

emissions of MLR-EMIS can contribute to a maximum of 99% of the observed trend of PM2.5 in BTH during 2013–2017, 

while the residual parameters contribute at least 1%. For the MLR-ASI analysis, the maximum possible contribution of ASI 

to observed PM2.5 in 2013–2017 is 30%, while the residuals contribute at least 70%. Using the retrieved PM2.5 does not 

change the results significantly from the observed PM2.5. Adding 2018 into consideration makes little difference for MLR-

EMIS. However, adding only the year 2018, the ASI’s maximum contribution to observed PM2.5 decline by about 11% 180 

compared to that of 2013–2017, while the minimum contribution of the residual increases from 57% to 68% (Table 5). The 

reason for the larger change in the MLR-ASI can be readily understood by comparing the solid red line (EMIS) in Figure 2a 

to that (ASI) of Figure 3a, the former maintained a smooth declining trend in 2016–2018 while the latter turned around and 

increased from 2016 to 2018. This turning-around made the MLR-ASI regression significantly worse and was responsible 

for the residual increasing from 57% to 68%.  185 
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The 2013–2017 and 2013–2018 results of MLR-EMIS in YRD (Table 6) and PRD (Table 7) are also consistent with those in 

BTH (Table 5). The 2013–2017 and 2013–2018 results of MLR-ASI in PRD are consistent with those in BTH, while the 

values of corresponding results of YRD are relatively large compared with the other two regions. The reason for the 

difference is that the solid red line (ASI) and the solid black line (observed PM2.5) in YRD showed relatively consistent 

trends from 2013 to 2017, while both lines show opposite trends in the 2014–2017 BTH and 2015–2018 PRD (Figure 3). 190 

The consistent trend between the two lines makes the MLR-ASI regression in YRD relatively good, resulting in the 

maximum contribution of ASI to PM2.5 in YRD from 2013 to 2017 being 80%, while the residual contribution is greater than 

20%. After adding the opposite upward trend of the two curves from 2017 to 2018, the maximum ASI contribution to PM2.5 

in YRD decreased substantially from 85% to 54%, while the residual increased to >46% (Table 6). 

Extending to 1985–2018, these long-term results differ drastically from the short-term results: The contribution of emissions 195 

in MLR-EMIS to the linear trends of PM2.5 in BTH for the 34-year study is merely <7%, while the contribution of all 

residual parameters is >93%. The small upper limit of 7% can be easily explained by examining Figure 4a in which the 

regression between the red line (emission) and black line (PM2.5) is very poor, especially after 2010 when the observed PM2.5 

started to climb from around 20% to the bulge-2013 of 100%. In fact, the red emission line in Figure 1a had to be turned 

upside down in Figure 4a to get the best fit to the black line of PM2.5 (note the fit between 1988 and 2012 is fairly good), 200 

which resulted the red line to miss the bulge-2013 completely. The small contribution of emissions compared to the residuals 

is in good agreement with the results of Dang and Liao (2019) who found that meteorology contributed significantly more 

than emissions to the linear trend as well as the interannual variability of severe winter haze days in BTH in 2013−2017. The 

MLR-ASI analysis for PM2.5 in BTH over the 34-year period from 1985 to 2018 has a slightly better regression result as 

shown in Figure 5a. As a result, the maximum contribution of ASI to the linear trend of PM2.5 is 43%, while the minimum 205 

contribution of the residuals is 57% (Table 5). The bulge-2013 in the winter haze days in North China Plain was also noticed 

by Yin and Wang (2017), whose generalized additive model using ASI and SST as predictors was found to capture the 

interannual and interdecadal variations of winter haze days in 1980−2015, including the bulge-2013.  

For YRD, the 1985–2018 emission contribution to the linear trend in the observed PM2.5 has an upper limit of only 1%, 

implying the contribution of residuals (including meteorology) to be at least 99% (Table 6). The small 1% can be explained 210 

by the extremely poor match between the red line (emission) and the black line (PM2.5) in Figure 4b. The regression result of 

the MLR-ASI analysis in YRD is relatively good. Although the red line (ASI) also fails to match bulge-2013, it matches well 

with the 2016−2018 profile as shown in Figure 5b. As a result, the maximum contribution of ASI to the 34-year linear trend 

of PM2.5 reaches 75%, implying the minimum contribution of the residuals to be 25% (Table 6). PRD does not have the 

bulge-2013 (Figure 1c) and therefore has a good regression between emissions and PM2.5 from 1985 to 2018 (Figure 4c), 215 

implying that emissions over 34-year period can contribute as much as 73% to the linear trend of PM2.5, while >27% is 

contributed by the residuals (Table 7). The regression result of the MLR-ASI analysis for PM2.5 in PRD from 1985 to 2018 is 

slightly better than those of the MLR-EMIS, and the red line (ASI) and the black line (PM2.5) show opposite trends only in 
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2011−2015 as shown in Figure 5c, resulting in the maximum contribution of ASI to the linear trend of PM2.5 being 81%, 

while the minimum contribution of the residuals is 19% (Table 7). 220 

3.4 Best estimate of the contribution  

Tables 5−7 and Figures 4−5 provide strong evidence supporting the notion that the contributions of emissions and 

meteorology to the linear trend in PM2.5 depend on the length of time analyzed. A critical question remaining is which 

regression analysis gives the correct value of the contribution when a long-term analysis overlaps with a short-term analysis, 

e.g., the 1985−2018ret analysis (Figure 4a) vs. the 2013−2018ret analysis (Figure 2a) for BTH during the period 2013−2018 225 

(fourth row vs. last row in Table 5)? A logical answer to this question is that the long-term analysis gives the correct value 

because it has more data points to constrain the regression. This is discussed in the following using the BTH case as an 

example. 

Figure 4a-a shows an enlarged plot of the 2013−2018 portion of Figure 4a (named as 2013−2018ret34 analysis hereafter and in 

Tables 5−7). The green solid bars in Figure 4a-a denote the anomalies/deviations of the red emission line from the black 230 

observations line, of which the mean absolute value of 49% (third column and the last row of Table 5) can be recognized as 

the minimum contribution of the residual/non-emission (including meteorology/climate) to the linear trend in PM2.5 

according to the alternative interpretation. Hence the maximum contribution by EMIS is 51%, which is substantially less 

than the 94% of the 2013−2018ret analysis (second column and fourth row of Table 5). The main reason for this difference 

can be traced to the bulge-2013 in Figure 4a which, as discussed in Section 3.3, contributes pivotally to the red emission line 235 

in Figure 1a being turned upside down in Figure 4a to get the best fit with the black line of observed PM2.5. For the 

2013−2018ret34 ASI analysis, the green solid bars of Figure 5a-a denote the anomalies/deviations of ASI line from the PM2.5 

line, of which the mean absolute value of 38% (fifth column and last row of Table 5) can be recognized as the minimum 

contribution of the residual of ASI, which includes emissions. Hence, we derive the maximum contribution by ASI to be 62% 

(fourth column and last row of Table 5). Key results of the two analyses above are summarized in the fourth and last rows of 240 

Table 5. Qualitatively the results of the 2013−2018ret analysis and the 2013−2018ret34 analysis are consistent (overlap) with 

each other, quantitatively a significant difference exists between the two analyses-the contribution of emission to the linear 

trend in PM2.5 in the latter has a tighter upper limit of only 51% compared to 94% of the former, and a greater lower limit for 

the contribution of the residual which includes meteorology/climate in the latter (49%) compared to the former (6%). The 

fact that the long-term analysis renders a tighter upper/lower limit is evidently the result of additional constraints provided by 245 

the long-term data. Finally, since a tighter upper/lower limit gives a more precise estimate of the contribution, we suggest 

that the best estimates of the contributions of emission, ASI and other meteorology/climate parameters to the linear trend in 

PM2.5 in BTH during 2013−2018 are those listed in the last row of Table 5, specifically, emission<51%, non-emission>49%, 

ASI<62% and non-ASI>38%. These are our best estimates which are remarkably different from those of MLR studies listed 

in Table 1. 250 
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The same analysis can be carried out for YRD and PRD, and the key results are summarized in the fourth and last rows of 

Tables 6 and 7, respectively. For YRD, the best estimates of the contributions of emission, ASI and other 

meteorology/climate parameters to the linear trend in PM2.5 during 2013−2018 are those listed in the last row of Table 6, 

specifically, emission<44%, non-emission>56%, ASI<74% and non-ASI>26%. For PRD, the best estimates of the 

contributions of emission, ASI and other meteorology/climate parameters to the linear trend in PM2.5 during 2013−2018 are 255 

those listed in the last row of Table 7, specifically, emission<88%, non-emission>12%, ASI<55% and non-ASI>45%. These 

best estimates are also significantly different from those of MLR studies listed in Table 1. 

4 Summary and conclusions 

Recently, Chen et al. (2019) and Zhai et al. (2019) used MLR models to analyze the significant downward trend of PM2.5 

concentrations in China’s major air pollution regions in 2013–2018 (2013–2017 for Chen et al. (2019)) and quantified that 260 

the control of anthropogenic emissions accounted for 81% to 103% of the PM2.5 reduction (Table 1). While there is little 

doubt that anthropogenic emissions make a significant contribution to the reduction trend of PM2.5, we are skeptical of these 

high contributions by emissions obtained based solely on MLR models. In fact, a good correlation in MLR analysis does not 

imply any causal relationship, let alone a quantitative relationship. The causal relationship can only be established if a 

mechanistic model, that simulates the atmospheric environment with realistic emissions of air pollutants and ambient 265 

meteorological conditions as model inputs, can credibly reproduce the observed concentrations and trends of PM2.5. In this 

regard, Chen et al. (2019) corroborated their MLR result of 81% (Table 1) using the mechanistic model WRF-CMAQ. 

However, the mechanistic model study of Chen et al., (2019) is consisted of short term (2013–2017) simulations. As noted in 

Section 2.2, a short-term study of 2013–2017 overlooks the effect as well as the cause of bulge-2013, which might lead to 

significant uncertainties and/or biased results. In this context, we believe that an effective mechanistic (or MLR) model study 270 

should cover long enough time before the period of interest (2013–2017), so that the model could be constrained by the 

major features of interannual variations such as the bulge-2013 and the depression before it (Figure 1a). 

To compare with previous MLR studies, the MLR model is used in this study to assess the contributions of 

climate/meteorology variations and anthropogenic emissions to the linear trends of PM2.5 concentration in three regions in 

eastern China, namely BTH, YRD, and PRD. We first carry out an MLR analysis (MLR-EMIS) on the emissions and 275 

observed trend of PM2.5 in BTH during 2013−2018, and show that the results of Zhai et al. (2019) and Chen et al. (2019) can 

be satisfactorily reproduced (Table 1). Then the same MLR analysis are performed on the arctic sea ice (ASI) and observed 

trend of PM2.5 (MLR-ASI), and obtain a 76% contribution by emissions in BTH, which is slightly lower than, but 

nonetheless in qualitative agreement with those values obtained by Zhai et al. (2019) and Chen et al. (2019) (Tables 1 and 2). 

However, for YRD and PRD, the contributions of emissions to the observed trends of PM2.5 are only 43% and 60% (Table 2), 280 

respectively, significantly less than those values of 96%−99% derived by the MLR-EMIS analysis (Table 1). We believe that 

the discrepancy is rooted in the false assumption/interpretation of the correlation coefficient as the value of contribution in 
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the MRL studies. This assumption/interpretation is conceptually false because a good correlation in a MLR analysis does not 

imply a causal relationship, and certainly not a quantitative relationship. We therefore propose an alternative interpretation: 

the correlation coefficient should be interpreted as the maximum possible contribution of the independent variable to the 285 

dependent variable, and the residual should be interpreted as the minimum contribution of all other independent variables. 

Under the new interpretation, the new results, as shown in Tables 3–4, become consistent with one another. 

Another important outcome from this study is that the results of a short-term (2013–2018) analysis are significantly different 

from those of a long-term (1985–2018) analysis for the period 2013−2018 they overlap, suggesting that MLR results depend 

critically on the length of time analyzed. The long-term analysis renders a more precise estimate, because of additional 290 

constraints provided by the long-term data. We therefore suggest that the best estimates of the contributions of emissions and 

non-emission (including climate/meteorology) to the linear trend in PM2.5 during 2013–2018 are those from the long-term 

analyses: i.e., emission <51% and non-emission >49% for BTH, emission <44% and non-emission >56% for YRD, emission 

<88% and non-emission >12% for PRD. 

 295 
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Table 1: Comparison of the contribution of emissions and meteorological conditions to the observed PM2.5 trends in 2013−2018 

(2013−2017 for Chen et al. (2019)). 

Research Region Method Emission Meteorology 

Chen et al. (2019) Beijing KZ-MLR 81% 19% 

Zhai et al. (2019) 
BTH 

MLR 86% 14% 

This study MLR-EMIS 99.8% 0.2% 

Zhai et al. (2019) 
YRD 

MLR 103% -3% 

This study MLR-EMIS 99% 1% 

Zhai et al. (2019) 
PRD 

MLR 81% 19% 

This study MLR-EMIS 96% 4% 

Note: KZ: Kolmogorov–Zurbenko filter; MLR: stepwise multiple linear regression; MLR-EMIS indicates the use of 

emissions and PM2.5 as inputs to the MLR model. 

  395 
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Table 2: Contributions of arctic sea ice (ASI) and residuals (Non-ASI) to the observed PM2.5 trends in the winter seasons of 

2013−2018. 

Region Method ASI Non-ASI 

BTH 

MLR-ASI 

24% 76% 

YRD 57% 43% 

PRD 40% 60% 

Note: MLR-ASI indicates the use of ASI and PM2.5 as inputs to the MLR model.  
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Table 3. Contributions of emissions and non-emissions (including climate and meteorological conditions) to the observed PM2.5 400 
trends in 2013−2018 (2013−2017 for Chen et al. (2019)). 

Research Region Method Emission Non-emission 

Chen et al. (2019) Beijing KZ-MLR <81% >19% 

Zhai et al. (2019) 
BTH 

MLR <86% >14% 

This study MLR-EMIS <99.8% >0.2% 

Zhai et al. (2019) 
YRD 

MLR <103% >-3% 

This study MLR-EMIS <99% >1% 

Zhai et al. (2019) 
PRD 

MLR <81% >19% 

This study MLR-EMIS <96% >4% 
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Table 4. Contributions of ASI and residuals (Non-ASI) to the observed PM2.5 trends in 2013−2018. 

Region Method ASI Non-ASI 

BTH 

MLR-ASI 

<24% >76% 

YRD <57% >43% 

PRD <40% >60% 
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Table 5. Contributions of emissions and ASI to the PM2.5 trends in BTH. 405 

Time Period 
MLR-EMIS MLR-ASI 

Emission Non-emission ASI Non-ASI 

2013−2017obs <99% >1% <30% >70% 

2013−2017ret <94% >6% <43% >57% 

2013−2018obs <99.8% >0.2% <24% >76% 

2013−2018ret <94% >6% <32% >68% 

1985−2018ret <7% >93% <43% >57% 

2013−2018ret34 <51% >49% <62% >38% 

Note: The superscripts obs and ret indicate the use of observed and retrieved PM2.5 data, respectively. Superscript ret34 

indicates the retrieved PM2.5 data for 2013–2018 obtained using the data of 1985–2018.  
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Table 6. Contributions of emissions and ASI to the PM2.5 trends in YRD. 

Time Period 
MLR-EMIS MLR-ASI 

Emission Non-emission ASI Non-ASI 

2013−2017obs <96% >4% <80% >20% 

2013−2017ret <84% >16% <85% >15% 

2013−2018obs <99% >1% <57% >43% 

2013−2018ret <86% >14% <54% >46% 

1985−2018ret <1% >99% <75% >25% 

2013−2018 ret34 <44% >56% <74% >26% 

  410 
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Table 7. Contributions of emissions and ASI to the PM2.5 trends in PRD. 

Time Period 
MLR-EMIS MLR-ASI 

Emission Non-emission ASI Non-ASI 

2013−2017obs <81% >19% <67% >33% 

2013−2017ret <96% >4% <59% >41% 

2013−2018obs <99.96% >0.04% <40% >60% 

2013−2018ret <99.2% >0.8% <39% >61% 

1985−2018ret <73% >27% <81% >19% 

2013−2018 ret34 <88% >12% <55% >45% 
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Figure 1: PM2.5 concentration, emission and Arctic Sea Ice (ASI) in BTH, YRD and PRD in the winter seasons of 1985–2018.  
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 415 

Figure 2: Results of MLR-EMIS analysis for 2013–2018 in BTH (a), YRD (b) and PRD (c). Temporal variations of observed winter 

PM2.5 concentration are shown in black, contributions of anthropogenic emissions to the PM2.5 trend are shown in red, and the 

residual is shown in blue. Values inset in each panel are the ordinary linear regression trends, with 95% confidence intervals 

obtained by the student’s t test.   
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Figure 3: Same as Figure 2 except for MLR-ASI analysis.  
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Figure 4: The same as Figure 2 except for time period of 1985–2018. Subfigures 4(a-a) are enlarged schematic representations of 

the period 2013–2018 in Figure 4(a).  
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Figure 5: The same as Figure 4 except for MLR-ASI analysis.  
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